Supporting Information

Catalytic Dehydrogenative Synthesis of α, β-Unsaturated Secondary Amides without External Oxidants

Shaokang An¹, Guoyin Lai², Wenbo H. Liu*¹ ¹School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China E-mail: liuwb29@mail.sysu.edu.cn.

²Guangzhou Flower Flavours & Fragrances Co., Ltd, Guangzhou 510442, China

Table of Contents

1. General information	S2
2. Reaction optimization for the synthesis of α , β - unsaturated secondary amides	S3
3. Preparation and characterization of starting materials	S7
4. General procedures for the synthesis of α , β - unsaturated secondary amides	S22
5. Scaled-up reaction	S39
6. Derivatization to other compounds	S40
7. Synthesis of llepcimide	S43
8. Reactivity of different leaving groups	S45
9. Potential intermediate for the dehydrogenation	S46
10. Kinetic Isotope Effect Studies	S47
11. Copies of NMR spectra	S51
12. References	S114

1. General information

Commercial reagents were purchased from Biomedical, TCI, J&K, Accela, Macklin, Bidepharm or Adamas and used without further purification. The anhydrous solvents used in the experiments were all purchased and used directly. All reactions were carried out with oven-dried glassware. Analytical thin layer chromatography (TLC) was performed on 0.20 mm silica gel HSGF-254 plates (Huanghai, China). Column chromatography was performed on 200-300 mesh silica gel or 300-400 mesh silica gel (General-Reagent, China).

¹H NMR (400 MHz or 600 MHz), ¹³C NMR (101 MHz or 150 MHz) and ¹⁹F NMR (376 MHz or 565 MHz) were recorded on an NMR spectrometer (Bruker Ascend 400 M/600 M or Qone AS 400) with CDCl₃ as the solvent. Chemical shifts of ¹H and ¹³C NMR spectra are reported in parts per million (ppm). The residual solvent signals were used as references and the chemical shifts were converted to the TMS scale (CDCl₃: δ H = 7.26 ppm, δ C = 77.16 ppm). All coupling constants (*J* values) were reported in Hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet doublet, dt = doublet triplet, td = triplet doublet, m = multiplet, br = broad. High resolution mass spectrometer data of new compounds were recorded on an LTQ Orbitrap Elite LC/MS (ESI or APCI) or an MAT 95XP (Thermo, EI).

2. Reaction optimization for the synthesis of α , β - unsaturated secondary

amides

	Me	H OTs I N Bn	1) MgBr ₂ •Et ₂ O (1. <i>i</i> Pr ₂ NEt (2.0 ec Solvent (0.2 2) [Pd] (10 mc Base (2.0 eq Temperature,	1 equiv), 1 yuiv), M 19%), 19%), 10 h 16 h	2a HN Bn	
Entry	Pd	Base	Solvent	Temperature	Ligand	¹ H-NMR Yield ^[b]
1	Pd(PPh ₃) ₄	Cs_2CO_3	MeCN	100 °C	none	9%
2	Pd(OAc) ₂	Cs_2CO_3	MeCN	100 °C	40 mol% PPh ₃	3%
3	Pd(PPh ₃) ₄	Cs_2CO_3	DCE	100 °C	none	4%
4	Pd(PPh ₃) ₄	Cs_2CO_3	DMF	100 °C	none	N.R.
5	$Pd(PPh_3)_4$	Cs_2CO_3	Dioxane	100 °C	none	N.D.
6	$Pd(PPh_3)_4$	Cs_2CO_3	DMSO	100 °C	none	N.D.
7	$Pd(PPh_3)_4$	Cs_2CO_3	PhMe	100 °C	none	2%
8	$Pd(PPh_3)_4$	Cs_2CO_3	PhH	100 °C	none	3%
9	Pd(PPh ₃) ₄	Cs_2CO_3	PhCl	100 °C	none	7%
10	Pd(PPh ₃) ₄	<i>i</i> Pr ₂ NEt	MeCN	100 °C	none	12 %
11	Pd(PPh ₃) ₄	<i>i</i> Pr ₂ NEt	MeCN	100 °C	40 mol% P(^t Bu) ₃ •BF ₄	N.D.
12	Pd(PPh ₃) ₄	<i>i</i> Pr ₂ NEt	MeCN	100 °C	40 mol% P(Cy) ₃ •BF ₄	N.D.
13 ^c	$Pd(PPh_3)_4$	Cs_2CO_3	MeCN	100 °C	none	N.D.
14 ^d	$Pd(PPh_3)_4$	Cs_2CO_3	MeCN	100 °C	none	N.D.

Table S1. General screening for the one-step synthesis of α,β - unsaturated secondary amides $^{[a]}$

[a] Reaction conditions: **1a** (1.0 equiv, 0.20 mmol), MgBr₂·Et₂O (1.1 equiv, 0.22 mmol), *i*Pr₂NEt (2.0 equiv, 0.40 mmol), solvent (1.00 mL), [Pd] (0.1 equiv, 0.02 mmol), base (2.0 equiv, 0.40 mmol), 100 °C, 16 h. [b] The yields were determined by ¹H NMR (1,3,5-trimethoxybenzene as the internal standard). [c] 1.1 equiv LiBr instead of MgBr₂·Et₂O. [d] 1.1 equiv CuBr₂ instead of MgBr₂·Et₂O.

Table S2. Base and ligand screening for the one-pot two-step synthesis of α , β -unsaturated secondary amides^[a]

	Me H 1a	OTs iPi N Bn 2)	gBr₂•Et₂O (1.1 equiv), Ar, r₂NEt (2.0 equiv), 40 °C, 4 h, MeCN (0.4 M) [Pd], Base (2.0 equiv), Temperature, 16 h	Me Me	Bn
Entry	Pd	Base	Temperature	Ligand	¹ H-NMR Yield ^[b]
1	Pd(PPh ₃) ₄	Cs_2CO_3	100 °C	none	22%
2	Pd(PPh ₃) ₄	Ag_2CO_3	100 °C	none	7%
3	Pd(PPh ₃) ₄	K ₂ CO ₃	100 °C	none	16%
4	Pd(PPh ₃) ₄	Li ₂ CO ₃	100 °C	none	14%
5	Pd(PPh ₃) ₄	Cs_2CO_3	100 °C	40 mol% P(o-Me-Ph) ₃	26%
6	Pd(PPh ₃) ₄	Cs_2CO_3	100 °C	40 mol% X-Phos	20%
7	$Pd(PPh_3)_4$	Cs_2CO_3	100 °C	40 mol% P(p-Cl-Ph) ₃	10%
8	Pd ₂ (dba) ₃	Cs_2CO_3	100 °C	none	< 1%
9	Pd(PPh ₃) ₄	Cs_2CO_3	80 °C	none	30%
10 ^c	Pd(PPh ₃) ₄	Cs_2CO_3	100 °C	none	17 %
11°	Pd(OAc) ₂	Cs_2CO_3	100 °C	40 mol% PPh ₃	45 %

[a] Reaction conditions: **1a** (1.0 equiv, 0.20 mmol), MgBr₂·Et₂O (1.1 equiv, 0.22 mmol), *i*Pr₂NEt (2.0 equiv, 0.40 mmol), MeCN (0.50 mL), 40 °C, 4 h; then [Pd] (0.1 equiv, 0.02 mmol), base (2.0 equiv, 0.40 mmol), ligand (0.4 equiv, 0.08 mmol), temperature, 16 h. [b] The yields were determined by ¹H NMR (1,3,5-trimethoxybenzene as the internal standard). [c] Dioxane (1.0 mL) was added into the mixture as co-solvent. Pd₂(dba)₃ = Tris(dibenzylideneacetone)dipalladium. X-Phos = 2-Dicyclohexylphosphino-2',4',6'-tri-i-propyl-1,1'-biphenyl.

	Me	0Ts <i>i</i> P	gBr ₂ •Et ₂ O (1.1 equiv), Ar, /r ₂ NEt (2.0 equiv), 80 °C, 4 h, MeCN (0.4 M)			
	 Н О 1а	2) [Pd] Ligand	(10 mol%) , Base (2.0 eqi (40 mol%), Temperature,	uiv), 16 h 2a	ö	
Entry	Pd	Base	Temperature	Ligand	Co-solvent	¹ H-NMR Yield ^[b]
1	Pd ₂ (dba) ₃	Cs ₂ CO ₃	100 °C	PPh ₃	dioxane	27%
2	Pd(OAc) ₂	Cs_2CO_3	100 °C	PPh ₃	dioxane	42%
3	Pd(OAc) ₂	K ₂ CO ₃	100 °C	PPh ₃	dioxane	46%
4	Pd(OAc) ₂	K ₂ CO ₃	100 °C	PPh ₃	DME	35%
5	Pd(OAc) ₂	K ₂ CO ₃	100 °C	PPh ₃	EtOAc	39%
6	Pd(OAc) ₂	K ₂ CO ₃	100 °C	PPh ₃	EtOH	34%
7	Pd(OAc) ₂	K ₂ CO ₃	100 °C	PPh ₃	THF	28%
8	Pd(OAc) ₂	K ₂ CO ₃	100 °C	20 mol% PPh ₃	dioxane	39%
9	Pd(OAc) ₂	K ₂ CO ₃	100 °C	60 mol% PPh ₃	dioxane	31 %
10	Pd(OAc) ₂	K ₂ CO ₃	100 °C	Binap	dioxane	25%
11	Pd(OAc) ₂	K ₂ CO ₃	100 °C	dppb	dioxane	13 %
12	Pd(OAc) ₂	K ₂ CO ₃	80 °C	10 mol% DPEphos	dioxane	69%
13	Pd(OAc) ₂	K ₂ CO ₃	80 °C	20 mol% DPEphos	dioxane	57%
14	Pd(OAc) ₂	K ₂ CO ₃	80 °C	30 mol% DPEphos	dioxane	62%
15	Pd(OAc) ₂	K ₂ CO ₃	80 °C	10 mol% DPEphos	2.5 mL dioxane	44%
16	Pd(OAc) ₂	K ₂ CO ₃	80 °C	10 mol% DPEphos	3.5 mL dioxane	75%
17	Pd(OAc) ₂	K ₂ CO ₃	80 °C	10 mol% DPEphos	3.5 mL dioxane	75%
18	5 mol% Pd(OAc) ₂	K ₂ CO ₃	80 °C	10 mol% DPEphos	3.5 mL dioxane	74%
19	15 mol% Pd(OAc) ₂	K ₂ CO ₃	80 °C	10 mol% DPEphos	3.5 mL dioxane	41%
20	5 mol% Pd(OAc) ₂	K ₂ CO ₃	60 °C	10 mol% DPEphos	3.5 mL dioxane	49%
21	5 mol% Pd(OAc) ₂	K ₂ CO ₃	80 °C	10 mol% DPEphos	none	75%
22	5 mol% Pd(OAc) ₂	K ₂ CO ₃	80 °C	10 mol% XantPhos	none	82%
23	5 mol% Pd(OAc) ₂	K ₂ CO ₃	80 °C	10 mol% dppf	none	70%

Table S3. Co-solvent and ligand screening for the one-pot two-step synthesis of α , β - unsaturated secondary amides^[a]

[a] Reaction conditions: **1a** (1.0 equiv, 0.20 mmol), MgBr₂·Et₂O (1.1 equiv, 0.22 mmol), *i*Pr₂NEt (2.0 equiv, 0.40 mmol), MeCN (0.50 mL), 80 °C, 4 h; then [Pd] (0.1 equiv, 0.02 mmol), base (2.0 equiv, 0.40 mmol), ligand (0.4 equiv, 0.08 mmol), co-solvent (1.0 mL), temperature, 16 h. [b] The yields were determined by ¹H NMR (1,3,5-trimethoxybenzene as the internal standard). dppb = 1,4-Bis(diphenylphosphino)butane. DPEPhos = 1-(Diphenylphosphino)-2-(2-(diphenylphosphino)phenoxy)benzene. XantPhos = 4,5-Bis(diphenylphosphino)-9,9-dimethylxanthene. dppf = 1,1'-Bis(diphenylphosphino)ferrocene.

Table S4. General screening of different parameters for the one-pot two-step synthesis of α , β - unsaturated secondary amides^[a]

		1) MgBr OTs <i>i</i> Pr ₂ N	2•Et ₂ O (1.1 equiv), Ar, Et (2.0 equiv), 80 °C, 4 h, MeCN ■	Me	H N Bn		
_	H Ö 1a	Ligand	2) [P0] (5 m0%) , Base (2.0 equiv), Ligand (10 mol%), 80 °C, 16 h		0 2a		
Entry	Pd	Base	Temperature	Ligand	¹ H-NMR Yield ^[b]		
1	none	K ₂ CO ₃	80 °C	XantPhos	0%		
2	Pd(OAc) ₂	K ₂ CO ₃	80 °C	none	15%		
3	Pd(OAc) ₂	none	80 °C	XantPhos	11%		
4	Pd(OAc) ₂	K ₂ CO ₃	80 °C	XantPhos	82%		
5	Pd(OAc) ₂	K ₂ CO ₃	80 °C	X-Phos	15%		
6	Pd(OAc) ₂	K ₂ CO ₃	80 °C	S-Phos	11%		
7	Pd(OAc) ₂	K ₂ CO ₃	80 °C	dppb	12%		
8	Pd(OAc) ₂	K ₂ CO ₃	80 °C	dppp	9%		
9	Pd(OAc) ₂	K ₂ CO ₃	80 °C	P(^t Bu) ₃ •BF ₄	41%		
10	Pd(OAc) ₂	K ₂ CO ₃	80 °C	P(cy) ₃ •BF ₄	7 %		
11	Pd(OAc) ₂	K ₂ CO ₃	80 °C	BINAP	29 %		
12	Pd(OAc) ₂	K ₂ CO ₃	80 °C	PPh ₃	21%		
13	Pd(OAc) ₂	K ₂ CO ₃	80 °C	DPEphos	63%		
14	Pd(OAc) ₂	K ₂ CO ₃	80 °C	dppf	45%		
15	Pd(OAc) ₂	K ₂ CO ₃	80 °C	P(o-Me-Ph) ₃	36%		
16	Pd(OAc) ₂	K ₂ CO ₃	80 °C	P(p-CI-Ph) ₃	21%		
17	Pd(PPh ₃) ₄	K ₂ CO ₃	80 °C	XantPhos	26%		
18	Pd ₂ (dba) ₃	K ₂ CO ₃	80 °C	XantPhos	67%		
19	Pd(OAc) ₂	Na_2CO_3	80 °C	XantPhos	21%		
20	Pd(OAc) ₂	Cs_2CO_3	80 °C	XantPhos	7%		
21 ^c	Pd(OAc) ₂	K ₂ CO ₃	80 °C	XantPhos	61%		
22 ^d	Pd(OAc) ₂	K ₂ CO ₃	80 °C	XantPhos	51%		

[a] Reaction conditions: **1a** (1.0 equiv, 0.20 mmol), MgBr₂·Et₂O (1.1 equiv, 0.22 mmol), *i*Pr₂NEt (2.0 equiv, 0.40 mmol), MeCN (0.50 mL), 80 °C, 4 h; then [Pd] (0.05 equiv, 0.01 mmol), base (2.0 equiv, 0.40 mmol), ligand (0.10 equiv, 0.02 mmol), temperature, 16 h. [b] The yields were determined by ¹H NMR (1,3,5-trimethoxybenzene as the internal standard). [c] 1.0 mL MeCN instead of 0.5 mL MeCN. [d] 2.0 mL MeCN instead of 0.5 mL MeCN. XantPhos = 4,5-Bis(diphenylphosphino)-9,9-dimethylxanthene. X-Phos = 2-Dicyclohexylphosphino-2',4',6'-tri-i-propyl-1,1'-biphenyl. S-Phos = 2-Dicyclohexylphosphino-2',6'-dimethoxy-1,1'-biphenyl. dppb = 1,4-Bis(diphenylphosphino)butane. dppp = 1,3-Bis(diphenylphosphino)propane. BINAP= 1.1'-Binaphthyl-2.2'-diphenyl phosphine. DPEPhos = 1-(Diphenylphosphino)-2-(2-(diphenylphosphino)phenoxy)benzene. dppf = 1,1'-Bis(diphenylphosphino)ferrocene.

3. Preparation and characterization of starting materials

Figure S1. List of starting materials 1a-1t, 1w-1aa

General Procedure A for the preparation of *O*-tosyl hydroxamate substrates 1a-1g, 1i, 1j, 1l, 1m, 1w, 1aa¹

$$R^{1} \underbrace{\bigcirc OH}_{\text{DCM}, 25 \text{ °C}, 1 \text{ h}}^{(\text{COCl})_{2}(1.5 \text{ equiv})}_{\text{DCM}, 25 \text{ °C}, 1 \text{ h}} R^{1} \underbrace{\bigcirc OH}_{\text{O}}^{\text{CI}} \underbrace{\stackrel{R^{2}\text{NHOH}\text{+HCl}(1.1 \text{ equiv})}{\text{NHCO}_{3}(10.0 \text{ equiv})}}_{\text{DCM}, 25 \text{ °C}, 16 \text{ h}} R^{1} \underbrace{\bigcirc OH}_{\text{NHCO}_{3}(10.0 \text{ equiv})}^{\text{OH}}_{\text{NHCO}_{3}(10.0 \text{ equiv})} R^{1} \underbrace{\bigvee}_{\text{NHCO}_{3}(10.0 \text{ equiv})}^{\text{OH}}_{\text{NHCO}_{3}(10.0 \text{ equiv})}^{\text{OH}}_{\text{NHCO}_{3}(10.0 \text{ equiv})} R^{1} \underbrace{\bigvee}_{\text{NHCO}_{3}(10.0 \text{ equiv})}^{\text{OH}}_{\text{NHCO}_{3}(10.0 \text{ equiv})}^{\text{O$$

To a stirred solution of acid **S1** (1.0 mmol, 1.0 equiv) in dichloromethane (2.0 mL), was added 1 drop *N*,*N*-dimethylformamide. Then oxalyl chloride (127.0 μ L, 1.5 mmol, 1.5 equiv) was added slowly into the mixture. The reaction was stirred at 25 °C for 1 h before being concentrated. NaHCO₃ (864 mg, 10.0 mmol, 10.0 equiv) was charged slowly (note: bubble was generated) into the acyl chloride **S2** and *N*-R²-hydroxylamine hydrochloride (1.1 mmol, 1.1 equiv) solution in dichloromethane (5.0 mL). The reaction was stirred at 25 °C for 16 h before being washed with H₂O (5.0 mL). The aqueous phase was extracted with dichloromethane (3 × 5.0 mL). After that, the organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure to obtain crude hydroxylamide **S3**.

To a stirred solution of hydroxylamide **S3** in dichloromethane (5.0 mL), was added *p*-toluenesulfonyl chloride (285.9 mg, 1.5 mmol, 1.5 equiv). A solution of Et₃N (152.0 μ L, 1.5 mmol, 1.5 equiv) in dichloromethane (1.0 mL) was charged slowly into reaction at 0 °C. The reaction was stirred at 25 °C for 16 h before being washed with H₂O (5.0 mL). The aqueous phase was extracted with dichloromethane (3 × 5.0 mL). After that, the organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated under reduced. The residual was purified by column chromatography on silica gel to afford *O*-tosyl hydroxamate **1**.

