Supplementary Information (SI) for Chemical Science. This journal is © The Royal Society of Chemistry 2024

Supplementary Information TcESTIME: Predicting high-temperature hydrogen-based superconductors

Trinidad Novoa^{1,2}, Matías E. di Mauro¹, Diego Inostroza¹, Kaoutar El Haloui³, Nicolas Sisourat³, Yvon Maday², and Julia Contreras-García¹

¹Laboratoire de Chimie Théorique (LCT), Sorbonne Université, CNRS, 4 Pl. Jussieu, 75005, Paris, France
²Laboratoire de Chimie Physique-Matière et Rayonnement (LCPMR), Sorbonne Université, CNRS, 4 Pl. Jussieu, 75005, Paris, France
³Laboratoire Jacques-Louis Lions (LJLL), Sorbonne Université, CNRS, 4 Pl. Jussieu, 75005, Paris, France

November 7, 2024

Element	Z	$r_{\rm eff}$
Li	3	1.53
Be	4	1.02
В	5	0.75
\mathbf{C}	6	0.58
Ν	7	0.47
0	8	0.40
\mathbf{F}	9	0.34
Ne	10	0.30
Na	11	2.135
Mg	12	1.686
Al	13	1.395
Si	14	1.183
Р	15	1.024
\mathbf{S}	16	0.912
Cl	17	0.817
Ar	18	0.739
Κ	19	3.07
Ca	20	2.55
\mathbf{Sc}	21	2.39

Table 1: Effective radii, $r_{\rm eff}$ of the core of different chemical elements, as obtained from the atomic ELF in Kohout and Savin (1996).

Ti	22	2.29
V	23	2.20
Cr	24	2.37
Mn	25	2.07
Fe	26	2.01
Co	27	1.95
Ni	28	1.89
Cu	29	2.17
Zn	30	1.81
Ga	31	1.59
Ge	32	1.42
As	33	1.28
Se	34	1.18
Br	35	1.10
Kr	36	1.02
Rb	37	3.51
Sr	38	2.95
Cd	48	2.34

Table 2: List of binary hydrogen-based systems in the dataset, including their chemical formula, pressure (P), networking value ϕ , molecularity index ϕ^* , H_f , H_{DOS} , reference T_c , and reference from where it was taken.

Chem. form.	P (GPa)	ϕ	ϕ^*	H_{f}	H_{DOS}	$\mathbf{T}_{c}^{\mathrm{ref}}$ (K)	Ref.
LiH ₂	150	0.24	1.00	0.667	0.94924	0	
${ m LiH_6}$	150	0.37	0.98	0.857	0.88063	38.34	
${ m LiH_8}$	100	0.16	0.98	0.889	0.92588	31.04	
BeH_2	250	0.35	0.54	0.667	0.42005	44.1	
BeH_2	400	0.44	0.44	0.667	0.39974	62	
MgH_6	400	0.64	0.64	0.857	0.74105	271	
CaH_6	150	0.63	0.63	0.857	0.91338	235	
$ m SrH_6$	250	0.34	0.79	0.857	0.86045	156	
$ m ScH_2$	80	0.33	0.33	0.667	0.02726	32.9	
YH_4	120	0.44	0.6	0.800	0.39112	95	
YH_6	120	0.58	0.58	0.857	0.45269	264	
$ m ScH_4$	200	0.48	0.64	0.800	0.29856	98	
$ m ScH_6$	350	0.61	0.61	0.857	0.32246	169	
PrH_{9}	100	0.27	0.52	0.900	0.16150	0	
CeH_{10}	94	0.53	0.66	0.909	0.27900	168	
CeH_9	100	0.51	0.72	0.900	0.29135	50	
LaH_9	50	0.31	0.95	0.900	0.16123	30	

YH_9	150	0.58	0.79	0.900	0.65701	250
ScH_9	400	0.66	0.66	0.900	0.55013	180
YH_{10}	250	0.58	0.67	0.909	0.67017	326
LaH_8	300	0.0	0.75	0.889	0.38922	131
LaH_{10}	150	0.52	0.65	0.909	0.50395	274
ScH_9	300	0.59	0.94	0.900	0.53215	163
ScH_{10}	250	0.33	0.89	0.909	0.53668	120
ScH_{12}	350	0.33	0.86	0.923	0.58697	141
ScH_7	300	0.47	0.82	0.875	0.55962	169
ScH_6	130	0.26	0.88	0.857	0.42992	119
TiH_2	0	0.3	1.0	0.667	0.00053	7
TiH_2	0	0.18	0.4	0.667	0.03800	0
ZrH	120	0.33	0.33	0.500	0.01214	11
HfH_2	0	0.17	0.24	0.667	0.00787	0
HfH_2	180	0.23	0.78	0.667	0.11542	8
HfH_2	260	0.31	0.33	0.667	0.07105	12
NbH_2	60	0.29	0.4	0.667	0.00844	0.5
VH_2	0	0.31	0.31	0.667	0.00539	0.5
NbH_2	0	0.28	0.28	0.667	0.00668	1.5
NbH_2	60	0.35	0.39	0.667	0.01147	4
NbH_4	300	0.28	0.42	0.800	0.10784	47
TaH_2	200	0.41	0.43	0.667	0.03040	7.1
TaH_4	250	0.27	0.37	0.800	0.23240	31
TaH_6	300	0.4	0.61	0.857	0.48226	135.8
CrH	0	0.4	0.4	0.500	0.00636	10.6
CrH_3	81	0.38	0.38	0.750	0.07048	37.1
TcH_3	300	0.31	0.36	0.750	0.07314	9.94
${\rm FeH}_6$	150	0.36	1.0	0.857	0.18419	42.9
FeH_5	150	0.37	0.55	0.833	0.06091	45.8
RuH	100	0.28	0.28	0.500	0.01618	0.41
RuH_3	100	0.29	0.29	0.750	0.08244	3.57
RuH_3	200	0.29	0.29	0.750	0.13508	1.25
OsH	100	0.34	0.34	0.500	0.00788	2.1
CoH	5	0.27	0.27	0.500	0.00479	0.11
PdH	0	0.2	0.2	0.500	0.15803	9
PdH	0	0.2	0.2	0.500	0.15803	5
PtH	100	0.27	0.27	0.500	0.14640	15
PtH	80	0.28	0.32	0.500	0.08208	25
AuH	220	0.27	0.27	0.500	0.02230	21
BH	175	0.51	0.51	0.500	0.27223	21.4
BH_3	360	0.58	0.84	0.750	0.53550	125
AlH_3	73	0.41	0.41	0.750	0.67764	11.5
GaH_3	120	0.1	0.0	0.750	0.56491	102
InH_5	150	0.3	0.99	0.833	0.34432	27.1