General Procedure B for the preparation of *O*-tosyl hydroxamate substrates 1h, 1k, 1q-1t, 1x-1z

To a stirred solution of acid **S4** (2.0 mmol, 1.0 equiv) in DMF (4.0 mL), was added **S9** (2.2 mmol, 1.1 equiv) and K_2CO_3 (6.0 mmol, 3.0 equiv). Then the reaction was stirred for 16 h at 50 °C before being washed with H₂O (3 × 5.0 mL). The aqueous phase was extracted with EtOAc (3 × 5.0 mL). After that, the organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residual was directly used for the next step without any further purification to afford crude **S5**.

To a stirred solution of **S5** in MeOH and H₂O (4.0 mL and 1.0 mL), was added tetrabutylammonium fluoride (1 mol/L in THF, 2.5 mmol, 2.5 equiv). The reaction was stirred at 25 °C for 16 h before being washed with 1 M HCl (5.0 mL). The aqueous phase was extracted with dichloromethane (3×5.0 mL). After that, the organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated under reduced. The residual was directly used for the next step without any further purification to afford

crude S6.

The following steps could follow the **General Procedure A** to afford *O*-tosyl hydroxamate **1**.

General Procedure C for the preparation of O-tosyl hydroxamate substrates 1n-1p

According to the synthesis method reported in literature², benzoyl peroxide (75%, 1.93 g, 6.0 mmol, 2.0 equiv) and Cs₂CO₃ (2.93 g, 9.0 mmol, 3.0 equiv) were taken in a tube equipped with a magnetic stir bar. Dichloromethane (20.0 mL) was added to it and the reaction was stirred vigorously for 2 h at 25 °C. After that a solution of amine **S10** (3 mmol, 1.0 equiv,) in dichloromethane (10.0 mL) was then added slowly and the mixture was further stirred for 16 h. The reaction was washed with water (10.0 mL) and extracted with dichloromethane (3 × 10.0 mL). The organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residual was purified by column chromatography on silica gel to obtain *O*-benzoylhydroxylamine **S11**.

$$\begin{array}{c} & & \text{OBZ} \\ & & \text{OP} \\ & & \text{S11} \end{array} \xrightarrow{\text{acyl chloride from acid (1.0 equiv)} \\ & & \text{DCM, 0 }^{\circ}\text{C} - 25 \,^{\circ}\text{C, 16 h} \end{array} \xrightarrow{\text{R}^{1}} \\ & & \text{S12} \end{array} \xrightarrow{\text{LiOH+H}_{2}\text{O} (1.0 equiv)} \xrightarrow{\text{R}^{1}} \\ & & \text{R}^{1} \xrightarrow{\text{C}} \\ & & \text{S13} \end{array} \xrightarrow{\text{C}} \\ & & \text{S13} \end{array} \xrightarrow{\text{C}} \\ & & \text{C} \\ & & \text{C}$$

To a solution of O-benzoylhydroxylamine S11 (2 mmol, 1.0 equiv) and acyl chloride (from corresponding acid, 2 mmol, 1.0 equiv) in dichloromethane (4.0 mL), was added slowly a solution of Et₃N (305.2 µL, 2.2 mmol, 1.1 equiv) in dichloromethane (1.0 mL) at 0 °C. Then the reaction was stirred for 16 h at 25 °C before being washed with H₂O (5.0 mL). The aqueous phase was extracted with dichloromethane (3×5.0 mL). After that, the organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residual was purified by column chromatography on silica gel to afford O-benzoyl hydroxamate S12. To a solution of O-benzoyl hydroxamate S12 (1.0 equiv) in MeOH (2.0 mL), was added slowly a solution of LiOH·H₂O (83.9 mg, 2.0 mmol, 1.0 equiv) in MeOH (2.0 mL) at 25 °C. Then the reaction was stirred for 10 min at 25 °C before being concentrated under reduced pressure to obtain crude hydroxylamide S13. To a solution of crude hydroxylamide S13 and *p*-toluenesulfonyl chloride (571.9 mg, 3.0 mmol, 1.5 equiv) in dichloromethane (5.0 mL), was added slowly a solution of Et₃N (305.2 µL, 2.2 mmol, 1.1 equiv) in dichloromethane (2.0 mL) at 0 °C. Then the reaction was stirred for 16 h at 25 °C before being washed with H₂O (5.0 mL). The aqueous phase was extracted with dichloromethane (3×5.0 mL). After that, the organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residual was purified by column chromatography on silica gel to afford O-tosyl hydroxamate 1.

N-Benzyl-*N*-(tosyloxy)pentanamide (1a)

Prepared following **General Procedure A** using valeric acid (164.2 mg, 1.0 mmol, 1.0 equiv), *N*-benzylhydroxylamine hydrochloride (175.6 mg, 1.1 mmol, 1.1 equiv) and Et₃N (152.0 μ L, 1.1 mmol, 1.1 equiv) as starting materials to afford **1a** as a white solid.

Yield 307.3 mg (85%). NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.88 – 7.83 (m, 2H), 7.38 (d, *J* = 8.2 Hz, 2H), 7.29 – 7.26 (m, 3H), 7.19 – 7.14 (m, 2H), 4.74 (s, 2H), 2.48 (s, 3H), 2.15 (t, *J* = 7.5 Hz, 2H), 1.43 – 1.36 (m, 2H), 1.19 – 1.10 (m, 2H), 0.79 (t, *J* = 7.3 Hz, 3H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 178.2, 146.8, 135.1, 131.2, 130.3, 129.5, 129.0, 128.6, 128.1, 54.0, 32.8, 25.9, 22.2, 21.9, 13.8

HRMS (ESI) m/z: $[M + H]^+$ calcd for C₁₉H₂₄NO₄S⁺: 362.1421, found: 362.1417.

N-Benzyl-3-phenyl-N-(tosyloxy)propanamide (1b)

Prepared following **General Procedure A** using 3-phenylpropionic acid (300.4 mg, 2.0 mmol, 1.0 equiv), *N*-benzylhydroxylamine hydrochloride (351.2 mg, 2.2 mmol, 1.1 equiv) and Et₃N (304.0 μ L, 2.2 mmol, 1.1 equiv) as starting materials to afford **1b** as a white solid.

Yield 496.7 mg (61%).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.76 (d, J = 8.1 Hz, 2H), 7.28 (d, J = 8.1 Hz, 2H), 7.19 – 7.13 (m, 5H), 7.11 (d, J = 7.2 Hz, 1H), 7.03 (dd, J = 6.6, 2.8 Hz, 2H), 6.99 – 6.94 (m, 2H), 4.67 (s, 2H), 2.70 (t, J = 7.7 Hz, 2H), 2.43– 2.40 (m, 5H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 177.2, 146.9, 140.6, 134.9, 131.1, 130.4, 129.5, 128.9, 128.7, 128.5, 128.4, 128.1, 126.3, 53.9, 34.7, 29.8, 22.0.

HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₃H₂₄NO₄S⁺: 410.1421, found: 410.1419

N-Benzyl-3-(4-fluorophenyl)-*N*-(tosyloxy)propenamide (1c)

Prepared following **General Procedure A** using 3-(4-fluorophenyl)propanoic acid (336.3 mg, 2.0 mmol, 1.0 equiv), *N*-benzylhydroxylamine hydrochloride (351.2 mg, 2.2 mmol, 1.1 equiv) and Et₃N (304.2 μ L, 2.2 mmol, 1.1 equiv) as starting materials to afford **1c** as a white solid.

Yield 355.7 mg (41%).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.80 – 7.74 (m, 2H), 7.29 (d, *J* = 8.1 Hz, 2H), 7.19 – 7.17 (m, 3H), 7.02 – 6.97 (m, 2H), 6.94 – 6.91 (m, 2H), 6.87 – 6.81 (m, 2H), 4.62 (s, 2H), 2.69 (t, *J* = 7.5 Hz, 2H), 2.44 – 2.41 (m, 5H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 177.0, 161.5 (d, *J* = 244.4 Hz), 147.0, 136.2 (d, *J* = 3.0 Hz), 134.8, 131.1, 130.4, 129.9 (d, *J* = 8.1 Hz), 129.5, 128.9, 128.6, 128.2, 115.2 (d, *J* = 21.2 Hz), 53.8, 34.7, 29.0, 22.0.

¹⁹**F NMR** (377 MHz, Chloroform-*d*) δ -117.24.

HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₃H₂₃FNO₄S⁺: 428.1327, found: 428.1325

N-Benzyl-3-(4-methoxyphenyl)-N-(tosyloxy)propenamide (1d)

Prepared following **General Procedure A** using 3-(4-methoxyphenyl)propanoic acid (360.4 mg, 2.0 mmol, 1.0 equiv), *N*-benzylhydroxylamine hydrochloride (351.2 mg, 2.2 mmol, 1.1 equiv) and Et₃N (304.2 μ L, 2.2 mmol, 1.1 equiv) as starting materials to afford **1d** as a colourless oil.

Yield 628.7 mg (72%).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.76 (d, *J* = 8.1 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 7.23 – 7.17 (m, 3H), 7.02 – 7.00 (m, 2H), 6.88 (d, *J* = 8.3 Hz, 2H), 6.70 (d, *J* = 8.3 Hz, 2H), 4.65 (s, 2H), 3.71 (s, 3H), 2.64 (t, *J* = 7.6 Hz, 2H), 2.40 – 2.36 (m, 5H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 177.2, 158.1, 146.9, 134.9, 132.6, 131.1, 130.4, 129.5, 129.4, 128.9, 128.6, 128.1, 113.9, 55.4, 53.9, 34.9, 29.0, 22.0.
HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₄H₂₆NO₅S⁺: 440.1526, found: 440.1525.

N-Benzyl-N-(tosyloxy)-3-(4-(trifluoromethyl)phenyl)propenamide (1e)

Prepared following **General Procedure A** using 3-(4-trifluoromethyl)propanoic acid (445.2 mg, 2.0 mmol, 1.0 equiv), *N*-benzylhydroxylamine hydrochloride (351.2 mg, 2.2 mmol, 1.1 equiv) and Et₃N (304.2 μ L, 2.2 mmol, 1.1 equiv) as starting materials to afford **1e** as a white solid.

Yield 663.5 mg (69%).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.86 (d, *J* = 8.1 Hz, 2H), 7.49 (d, *J* = 8.0 Hz, 2H), 7.39 (d, *J* = 8.1 Hz, 2H), 7.29 – 7.25 (m, 3H), 7.18 (d, *J* = 8.0 Hz, 2H), 7.10 – 7.05 (m, 2H), 4.69 (s, 2H), 2.88 (t, *J* = 7.4 Hz, 2H), 2.59 (t, *J* = 7.4 Hz, 2H), 2.50 (s, 3H).

¹³**C NMR** (151 MHz, Chloroform-*d*) δ 176.7, 147.1, 144.7, 134.7, 131.0, 130.4, 129.4, 128.9, 128.8, 128.6, 128.4, 128.2, 125.4 (q, *J* = 4.5 Hz), 124.4 (q, *J* = 271.8 Hz), 53.8, 34.1, 29.6, 21.9.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -62.34.

HRMS (ESI) m/z: $[M + H]^+$ calcd for C₂₄H₂₃F₃NO₄S⁺: 478.1294, found: 478.1292.

N-Benzyl-3-(4,5-diphenyloxazol-2-yl)-N-(tosyloxy)propenamide (1f)

Prepared following **General Procedure A** using oxaprozin (586.6 mg, 2.0 mmol, 1.0 equiv), *N*-benzylhydroxylamine hydrochloride (351.2 mg, 2.2 mmol, 1.1 equiv) and Et₃N (304.2 μ L, 2.2 mmol, 1.1 equiv) as starting materials to afford **1f** as a yellow oil. **Yield** 578.9 mg (52%).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.87 (d, *J* = 8.1 Hz, 2H), 7.62 (d, *J* = 7.0 Hz, 2H), 7.56 (dd, *J* = 7.8, 1.8 Hz, 2H), 7.39 – 7.31 (m, 8H), 7.22 – 7.13 (m, 5H), 4.75 (s, 2H), 3.05 (t, *J* = 7.3 Hz, 2H), 2.86 (t, *J* = 7.3 Hz, 2H), 2.42 (s, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 176.2, 161.9, 147.1, 145.5, 135.1, 134.7, 132.6, 131.0, 130.4, 129.5, 129.1, 128.8, 128.7, 128.67, 128.65, 128.18, 128.15, 128.1, 126.7, 54.0, 30.3, 22.8, 22.0.

HRMS (ESI) m/z: $[M + H]^+$ calcd for $C_{32}H_{29}N_2O_5S^+$: 553.1792, found: 553.1788.

N-Benzyl-4,4,4-trifluoro-*N*-(tosyloxy)butanamide (1g)

$$F_{3}C \xrightarrow{O}_{N} F_{3}C \xrightarrow{I}_{D} F_{3}C$$

Prepared following **General Procedure A** using 4,4,4-trifluorobutanoic acid (284.2 mg, 2.0 mmol, 1.0 equiv), *N*-benzylhydroxylamine hydrochloride (351.2 mg, 2.2 mmol, 1.1 equiv) and Et₃N (304.2 μ L, 2.2 mmol, 1.1 equiv) as starting materials to afford **1g** as a colorless oil.

Yield 505.8 mg (63%).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.92 – 7.86 (m, 2H), 7.44 (d, *J* = 8.1 Hz, 2H), 7.33 – 7.29 (m, 3H), 7.19 (dd, *J* = 6.6, 3.0 Hz, 2H), 4.80 (s, 2H), 2.51 (s, 3H), 2.45 – 2.36 (m, 2H), 2.36 – 2.25 (m, 2H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 174.9, 147.4, 134.6, 130.7, 130.5, 129.4, 129.0, 128.8, 128.4, 126.6 (q, *J* = 277.8 Hz), 54.1, 28.6 (q, *J* = 30.3 Hz), 26.3 (q, *J* = 3.1 Hz), 21.9.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -66.79.

HRMS (ESI) m/z: $[M + H]^+$ calcd for $C_{18}H_{19}F_3NO_4S^+$: 402.0982, found: 402.0978.

N-Benzyl-6-(naphthalen-2-yloxy)-*N*-(tosyloxy)hexanamide (1h)

Prepared following **General Procedure B** using naphthalen-2-ol (288.3 mg, 2.0 mmol, 1.0 equiv), *N*-benzylhydroxylamine hydrochloride (351.2 mg, 2.2 mmol, 1.1 equiv) and Et₃N (304.2 μ L, 2.2 mmol, 1.1 equiv) as starting materials to afford **1h** as a colourless oil.

Yield 732.4 mg (71%).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.89 – 7.83 (m, 2H), 7.79 – 7.70 (m, 3H), 7.47 – 7.41 (m, 1H), 7.38 (d, *J* = 8.1 Hz, 2H), 7.35 – 7.30 (m, 1H), 7.27 (d, *J* = 1.8 Hz, 1H), 7.26 (s, 2H), 7.20 – 7.08 (m, 4H), 4.74 (s, 2H), 4.00 (t, *J* = 6.5 Hz, 2H), 2.46 (s, 3H), 2.23 (t, *J* = 7.4 Hz, 2H), 1.80 – 1.70 (m, 2H), 1.53 (d, *J* = 7.7 Hz, 2H), 1.40 – 1.31 (m, 2H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 178.0, 157.1, 146.9, 135.0, 134.7, 131.0, 130.4, 129.49, 129.47, 129.0, 128.7, 128.2, 127.8, 126.8, 126.5, 123.6, 119.1, 106.6, 67.7, 53.9, 32.9, 29.0, 25.6, 23.6, 22.0.

HRMS (ESI) m/z: $[M + Na]^+$ calcd for $C_{30}H_{31}NO_5SNa^+$: 540.1815, found: 540.1811.

(9Z,12Z)-N-Benzyl-N-(tosyloxy)octadeca-9,12-dienamide (1i)

Prepared following **General Procedure A** using linoleic acid (622.0 μ L, 2.0 mmol, 1.0 equiv), *N*-benzylhydroxylamine hydrochloride (351.2 mg, 2.2 mmol, 1.1 equiv) and Et₃N (304.2 μ L, 2.2 mmol, 1.1 equiv) as starting materials to afford **1i** as a colourless oil.

Yield 736.2 mg (68%).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.79 (d, *J* = 8.1 Hz, 2H), 7.32 (d, *J* = 8.1 Hz, 2H), 7.19 (d, *J* = 2.5 Hz, 3H), 7.09 (dd, *J* = 6.7, 2.9 Hz, 2H), 5.37 – 5.21 (m, 4H), 4.66 (s, 2H), 2.70 (t, *J* = 6.3 Hz, 2H), 2.41 (s, 3H), 2.08 (t, *J* = 7.4 Hz, 2H), 2.03 – 1.91 (m, 4H), 1.39 – 1.05 (m, 16H), 0.82 (t, *J* = 6.7 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 178.2, 146.8, 135.0, 131.1, 130.4, 130.3, 130.2, 129.5, 129.0, 128.6, 128.2, 128.1, 128.0, 53.9, 53.6, 33.0, 31.7, 29.7, 29.5, 29.3, 29.2, 29.0, 27.3, 25.8, 23.8, 22.7, 22.0, 14.2.

HRMS (ESI) m/z: $[M + Na]^+$ calcd for $C_{32}H_{45}NO_4SNa^+$: 562.2961, found: 562.2956.

N-Benzyl-N-(tosyloxy)undec-10-enamide (1j)

Prepared following General Procedure A using undecenoic acid (404.1 µL, 2.0 mmol,

1.0 equiv), *N*-benzylhydroxylamine hydrochloride (351.2 mg, 2.2 mmol, 1.1 equiv) and Et₃N (304.2 μ L, 2.2 mmol, 1.1 equiv) as starting materials to afford **1j** as a colourless oil.

Yield 441.5 mg (50%).

NMR Spectroscopy:

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.93 – 7.85 (m, 2H), 7.41 (d, J = 8.1 Hz, 2H), 7.32 – 7.28 (m, 3H), 7.18 (dd, J = 6.7, 3.0 Hz, 2H), 5.89 – 5.78 (m, 1H), 5.06 – 4.94 (m, 2H), 4.75 (s, 2H), 2.51 (s, 3H), 2.16 (t, J = 7.4 Hz, 2H), 2.08 – 2.02 (m, 2H), 1.48 – 1.35 (m, 4H), 1.32 – 1.11 (m, 8H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 178.2, 146.8, 139.3, 135.1, 131.2, 130.3, 129.5, 129.0, 128.6, 128.1, 114.3, 53.9, 33.9, 33.1, 29.4, 29.3, 29.2, 29.1, 29.0, 23.9, 22.0.

HRMS (ESI) m/z: $[M + Na]^+$ calcd for C₂₅H₃₃NO₄SNa⁺: 466.2022, found: 466.2020.