InH_3	200	0.31	0.9	0.750	0.28419	40.5
SiH_4	125	0.48	0.81	0.800	0.59684	55
SiH_4	120	0.54	0.73	0.800	0.40524	74
SiH_4	400	0.47	0.57	0.800	0.54972	35
SiH_4	610	0.5	0.6	0.800	0.44245	110
SiH_4	300	0.48	0.98	0.800	0.25117	35.1
$\operatorname{SiH}_4^{-1}$	190	0.33	0.84	0.800	0.62307	16.5
Si_2H_6	200	0.48	0.77	0.750	0.35811	80
Si ₂ H ₆	275	0.02	0.02	0.750	0.37144	153
Si ₂ H ₆	300	0.54	0.96	0.750	0.35998	42
GeH_4	220	0.4	0.9	0.800	0.36688	64
GeH ₄	250	0.31	0.95	0.800	0.41384	57
GeH ₄	500	0.42	0.65	0.800	0.50236	84
$GeH_4(H_2)2$	250	0.35	0.93	0.889	0.52831	90
GeH ₄	280	0.35	0.66	0.800	0.42974	67
Ge3H11	285	0.33	0.00 0.42	0.000	0.42514 0.47560	43
GeH ₂	180	0.00	0.42	0.750	0.27853	90
GeH ₂	180	0.00	0.4	0.750	0.21000	140
SnH ₂	250	0.52 0.24	0.00	0.100	0.24755 0.54617	140 79
SnH ₈	$\frac{250}{120}$	0.24	0.9	0.809	0.04017	12
SnH_4	200	0.20	0.90	0.800	0.30030 0.37070	62 62
SnH_4	200 600	0.24	0.35	0.000	0.31010	02
SnH.	250	0.29	0.95	0.000	0.30303 0.64144	90
SnH_{12}	200	0.20	0.91	0.923	0.04144 0.71082	95 07
$SIII_{14}$	300 920	0.37	0.90	0.955	0.71900 0.42717	97
$1 \text{ DII}_4(112)^2$	230	0.21	0.97	0.889	0.43717	107
$1 11_4$ DU	80	0.10	1.0	0.800	0.20430	1.9 20 5
$1 11_2$	200	0.02	1.0	0.007	0.10955	29.0 01.0
	300 450	0.40	0.45	0.000	0.10920 0 52420	21.2 151 /
ASH8	450	0.43	0.91	0.889	0.33430 0.12076	131.4
	170	0.37	0.39	0.500	0.13970	14.0
$50\Pi_4$	100	0.31	0.95	0.800	0.32348 0.10264	102.2
$B1\Pi_2$	125	0.33	0.97	0.007	0.19304	39 65
$D1H_3$	270	0.32	0.85	0.750	0.34030	00 69
$50\Pi_3$	170	0.30	0.91	0.750	0.21181	08 20
DIH	200	0.33	0.0	0.500	0.22987	30 CF
B_1H_2	300	0.32	0.94	0.667	0.21725	65 02
B_1H_4	150	0.3	0.96	0.800	0.29603	93
B_1H_6	300	0.29	0.85	0.857	0.46471	113
$(H_2S)2H_2$	200	0.69	0.69	0.750	0.47654	204
H_3S	150	0.71	0.71	0.750	0.48732	225
H_4S_3	140	0.38	0.77		0.22762	2.1
H_5S_2	130	0.28	0.89	0.714	0.40847	79
HSe_2	300	0.46	0.56	0.333	0.14294	5
HSe	300	0.53	0.0	0.500	0.14283	42
			4			

H_3Se	200	0.54	0.54	0.750	0.48394	116
HSe	300	0.52	0.55	0.500	0.15501	23
H_4Te	170	0.41	0.94	0.800	0.24914	104
H_5Te_2	200	0.37	0.86	0.714	0.25675	58
HTe	150	0.42	0.42	0.500	0.14264	28
H_4Te	270	0.36	0.92	0.800	0.28495	76
PoH_4	250	0.26	0.95	0.800	0.28468	53.6
PoH	300	0.0	0.31	0.500	0.20401	0.65
PoH_2	200	0.31	0.97	0.667	0.16772	0
PoH_6	200	0.34	0.97	0.857	0.32384	4.68
HBr	200	0.38	0.66	0.500	0.17697	51
HCl	360	0.49	0.68	0.500	0.17748	40
HBr	150	0.38	0.7	0.500	0.13735	27
HCl	250	0.39	0.76	0.500	0.13565	20
H_2I	100	0.12	0.99	0.667	0.09580	8
H_4I	300	0.25	0.95	0.800	0.31063	12.5
H_2I	100	0.0	0.99	0.667	0.11697	5.3
H_2I	240	0.27	0.94	0.667	0.16466	33
MgH_2	180	0.34	0.34	0.667	0.35378	23
MgH_4	100	0.27	1.0	0.800	0.66683	37
MgH_{12}	140	0.36	0.97	0.923	0.91945	60
PH_2	260	0.39	0.54	0.667	0.40477	95
Η	500	0.64	0.64	1.00	1.00000	318
Η	450	0.52	0.94	1.00	1.00000	109
	* · · · · · · · · · · · · · · · · · · ·	-				

Table 3: List of X-RE-H systems (X is s-block element, RE iShame darth) in the dataset, including their chemical formula, pressure (P), networking value ϕ , molecularity index ϕ^* , H_f , H_{DOS} , reference T_c , and reference from where it was taken.