6-(Benzyl(tosyloxy)amino)-6-oxohexyl benzoate (1k)

Prepared following **General Procedure B** using benzoic acid (244.2 mg, 2.0 mmol, 1.0 equiv), *N*-benzylhydroxylamine hydrochloride (351.2 mg, 2.2 mmol, 1.1 equiv) and Et₃N (304.2 μ L, 2.2 mmol, 1.1 equiv) as starting materials to afford **1k** as a colourless oil.

Yield 226.6 mg (23%).

NMR Spectroscopy:

¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.14 – 8.05 (m, 2H), 7.92 – 7.87 (m, 2H), 7.63 – 7.57 (m, 1H), 7.52 – 7.46 (m, 2H), 7.41 (d, *J* = 8.0 Hz, 2H), 7.30 (d, *J* = 3.1 Hz, 3H), 7.24 – 7.17 (m, 2H), 4.75 (s, 2H), 4.28 (t, *J* = 6.6 Hz, 2H), 2.50 (s, 3H), 2.26 (t, *J* = 7.3 Hz, 2H), 1.74 – 1.65 (m, 2H), 1.61 – 1.53 (m, 2H), 1.34 – 1.30 (m, 2H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 177.9, 166.8, 146.9, 135.0, 133.0, 131.1, 130.6, 130.3, 129.7, 129.5, 129.0, 128.6, 128.5, 128.2, 64.9, 53.9, 32.9, 28.6, 25.6, 23.6, 22.0.

HRMS (ESI) m/z: $[M + Na]^+$ calcd for $C_{27}H_{29}NO_6SNa^+$: 518.1608, found: 518.1606.

N-Benzyl-3-cyclopentyl-N-(tosyloxy)propenamide (11)

Prepared following **General Procedure A** using 3-cyclopentylpropanoic acid (290.0 μ L, 2.0 mmol, 1.0 equiv), *N*-benzylhydroxylamine hydrochloride (351.2 mg, 2.2 mmol, 1.1 equiv) and Et₃N (304.2 μ L, 2.2 mmol, 1.1 equiv) as starting materials to afford **11** as a white solid.

Yield 567.8 mg (71%).

NMR Spectroscopy:

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.89 (d, J = 8.1 Hz, 2H), 7.42 (d, J = 8.0 Hz, 2H), 7.30 (dd, J = 4.8, 1.9 Hz, 3H), 7.20 (dd, J = 6.7, 2.9 Hz, 2H), 4.78 (s, 2H), 2.51 (s, 3H), 2.14 (t, J = 7.7 Hz, 2H), 1.67 – 1.54 (m, 6H), 1.48 – 1.40 (m, 3H), 1.02 – 0.88 (m, 2H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 178.3, 146.9, 135.0, 131.1, 130.3, 129.5, 129.1, 128.6, 128.1, 54.0, 39.5, 32.5, 32.3, 29.9, 25.2, 22.0.

HRMS (ESI) m/z: $[M + H]^+$ calcd for C₂₂H₂₈NO₄S⁺: 402.1734, found: 402.1731.

N-Benzyl-3-cyclohexyl-N-(tosyloxy)propenamide (1m)

Prepared following **General Procedure A** using 3-cyclohexylpropanoic acid (312.4 mg, 2.0 mmol, 1.0 equiv), *N*-benzylhydroxylamine hydrochloride (351.2 mg, 2.2 mmol, 1.1 equiv) and Et₃N (304.2 μ L, 2.2 mmol, 1.1 equiv) as starting materials to afford **1m** as a white solid.

Yield 574.1 mg (69%).

NMR Spectroscopy:

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.83 – 7.77 (m, 2H), 7.32 (d, *J* = 8.1 Hz, 2H), 7.22 – 7.19 (m, 3H), 7.14 – 7.08 (m, 2H), 4.68 (s, 2H), 2.41 (s, 3H), 2.04 (t, *J* = 7.7 Hz, 2H), 1.61 – 1.52 (m, 3H), 1.46 – 1.39 (m, 2H), 1.25 – 1.18 (m, 2H), 1.08 – 0.88 (m, 4H), 0.72 – 0.62 (m, 2H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 178.5, 146.9, 135.0, 131.2, 130.3, 129.5, 129.1, 128.6, 128.1, 54.0, 37.1, 33.0, 31.1, 30.6, 26.6, 26.3, 22.0.

HRMS (ESI) m/z: $[M + H]^+$ calcd for C₂₃H₃₀NO₄S⁺: 416.1890, found: 416.1886.

N-(2-(Cyclohex-1-en-1-yl)ethyl)-3-phenyl-*N*-(tosyloxy)propenamide (1n)

Prepared following **General Procedure C** using 2-(cyclohex-1-en-1-yl)ethan-1-amine (418.3 μ L, 3.0 mmol, 1.0 equiv), 3-phenylpropionic acid (300.4 mg, 2.0 mmol) and Et₃N (304.2 μ L, 2.2 mmol) as starting materials to afford **1n** as a colourless oil. **Yield** 673.3 mg (52%).

NMR Spectroscopy:

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.90 – 7.84 (m, 2H), 7.38 (d, *J* = 8.1 Hz, 2H), 7.28 (s, 2H), 7.24 – 7.18 (m, 1H), 7.09 – 7.06 (m, 2H), 5.39 (s, 1H), 3.69 (s, 2H), 2.80 – 2.74 (m, 2H), 2.49 – 2.44 (m, 5H), 2.14 (t, *J* = 6.9 Hz, 2H), 1.97 – 1.90 (m, 2H), 1.88 – 1.84 (m, 2H), 1.59 – 1.48 (m, 4H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 177.1, 146.8, 140.8, 134.1, 131.2, 130.3, 129.5, 128.5, 128.4, 126.3, 124.7, 49.3, 34.7, 34.6, 30.1, 27.9, 25.5, 22.9, 22.3, 22.0.

HRMS (ESI) m/z: $[M + H]^+$ calcd for C₂₄H₃₀NO₄S⁺: 428.1890, found: 428.1882.

(Z)-N-(Octadec-9-en-1-yl)-3-phenyl-N-(tosyloxy)propenamide (10)

Prepared following **General Procedure C** using oleylamine (987.0 μ L, 3.0 mmol, 1.0 equiv), 3-phenylpropionic acid (300.4 mg, 2.0 mmol) and Et₃N (304.2 μ L, 2.2 mmol) as starting materials to afford **10** as a colourless oil.

Yield 931.8 mg (55%).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.87 (d, *J* = 7.9 Hz, 2H), 7.38 (d, *J* = 8.0 Hz, 2H), 7.28 (d, *J* = 3.0 Hz, 2H), 7.20 (t, *J* = 7.3 Hz, 1H), 7.09 (d, *J* = 7.4 Hz, 2H), 5.41 – 5.36 (m, 2H), 3.57 (t, *J* = 7.5 Hz, 2H), 2.81 (t, *J* = 7.8 Hz, 2H), 2.51 – 2.47 (m, 5H), 2.04 (d, *J* = 6.5 Hz, 2H), 1.50 (q, *J* = 7.5 Hz, 2H), 1.42 – 1.09 (m, 24H), 0.91 (t, *J* = 6.6 Hz, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 176.9, 146.8, 140.7, 131.2, 130.3, 130.1, 129.9, 129.4, 128.5, 128.4, 126.3, 50.9, 34.6, 32.0, 30.1, 29.92, 29.87, 29.8, 29.7, 29.48, 29.45, 29.3, 29.2, 27.4, 27.3, 26.7, 26.2, 22.8, 22.0, 14.2.

HRMS (ESI) m/z: $[M + Na]^+$ calcd for C₃₄H₅₁NO₄SNa⁺: 592.3431, found: 592.3419.

N-(3-Methoxypropyl)-3-phenyl-*N*-(tosyloxy)propenamide (1p)

Prepared following **General Procedure C** using 3-methoxypropan-1-amine (306.0 μ L, 3.0 mmol, 1.0 equiv), 3-phenylpropionic acid (300.4 mg, 2.0 mmol) and Et₃N (304.2 μ L, 2.2 mmol) as starting materials to afford **1p** as a colourless oil.

Yield 349.3 mg (30%).

NMR Spectroscopy:

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.87 (d, *J* = 8.1 Hz, 2H), 7.38 (d, *J* = 7.9 Hz, 2H), 7.28 (d, *J* = 2.2 Hz, 2H), 7.21 (d, *J* = 7.0 Hz, 1H), 7.13 – 7.06 (m, 2H), 3.70 (t, *J* = 7.2 Hz, 2H), 3.30 – 3.26 (m, 5H), 2.81 (t, *J* = 7.8 Hz, 2H), 2.53 – 2.49 (m, 5H), 1.83 – 1.77 (m, 2H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 177.0, 146.8, 140.7, 131.1, 130.3, 129.5, 128.5, 128.4, 126.3, 69.9, 58.6, 48.4, 34.6, 30.1, 26.5, 22.0.

HRMS (ESI) m/z: $[M + H]^+$ calcd for $C_{20}H_{26}NO_5S^+$: 392.1526, found: 392.1517.

6-(Benzyl(tosyloxy)amino)-6-oxohexyl 5-(2,5-dimethylphenoxy)-2,2dimethylpentanoate (1q)

Prepared following **General Procedure B** using gemfibrozil (500.6 mg, 2.0 mmol, 1.0 equiv), *N*-benzylhydroxylamine hydrochloride (351.2 mg, 2.2 mmol, 1.1 equiv) and Et₃N (304.2 μ L, 2.2 mmol, 1.1 equiv) as starting materials to afford **1q** as a colourless oil.

Yield 900.8 mg (72%).

NMR Spectroscopy:

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.79 – 7.74 (m, 2H), 7.29 (d, *J* = 8.1 Hz, 2H), 7.18 (d, *J* = 4.6 Hz, 3H), 7.09 – 7.03 (m, 2H), 6.91 (d, *J* = 7.5 Hz, 1H), 6.59 – 6.55 (m, 1H), 6.52 (d, *J* = 1.6 Hz, 1H), 4.60 (s, 2H), 3.90 (t, *J* = 6.7 Hz, 2H), 3.85 – 3.80 (m, 2H), 2.39 (s, 3H), 2.21 (s, 3H), 2.13 (t, *J* = 7.3 Hz, 2H), 2.08 (s, 3H), 1.72 – 1.60 (m, 6H), 1.48 – 1.36 (m, 4H), 1.12 (s, 6H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 177.9, 157.1, 146.9, 136.6, 135.0, 131.1, 130.4, 130.3, 129.5, 129.0, 128.6, 128.2, 123.7, 120.8, 112.1, 68.1, 64.3, 53.9, 42.2, 37.2, 32.9, 28.5, 25.5, 25.3, 23.5, 22.0, 21.5, 15.9.

HRMS (ESI) m/z: $[M + H]^+$ calcd for C₃₅H₄₆NO₇S⁺: 624.2990, found: 624.2982.

6-(Methyl(tosyloxy)amino)-6-oxohexyl methylthiazole-5-carboxylate (1r) 2-(3-cyano-4-isobutoxyphenyl)-4-

Prepared following **General Procedure B** using febuxostat (958.1 mg, 3.0 mmol, 1.0 equiv), *N*-methylhydroxylamine hydrochloride (200.0 mg, 2.2 mmol) and Et₃N (304.2 μ L, 2.2 mmol) as starting materials to afford **1r** as a colourless oil.

Yield 1177.5 mg (64%).

NMR Spectroscopy:

¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.18 (d, J = 2.4 Hz, 1H), 8.10 (d, J = 8.7 Hz, 1H), 7.90 – 7.85 (m, 2H), 7.40 (d, J = 8.0 Hz, 2H), 7.01 (d, J = 8.9 Hz, 1H), 4.26 (t, J = 6.5 Hz, 2H), 3.89 (d, J = 6.5 Hz, 2H), 3.08 (d, J = 1.1 Hz, 3H), 2.76 (d, J = 1.1 Hz, 3H), 2.48 (s, 3H), 2.30 (t, J = 7.4 Hz, 2H), 2.20 (dt, J = 13.3, 6.6 Hz, 1H), 1.76 – 1.67 (m, 2H), 1.60 – 1.52 (m, 2H), 1.36 (q, J = 8.2 Hz, 2H), 1.08 (d, J = 6.7 Hz, 6H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 178.5, 167.4, 162.6, 162.2, 161.3, 146.9, 132.7, 132.2, 131.0, 130.4, 129.5, 126.1, 121.9, 115.5, 112.7, 103.1, 75.8, 65.3, 38.2, 32.5, 28.5, 28.3, 25.6, 23.6, 22.0, 19.2, 17.6.

HRMS (ESI) m/z: $[M + H]^+$ calcd for $C_{30}H_{36}N_3O_7S_2^+$: 614.1989, found: 614.1982.

N-Methyl-6-(((*R*)-2,5,7,8-tetramethyl-2-((4*R*,8*R*)-4,8,12trimethyltridecyl)chroman-6-yl)oxy)-*N*-(tosyloxy)hexanamide (1s)

Prepared following **General Procedure B** using vitamin E (861.4 mg, 2.0 mmol, 1.0 equiv), *N*-methylhydroxylamine hydrochloride (200.0 mg, 2.2 mmol, 1.1 equiv) and Et₃N (304.2 μ L, 2.2 mmol, 1.1 equiv) as starting materials to afford **1s** as a colourless oil.

Yield 1049.1 mg (72%).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.88 (d, *J* = 8.4 Hz, 2H), 7.41 (d, *J* = 8.1 Hz, 2H), 3.59 (t, *J* = 6.5 Hz, 2H), 3.15 (s, 3H), 2.57 (t, *J* = 6.8 Hz, 2H), 2.48 (s, 3H), 2.22 (t, *J* = 7.4 Hz, 2H), 2.16 (s, 2H), 2.10 (d, *J* = 11.9 Hz, 6H), 1.86 – 1.69 (m, 4H), 1.59 – 1.49 (m, 6H), 1.45 – 1.35 (m, 6H), 1.31 – 1.22 (m, 11H), 1.17 – 1.05 (m, 6H), 0.89 – 0.84 (m, 12H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 178.5, 148.4, 147.8, 146.9, 131.0, 130.3, 129.5, 127.9, 125.9, 122.9, 117.6, 72.8, 40.3, 39.5, 38.4, 37.7, 37.6, 37.5, 37.4, 32.9, 32.8, 32.6, 31.4, 30.2, 28.1, 25.8, 24.9, 24.6, 24.0, 23.9, 22.9, 22.8, 22.0, 21.2, 20.8, 19.9, 19.8, 12.9, 12.0, 11.9.

HRMS (ESI) m/z: $[M + H]^+$ calcd for C₄₃H₇₀NO₆S⁺: 728.4919, found: 728.4900.

6-(Methyl(tosyloxy)amino)-6-oxohexyl 2-(11-oxo-6,11-dihydrodibenzo[*b,e*]oxepin-2-yl)acetate (1t)

Prepared following **General Procedure B** using isoxepac (536.5 mg, 2.0 mmol, 1.0 equiv), *N*-methylhydroxylamine hydrochloride (200.0 mg, 2.2 mmol, 1.1 equiv) and Et₃N (304.2 μ L, 2.2 mmol, 1.1 equiv) as starting materials to afford **1t** as a yellow oil. **Yield** 662.2 mg (58%).

NMR Spectroscopy:

¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.11 (d, *J* = 2.4 Hz, 1H), 7.95 – 7.83 (m, 3H), 7.55 (t, *J* = 7.5 Hz, 1H), 7.48 – 7.35 (m, 5H), 7.03 (d, *J* = 8.4 Hz, 1H), 5.19 (s, 2H), 4.06 (t, *J* = 6.7 Hz, 2H), 3.63 (s, 2H), 3.10 (s, 3H), 2.47 (s, 3H), 2.20 (t, *J* = 7.4 Hz, 2H), 1.60 – 1.44 (m, 5H), 1.26 – 1.17 (m, 2H).

¹³**C NMR** (151 MHz, Chloroform-*d*) δ 190.9, 178.3, 171.6, 160.6, 146.9, 140.6, 136.5, 135.7, 132.9, 132.6, 131.0, 130.3, 129.6, 129.5, 129.4, 128.1, 127.9, 125.3, 121.2, 73.8, 64.9, 40.4, 38.3, 32.4, 28.4, 25.5, 23.5, 21.9.

HRMS (ESI) m/z: $[M + H]^+$ calcd for $C_{30}H_{32}NO_8S^+$: 566.1843, found: 566.1838.

Methyl 6-(benzyl(tosyloxy)amino)-6-oxohexanoate (1w)

Prepared following **General Procedure A** using 6-methoxy-6-oxohexanoic acid (296.0 μ L, 2.0 mmol, 1.0 equiv), *N*-benzylhydroxylamine hydrochloride (351.1 mg, 2.2 mmol, 1.1 equiv) and Et₃N (304.2 μ L, 2.2 mmol, 1.1 equiv) as starting materials to afford **1w** as a colourless oil.

Yield 450.6 mg (54%).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.82 – 7.76 (m, 2H), 7.33 (d, *J* = 8.1 Hz, 2H), 7.23 – 7.19 (m, 3H), 7.09 –7.07(m, 2H), 4.84 – 4.56 (m, 2H), 3.58 (s, 3H), 2.42 (s, 3H), 2.16 – 2.10 (m, 4H), 1.41 – 1.37 (m, 4H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 177.6, 173.8, 147.0, 135.0, 131.0, 130.4, 129.5, 129.0, 128.7, 128.2, 53.9, 51.7, 33.8, 32.7, 24.3, 23.3, 22.0.

HRMS (ESI) m/z: $[M + H]^+$ calcd for $C_{21}H_{26}NO_6S^+$: 420.1746, found: 420.1472.

6-(Methyl(tosyloxy)amino)-6-oxohexyl 3-(4,5-diphenyloxazol-2-yl)propanoate (1x)

Prepared following **General Procedure B** using oxaprozin (440.0 mg, 1.5 mmol, 1.0 equiv), *N*-methylhydroxylamine hydrochloride (100.0 mg, 1.1 mmol) and Et₃N (152.1 μ L, 1.1 mmol) as starting materials to afford **1x** as a colourless oil.

Yield 502.4 mg (57%).

NMR Spectroscopy:

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.92 – 7.84 (m, 2H), 7.66 – 7.60 (m, 2H), 7.59 – 7.55 (m, 2H), 7.43 – 7.29 (m, 8H), 4.08 (t, *J* = 6.6 Hz, 2H), 3.19 (d, *J* = 8.3 Hz, 2H), 3.09 (s, 3H), 2.91 (d, *J* = 8.4 Hz, 2H), 2.47 (s, 3H), 2.20 (t, *J* = 7.4 Hz, 2H), 1.59 – 1.44 (m, 4H), 1.26 – 1.20 (m, 2H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 178.4, 172.2, 162.0, 146.9, 145.6, 135.2, 132.5, 131.0, 130.3, 129.5, 129.1, 128.8, 128.7, 128.6, 128.2, 128.0, 126.6, 64.8, 38.3, 32.4, 31.3, 28.4, 25.5, 23.7, 23.5, 22.0.