P (GPa)	$ \phi$	ϕ^*	H_f	H_{DOS}	$\mathbf{T}_{c}^{\mathrm{ref}}(\mathbf{K})$	Ref.	
$LiScH_{10}$	300	0.30	0.93	0.833	0.280	52	[1]
$\rm Li_2ScH_{20}$	300	0.36	0.97	0.870	0.745	242	[1]
$\rm Li_2ScH_{16}$	300	0.63	0.69	0.842	0.684	262	[1]
$\rm Li_2ScH_{16}$	230	0.63	0.69	0.842	0.686	281	[1]
$\rm Li_2ScH_{17}$	300	0.57	0.83	0.850	0.600	94	[1]
$\rm Li_2LaH_{17}$	300	0.50	0.79	0.850	0.671	118	[1]
Li_2YH_{16}	300	0.59	0.71	0.842	0.769	251	[1]
Li_2YH_{17}	300	0.55	0.81	0.850	0.798	64	[1]
$CaYH_{20}$	600	0.54	0.70	0.909	0.819	250	[2]
$\operatorname{Ca_2YH_{18}}$	200	0.58	0.67	0.857	0.752	217	[2]

Ca_3YH_{24}	200	0.58	0.67	0.857	0.800	225	[2]
CaY_3H_{24}	200	0.55	0.63	0.857	0.558	252	[2]
CaScH_2	250	0.19	0.21	0.500	0.024	31	[3]
CaScH_4	200	0.17	0.49	0.667	0.098	2	[3]
CaScH_6	200	0.36	0.36	0.750	0.601	57	[3]
CaScH_8	200	0.42	0.88	0.800	0.557	212	[3]
$CaScH_{12}$	160	0.55	0.68	0.857	0.486	175	[3]
$BeLaH_8$	50	0.29	0.53	0.800	0.668	191	[4]
BeYH_8	100	0.12	0.36	0.800	0.697	249	[4]
BeCeH_8	30	0.29	0.52	0.800	0.779	201	[5]
BeThH_7	20	0.28	0.48	0.778	0.502	70	[5]

Figure 1: Values of ϕ computed with TcESTIME compared to the reference values, ϕ_{ref} , of the binary database. Colors represent the density of points per unit area.

Table 4: Prediction of the critical temperature of all binary and ternary compounds using four different fits, namely the least squares regression (LS), gradient boosting regression (GBR), and two different symbolic regression fits (SR2 and SR4). Reference T_c is provided for comparison.

Chem. form.	T_c	T_c^{LS}	T_c^{GBR}	T_c^{SR2}	T_c^{SR4}
LiH_2	0.00	62.33	-0.55	30.69	73.20
${ m LiH_6}$	38.34	129.24	39.18	101.89	158.31
${ m LiH_8}$	31.04	53.80	28.74	53.82	74.16