HRMS (ESI) m/z: $[M + H]^+$ calcd for $C_{32}H_{35}N_2O_7S^+$: 591.2159, found: 591.2141.

N-Benzyl-6-(4-butyrylphenoxy)-*N*-(tosyloxy)hexanamide (1y)

Prepared following **General Procedure B** using 1-(4-hydroxyphenyl)butan-1-one (335.1 mg, 2.0 mmol, 1.0 equiv), *N*-benzylhydroxylamine hydrochloride (351.2 mg, 2.2 mmol, 1.1 equiv) and Et₃N (304.2 μ L, 2.2 mmol, 1.1 equiv) as starting materials to afford **1y** as a colourless oil.

Yield 912.0 mg (85%).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.95 (d, J = 8.4 Hz, 2H), 7.88 (d, J = 7.9 Hz, 2H), 7.41 (d, J = 8.0 Hz, 2H), 7.20 – 7.15 (m, 2H), 6.91 (d, J = 8.4 Hz, 2H), 4.72 (s, 2H), 3.97 (t, J = 6.4 Hz, 2H), 2.92 (t, J = 7.3 Hz, 2H), 2.50 (s, 3H), 2.27 (t, J = 7.3 Hz, 2H), 1.81 – 1.69 (m, 4H), 1.53 (d, J = 7.8 Hz, 2H), 1.33 (dd, J = 14.6, 6.8 Hz, 2H), 1.02 (t, J = 7.4 Hz, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 199.2, 178.0, 162.9, 146.9, 135.0, 131.1, 130.4, 130.4, 130.2, 129.5, 129.0, 128.6, 128.2, 114.2, 68.0, 53.9, 40.3, 32.9, 28.9, 25.5, 23.6, 22.0, 18.2, 14.1.

HRMS (ESI) m/z: $[M + H]^+$ calcd for $C_{30}H_{36}NO_6S^+$: 538.2258, found: 538.2253.

6-(Benzyl(tosyloxy)amino)-6-oxohexyl 4-phenylbutanoate (1z)

Prepared following **General Procedure B** using 4-phenylbutyric acid (328.4 mg, 2.0 mmol, 1.0 equiv), *N*-benzylhydroxylamine hydrochloride (351.2 mg, 2.2 mmol, 1.1 equiv) and Et₃N (304.2 μ L, 2.2 mmol, 1.1 equiv) as starting materials to afford **1z** as a colourless oil.

Yield 342.5 mg (32%).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.88 (d, J = 7.9 Hz, 2H), 7.42 (d, J = 8.0 Hz, 2H), 7.31 (d, J = 8.4 Hz, 5H), 7.25 – 7.15 (m, 5H), 4.72 (s, 2H), 4.02 (t, J = 6.7 Hz, 2H), 2.68 (t, J = 7.6 Hz, 2H), 2.51 (s, 3H), 2.35 (t, J = 7.5 Hz, 2H), 2.24 (t, J = 7.3 Hz, 2H), 1.99 (q, J = 7.6 Hz, 2H), 1.57 – 1.48 (m, 4H), 1.22 (t, J = 7.8 Hz, 2H). ¹³**C NMR** (151 MHz, Chloroform-*d*) δ 177.9, 173.7, 146.9, 141.6, 135.0, 131.1, 130.4, 129.5, 129.0, 128.6, 128.5, 128.2, 126.1, 64.3, 53.9, 35.3, 33.8, 32.9, 28.5, 26.7, 25.4, 23.5, 22.0.

HRMS (ESI) m/z: $[M + Na]^+$ calcd for $C_{30}H_{35}NO_6SNa^+$: 560.2077, found: 560.2076.

N-Methyl-5-phenyl-N-(tosyloxy)pentanamide (1aa)

Prepared following **General Procedure A** using 5-phenylvaleric acid (356.5 mg, 2.0 mmol, 1.0 equiv), *N*-methylhydroxylamine hydrochloride (200.0 mg, 2.2 mmol, 1.1 equiv) and Et₃N (304.2 μ L, 2.2 mmol, 1.1 equiv) as starting materials to afford **1aa** as a colourless oil.

Yield 602.4 mg (83%).

NMR Spectroscopy:

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.92 – 7.87 (m, 2H), 7.41 (d, J = 8.1 Hz,

2H), 7.32 – 7.28 (m, 2H), 7.23 – 7.15 (m, 3H), 3.15 (s, 3H), 2.56 (t, *J* = 7.1 Hz,

2H), 2.47 (s, 3H), 2.23 (t, *J* = 6.8 Hz, 2H), 1.56 – 1.47 (m, 4H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 178.4, 146.9, 142.3, 130.9, 130.3, 129.5, 128.5, 128.4, 125.9, 38.4, 35.7, 32.4, 30.9, 23.6, 21.9.

HRMS (ESI) m/z: $[M + Na]^+$ calcd for $C_{19}H_{23}NO_4SNa^+$: 384.1240, found: 384.1229.

4. General procedures for the synthesis of α , β - unsaturated secondary

amides

(E)-N-Benzylpent-2-enamide (2a)

Under argon atmosphere, *N*-benzyl-*N*-(tosyloxy)pentanamide **1a** (72.3 mg, 0.20 mmol, 1.0 equiv), magnesium bromide ethyl etherate (56.8 mg, 0.22 mmol, 1.1 equiv), dry acetonitrile (0.5 mL) and *N*-ethyldiisopropylamine (69.0 μ L, 0.40 mmol, 2.0 equiv) were added successively to a 10 mL Schlenk tube with a magnetic bar. The sealed tube was then stirred at 80 °C for 4 h or more until the starting materials were consumed completely.

Then palladium (II) acetate (2.3 mg, 0.01 mmol, 0.05 equiv), Xantphos (11.6 mg, 0.02 mmol, 0.10 equiv) and K_2CO_3 (55.5 mg, 0.40 mmol, 2.0 equiv) were added to the mixture under argon atmosphere. The sealed tube was then vigorously stirred at 80 °C for 16 h. The mixture was filtered through a pad of silica gel and the filtrate was concentrated under reduced pressure. The residual was purified by column chromatography on silica gel (eluent: petroleum ether/ ethyl acetate =3:1) to afford (*E*)-*N*-benzylpent-2-enamide **2a** as a white solid.

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (Eluent: petroleum ether/ethyl acetate = 3:1).

Yield 28.5 mg (75%).

NMR Spectroscopy:

¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.36 – 7.22 (m, 5H), 6.87 (dt, *J* = 15.3, 6.4 Hz, 1H), 6.34 (br, 1H), 5.81 (d, *J* = 15.3 Hz, 1H), 4.44 (d, *J* = 5.8 Hz, 2H), 2.20 – 2.13 (m, 2H), 1.03 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 166.3, 146.4, 138.5, 128.7, 127.8, 127.4, 122.6, 43.6, 25.1, 12.5.

HRMS (ESI) m/z: $[M + Na]^+$ calcd for $C_{12}H_{15}NONa^+$: 212.1046, found: 212.1047.

N-Benzylcinnamamide (2b)

Under argon atmosphere, *N*-benzyl-3-phenyl-*N*-(tosyloxy)propanamide **1b** (81.9 mg, 0.20 mmol, 1.0 equiv), magnesium bromide ethyl etherate (56.8 mg, 0.22 mmol, 1.1 equiv), dry acetonitrile (0.5 mL) and *N*-ethyldiisopropylamine (69.0 μ L, 0.40 mmol, 2.0 equiv) were added successively to a 10 mL Schlenk tube with a magnetic bar. The sealed tube was then stirred at 80 °C for 4 h or more until the starting materials were consumed completely.

Then palladium (II) acetate (2.3 mg, 0.01 mmol, 0.05 equiv), Xantphos (11.6 mg, 0.02 mmol, 0.10 equiv) and K_2CO_3 (55.5 mg, 0.40 mmol, 2.0 equiv) were added to the mixture under argon atmosphere. The sealed tube was then vigorously stirred at 80 °C for 16 h. The mixture was filtered through a pad of silica gel and the filtrate was concentrated under reduced pressure. The residual was purified by column chromatography on silica gel (eluent: petroleum ether/ ethyl acetate =2:1) to afford *N*-benzylcinnamamide **2b** as a white solid.

 $\mathbf{R}_{\mathbf{f}} = 0.5$ (Eluent: petroleum ether/ethyl acetate = 2:1).

Yield 30.8 mg (65%).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.64 (d, *J* = 15.6 Hz, 1H), 7.47 – 7.42 (m, 2H), 7.36 – 7.25 (m, 8H), 6.51 – 6.38 (m, 2H), 4.52 (d, *J* = 5.8 Hz, 2H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 166.0, 141.4, 138.3, 134.9, 129.8, 128.9, 128.8, 127.9, 127.9, 127.6, 120.7, 43.9.

HRMS (ESI) m/z: $[M + H]^+$ calcd for C₁₆H₁₆NO⁺: 238.1227, found: 238.1224.

(E)-N-Benzyl-3-(4-fluorophenyl)acrylamide (2c)

Under argon atmosphere, *N*-benzyl-3-(4-fluorophenyl)-*N*-(tosyloxy)propanamide **1c** (85.5 mg, 0.20 mmol, 1.0 equiv), magnesium bromide ethyl etherate (56.8 mg, 0.22 mmol, 1.1 equiv), dry acetonitrile (0.5 mL) and *N*-ethyldiisopropylamine (69.0 μ L, 0.40 mmol, 2.0 equiv) were added successively to a 10 mL Schlenk tube with a magnetic bar. The sealed tube was then stirred at 80 °C for 4 h or more until the starting materials were consumed completely.

Then palladium (II) acetate (2.3 mg, 0.01 mmol, 0.05 equiv), Xantphos (11.6 mg, 0.02 mmol, 0.10 equiv) and K_2CO_3 (55.5 mg, 0.40 mmol, 2.0 equiv) were added to the mixture under argon atmosphere. The sealed tube was then vigorously stirred at 80 °C for 16 h. The mixture was filtered through a pad of silica gel and the filtrate was concentrated under reduced pressure. The residual was purified by column chromatography on silica gel (eluent: petroleum ether/ ethyl acetate =2:1) to afford (*E*)-*N*-benzyl-3-(4-fluorophenyl)acrylamide **2c** as a white solid.

 $\mathbf{R}_{\mathbf{f}} = 0.5$ (Eluent: petroleum ether/ethyl acetate = 2:1). Yield 29.0 mg (57%).

NMR Spectroscopy:

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.62 (d, J = 15.5 Hz, 1H), 7.49 – 7.42 (m, 2H), 7.38 – 7.26 (m, 5H), 7.07 – 6.97 (m, 2H), 6.35 (d, J = 15.6 Hz, 1H), 6.11 (s, 1H), 4.55 (d, J = 5.7 Hz, 2H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 165.8, 163.7 (d, *J* = 251.5 Hz), 140.3, 138.3, 131.1 (d, *J* = 3.0 Hz), 129.7 (d, *J* = 6.1 Hz), 128.9, 128.0, 127.7, 120.4, 116.1 (d, *J*

= 14.1 Hz), 44.0. ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -110.57. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₆H₁₅FNO⁺: 256.1132, found: 256.1129.

(E)-N-Benzyl-3-(4-methoxyphenyl)acrylamide (2d)

Under argon atmosphere, *N*-benzyl-3-(4-methoxyphenyl)-*N*-(tosyloxy)propenamide **1d** (87.8 mg, 0.20 mmol, 1.0 equiv), magnesium bromide ethyl etherate (56.8 mg, 0.22 mmol, 1.1 equiv), dry acetonitrile (0.5 mL) and *N*-ethyldiisopropylamine (69.0 μ L, 0.40 mmol, 2.0 equiv) were added successively to a 10 mL Schlenk tube with a magnetic bar. The sealed tube was then stirred at 80 °C for 4 h or more until the starting materials were consumed completely.

Then palladium (II) acetate (2.3 mg, 0.01 mmol, 0.05 equiv), Xantphos (11.6 mg, 0.02 mmol, 0.10 equiv) and K_2CO_3 (55.5 mg, 0.40 mmol, 2.0 equiv) were added to the mixture under argon atmosphere. The sealed tube was then vigorously stirred at 80 °C for 16 h. The mixture was filtered through a pad of silica gel and the filtrate was concentrated under reduced pressure. The residual was purified by column chromatography on silica gel (eluent: petroleum ether/ ethyl acetate =2:1) to afford (*E*)-*N*-benzyl-3-(4-methoxyphenyl)acrylamide **2d** as a yellow solid.

 $\mathbf{R}_{\mathbf{f}} = 0.1$ (Eluent: petroleum ether/ethyl acetate = 2:1).

Yield 22.5 mg (42%).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.63 (d, J = 15.6 Hz, 1H), 7.44 (d, J = 8.7 Hz, 2H), 7.39 – 7.27 (m, 5H), 6.88 (d, J = 8.7 Hz, 2H), 6.28 (d, J = 15.5 Hz, 1H), 5.86 (s, 1H), 4.57 (d, J = 5.6 Hz, 2H), 3.83 (s, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 166.2, 161.1, 141.2, 138.5, 129.5, 128.9, 128.1, 127.7, 127.6, 118.1, 114.4, 55.5, 44.0.

HRMS (ESI) m/z: $[M + H]^+$ calcd for C₁₇H₁₈NO₂⁺: 268.1332, found: 268.1331.

(E)-N-Benzyl-3-(4-(trifluoromethyl)phenyl)acrylamide (2e)

Under argon atmosphere, *N*-benzyl-*N*-(tosyloxy)-3-(4-(trifluoromethyl)phenyl)propanamide **1e** (92.5 mg, 0.20 mmol, 1.0 equiv), magnesium bromide ethyl etherate (56.8 mg, 0.22 mmol, 1.1 equiv), dry acetonitrile (0.5 mL) and *N*-ethyldiisopropylamine (69.0 μ L, 0.40 mmol, 2.0 equiv) were added successively to a 10 mL Schlenk tube with a magnetic bar. The sealed tube was then stirred at 80 °C for 4 h or more until the starting materials were consumed completely.

Then palladium (II) acetate (2.3 mg, 0.01 mmol, 0.05 equiv), Xantphos (11.6 mg, 0.02 mmol, 0.10 equiv) and K_2CO_3 (55.5 mg, 0.40 mmol, 2.0 equiv) were added to the mixture under argon atmosphere. The sealed tube was then vigorously stirred at 80 °C for 16 h. The mixture was filtered through a pad of silica gel and the filtrate was concentrated under reduced pressure. The residual was purified by column chromatography on silica gel (eluent: DCM/MeOH = 100:1) to afford (*E*)-*N*-benzyl-3-(4-(trifluoromethyl)phenyl)acrylamide **2e** as a yellow solid.

 $R_f = 0.5$ (Eluent: DCM/MeOH = 100:1).

Yield 43.4 mg (71%).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.75 – 7.57 (m, 5H), 7.33 (q, *J* = 7.5 Hz, 5H), 6.48 (d, *J* = 15.6 Hz, 1H), 5.99 (br, 1H), 4.59 (d, *J* = 5.6 Hz, 2H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 165.4, 139.7, 138.3, 138.1, 131.4 (q, *J* = 33.3 Hz), 128.9, 128.01, 127.97, 127.8, 125.9 (q, *J* = 4.0 Hz), 124.0 (q, *J* = 272.7 Hz), 123.2, 44.0.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -62.78.

HRMS (ESI) m/z: $[M + H]^+$ calcd for $C_{17}H_{15}F_3NO^+$: 306.1100, found: 306.1097.

N-Benzyl-3-(4,5-diphenyloxazol-2-yl)acrylamide (2f)

Under argon atmosphere, *N*-benzyl-3-(4,5-diphenyloxazol-2-yl)-*N*-(tosyloxy)propanamide **1f** (110.5 mg, 0.20 mmol, 1.0 equiv), magnesium bromide ethyl etherate (56.8 mg, 0.22 mmol, 1.1 equiv), dry acetonitrile (0.5 mL) and *N*-ethyldiisopropylamine (69.0 μ L, 0.40 mmol, 2.0 equiv) were added successively to a 10 mL Schlenk tube with a magnetic bar. The sealed tube was then stirred at 80 °C for 4 h or more until the starting materials were consumed completely.

Then palladium (II) acetate (2.3 mg, 0.01 mmol, 0.05 equiv), Xantphos (11.6 mg, 0.02 mmol, 0.10 equiv) and K_2CO_3 (55.5 mg, 0.40 mmol, 2.0 equiv) were added to the mixture under argon atmosphere. The sealed tube was then vigorously stirred at 80 °C for 16 h. The mixture was filtered through a pad of silica gel and the filtrate was concentrated under reduced pressure. The residual was purified by column chromatography on silica gel (eluent: petroleum ether/ ethyl acetate =2:1) to afford *N*-benzyl-3-(4,5-diphenyloxazol-2-yl)acrylamide **2f** as a yellow solid.

 $\mathbf{R}_{\mathbf{f}} = 0.3$ (Eluent: petroleum ether/ethyl acetate = 2:1).

Yield 67.1 mg (88%). (E/Z = 1:1)

NMR Spectroscopy:(E/Z mixture)

¹**H** NMR (600 MHz, Chloroform-*d*) δ 11.17 (br, 1H), 7.65 – 7.62 (m, 2H), 7.60 – 7.55 (m, 4H), 7.51 (d, J = 15.5 Hz, 1H), 7.39 – 7.30 (m, 16H), 7.29 – 7.24 (m, 8H), 6.93 (d, J = 15.5 Hz, 1H), 6.64 (d, J = 13.8 Hz, 1H), 6.46 (br, 1H), 6.31 (d, J = 13.8

Hz, 1H), 4.60 (d, *J* = 5.3 Hz, 2H), 4.57 (d, *J* = 5.7 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 164.6, 164.5, 158.2, 157.6, 146.6, 146.3, 138.2, 137.9, 137.6, 136.2, 132.0, 131.8, 131.0, 129.6, 129.2, 128.94, 128.86, 128.82, 128.75, 128.7, 128.6, 128.4, 128.3, 128.1, 128.0, 127.8, 127.7, 127.51 127.45, 127.0, 126.8, 125.7, 118.3, 44.2, 44.1.

HRMS (ESI) m/z: $[M + Na]^+$ calcd for C₂₅H₂₀N₂O₂Na⁺: 403.1417, found: 403.1413.

(E)-N-Benzyl-4,4,4-trifluorobut-2-enamide (2g)

Under argon atmosphere, *N*-benzyl-4,4,4-trifluoro-*N*-(tosyloxy)butanamide **1g** (80.3 mg, 0.20 mmol, 1.0 equiv), magnesium bromide ethyl etherate (56.8 mg, 0.22 mmol, 1.1 equiv), dry acetonitrile (0.5 mL) and *N*-ethyldiisopropylamine (69.0 μ L, 0.40 mmol, 2.0 equiv) were added successively to a 10 mL Schlenk tube with a magnetic bar. The sealed tube was then stirred at 80 °C for 4 h or more until the starting materials were consumed completely.