BeH_2	44.10	70.32	49.54	68.90	71.01
BeH_2	62.00	89.20	105.68	82.98	87.09
MgH_6	271.00	217.04	275.09	239.65	251.20
CaH_6	235.00	229.59	241.77	266.06	274.52
$ m SrH_6$	156.00	117.01	148.54	142.03	143.80
$ m ScH_2$	32.90	20.77	24.50	21.67	17.06
YH_4	95.00	108.01	124.09	118.97	113.16
YH_6	264.00	164.71	210.94	187.31	177.93
$ m ScH_4$	98.00	107.66	105.95	103.94	107.85
$ m ScH_6$	169.00	154.13	117.39	158.09	157.94
PrH_9	0.00	50.93	11.00	97.18	53.24
CeH_{10}	168.00	134.20	163.88	152.66	139.43
CeH_9	50.00	129.40	126.46	137.49	135.08
LaH_9	30.00	59.84	53.60	46.61	61.08
YH_9	250.00	197.63	248.68	206.47	230.68
$ m ScH_9$	180.00	212.65	286.77	239.15	240.20
YH_{10}	326.00	201.08	240.50	247.48	236.49
LaH_8	131.00	-9.46	126.93	48.47	0.00
LaH_{10}	274.00	162.19	269.91	205.17	183.86
$ m ScH_9$	163.00	186.90	173.66	152.89	211.19
ScH_{10}	120.00	101.78	124.49	107.08	120.41
ScH_{12}	141.00	106.92	138.73	125.24	128.84
$\rm ScH_7$	169.00	145.19	169.16	144.08	165.39
$ m ScH_6$	119.00	67.28	85.28	69.36	77.73
TiH_2	7.00	-2.07	13.07	0.91	2.16
TiH_2	0.00	8.96	-1.62	19.96	10.98
ZrH	11.00	7.85	15.85	6.09	7.39
HfH_2	0.00	0.83	17.82	10.83	4.72
HfH_2	8.00	24.63	7.15	20.07	24.46
HfH_2	12.00	29.62	8.26	34.28	25.87
NbH_2	0.50	8.51	3.26	10.73	8.34
VH_2	0.50	7.08	1.52	9.64	7.13
NbH_2	1.50	6.59	2.43	10.73	7.16
NbH_2	4.00	14.57	13.16	13.49	11.73
NbH_4	47.00	39.20	35.79	63.96	37.81
TaH_2	7.10	29.49	12.22	22.43	22.38
${ m TaH_4}$	31.00	51.14	33.90	98.25	53.53
TaH_6	135.80	113.22	134.48	152.73	126.65
CrH	10.60	7.45	8.70	4.41	6.48
CrH_3	37.10	44.26	32.45	49.54	37.66
TcH_{3}	9.94	34.91	13.93	47.94	31.29
FeH ₆	42.90	70.65	40.51	43.01	70.44
${ m FeH}_5$	45.80	45.88	35.49	51.74	39.90
RuH	0.41	6.70	1.77	7.03	7.24