Then palladium (II) acetate (2.3 mg, 0.01 mmol, 0.05 equiv), Xantphos (11.6 mg, 0.02 mmol, 0.10 equiv) and K_2CO_3 (55.5 mg, 0.40 mmol, 2.0 equiv) were added to the mixture under argon atmosphere. The sealed tube was then vigorously stirred at 80 °C for 16 h. The mixture was filtered through a pad of silica gel and the filtrate was concentrated under reduced pressure. The residual was purified by column chromatography on silica gel (eluent: petroleum ether/ ethyl acetate =5:1) to afford (*E*)-*N*-benzyl-4,4,4-trifluorobut-2-enamide **2g** as a white solid.

 $\mathbf{R}_{\mathbf{f}} = 0.6$ (Eluent: petroleum ether/ ethyl acetate =5:1).

Yield 22.8 mg (50%).

NMR Spectroscopy:

¹H NMR (400 MHz, Chloroform-*d*) δ 7.40 – 7.24 (m, 5H), 6.83 – 6.69 (m, 1H), 6.49 (dq, J = 15.4, 2.0 Hz, 1H), 6.26 (br, 1H), 4.51 (d, J = 5.7 Hz, 2H).
¹³C NMR (101 MHz, Chloroform-*d*) δ 162.6, 137.2, 130.7 (q, J = 6.1 Hz), 129.0,

128.9 (q, J = 35.4 Hz), 128.09, 128.07, 122.6 (q, J = 270.7 Hz), 44.3.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -65.06.

HRMS (ESI) m/z: $[M + H]^+$ calcd for $C_{11}H_{11}FNO^+$: 230.0787, found: 230.0786.

(E)-N-Benzyl-6-(naphthalen-2-yloxy)hex-2-enamide (2h)

Under argon atmosphere, *N*-benzyl-6-(naphthalen-2-yloxy)-*N*-(tosyloxy)hexanamide **1h** (103.5 mg, 0.20 mmol, 1.0 equiv), magnesium bromide ethyl etherate (56.8 mg, 0.22 mmol, 1.1 equiv), dry acetonitrile (0.5 mL) and *N*-ethyldiisopropylamine (69.0 μ L, 0.40

mmol, 2.0 equiv) were added successively to a 10 mL Schlenk tube with a magnetic bar. The sealed tube was then stirred at 80 °C for 4 h or more until the starting materials were consumed completely.

Then palladium (II) acetate (2.3 mg, 0.01 mmol, 0.05 equiv), Xantphos (11.6 mg, 0.02 mmol, 0.10 equiv) and K₂CO₃ (55.5 mg, 0.40 mmol, 2.0 equiv) were added to the mixture under argon atmosphere. The sealed tube was then vigorously stirred at 80 °C for 16 h. The mixture was filtered through a pad of silica gel and the filtrate was concentrated under reduced pressure. The residual was purified by column chromatography on silica gel (eluent: petroleum ether/ ethyl acetate =2:1) to afford (*E*)-*N*-benzyl-6-(naphthalen-2-yloxy)hex-2-enamide **2h** as a yellow solid.

 $\mathbf{R}_{\mathbf{f}} = 0.5$ (Eluent: petroleum ether/ethyl acetate = 2:1).

Yield 62.2 mg (90%).

NMR Spectroscopy:

¹H NMR (400 MHz, Chloroform-*d*) δ 7.78 – 7.67 (m, 3H), 7.42 (t, *J* = 7.5 Hz, 1H), 7.34 – 7.25 (m, 6H), 7.16 – 7.08 (m, 2H), 6.94 (dt, *J* = 14.5, 6.9 Hz, 1H), 5.83 (d, *J* = 15.1 Hz, 1H), 5.71 (br, 1H), 4.49 (d, *J* = 5.3 Hz, 2H), 4.09 (t, *J* = 6.1 Hz, 2H), 2.43 (q, *J* = 7.2 Hz, 2H), 2.08 – 1.97 (m, 2H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 165.8, 157.0, 144.2, 138.4, 134.7, 129.5, 129.1, 128.9, 128.0, 127.8, 127.7, 126.9, 126.5, 124.3, 123.7, 119.0, 106.8, 66.9, 43.8, 28.7, 28.0.

HRMS (ESI) m/z: $[M + Na]^+$ calcd for C₂₃H₂₃NO₂Na⁺: 368.1621, found: 368.1619.

(2E,9Z,12Z)-N-Benzyloctadeca-2,9,12-trienamide (2i)

Under argon atmosphere, (2E,9Z,12Z)-*N*-benzyl-*N*-(tosyloxy)octadeca-2,9,12trienamide **1i** (108.0 mg, 0.20 mmol, 1.0 equiv), magnesium bromide ethyl etherate (56.8 mg, 0.22 mmol, 1.1 equiv), dry acetonitrile (0.5 mL) and *N*ethyldiisopropylamine (69.0 μ L, 0.40 mmol, 2.0 equiv) were added successively to a 10 mL Schlenk tube with a magnetic bar. The sealed tube was then stirred at 80 °C for 4 h or more until the starting materials were consumed completely.

Then palladium (II) acetate (2.3 mg, 0.01 mmol, 0.05 equiv), Xantphos (11.6 mg, 0.02 mmol, 0.10 equiv) and K_2CO_3 (55.5 mg, 0.40 mmol, 2.0 equiv) were added to the mixture under argon atmosphere. The sealed tube was then vigorously stirred at 80 °C for 16 h. The mixture was filtered through a pad of silica gel and the filtrate was concentrated under reduced pressure. The residual was purified by column chromatography on silica gel (eluent: petroleum ether/ ethyl acetate =2:1) to afford (2*E*,9*Z*,12*Z*)-*N*-benzyloctadeca-2,9,12-trienamide **2i** as a coloursless oil.

 $\mathbf{R}_{\mathbf{f}} = 0.1$ (Eluent: petroleum ether/ethyl acetate = 2:1). **Yield** 29.8 mg (41%).

NMR Spectroscopy:

¹H NMR (400 MHz, Chloroform-*d*) δ 7.34 – 7.25 (m, 5H), 6.87 (dt, *J* = 14.5, 6.9 Hz, 1H), 5.90 – 5.74 (m, 2H), 5.41 – 5.29 (m, 4H), 4.49 (d, *J* = 5.7 Hz, 2H), 2.77 (t, *J* = 6.3 Hz, 2H), 2.17 (q, *J* = 7.3 Hz, 2H), 2.05 (q, *J* = 7.2 Hz, 4H), 1.49 – 1.42 (m, 2H), 1.37 – 1.26 (m, 10H), 0.89 (t, *J* = 6.7 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 166.0, 145.4, 138.5, 130.4, 130.0, 128.8, 128.3, 128.00, 127.96, 127.6, 123.4, 43.7, 32.2, 31.6, 29.55, 29.45, 28.9, 28.3, 27.3, 27.2, 25.7, 22.7, 14.2.

HRMS (ESI) m/z: $[M + Na]^+$ calcd for C₂₅H₃₇NONa⁺: 390.2767, found: 390.2762.

(E)-N-Benzylundeca-2,10-dienamide (2j)

Under argon atmosphere, (*E*)-*N*-benzylundeca-2,10-dienamide **1j** (88.7 mg, 0.20 mmol, 1.0 equiv), magnesium bromide ethyl etherate (56.8 mg, 0.22 mmol, 1.1 equiv), dry acetonitrile (0.5 mL) and *N*-ethyldiisopropylamine (69.0 μ L, 0.40 mmol, 2.0 equiv) were added successively to a 10 mL Schlenk tube with a magnetic bar. The sealed tube was then stirred at 80 °C for 4 h or more until the starting materials were consumed completely.

Then palladium (II) acetate (2.3 mg, 0.01 mmol, 0.05 equiv), Xantphos (11.6 mg, 0.02 mmol, 0.10 equiv) and K_2CO_3 (55.5 mg, 0.40 mmol, 2.0 equiv) were added to the mixture under argon atmosphere. The sealed tube was then vigorously stirred at 80 °C for 16 h. The mixture was filtered through a pad of silica gel and the filtrate was concentrated under reduced pressure. The residual was purified by column chromatography on silica gel (eluent: petroleum ether/ ethyl acetate =2:1) to afford (*E*)-*N*-benzylundeca-2,10-dienamide **2j** as a white solid.

 $\mathbf{R}_{\mathbf{f}} = 0.6$ (Eluent: petroleum ether/ethyl acetate = 2:1).

Yield 34.6 mg (64%).

NMR Spectroscopy:

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.35 – 7.26 (m, 5H), 6.88 (dt, *J* = 14.6, 7.0 Hz, 1H), 5.78 (d, *J* = 14.4 Hz, 2H), 5.51 – 5.28 (m, 1H), 5.02 – 4.92 (m, 1H), 4.50 (d, *J* = 5.5 Hz, 2H), 2.17 (q, *J* = 7.4 Hz, 2H), 2.04 (q, *J* = 7.1 Hz, 2H), 1.79 (s, 1H), 1.64 – 1.59 (m, 1H), 1.47 – 1.29 (m, 7H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 166.1, 145.5, 139.2, 138.5, 128.8, 128.0, 127.7, 123.4, 114.4, 43.8, 33.9, 32.2, 29.1, 29.0, 28.9, 28.3.

HRMS (ESI) m/z: $[M + H]^+$ calcd for $C_{18}H_{26}NO^+$: 272.2009, found: 272.2003.

(E)-6-(Benzylamino)-6-oxohex-4-en-1-yl benzoate (2k)

Under argon atmosphere, 6-(benzyl(tosyloxy)amino)-6-oxohexyl benzoate **1k** (99.1 mg, 0.20 mmol, 1.0 equiv), magnesium bromide ethyl etherate (56.8 mg, 0.22 mmol, 1.1 equiv), dry acetonitrile (0.5 mL) and *N*-ethyldiisopropylamine (69.0 μ L, 0.40 mmol, 2.0 equiv) were added successively to a 10 mL Schlenk tube with a magnetic bar. The sealed tube was then stirred at 80 °C for 4 h or more until the starting materials were consumed completely.

Then palladium (II) acetate (2.3 mg, 0.01 mmol, 0.05 equiv), Xantphos (11.6 mg, 0.02 mmol, 0.10 equiv) and K_2CO_3 (55.5 mg, 0.40 mmol, 2.0 equiv) were added to the mixture under argon atmosphere. The sealed tube was then vigorously stirred at 80 °C for 16 h. The mixture was filtered through a pad of silica gel and the filtrate was concentrated under reduced pressure. The residual was purified by column chromatography on silica gel (eluent: petroleum ether/ ethyl acetate =2:1) to afford (*E*)-6-(benzylamino)-6-oxohex-4-en-1-yl benzoate **2k** as a yellow solid.

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (Eluent: petroleum ether/ ethyl acetate =2:1).

Yield 34.4 mg (53%).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.02 (d, *J* = 7.6 Hz, 2H), 7.55 (t, *J* = 7.4 Hz, 1H), 7.43 (t, *J* = 7.6 Hz, 2H), 7.35 – 7.24 (m, 5H), 6.90 (dt, *J* = 14.6, 6.9 Hz, 1H), 6.00 (br, 1H), 5.85 (d, *J* = 15.3 Hz, 1H), 4.48 (d, *J* = 5.6 Hz, 2H), 4.32 (t, *J* = 6.4 Hz, 2H), 2.34 (q, *J* = 7.2 Hz, 2H), 1.95 – 1.88 (m, 2H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 166.7, 165.7, 143.6, 138.3, 133.1, 130.3, 129.6, 128.8, 128.5, 127.9, 127.6, 124.3, 64.2, 43.7, 28.7, 27.5.

HRMS (ESI) m/z: $[M + Na]^+$ calcd for $C_{20}H_{21}NO_3Na^+$: 346.1413, found: 346.1413.

(E)-N-Benzyl-3-cyclopentylacrylamide (2l)

Under argon atmosphere, *N*-benzyl-3-cyclopentyl-*N*-(tosyloxy)propanamide **11** (80.3 mg, 0.20 mmol, 1.0 equiv), magnesium bromide ethyl etherate (56.8 mg, 0.22 mmol, 1.1 equiv), dry acetonitrile (0.5 mL) and *N*-ethyldiisopropylamine (69.0 μ L, 0.40 mmol, 2.0 equiv) were added successively to a 10 mL Schlenk tube with a magnetic bar. The sealed tube was then stirred at 80 °C for 4 h or more until the starting materials were consumed completely.

Then palladium (II) acetate (2.3 mg, 0.01 mmol, 0.05 equiv), Xantphos (11.6 mg, 0.02 mmol, 0.10 equiv) and K_2CO_3 (55.5 mg, 0.40 mmol, 2.0 equiv) were added to the mixture under argon atmosphere. The sealed tube was then vigorously stirred at 80 °C for 16 h. The mixture was filtered through a pad of silica gel and the filtrate was concentrated under reduced pressure. The residual was purified by column chromatography on silica gel (eluent: petroleum ether/ ethyl acetate =2:1) to afford (*E*)-*N*-benzyl-3-cyclopentylacrylamide **2l** as a yellow solid.

 $\mathbf{R}_{\mathbf{f}} = 0.5$ (Eluent: petroleum ether/ ethyl acetate =2:1).

Yield 27.0 mg (58%).

NMR Spectroscopy:

¹H NMR (400 MHz, Chloroform-*d*) δ 7.35 – 7.26 (m, 5H), 6.85 (dd, *J* = 15.2, 8.0 Hz, 1H), 5.93 (br, 1H), 5.77 (d, *J* = 15.2 Hz, 1H), 4.48 (d, *J* = 5.7 Hz, 2H), 2.60 – 2.50 (m, 1H), 1.85 – 1.79 (m, 2H), 1.73 – 1.55 (m, 4H), 1.42 – 1.33 (m, 2H).
¹³C NMR (151 MHz, Chloroform-*d*) δ 166.3, 149.5, 138.5, 128.8, 128.0, 127.9, 127.6, 121.6, 43.7, 42.8, 32.6, 25.3.

HRMS (ESI) m/z: $[M + H]^+$ calcd for C₁₅H₂₀NO⁺: 230.1540, found: 230.1538.

(E)-N-Benzyl-3-cyclohexylacrylamide (2m)

Under argon atmosphere, *N*-benzyl-3-cyclohexyl-*N*-(tosyloxy)propanamide **1m** (83.1 mg, 0.20 mmol, 1.0 equiv), magnesium bromide ethyl etherate (56.8 mg, 0.22 mmol, 1.1 equiv), dry acetonitrile (0.5 mL) and *N*-ethyldiisopropylamine (69.0 μ L, 0.40 mmol, 2.0 equiv) were added successively to a 10 mL Schlenk tube with a magnetic bar. The sealed tube was then stirred at 80 °C for 4 h or more until the starting materials were consumed completely.

Then palladium (II) acetate (2.3 mg, 0.01 mmol, 0.05 equiv), Xantphos (11.6 mg, 0.02 mmol, 0.10 equiv) and K_2CO_3 (55.5 mg, 0.40 mmol, 2.0 equiv) were added to the mixture under argon atmosphere. The sealed tube was then vigorously stirred at 80 °C for 16 h. The mixture was filtered through a pad of silica gel and the filtrate was concentrated under reduced pressure. The residual was purified by column chromatography on silica gel (eluent: petroleum ether/ ethyl acetate =2:1) to afford (*E*)-*N*-benzyl-3-cyclohexylacrylamide **2m** as a white solid.

 $\mathbf{R_f} = 0.6$ (Eluent: petroleum ether/ ethyl acetate =2:1).

Yield 27.2 mg (56%).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.39 – 7.27 (m, 5H), 6.83 (dd, *J* = 15.4, 6.8 Hz, 1H), 5.77 – 5.71 (m, 2H), 4.51 (d, *J* = 5.6 Hz, 2H), 2.14 – 2.06 (m, 1H), 1.80 – 1.67 (m, 5H), 1.31 – 1.11 (m, 5H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 166.4, 150.5, 138.5, 128.8, 128.1, 127.7, 121.0, 43.8, 40.4, 32.1, 26.1, 25.9.

HRMS (ESI) m/z: $[M + H]^+$ calcd for $C_{16}H_{22}NO^+$: 244.1696, found: 244.1694.

N-(2-(Cyclohex-1-en-1-yl)ethyl)cinnamamide (2n)

Under argon atmosphere, N-(2-(cyclohex-1-en-1-yl)ethyl)-3-phenyl-N-(tosyloxy)propanamide **1n** (85.5 mg, 0.20 mmol, 1.0 equiv), magnesium bromide ethyl etherate (56.8 mg, 0.22 mmol, 1.1 equiv), dry acetonitrile (0.5 mL) and N-ethyldiisopropylamine (69.0 μ L, 0.40 mmol, 2.0 equiv) were added successively to a 10 mL Schlenk tube with a magnetic bar. The sealed tube was then stirred at 80 °C for 4 h or more until the starting materials were consumed completely.

Then palladium (II) acetate (4.6 mg, 0.02 mmol, 0.10 equiv), Xantphos (23.2 mg, 0.04 mmol, 0.20 equiv) and K_2CO_3 (55.5 mg, 0.40 mmol, 2.0 equiv) were added to the mixture under argon atmosphere. The sealed tube was then vigorously stirred at 80 °C for 24 h. The mixture was filtered through a pad of silica gel and the filtrate was concentrated under reduced pressure. The residual was purified by column chromatography on silica gel (eluent: petroleum ether/ ethyl acetate =5:1) to afford *N*-(2-(cyclohex-1-en-1-yl)ethyl)cinnamamide **2n** as a white solid.

 $\mathbf{R}_{\mathbf{f}} = 0.3$ (Eluent: petroleum ether/ethyl acetate = 5:1).

Yield 31.3 mg (61%).

NMR Spectroscopy:

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.63 (d, J = 15.6 Hz, 1H), 7.55 – 7.47 (m, 2H), 7.35 (q, J = 3.3, 2.0 Hz, 3H), 6.43 (d, J = 15.6 Hz, 1H), 5.89 (br, 1H), 5.52 (d, J = 3.9 Hz, 1H), 3.48 (q, J = 6.5 Hz, 2H), 2.22 (t, J = 7.0 Hz, 2H), 2.06 – 2.00 (m, 2H), 1.95 (d, J = 6.3 Hz, 2H), 1.68 – 1.61 (m, 2H), 1.61 – 1.54 (m, 2H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 165.9, 140.8, 135.1, 134.8, 129.6, 128.9, 127.8, 123.6, 121.1, 37.7, 37.6, 28.1, 25.3, 22.9, 22.5.

HRMS (ESI) m/z: $[M + H]^+$ calcd for $C_{17}H_{22}NO^+$: 256.1696, found: 256.1692.

N-((Z)-Octadec-9-en-1-yl)cinnamamide (20)

Under argon atmosphere, (*Z*)-*N*-(octadec-9-en-1-yl)-3-phenyl-*N*-(tosyloxy)propanamide **10** (114.0 mg, 0.20 mmol, 1.0 equiv), magnesium bromide ethyl etherate (56.8 mg, 0.22 mmol, 1.1 equiv), dry acetonitrile (0.5 mL) and *N*-ethyldiisopropylamine (69.0 μ L, 0.40 mmol, 2.0 equiv) were added successively to a 10 mL Schlenk tube with a magnetic bar. The sealed tube was then stirred at 80 °C for 4 h or more until the starting materials were consumed completely.

Then DBU (90.0 μ L, 0.60 mmol, 3.0 equiv) and dry DMSO (1.0 mL) were added to the mixture under argon atmosphere. The sealed tube was then vigorously stirred at 80 °C for 16 h before being washed with H₂O (5.0 mL). The aqueous phase was extracted with ethyl acetate (3 × 5.0 mL). After that, the organic phase was dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residual was purified by column chromatography on silica gel (eluent: petroleum ether/ ethyl acetate =5:1) to afford *N*-((*Z*)-octadec-9-en-1-yl)cinnamamide **20** as a white solid.

 $\mathbf{R}_{\mathbf{f}} = 0.5$ (Eluent: petroleum ether/ethyl acetate = 5:1).

Yield 38.6 mg (49%).

NMR Spectroscopy:

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.61 (d, J = 15.6 Hz, 1H), 7.53 – 7.44 (m, 2H), 7.33 (d, J = 5.2 Hz, 3H), 6.42 (d, J = 15.6 Hz, 1H), 5.86 (br, 1H), 5.43 – 5.28 (m, 2H), 3.37 (q, J = 6.7 Hz, 2H), 2.03 – 1.95 (m, 4H), 1.57 (q, J = 7.1 Hz, 2H), 1.36 – 1.25 (m, 22H), 0.88 (t, J = 6.7 Hz, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 166.0, 140.8, 135.1, 130.1, 129.9, 129.7, 128.9, 127.9, 121.1, 40.0, 32.7, 32.0, 29.89, 29.86, 29.82, 29.77, 29.64, 29.57, 29.43, 29.35, 27.34, 27.32, 27.1, 22.8, 14.2.

HRMS (ESI) m/z: $[M + H]^+$ calcd for C₂₇H₄₄NO⁺: 398.3417, found: 398.3411.

N-(3-Methoxypropyl)cinnamamide (2p)

Under argon atmosphere, *N*-(3-methoxypropyl)-3-phenyl-*N*-(tosyloxy)propenamide **1p** (78.2 mg, 0.20 mmol, 1.0 equiv), magnesium bromide ethyl etherate (56.8 mg, 0.22 mmol, 1.1 equiv), dry acetonitrile (0.5 mL) and *N*-ethyldiisopropylamine (69.0 μ L, 0.40 mmol, 2.0 equiv) were added successively to a 10 mL Schlenk tube with a magnetic bar. The sealed tube was then stirred at 80 °C for 4 h or more until the starting materials were consumed completely.

Then palladium (II) acetate (2.3 mg, 0.01 mmol, 0.05 equiv), Xantphos (11.6 mg, 0.02 mmol, 0.10 equiv) and K_2CO_3 (55.5 mg, 0.40 mmol, 2.0 equiv) were added to the mixture under argon atmosphere. The sealed tube was then vigorously stirred at 80 °C for 16 h. The mixture was filtered through a pad of silica gel and the filtrate was concentrated under reduced pressure. The residual was purified by column chromatography on silica gel (eluent: petroleum ether/ ethyl acetate =2:1) to afford *N*-(3-methoxypropyl)cinnamamide **2p** as a colourless oil.

R_f = 0.1 (Eluent: petroleum ether/ethyl acetate = 2:1). **Yield** 28.2 mg (64%). **NMR Spectroscopy:** ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.62 (d, J = 15.6 Hz, 1H), 7.51 (dd, J = 7.3, 2.4 Hz, 2H), 7.40 – 7.34 (m, 3H), 6.41 (d, J = 15.7 Hz, 2H), 3.54 – 3.51 (m, 4H), 3.38 (s, 3H), 1.87 (q, J = 6.1 Hz, 2H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 166.0, 140.7, 135.1, 129.6, 128.9, 127.9, 121.2, 71.9, 58.9, 38.5, 29.2. **HRMS** (ESI) m/z: $[M + H]^+$ calcd for C₁₃H₁₈NO₂⁺: 220.1332, found: 230.1329.

(*E*)-6-(Benzylamino)-6-oxohex-4-en-1-yl 5-(2,5-dimethylphenoxy)-2,2dimethylpentanoate (2q)

Under atmosphere, 6-(benzyl(tosyloxy)amino)-6-oxohexyl 5-(2,5argon dimethylphenoxy)-2,2-dimethylpentanoate 1q (124.8 mg, 0.20 mmol, 1.0 equiv), magnesium bromide ethyl etherate (56.8 mg, 0.22 mmol, 1.1 equiv), dry acetonitrile (0.5 mL) and N-ethyldiisopropylamine (69.0 µL, 0.40 mmol, 2.0 equiv) were added successively to a 10 mL Schlenk tube with a magnetic bar. The sealed tube was then stirred at 80 °C for 4 h or more until the starting materials were consumed completely. Then palladium (II) acetate (2.3 mg, 0.01 mmol, 0.05 equiv), Xantphos (11.6 mg, 0.02 mmol, 0.10 equiv) and K_2CO_3 (55.5 mg, 0.40 mmol, 2.0 equiv) were added to the mixture under argon atmosphere. The sealed tube was then vigorously stirred at 80 °C for 16 h. The mixture was filtered through a pad of silica gel and the filtrate was concentrated under reduced pressure. The residual was purified by column chromatography on silica gel (eluent: petroleum ether/ ethyl acetate =3:1) to afford (E)-6-(benzylamino)-6-oxohex-4-en-1-yl 5-(2,5-dimethylphenoxy)-2,2dimethylpentanoate 2q as a yellow oil.

 $\mathbf{R}_{\mathbf{f}} = 0.2$ (Eluent: petroleum ether/ ethyl acetate =3:1).

Yield 37.3mg (41%).

NMR Spectroscopy:

¹H NMR (400 MHz, Chloroform-*d*) δ 7.38 – 7.28 (m, 5H), 7.00 (d, *J* = 7.4 Hz, 1H), 6.88 (dt, *J* = 14.6, 6.9 Hz, 1H), 6.69 – 6.61 (m, 2H), 5.86 – 5.75 (m, 2H), 4.48 (d, *J* = 5.8 Hz, 2H), 4.10 (t, *J* = 6.4 Hz, 2H), 3.93 (d, *J* = 5.6 Hz, 2H), 2.30 (d, *J* = 6.7 Hz, 5H), 2.19 (s, 3H), 1.85 – 1.74 (m, 6H), 1.23 (d, *J* = 6.2 Hz, 6H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 177.8, 165.6, 157.0, 143.6, 138.4, 136.6, 130.4, 128.7, 127.9, 127.5, 124.2, 123.6, 120.9, 112.1, 68.1, 63.6, 43.7, 42.2, 37.2, 28.6, 27.4, 25.32, 25.27, 21.5, 15.9.

HRMS (ESI) m/z: $[M + Na]^+$ calcd for $C_{28}H_{37}NO_4Na^+$: 474.2615, found: 474.2611.

(E)-6-(Methylamino)-6-oxohex-4-en-1-yl2-(3-cyano-4-isobutoxyphenyl)-4-methylthiazole-5-carboxylate (2r)

Under argon atmosphere, 6-(methyl(tosyloxy)amino)-6-oxohexyl 2-(3-cyano-4-isobutoxyphenyl)-4-methylthiazole-5-carboxylate **1r** (162.7 mg, 0.20 mmol, 1.0 equiv), magnesium bromide ethyl etherate (56.8 mg, 0.22 mmol, 1.1 equiv), dry acetonitrile (0.5 mL) and *N*-ethyldiisopropylamine (69.0 μ L, 0.40 mmol, 2.0 equiv) were added

successively to a 10 mL Schlenk tube with a magnetic bar. The sealed tube was then stirred at 80 °C for 4 h or more until the starting materials were consumed completely. Then palladium (II) acetate (2.3 mg, 0.01 mmol, 0.05 equiv), Xantphos (11.6 mg, 0.02 mmol, 0.10 equiv) and K_2CO_3 (55.5 mg, 0.40 mmol, 2.0 equiv) were added to the mixture under argon atmosphere. The sealed tube was then vigorously stirred at 80 °C for 16 h. The mixture was filtered through a pad of silica gel and the filtrate was concentrated under reduced pressure. The residual was purified by column chromatography on silica gel (eluent: petroleum ether/ ethyl acetate =1:2) to afford (*E*)-6-(methylamino)-6-oxohex-4-en-1-yl 2-(3-cyano-4-isobutoxyphenyl)-4-methylthiazole-5-carboxylate **2r** as a yellow solid.

 $\mathbf{R_f} = 0.2$ (Eluent: petroleum ether/ ethyl acetate =1:2).

Yield 52.4 mg (59%).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.17 (s, 1H), 8.09 (d, J = 8.1 Hz, 1H), 7.02 (d, J = 8.9 Hz, 1H), 6.86 (dt, J = 14.5, 6.9 Hz, 1H), 5.89 – 5.77 (m, 2H), 4.31 (t, J = 6.5 Hz, 2H), 3.90 (d, J = 6.4 Hz, 2H), 2.87 (d, J = 4.8 Hz, 3H), 2.75 (s, 3H), 2.34 (q, J = 7.3 Hz, 2H), 2.27 – 2.16 (m, 1H), 1.95 – 1.88 m, 2H), 1.09 (d, J = 6.7 Hz, 6H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 167.4, 166.5, 162.6, 162.0, 161.4, 142.7, 132.7, 132.2, 126.0, 124.5, 121.7, 115.5, 112.7, 103.0, 75.8, 64.5, 28.6, 28.2, 27.5, 26.4, 19.1, 17.6.

HRMS (ESI) m/z: $[M + H]^+$ calcd for $C_{23}H_{28}N_3O_4S^+$: 442.1795, found: 442.1791.

(*E*)-*N*-Methyl-6-(((*R*)-2,5,7,8-tetramethyl-2-((4*R*,8*R*)-4,8,12-trimethyltridecyl)chroman-6-yl)oxy)hex-2-enamide (2s)

Under argon atmosphere, *N*-methyl-6-(((*R*)-2,5,7,8-tetramethyl-2-((4*R*,8*R*)-4,8,12-trimethyltridecyl)chroman-6-yl)oxy)-*N*-(tosyloxy)hexanamide **1s** (145.6 mg, 0.20 mmol, 1.0 equiv), magnesium bromide ethyl etherate (56.8 mg, 0.22 mmol, 1.1 equiv), dry acetonitrile (0.5 mL) and *N*-ethyldiisopropylamine (69.0 μ L, 0.40 mmol, 2.0 equiv) were added successively to a 10 mL Schlenk tube with a magnetic bar. The sealed tube was then stirred at 80 °C for 4 h or more until the starting materials were consumed completely.

Then DBU (90.0 μ L, 0.60 mmol, 3.0 equiv) and dry DMSO (1.0 mL) were added to the mixture under argon atmosphere. The sealed tube was then vigorously stirred at 80 °C for 16 h before being washed with H₂O (5.0 mL). The aqueous phase was extracted with ethyl acetate (3 × 5.0 mL). After that, the organic phase was dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residual was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 1:1)

to afford (E)-*N*-methyl-6-(((R)-2,5,7,8-tetramethyl-2-((4R,8R)-4,8,12-trimethyltridecyl)chroman-6-yl)oxy)hex-2-enamide **2s** as a white solid.

 $\mathbf{R}_{\mathbf{f}} = 0.5$ (Eluent: petroleum ether/ethyl acetate = 1:1). Yield 53.1 mg (48%).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*) δ 6.88 (dt, J = 14.5, 6.9 Hz, 1H), 5.83 (d, J = 15.3 Hz, 1H), 5.75 (br, 1H), 3.65 (d, J = 6.6 Hz, 2H), 2.86 (d, J = 4.8 Hz, 3H), 2.56 (t, J = 6.8 Hz, 2H), 2.42 (q, J = 7.4 Hz, 2H), 2.15 (s, 3H), 2.10 (s, 3H), 2.07 (s, 3H), 1.92 (t, J = 7.2 Hz, 2H), 1.84 – 1.70 (m, 3H), 1.56 – 1.43 (m, 3H), 1.41 – 1.36 (m, 3H), 1.29 – 1.22 (m, 8H), 1.17 – 1.12 (m, 3H), 1.11 – 1.04 (m, 4H), 0.87 (s, 4H), 0.86 – 0.83 (m, 10H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 166.8, 148.2, 147.9, 143.7, 127.8, 125.8, 124.1, 122.9, 117.6, 74.9, 72.1, 40.2, 39.5, 37.7, 37.6, 37.5, 37.4, 32.9, 32.8, 31.4, 29.1, 28.9, 28.1, 26.4, 24.9, 24.5, 24.0, 22.8, 22.7, 21.1, 20.8, 19.9, 19.8, 19.7, 12.9, 12.0, 11.9.

HRMS (ESI) m/z: $[M + Na]^+$ calcd for C₃₆H₆₁NO₃Na⁺: 578.4543, found: 578.4539.

(*E*)-6-(Methylamino)-6-oxohex-4-en-1-yl dihydrodibenzo[*b*,*e*]oxepin-2-yl)acetate (2t)

2-(11-oxo-6,11-

Under argon atmosphere, 6-(methyl(tosyloxy)amino)-6-oxohexyl 2-(11-oxo-6,11dihydrodibenzo[b,e]oxepin-2-yl)acetate **1t** (113.1 mg, 0.20 mmol, 1.0 equiv), magnesium bromide ethyl etherate (56.8 mg, 0.22 mmol, 1.1 equiv), dry acetonitrile (0.5 mL) and *N*-ethyldiisopropylamine (69.0 µL, 0.40 mmol, 2.0 equiv) were added successively to a 10 mL Schlenk tube with a magnetic bar. The sealed tube was then stirred at 80 °C for 4 h or more until the starting materials were consumed completely. Then palladium (II) acetate (2.3 mg, 0.01 mmol, 0.05 equiv), Xantphos (11.6 mg, 0.02 mmol, 0.10 equiv) and K₂CO₃ (55.5 mg, 0.40 mmol, 2.0 equiv) were added to the mixture under argon atmosphere. The sealed tube was then vigorously stirred at 80 °C for 16 h. The mixture was filtered through a pad of silica gel and the filtrate was concentrated under reduced pressure. The residual was purified by column chromatography on silica gel (eluent: petroleum ether/ ethyl acetate =3:2) to afford (*E*)-6-(methylamino)-6-oxohex-4-en-1-yl 2-(11-oxo-6,11-dihydrodibenzo[b,e]oxepin-2yl)acetate **2t** as a yellow oil.

 $\mathbf{R}_{\mathbf{f}} = 0.2$ (Eluent: petroleum ether/ ethyl acetate =3:2).

Yield 39.0 mg (49%).

NMR Spectroscopy:

¹H NMR (400 MHz, Chloroform-*d*) δ 8.12 (d, J = 2.4 Hz, 1H), 7.88 (dd, J = 7.7, 1.4 Hz, 1H), 7.61 – 7.55 (m, 1H), 7.51 – 7.45 (m, 1H), 7.42 (dd, J = 8.4, 2.4 Hz, 1H), 7.37 (dd, J = 7.5, 1.3 Hz, 1H), 7.03 (d, J = 8.4 Hz, 1H), 6.77 (dt, J = 15.3, 7.0

Hz, 1H), 5.86 (br, 1H), 5.79 (dt, *J* = 15.3, 1.5 Hz, 1H), 5.19 (s, 2H), 4.11 (t, *J* = 6.4 Hz, 2H), 3.64 (s, 2H), 2.84 (d, *J* = 4.9 Hz, 3H), 2.22 –2.16(m, 2H), 1.81 – 1.75 (m, 2H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 191.1, 171.4, 166.6, 160.6, 142.6, 140.4, 136.6, 135.7, 133.0, 132.4, 129.5, 129.4, 128.1, 128.0, 125.3, 124.6, 121.2, 73.8, 64.0, 40.4, 28.3, 27.2, 26.4.

HRMS (ESI) m/z: $[M + H]^+$ calcd for C₂₃H₂₄NO₅⁺: 394.1649, found: 394.1645.

Methyl (*E*)-6-(benzylamino)-6-oxohex-4-enoate (2w)

Under argon atmosphere, methyl 6-(benzyl(tosyloxy)amino)-6-oxohexanoate **1w** (83.9 mg, 0.20 mmol, 1.0 equiv), magnesium bromide ethyl etherate (56.8 mg, 0.22 mmol, 1.1 equiv), dry acetonitrile (0.5 mL) and *N*-ethyldiisopropylamine (69.0 μ L, 0.40 mmol, 2.0 equiv) were added successively to a 10 mL Schlenk tube with a magnetic bar. The sealed tube was then stirred at 80 °C for 4 h or more until the starting materials were consumed completely.

Then palladium (II) acetate (2.3 mg, 0.01 mmol, 0.05 equiv), Xantphos (11.6 mg, 0.02 mmol, 0.10 equiv) and K₂CO₃ (55.5 mg, 0.40 mmol, 2.0 equiv) were added to the mixture under argon atmosphere. The sealed tube was then vigorously stirred at 80 °C for 16 h. The mixture was filtered through a pad of silica gel and the filtrate was concentrated under reduced pressure. The residual was purified by column chromatography on silica gel (eluent: petroleum ether/ ethyl acetate =2:1) to afford methyl (*E*)-6-(benzylamino)-6-oxohex-4-enoate **2w** as a yellow solid.

 $\mathbf{R}_{\mathbf{f}} = 0.2$ (Eluent: petroleum ether/ethyl acetate = 2:1).

Yield 30.0 mg (61%).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.36 – 7.24 (m, 5H), 6.84 (dt, *J* = 15.3, 6.2 Hz, 1H), 5.89 – 5.74 (m, 2H), 4.50 (d, *J* = 5.7 Hz, 2H), 3.67 (s, 3H), 2.56 – 2.43 (m, 4H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 173.0, 165.6, 142.7, 138.3, 128.9, 128.0, 127.7, 124.5, 51.9, 43.8, 32.6, 27.2.

HRMS (ESI) m/z: $[M + H]^+$ calcd for C₁₄H₁₈NO₃⁺: 248.1281, found: 248.1279.

(*E*)-6-(Methylamino)-6-oxohex-4-en-1-yl 3-(4,5-diphenyloxazol-2-yl)propanoate (2x)

Under argon atmosphere, 6-(methyl(tosyloxy)amino)-6-oxohexyl 3-(4,5diphenyloxazol-2-yl)propanoate 1x (118.1 mg, 0.20 mmol, 1.0 equiv), magnesium bromide ethyl etherate (56.8 mg, 0.22 mmol, 1.1 equiv), dry acetonitrile (0.5 mL) and *N*-ethyldiisopropylamine (69.0 μ L, 0.40 mmol, 2.0 equiv) were added successively to a 10 mL Schlenk tube with a magnetic bar. The sealed tube was then stirred at 80 °C for 4 h or more until the starting materials were consumed completely.