$ m RuH_3$	3.57	33.74	8.67	53.58	31.08
RuH_3	1.25	41.47	3.13	68.58	39.79
OsH	2.10	5.98	9.78	4.91	6.13
CoH	0.11	0.92	0.42	3.83	3.80
PdH	9.00	15.21	2.54	21.98	16.15
PdH	0.00	15.21	2.54	21.98	16.15
PtH	15.00	23.01	7.79	21.15	20.99
PtH	25.00	18.30	18.82	15.21	16.30
AuH	21.00	7.88	4.12	8.26	8.19
BH	21.40	65.96	57.01	28.85	54.07
BH_3	125.00	151.74	123.18	101.04	158.43
AlH_3	11.50	113.79	23.06	153.60	125.98
GaH_3	102.00	18.83	95.92	154.27	28.06
InH_5	27.10	70.47	27.85	46.50	76.92
InH_3	40.50	60.30	50.37	40.78	61.69
${ m SiH}_4$	55.00	138.08	61.30	117.22	152.49
${ m SiH}_4$	74.00	136.42	82.23	116.77	141.36
${ m SiH}_4$	35.00	131.10	162.75	151.11	143.30
${ m SiH}_4$	110.00	129.63	114.10	135.57	136.77
${ m SiH}_4$	35.10	101.10	32.20	56.75	98.92
${ m SiH}_4$	16.50	93.44	19.96	87.59	107.12
$\rm Si_2H_6$	80.00	107.20	62.38	79.28	107.22
$\rm Si_2H_6$	153.00	-4.54	77.76	113.72	4.55
$\rm Si_2H_6$	42.00	122.01	46.71	64.93	120.94
${ m GeH}_4$	64.00	95.08	68.35	68.58	99.63
${ m GeH}_4$	57.00	74.88	76.71	52.45	82.01
${ m GeH}_4$	84.00	112.43	177.65	123.59	122.41
$GeH_4(H_2)2$	90.00	105.33	86.36	94.87	122.55
${ m GeH}_4$	67.00	86.96	74.25	102.43	94.35
$Ge3H_{11}$	43.00	82.93	87.13	134.79	91.14
${ m GeH}_3$	90.00	64.30	81.29	91.58	65.01
${ m GeH}_3$	140.00	59.34	45.16	90.12	59.48
SnH_8	72.00	70.13	76.62	78.08	85.44
${ m SnH}_4$	22.00	46.77	17.72	31.03	51.84
${ m SnH}_4$	62.00	53.48	26.61	39.98	60.09
${ m SnH}_4$	95.00	67.43	72.92	50.46	73.81
SnH_{12}	93.00	84.99	89.44	97.49	106.12
SnH_{14}	97.00	131.72	102.66	124.96	162.58
$PbH_4(H_2)2$	107.00	55.20	35.90	49.31	66.89
PH_4	1.90	26.55	9.74	18.11	32.89
PH_2	29.50	94.95	36.60	33.49	79.88
AsH	21.20	47.34	12.84	22.75	37.62
AsH_8	151.40	132.09	161.71	118.12	151.41
$\rm SbH$	14.60	34.35	13.74	20.26	28.11
		8			

SbH_4	102.20	68.23	89.83	46.37	72.50
BiH_2	39.00	48.65	38.14	20.79	45.46
BiH_3	65.00	67.45	61.37	51.61	70.30
SbH_3	68.00	68.71	69.33	43.28	68.87
BiH	30.00	36.66	30.92	35.25	32.15
BiH_2	65.00	49.09	60.98	23.25	46.69
BiH_4	93.00	63.53	85.99	41.89	67.12
BiH_6	113.00	78.39	104.69	83.50	90.14
$(H_2S)2H_2$	204.00	175.00	201.05	128.81	177.80
H_3S	225.00	181.77	222.75	130.26	185.01
H_4S_3	2.10	51.00	13.24	23.96	44.96
H_5S_2	79.00	58.23	73.86	40.13	62.05
HSe_2	5.00	27.09	9.89	5.56	19.21
HSe	42.00	53.75	26.25	31.97	40.70
H_3Se	116.00	135.64	119.19	129.81	140.22
HSe	23.00	54.28	23.41	21.11	41.60
H_4Te	104.00	84.72	102.92	53.13	84.16
H_5Te_2	58.00	67.16	60.54	41.60	65.00
HTe	28.00	40.61	19.62	20.88	32.23
H_4Te	76.00	77.02	80.23	53.19	79.02
PoH_4	53.60	52.98	46.00	37.46	57.05
PoH	0.65	-9.46	5.75	17.23	0.00
PoH_2	0.00	42.58	3.21	18.28	39.75
PoH_6	4.68	81.85	14.01	58.62	88.22
HBr	51.00	39.22	49.92	16.75	32.48
HCl	40.00	53.37	51.68	18.87	41.94
HBr	27.00	35.28	24.38	13.93	28.62
HCl	20.00	36.26	18.56	12.83	29.19
H_2I	8.00	7.25	9.14	5.28	11.63
$ m H_4I$	12.50	52.35	25.24	37.86	57.30
H_2I	5.30	-9.46	8.43	0.45	0.00
H_2I	33.00	35.58	27.00	17.58	34.30
MgH_2	23.00	63.73	34.44	78.07	63.31
MgH_4	37.00	76.66	38.72	49.93	90.67
MgH_{12}	60.00	137.99	62.30	130.06	175.92
PH_2	95.00	78.35	84.15	70.98	77.68
Η	318.00	282.60	257.96	442.30	367.81
Η	109.00	227.84	108.06	256.53	298.84
$\rm LiScH_{10}$	52.00	65.19	72.11	50.09	69.41
$\rm Li_2ScH_{20}$	242.00	120.13	230.93	98.06	144.94
$\rm Li_2ScH_{16}$	262.00	203.80	212.05	205.23	231.32
$\rm Li_2ScH_{16}$	281.00	204.05	212.05	205.59	231.72
$\rm Li_2ScH_{17}$	94.00	177.00	90.29	155.68	198.82
$\rm Li_2LaH_{17}$	118.00	160.36	114.38	158.02	184.51

Li_2YH_{16}	251.00	198.25	239.15	203.78	229.76
Li_2YH_{17}	64.00	188.43	68.55	179.57	221.29
$CaYH_{20}$	250.00	200.09	229.74	252.49	243.36
Ca_2YH_{18}	217.00	196.80	230.89	219.67	229.30
Ca_3YH_{24}	225.00	201.11	221.84	226.59	236.53
CaY_3H_{24}	252.00	167.62	248.25	191.32	187.32
CaScH_2	31.00	2.99	2.63	8.34	5.94
$CaScH_4$	2.00	14.38	26.13	27.91	16.64
$CaScH_6$	57.00	94.54	75.24	144.70	104.21
CaScH_8	212.00	116.69	201.36	91.26	128.89
$CaScH_{12}$	175.00	159.67	203.13	168.88	174.85
$BeLaH_8$	191.00	83.08	111.63	140.65	97.45
BeYH_8	249.00	29.38	242.54	143.70	41.20
$BeCeH_8$	201.00	87.94	197.01	153.86	105.23
BeThH_7	70.00	69.53	78.12	118.03	78.22

Figure 2: Reference T_c values with respect to the networking value, ϕ , of the binary and ternary systems in the database.

Figure 3: Reference T_c values with respect to the molecularity index, ϕ^* , of the binary and ternary systems in the database.

Figure 4: Reference T_c values with respect to H_{DOS} of the binary and ternary systems in the database.

Figure 5: Reference T_c values with respect to the hydrogen fraction, H_f , of the binary and ternary systems in the database.

References

- Sun, Y.; Wang, Y.; Zhong, X.; Xie, Y.; Liu, H. High-temperature superconducting ternary Li-R-H superhydrides at high pressures (R=Sc, Y, La). *Phys. Rev. B* 2022, 24519.
- [2] Zhao, W.; Duan, D.; Yao, X.; Huo, Z.; Jiang, Q.; Cui, T. Pressureinduced high-T_c superconductivity in the ternary clathrate system Y-Ca-H. Phys. Rev. B 2022, 14521.
- [3] Shi, L.-T.; Wei, Y.-K.; Liang, A.-K.; Turnbull, R.; Cheng, C.; Chen, X.-R.; Ji, G.-F. Prediction of pressure-induced superconductivity in the novel ternary system $ScCaH_{2n}$ (n = 1-6). J. Mater. Chem. C 2021, 7284–7288.
- [4] Zhang, Z.; Cui, T.; Hutcheon, M. J.; Shipley, A. M.; Song, H.; Du, M.; Kresin, V. Z.; Duan, D.; Pickard, C. J.; Yao, Y. Design Principles for High-Temperature Superconductors with a Hydrogen-Based Alloy Backbone at Moderate Pressure. *Phys. Rev. Lett.* **2022**, 47001.
- [5] Sun, Y.; Sun, S.; Zhong, X.; Liu, H. Prediction for high superconducting ternary hydrides below megabar pressure. J. Phys. Condens. Matter 2022, 505404.