Then palladium (II) acetate (2.3 mg, 0.01 mmol, 0.05 equiv), Xantphos (11.6 mg, 0.02 mmol, 0.10 equiv) and K_2CO_3 (55.5 mg, 0.40 mmol, 2.0 equiv) were added to the mixture under argon atmosphere. The sealed tube was then vigorously stirred at 80 °C for 16 h. The mixture was filtered through a pad of silica gel and the filtrate was concentrated under reduced pressure. The residual was purified by column chromatography on silica gel (eluent: petroleum ether/ ethyl acetate =1:1) to afford (*E*)-6-(methylamino)-6-oxohex-4-en-1-yl 3-(4,5-diphenyloxazol-2-yl)propanoate 2x as a colourless oil.

 $\mathbf{R}_{\mathbf{f}} = 0.1$ (Eluent: petroleum ether/ ethyl acetate =1:1).

Yield 38.2 mg (46%).

NMR Spectroscopy:

¹**H** NMR (600 MHz, Chloroform-*d*) δ 7.58 – 7.54 (m, 2H), 7.52 – 7.48 (m, 2H), 7.32 – 7.23 (m, 6H), 6.68 (dt, *J* = 15.2, 7.0 Hz, 1H), 5.61 (d, *J* = 15.3 Hz, 1H), 5.36 (br, 1H), 4.06 (t, *J* = 6.4 Hz, 2H), 3.11 (t, *J* = 7.3 Hz, 2H), 2.85 (t, *J* = 7.3 Hz, 2H), 2.74 (d, *J* = 4.9 Hz, 3H), 2.16 – 2.12 (m, 2H), 1.73 – 1.70 (m, 2H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 172.0, 166.5, 161.9, 145.6, 142.8, 135.1, 132.4, 129.0, 128.8, 128.72, 128.65, 128.2, 128.0, 126.6, 124.4, 64.0, 31.2, 28.4, 27.3, 26.3, 23.6.

HRMS (ESI) m/z: $[M + Na]^+$ calcd for $C_{25}H_{26}N_2O_4Na^+$: 441.1785, found: 441.1769.

(E)-N-Benzyl-6-(4-butyrylphenoxy)hex-2-enamide (2y)

Under argon atmosphere, *N*-benzyl-6-(4-butyrylphenoxy)-*N*-(tosyloxy)hexanamide **1y** (107.5 mg, 0.20 mmol, 1.0 equiv), magnesium bromide ethyl etherate (56.8 mg, 0.22 mmol, 1.1 equiv), dry acetonitrile (0.5 mL) and *N*-ethyldiisopropylamine (69.0 μ L, 0.40 mmol, 2.0 equiv) were added successively to a 10 mL Schlenk tube with a magnetic bar. The sealed tube was then stirred at 80 °C for 4 h or more until the starting materials were consumed completely.

Then DBU (90.0 μ L, 0.60 mmol, 3.0 equiv) and dry DMSO (1.0 mL) were added to the mixture under argon atmosphere. The sealed tube was then vigorously stirred at 80 °C for 16 h before being washed with H₂O (5.0 mL). The aqueous phase was extracted with ethyl acetate (3 × 5.0 mL). After that, the organic phase was dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residual was purified

by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 2:1) to afford (*E*)-*N*-benzyl-6-(4-butyrylphenoxy)hex-2-enamide 2y as a white solid.

 $\mathbf{R}_{\mathbf{f}} = 0.3$ (Eluent: petroleum ether/ethyl acetate = 2:1). Yield 29.9 mg (41%).

NMR Spectroscopy:

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.83 (d, *J* = 8.6 Hz, 2H), 7.26 – 7.15 (m, 5H), 6.85 – 6.79 (m, 2H), 5.85 – 5.61 (m, 2H), 4.47 – 4.32 (m, 2H), 3.94 (t, *J* = 6.1 Hz, 2H), 2.79 (t, *J* = 7.3 Hz, 2H), 2.31 (q, *J* = 7.3 Hz, 2H), 1.88 (t, *J* = 6.9 Hz, 2H), 1.71 – 1.64 (m, 3H), 0.91 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 199.3, 165.7, 162.7, 143.8, 138.3, 130.4, 130.3, 128.8, 128.0, 127.7, 124.4, 114.2, 67.1, 43.8, 40.3, 28.6, 27.9, 18.1, 14.1.
HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₃H₂₈NO₃⁺: 366.2064, found: 366.2062.

(E)-6-(Benzylamino)-6-oxohex-4-en-1-yl 4-phenylbutanoate (2z)

Under argon atmosphere, 6-(benzyl(tosyloxy)amino)-6-oxohexyl 4-phenylbutanoate 1z (107.5 mg, 0.20 mmol, 1.0 equiv), magnesium bromide ethyl etherate (56.8 mg, 0.22 mmol, 1.1 equiv), dry acetonitrile (0.5 mL) and *N*-ethyldiisopropylamine (69.0 µL, 0.40 mmol, 2.0 equiv) were added successively to a 10 mL Schlenk tube with a magnetic bar. The sealed tube was then stirred at 80 °C for 4 h or more until the starting materials were consumed completely.

Then palladium (II) acetate (2.3 mg, 0.01 mmol, 0.05 equiv), Xantphos (11.6 mg, 0.02 mmol, 0.10 equiv) and K_2CO_3 (55.5 mg, 0.40 mmol, 2.0 equiv) were added to the mixture under argon atmosphere. The sealed tube was then vigorously stirred at 80 °C for 16 h. The mixture was filtered through a pad of silica gel and the filtrate was concentrated under reduced pressure. The residual was purified by column chromatography on silica gel (eluent: petroleum ether/ ethyl acetate =2:1) to afford (*E*)-6-(benzylamino)-6-oxohex-4-en-1-yl 4-phenylbutanoate **2z** as a yellow oil.

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (Eluent: petroleum ether/ ethyl acetate =2:1).

Yield 33.6 mg (46%).

NMR Spectroscopy:

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.36 – 7.23 (m, 7H), 7.22 – 7.13 (m, 3H), 6.97 – 6.78 (m, 1H), 5.93 (br, 1H), 5.80 (d, *J* = 15.2 Hz, 1H), 4.48 (d, *J* = 2.4 Hz, 2H), 4.06 (t, *J* = 6.5, 2H), 2.67 – 2.61 (m, 2H), 2.34 – 2.29 (m, 2H), 2.23 (q, *J* = 7.8 Hz, 2H), 1.98 – 1.90 (m, 2H), 1.82 – 1.72 (m, 2H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 173.6, 165.7, 143.6, 141.4, 138.3, 128.8, 128.6, 128.5, 127.9, 127.6, 126.1, 124.2, 63.5, 43.7, 35.2, 33.7, 28.6, 27.4, 26.6.

HRMS (ESI) m/z: $[M + H]^+$ calcd for C₂₃H₂₈NO₃⁺: 366.2064, found: 366.2061.

Failed substrates

5. Scaled-up reaction

(E)-N-Benzylpent-2-enamide (2a)

Under argon atmosphere, *N*-benzyl-*N*-(tosyloxy)pentanamide **1a** (2.17 g, 6.0 mmol, 1.0 equiv), magnesium bromide ethyl etherate (1.72 g, 6.6 mmol, 1.1 equiv), dry acetonitrile (15.0 mL) and *N*-ethyldiisopropylamine (2.09 mL, 12.0 mmol, 2.0 equiv) were added successively to a 100 mL Schlenk tube with a magnetic bar. The sealed tube was then stirred at 80 °C for 16 h.

Then palladium (II) acetate (69.0 mg, 0.30 mmol, 0.05 equiv), Xantphos (347.2 mg, 0.60 mmol, 0.10 equiv) and K_2CO_3 (1.66 g, 12.0 mmol, 2.0 equiv) were added to the mixture under argon atmosphere. The sealed tube was then vigorously stirred at 80 °C for 16 h. The mixture was filtered through a pad of silica gel and the filtrate was concentrated under reduced pressure. The residual was purified by column chromatography on silica gel (eluent: petroleum ether/ ethyl acetate =3:1) to afford (*E*)-*N*-benzylpent-2-enamide **2a** as a white solid in 68% yield (0.77 g).

6. Derivatization to other compounds

(*E*)-*N*-Benzyl-*N*-methylpent-2-enamide (3)

Under argon atmosphere, (*E*)-*N*-benzylpent-2-enamide **2a** (37.9 mg, 0.20 mmol, 1.0 equiv), dry *N*,*N*-dimethylformamide (1.0 mL) and NaH (60%, dispersion in Paraffin Liquid) (9.6 mg, 0.24 mmol, 1.2 equiv) were added successively to a 10 mL Schlenk tube with a magnetic bar at 0 °C. The sealed tube was then stirred at 25 °C for 0.5 h. Then the MeI (19.6 μ L, 0.30 mmol, 1.5 equiv) was added to the mixture under argon atmosphere. The sealed tube was then vigorously stirred at 25 °C for 2 h. Then the mixture was concentrated under reduced pressure. The residual was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 5:1) to afford (*E*)-*N*-benzyl-*N*-methylpent-2-enamide **3** as a colorless oil.

 $\mathbf{R}_{\mathbf{f}} = 0.9$ (Eluent: petroleum ether/ ethyl acetate =5:1).

Yield 30.5 mg (75%).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.42 – 7.27 (m, 3H), 7.27 – 7.15 (m, 2H), 7.08 – 6.95 (m, 1H), 6.30 – 6.22 (m, 1H), 4.65 (s, 1H), 4.59 (s, 1H), 2.98 (s, 3H), 2.29 – 2.18 (m, 2H), 1.11 – 1.01 (m, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 167.6, 167.1, 148.6, 148.4, 137.5, 137.0, 129.0, 128.7, 128.1, 127.7, 127.4, 126.6, 119.3, 53.5, 51.2, 35.0, 34.2, 25.7, 25.7, 12.7.

HRMS (ESI) m/z: $[M + Na]^+$ calcd for C₁₃H₁₇NONa⁺: 226.1202, found: 226.1200.

N-Benzyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentanamide (4)

To a flame-dried 10 mL Schlenk tube was added CuCl (1 mg, 0.01 mmol, 0.05 equiv), NaO'Bu (2.8 mg, 0.03 mmol, 0.15 equiv), dppp ligand (4.1 mg, 0.01 mmol, 0.05 equiv), dry THF (0.40 mL) was added under nitrogen³. The reaction mixture was stirred at room temperature for 0.5 h, after which time bis(pinacolato)diboron (141.0 mg, 0.22mmol, 1.1 equiv.) in THF (0.30 mL) was added. The reaction mixture was stirred for 10 min and then (*E*)-*N*-benzylpent-2-enamide **2a** (37.9 mg, 0.2 mmol, 1.0 equiv) in THF (0.30 mL) were added, followed by MeOH (16.0 μ L, 0.4 mmol, 2.0 equiv). The resulting mixture was stirred until complete consumption of starting material as indicated by TLC. The resulting mixture was diluted with acetone (10 mL), filtered (Celite), and concentrated under a reduced pressure. The residual was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 3:1) to

afford N-benzyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentanamide **4** as a white solid.

 $\mathbf{R_f} = 0.7$ (Eluent: petroleum ether/ ethyl acetate =3:1). Yield 58.6 mg (92%).

NMR Spectroscopy:

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.35 – 7.23 (m, 5H), 6.04 (d, *J* = 7.9 Hz, 1H), 4.41 (dd, *J* = 5.7, 3.6 Hz, 2H), 2.42 – 2.25 (m, 2H), 1.53 – 1.39 (m, 2H), 1.37 – 1.28 (m, 1H), 1.20 (d, *J* = 4.8 Hz, 12H), 0.93 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 173.3, 138.6, 128.7, 128.0, 127.5, 83.3, 43.7, 37.9, 24.9, 24.8, 24.0, 13.4.

HRMS (ESI) m/z: $[M + H]^+$ calcd for $C_{18}H_{29}BNO_3^+$: 318.2235, found: 318.2233.

tert-butyl (E)-Benzyl(pent-2-enoyl)carbamate (5)

To a flame-dried 25 mL flask was added (*E*)-*N*-benzylpent-2-enamide **2a** (94.6 mg, 0.50 mmol, 1.0 equiv), di-*tert*-butyl decarbonate (345.0 μ L, 1.50 mmol, 3.0 equiv), triethylamine (138.7 μ L, 1.00 mmol, 2.0 equiv), 4-dimethylaminopyridine (61.7 mg, 0.51 mmol, 1.01 equiv) and DCM (1.0 mL) was added. The resulting mixture was stirred 25 °C until complete consumption of starting material as indicated by TLC. Then the mixture was concentrated under reduced pressure. The residual was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 5:1) to afford *tert*-butyl (*E*)-benzyl(pent-2-enoyl)carbamate **5** as a colorless oil.

 $\mathbf{R}_{\mathbf{f}} = 0.9$ (Eluent: petroleum ether/ ethyl acetate =5:1).

Yield 116.5 mg (81%).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.36 – 7.21 (m, 5H), 7.05 (dt, *J* = 15.2, 6.4 Hz, 1H), 6.82 (d, *J* = 15.1 Hz, 1H), 4.90 (s, 2H), 2.33 – 2.22 (m, 2H), 1.40 (s, 9H), 1.09 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 169.0, 153.4, 149.5, 138.5, 128.4, 127.6, 127.1, 123.4, 83.3, 47.8, 28.0, 25.7, 12.5.

HRMS (ESI) m/z: $[M + Na]^+$ calcd for $C_{17}H_{23}NO_3Na^+$: 312.1570, found: 312.1570.

[1,1'-Biphenyl]-4-yl (E)-pent-2-enoate (6)

To a solution of *tert*-butyl (*E*)-benzyl(pent-2-enoyl)carbamate **5** (57.9 mg, 0.20 mmol, 1.0 equiv) in THF (0.5 mL) and H₂O (0.5 mL) was added LiOH·H₂O (25.2 mg, 0.60

mmol, 3.0 equiv). The reaction mixture was allowed to stir for 2.5 h at 25 °C. The reaction was washed by DCM (3×2 mL), the aqueous layer was acidified with hydrochloric acid and extracted with DCM (3×2 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The crude product (*E*)-pent-2-enoic acid was used directly for next step reaction without purification.

To a solution of (*E*)-pent-2-enoic acid in DCM (1.5 mL) was added *N*-(3-dimethylaminopropyl)-*N'*-ethylcarbodiimide hydrochloride (42.2 mg, 0.22 mmol, 1.1 equiv), 4-dimethylaminopyridine (4.9 mg, 0.04 mmol, 0.20 equiv) and triethylamine (45.8 μ L, 0.44 mmol, 2.2 equiv). The reaction mixture was allowed to stir for 16 h at 25 °C. The reaction was concentrated and the residue was purified by flash chromatography (eluent: petroleum ether/ethyl acetate = 10:1) to afford [1,1'-biphenyl]-4-yl (*E*)-pent-2-enoate **6** as a white solid.

 $\mathbf{R}_{\mathbf{f}} = 0.8$ (Eluent: petroleum ether/ ethyl acetate =10:1).

Yield 44.1 mg (87%).

NMR Spectroscopy:

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.61 – 7.55 (m, 4H), 7.43 (t, *J* = 7.6 Hz, 2H), 7.36 – 7.29 (m, 1H), 7.28 – 7.21 (m, 1H), 7.21 – 7.16 (m, 2H), 6.04 (d, *J* = 15.7 Hz, 1H), 2.36 – 2.09 (m, 2H), 1.14 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 165.3, 153.3, 150.4, 140.6, 139.0, 128.9, 128.3, 127.4, 127.3, 122.0, 119.8, 25.7, 12.2.

HRMS (ESI) m/z: $[M + H]^+$ calcd for $C_{17}H_{17}NO_2^+$: 253.1223, found: 253.1220.

7. Synthesis of llepcimide

Prepared following **General Procedure A** using 3-(benzo[*d*][1,3]dioxol-5yl)propanoic acid 7 (500.0 mg, 2.5 mmol, 1.0 equiv), *N*-methylhydroxylamine hydrochloride (250.0 mg, 2.8 mmol, 1.1 equiv) and Et₃N (381.5 μ L, 2.8 mmol, 1.1 equiv) as starting materials to afford **8** as a colourless oil.

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (Eluent: petroleum ether/ ethyl acetate =5:1). **Yield** 909.4 mg (96%).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.85 (d, J = 8.4 Hz, 2H), 7.43 – 7.36 (m, 2H), 6.69 (d, J = 8.3 Hz, 1H), 6.52 – 6.50 (m, 2H), 5.92 (s, 2H), 3.13 (d, J = 1.9 Hz, 3H), 2.69 (t, J = 7.7 Hz, 2H), 2.48 (s, 3H), 2.44 – 2.41 (m, 2H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 177.7, 147.7, 147.0, 146.0, 134.4, 130.9, 130.4, 129.5, 121.2, 108.9, 108.3, 100.9, 38.4, 34.6, 29.7, 22.0.

HRMS (ESI) m/z: $[M + H]^+$ calcd for $C_{18}H_{20}NO_6S^+$: 378.1006, found: 378.1001.

(E)-3-(Benzo[d][1,3]dioxol-5-yl)-N-methylacrylamide (9)

Under argon atmosphere, 3-(benzo[d][1,3]dioxol-5-yl)-N-methyl-N-(tosyloxy)propenamide (566.1 mg, 1.50 mmol, 1.0 equiv), magnesium bromide ethyl etherate (426.0 mg, 1.65 mmol, 1.1 equiv), dry acetonitrile (5.0 mL) and N-ethyldiisopropylamine (517.5 μ L, 3.00 mmol, 2.0 equiv) were added successively to a 10 mL Schlenk tube with a magnetic bar. The sealed tube was then stirred at 80 °C for 4 h or more until the starting materials were consumed completely.

Then DBU (90.0 μ L, 0.60 mmol, 3.0 equiv) and dry DMSO (5.0 mL) were added to the mixture under argon atmosphere. The sealed tube was then vigorously stirred at 80 °C for 16 h before being washed with H₂O (10.0 mL). The aqueous phase was extracted with ethyl acetate (3 × 20.0 mL). After that, the organic phase was dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residual was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 1:1) to afford (*E*)-3-(benzo[*d*][1,3]dioxol-5-yl)-*N*-methylacrylamide **9** as a white solid

R_f = 0.1 (Eluent: petroleum ether/ethyl acetate = 1:1). **Yield** 190.9 mg (80%). **NMR Spectroscopy:** ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.50 (dd, J = 15.6, 3.7 Hz, 1H), 6.93 (d, J = 14.6 Hz, 2H), 6.80 – 6.68 (m, 1H), 6.43 – 6.18 (m, 2H), 5.95 (d, *J* = 3.9 Hz, 2H), 2.91 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 167.1, 149.0, 148.3, 140.4, 129.4, 123.8, 118.9, 108.5, 106.4, 101.5, 26.6.

HRMS (ESI) m/z: $[M + H]^+$ calcd for C₁₁H₁₂NO₃: 206.0812, found: 206.0806.

(*E*)-3-(Benzo[*d*][1,3]dioxol-5-yl)-1-(piperidin-1-yl)prop-2-en-1-one (llepcimide)

To a flame-dried 10 mL flask was added (*E*)-3-(benzo[*d*][1,3]dioxol-5-yl)-*N*-methylacrylamide **9** (184.6 mg, 0.90 mmol, 1.0 equiv), di-*tert*-butyl decarbonate (620.3 μ L, 2.70 mmol, 3.0 equiv), triethylamine (249.7 μ L, 1.80 mmol, 2.0 equiv), 4-dimethylaminopyridine (111.1 mg, 0.91 mmol, 1.01 equiv) and DCM (5 mL) was added. The resulting mixture was stirred 25 °C until complete consumption of starting material as indicated by TLC. The mixture was filtered through a pad of silica gel (eluent: petroleum ether/ethyl acetate = 3:1) and the filtrate was concentrated under reduced pressure. to afford crude *tert*-butyl (*E*)-(3-(benzo[*d*][1,3]dioxol-5-yl)acryloyl)(methyl)carbamate as a white solid, which can be used for the next step without further purification (259.4 mg, 94%).

To a solution of crude *tert*-butyl (*E*)-(3-(benzo[*d*][1,3]dioxol-5yl)acryloyl)(methyl)carbamate (54.9 mg, 0.18 mmol, 1.0 equiv) in PhMe (1.0 mL) was added piperidine (29.6 μ L, 0.30 mmol, 1.5 equiv)⁴. The reaction mixture was allowed to stir for 12 h at 110 °C. Then the additional piperidine (39.5 μ L, 0.40 mmol, 2.0 equiv) was added to the mixture. The sealed tube was then vigorously stirred at 110 °C for 12 h. The reaction was concentrated and the residue was purified by flash chromatography (eluent: petroleum ether/ethyl acetate = 1:1) to afford **llepcimide** as a yellow oil.

 $\mathbf{R}_{\mathbf{f}} = 0.1$ (Eluent: petroleum ether/ethyl acetate = 1:1).

Yield 29.1 mg (62%).

NMR Spectroscopy:

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.55 (d, *J* = 15.3 Hz, 1H), 7.02 (d, *J* = 1.7 Hz, 1H), 6.98 (dd, *J* = 8.0, 1.7 Hz, 1H), 6.78 (d, *J* = 8.0 Hz, 1H), 6.72 (d, *J* = 15.3 Hz, 1H), 5.98 (s, 2H), 3.60 (d, *J* = 31.3 Hz, 4H), 1.69 – 1.64 (m, 2H), 1.62 – 1.56 (m, 4H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 165.6, 148.9, 148.3, 142.1, 130.0, 123.7, 115.8, 108.6, 106.4, 101.5, 47.1, 43.5, 26.9, 25.7, 24.8.

HRMS (ESI) m/z: $[M + H]^+$ calcd for $C_{15}H_{18}NO_3^+$: 260.1281, found: 260.1274.

8. Reactivity of different leaving groups

Under argon atmosphere, starting materials containing different leaving groups (0.20 mmol, 1.0 equiv), magnesium bromide ethyl etherate (56.8 mg, 0.22 mmol, 1.1 equiv), dry acetonitrile (0.5 mL) and *N*-ethyldiisopropylamine (69.0 μ L, 0.40 mmol, 2.0 equiv) were added successively to a 10 mL Schlenk tube with a magnetic bar. The sealed tube was then stirred at 80 °C for 4 h.

Then palladium (II) acetate (2.3 mg, 0.01 mmol, 0.05 equiv), Xantphos (11.6 mg, 0.02 mmol, 0.10 equiv) and K_2CO_3 (55.5 mg, 0.40 mmol, 2.0 equiv) were added to the mixture under argon atmosphere. The sealed tube was then vigorously stirred at 80 °C for 16 h. The mixture was filtered through a pad of silica gel and the filtrate was concentrated under reduced pressure. The yield was determined by ¹H NMR analysis with 1,3,5-trimethoxybenzene as an internal standard. The results were shown in the **Table S5** below.

Table S5. ¹H NMR yield of different leaving groups

-				
Х	OTs	Cl	OAc	OMe
¹ H NMR yield	82%	0%	0%	0%

9. Potential intermediate for the dehydrogenation

N-Benzyl-2-bromopentanamide (10)

$$Me \xrightarrow{\text{Br}} OH \xrightarrow{\text{(COCI)}_2 (1.5 \text{ equiv})}_{\text{Cat. DMF}} \xrightarrow{\text{benzylamine (1.2 equiv)}}_{\text{Et}_3 N (1.1 \text{ equiv})} Me \xrightarrow{\text{Br}} H_{\text{Bn}}$$

To a stirred solution of 2-bromopentanoic acid (262 μ L, 2.0 mmol, 1.0 equiv) in dichloromethane (2.0 mL), was added 2 drops *N*,*N*-dimethylformamide. Then oxalyl chloride (200.0 μ L, 2.2 mmol, 1.1 equiv) was added slowly into the mixture. The reaction was stirred at 25 °C for 1 h before being concentrated.

To a stirred solution of mixture was added benzylamine (262 μ L, 2.4 mmol, 1.2 equiv). A solution of Et₃N (305.0 μ L, 2.2 mmol, 1.1 equiv) in dichloromethane (1.0 mL) was charged slowly into reaction at 0 °C. The reaction was stirred at 25 °C for 16 h before being washed with H₂O (5.0 mL). The aqueous phase was extracted with dichloromethane (3 × 5.0 mL). After that, the organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated under reduced. The residual was purified by column chromatography on silica gel to afford *N*-benzyl-2-bromopentanamide **10** as a white solid. All analytical data were in good accordance with data reported in the literature.⁵ **NMR Spectroscopy:**

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.40 – 7.26 (m, 5H), 6.68 (br, 1H), 4.47 (d, J = 5.8 Hz, 2H), 4.37 (dd, J = 8.4, 5.1 Hz, 1H), 2.22 – 2.09 (m, 1H), 2.08 – 1.95 (m, 1H), 1.58 – 1.44 (m, 2H), 0.96 (t, J = 7.4 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 168.9, 137.7, 128.9, 127.84, 127.79, 52.0, 44.3, 38.1, 20.7, 13.4.

(*E*)-*N*-Benzylpent-2-enamide (2a)

Under argon atmosphere, *N*-benzyl-2-bromopentanamide **10** (54.0 mg, 0.20 mmol, 1.0 equiv), palladium (II) acetate (2.3 mg, 0.01 mmol, 0.05 equiv), Xantphos (11.6 mg, 0.02 mmol, 0.10 equiv), K_2CO_3 (55.5 mg, 0.40 mmol, 2.0 equiv) and dry acetonitrile (0.5 mL) were added successively to a 10 mL Schlenk tube with a magnetic bar. The sealed tube was then stirred at 80 °C for 16 h. The mixture was filtered through a pad of silica gel and the filtrate was concentrated under reduced pressure. The residual was purified by column chromatography on silica gel (eluent: petroleum ether/ ethyl acetate =3:1) to afford (*E*)-*N*-benzylpent-2-enamide **2a** as a white solid in 79% yield. (29.9 mg)

10. Kinetic Isotope Effect Studies

N-Methyl-5-phenyl-N-(tosyloxy)pentanamide-2,2-d2(1aa-α-D)

To a solution of lithium diisopropylamide (2.5 mL, 5.0 mmol, 2.5 equiv) in THF (2 M) was added the acetic acid-d₄ (112.4 μ L, 2.0 mmol, 1.0 equiv) via syringe dropwise at 0 °C.⁶ The resulting mixture was stirred at 0 °C for 5 minutes. Then it was heated at reflux for 3 hours. After cooling down to room temperature, 1-bromo-3-phenylpropane (607.9 μ L, 4.0 mmol, 2.0 equiv) was added dropwise, then the mixture was heated at reflux overnight. The resulting solution was quenched with water and extracted with EtOAc. The aqueous layer was acidified with 1M HCl and extracted with EtOAc. The combined organic layer was washed with brine and dried over Na₂SO₄. After filtration and concentration, the obtained crude acid was used in next step without further purification. The next step follows the **General Procedure A** to afford *N*-methyl-5-phenyl-*N*-(tosyloxy)pentanamide-2,2-d₂ as a colourless oil.

Yield 261.2 mg (36%).

NMR Spectroscopy:

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.94 – 7.86 (m, 2H), 7.41 (d, *J* = 8.1 Hz, 2H), 7.32 – 7.28 (m, 2H), 7.23 – 7.15 (m, 3H), 3.15 (s, 3H), 2.56 (t, *J* = 7.0 Hz, 2H), 2.47 (s, 3H), 1.55 – 1.47 (m, 4H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 178.5, 146.9, 142.3, 130.9, 130.3, 129.5, 128.5, 128.4, 125.9, 38.3, 35.7, 30.9, 23.5, 23.4, 21.9.

HRMS (ESI) m/z: $[M + Na]^+$ calcd for $C_{19}H_{21}D_2NO_4SNa^+$: 386.1366, found: 386.1351.

N-Methyl-5-phenyl-*N*-(tosyloxy)pentanamide-3,3-d₂(1aa-β-D)

Lithium aluminum deuteride (901.2 mg, 4.8 mmol, 0.8 equiv) was suspended in anhydrous Et_2O (10.0 mL) and cooled to 0 °C.⁷ A solution of hydrocinnamoyl chloride (891.4 μ L, 6.0 mmol, 1.0 equiv) in Et_2O (5.0 mL) was added dropwise at 0 °C. The resulting mixture was then allowed to warm up to room temperature and stirred for 2 hours. The resulting solution was quenched with water. The resulting precipitate was

removed by filtration, washed thoroughly with Et₂O. The filtrate was washed with brine and dried over Na₂SO₄. After filtration and concentration, the obtained crude alcohol was used in next step without further purification.

To a solution of the above crude alcohol in anhydrous Et_2O (20.0 mL) was added PBr₃ (282 µL, 3.0 mmol, 0.5 equiv) via a syringe at 0 °C. The mixture was stirred for 30 minutes at 0°C and for additional 30 minutes at room temperature. Ice was added to quench the reaction. The organic layer was washed with brine and dried over Na₂SO₄. After filtration and concentration, the obtained crude (3-bromopropyl-3,3-d₂)benzene was used in next step without further purification.

To a solution of lithium diisopropylamide (1.9 mL, 3.8 mmol, 2.5 equiv) in THF (2M) was added the acetic acid (85.9 µL, 1.5 mmol, 1.0 equiv) via syringe dropwise at 0 °C. The resulting mixture was stirred at 0 °C for 5 minutes. Then it was heated at reflux for 3 hours. After cooling down to room temperature, crude (3-bromopropyl-3,3d₂)benzene was added dropwise, then the mixture was heated at reflux overnight. The resulting solution was quenched with water and extracted with EtOAc. The aqueous layer was acidified with 1 M HCl and extracted with EtOAc. The combined organic layer was washed with brine and dried over Na₂SO₄. After filtration and concentration, the obtained crude acid was used in next step without further purification. The next step follows the General Procedure Α to afford N-methyl-5-phenyl-N-(tosyloxy)pentanamide-3,3-d₂ as a colourless oil.

Yield 90.0 mg (17%).

NMR Spectroscopy:

¹**H** NMR (600 MHz, Chloroform-*d*) δ 7.89 (d, J = 8.3 Hz, 2H), 7.41 (d, J = 8.1 Hz, 2H), 7.31 – 7.28 (m, 2H), 7.20 (t, J = 7.3 Hz, 1H), 7.16 (d, J = 7.1 Hz, 2H), 3.15 (s, 3H), 2.57 – 2.54 (m, 2H), 2.47 (s, 3H), 2.21 (s, 2H), 1.49 (t, J = 7.8 Hz, 2H). ¹³C NMP (101 MHz, Chloroform *d*) δ 178 5, 146 9, 142 3, 121 0, 120 3, 120 5

¹³C NMR (101 MHz, Chloroform-*d*) δ 178.5, 146.9, 142.3, 131.0, 130.3, 129.5, 128.5, 128.4, 125.9, 38.4, 35.7, 32.3, 30.8, 21.9.

HRMS (ESI) m/z: $[M + Na]^+$ calcd for $C_{19}H_{21}D_2NO_4SNa^+$: 386.1366, found: 386.1364.

Intermolecular competitive KIE experiments with *N*-methyl-5-phenyl-*N*-(tosyloxy)pentanamide **1aa**, *N*-methyl-5-phenyl-*N*-(tosyloxy)pentanamide-2,2-d₂ **1aa**- α -D and *N*-methyl-5-phenyl-*N*-(tosyloxy)pentanamide-3,3-d₂ **1aa**- β -D

A) Reactions were performed with *N*-methyl-5-phenyl-*N*-(tosyloxy)pentanamide 1aa (36.1 mg, 0.1 mmol), *N*-methyl-5-phenyl-*N*-(tosyloxy)pentanamide-2,2-d₂ 1aa-α-D (36.3 mg, 0.1 mmol), Pd(OAc)₂ (2.3 mg, 0.01 mmol) and Xantphos (11.6 mg, 0.02 mmol) and K₂CO₃ (55.2 mg, 0.40 mmol), 0.5 mL dry acetonitrile, following the general procedure of the desaturation reaction. After the reaction proceeded for 1+14 hours, the reaction solution was filtered through silica gel and the crude ¹H NMR was taken using CH₂Br₂ as the internal standard.

Figure S2. KIE experiments between **1aa** and **1aa-α-D** (CH₂Br₂ as the internal standard) (CDCl₃, 400 MHz)

B) Reactions were performed with *N*-methyl-5-phenyl-*N*-(tosyloxy)pentanamide 1aa (36.1 mg, 0.1 mmol), *N*-methyl-5-phenyl-*N*-(tosyloxy)pentanamide-3,3-d₂ 1aa-β-D (36.3 mg, 0.1 mmol), Pd(OAc)₂ (2.3 mg, 0.01 mmol) and Xantphos (11.6 mg, 0.02 mmol) and K₂CO₃ (55.2 mg, 0.40 mmol), 0.5 mL dry acetonitrile, following the general procedure of the desaturation reaction. After the reaction proceeded for 4+6 hours, the reaction solution was filtered through silica gel and the crude ¹H NMR was taken using CH₂Br₂ as the internal standard.

standard) (CDCl₃, 400 MHz)

11. Copies of NMR spectra

Figure S11. ¹H NMR of 1d (CDCl₃, 400 MHz)

1f, ¹H NMR (CDCl₃, 400 MHz)

S57

²³⁰ ²²⁰ ²¹⁰ ²⁰⁰ ¹⁹⁰ ¹⁸⁰ ¹⁷⁰ ¹⁶⁰ ¹⁵⁰ ¹⁴⁰ ¹³⁰ ¹²⁰ ¹¹⁰ ¹⁰⁰ ⁹⁰ ⁸⁰ ⁷⁰ ⁶⁰ ⁵⁰ ⁴⁰ ³⁰ ²⁰ ¹⁰ ⁰ ⁻¹⁰ ⁻²⁰ ⁻³⁰ **Figure S19.** ¹³C NMR of **1g** (CDCl₃, 101 MHz)

Figure S21. ¹H NMR of 1h (CDCl₃, 400 MHz)

Figure S27. ¹H NMR of 1k (CDCl₃, 400 MHz)

S64

Figure S39. ¹H NMR of 1q (CDCl₃, 400 MHz)

S69

S70

Figure S49. ¹H NMR of 1x (CDCl₃, 400 MHz)

Figure S55. ¹H NMR of 1aa (CDCl₃, 400 MHz)

Figure S59. ¹H NMR of 2b (CDCl₃, 400 MHz)

Figure S63. ¹⁹F NMR of **2c** (CDCl₃, 376 MHz)

S81

80 70 -10 Figure S67. ¹³C NMR of 2e (CDCl₃, 151 MHz)

Figure S73 ¹⁹F NMR of 2g (CDCl₃, 376 MHz)

Figure S75. ¹³C NMR of 2h (CDCl₃, 101 MHz)

Figure S77. ¹³C NMR of 2i (CDCl₃, 101 MHz)

2k, ¹H NMR (CDCI₃, 400 MHz)

Figure S83. ¹³C NMR of 2l (CDCl₃, 151 MHz)

Figure S85. ¹³C NMR of 2m (CDCl₃, 101 MHz)

Figure S87. ¹³C NMR of 2n (CDCl₃, 101 MHz)

Figure S89. ¹³C NMR of 20 (CDCl₃, 101 MHz)

8,11

Figure S101. ¹³C NMR of 2w (CDCl₃, 101 MHz)

Figure S109. ¹H NMR of 3 (CDCl₃, 400 MHz)

Figure S111. ¹H NMR of 4 (CDCl₃, 400 MHz)

Figure S113. ¹H NMR of **5** (CDCl₃, 400 MHz)

Figure S121. ¹H NMR of llepcimide (CDCl₃, 400 MHz)

Figure S125. ¹H NMR of 1aa-α-D (CDCl₃, 400 MHz)

Figure S127. ¹H NMR of 1aa-β-D (CDCl₃, 600 MHz)

S113

12. References

1. Hoffman, R. V.; Nayyar, N. K.; Chen, W., .alpha.-Lactam intermediates in base-promoted reactions of O-sulfonylated hydroxamic acids with nucleophiles. *Journal of the American Chemical Society* **1993**, *115* (12), 5031-5034.

2. Banerjee, A.; Yamamoto, H., Direct N–O bond formation via oxidation of amines with benzoyl peroxide. *Chemical Science* **2019**, *10* (7), 2124-2129.

3. Chea, H.; Sim, H.-S.; Yun, J., Copper-Catalyzed Conjugate Addition of Diboron Reagents to α , β -Unsaturated Amides: Highly Reactive Copper-1,2- Bis(diphenylphosphino)benzene Catalyst System. *Advanced Synthesis & Catalysis* **2009**, *351* (6), 855-858.

4. Danfeng Ye, H. C., Zhiyuan Liu, Chuanhu Lei, Transamidation of N-Benzyl-N-Boc-amides under Transition Metal-Free and Base-Free Conditions. *Chinese Journal of Organic Chemistry*, **2021**, *41* (4), 1658-1669.

5. Barde, E.; Guérinot, A.; Cossy, J., Cobalt-Catalyzed Cross-Coupling of α -Bromo Amides with Grignard Reagents. *Organic Letters* **2017**, *19* (22), 6068-6071.

6. Yang, S.; Fan, H.; Xie, L.; Dong, G.; Chen, M., Photoinduced Desaturation of Amides by Palladium Catalysis. *Organic Letters* **2022**, *24* (35), 6460-6465.

7. Wang, Z.; He, Z.; Zhang, L.; Huang, Y., Iridium-Catalyzed Aerobic α , β -Dehydrogenation of γ , δ -Unsaturated Amides and Acids: Activation of Both α - and β -C–H bonds through an Allyl–Iridium Intermediate. *Journal of the American Chemical Society* **2018**, *140* (2), 735-740.