Bridging Polymer Architecture, Printability, and Properties by Digital Light Processing of Block Copolycarbonates

Krista Schoonover^{1†}, Chia-Min Hsieh^{1†}, Mani Sengoden¹, Naushad Ahmed¹, Manivannan S. Kalairaj², Taylor H. Ware^{2,3}, Donald J. Darensbourg^{1*}, Emily B. Pentzer^{1,3*}, Peiran Wei^{4*}

¹Department of Chemistry, Texas A&M University, 3255 TAMU; College Station, TX 77843 (USA)

²Department of Biomedical Engineering, Texas A&M University, 3003 TAMU; College Station, TX 77843 (USA)

³Department of Materials Science and Engineering, Texas A&M University, 3003 TAMU; College Station, TX 77843 (USA)

⁴Soft Matter Facility Texas A&M University College Station, TX 77843, USA

[†]These two authors contributed equally.

*Corresponding authors.

Table of Contents

- 1. Synthesis and Characterization of Polymers Figures S1–S8. ¹H NMR spectra of the polymers Figure S9. FTIR spectra of the polymers Figure S10. SEC traces of the polymers **Table S1.** Polymer composition, highlighting degree of polymerization Figure S11. DOSY ¹H NMR spectra of the polymers Figure S12. TGA profiles of the polymers Figure S13. MDSC profiles of the polymers, showing reversing and nonreversing heat-flow Equation S1. Simplified law of mixing Equation S2. Fox's Equation for composition-determined thermal transitions Table S2. Thermodynamic properties based on law of mixing 2. Resin Formulation and 3D Printing 2.1.3D Printing of bulk structures Figure S14. Curing control experiment images Figure S15. DLP 3D printer setup Equation S3. Calculation of resin stoichiometry
 Table S3. Resin components
 Table S4. Printing parameters Figure S16. FTIR of printed objects Figure S17. Schematic of uncrosslinked and uncrosslinkable polymer Figure S18. Plot of % shrinkage vs mol% PVCHC
 Table S5. Crosslinked polymer thermal properties and swelling ratio
 Figures S19–S23. SEM images of surface and cross-section for all prints Figure S24. Optical microscopy images of the surface of X-BCP_{49%H}
 - 2.2. Thermal and mechanical properties of printed structures
 Table S6. Comparison of thermal properties between pristine polymer and print
 Figure S25. TGA profiles comparing pristine polymer to print
 Figure S26. MDSC profiles comparing pristine polymer to print
 Figure S27. Tensile stress-strain test result (DMA)
 Figure S28. Plot of maximum tensile strength vs mol% PVCHC
 Figure S29. Compression load-time result (nanoindentation)
 Table S7. Table of all nanoindentation results
- 3. Hydrolysis of printed object
 - **Figure S30.** Cartoon of hydrolysis experiments **Table S8.** Hydrolysis results for X-BCP_{49%A} in various conditions **Table S9.** Hydrolysis results for all prints in 0.5 N NaOH + THF at 50 °C **Figure S31.** Hydrolysis ¹H NMR for X-Stat_{50%A} and X-BCP_{49%A}.
- 4. <u>References</u>

1. Synthesis and Characterization of Polymers

Figure S1. ¹H NMR spectrum of P_{0%A} in CDCl₃.

Figure S2. ¹H NMR spectrum of P_{100%A} in CDCl₃.

Figure S3. ¹H NMR spectrum of BCP_{25%A} in CDCl₃.

Figure S4. ¹H NMR spectrum of $BCP_{49\%A}$ in $CDCI_3$.

Figure S5. ¹H NMR spectrum of BCP_{72%A} in CDCl₃.

Figure S6. ¹H NMR spectrum of Stat_{24%A} in CDCl₃.

Figure S7. ¹H NMR spectrum of Stat_{50%A} in CDCl₃.

Figure S8. ¹H NMR spectrum of Stat_{71%A} in CDCl₃.

Figure S9. FTIR for each polymer. All spectra are normalized to the signal at 1720 cm⁻¹ corresponding to the C=O stretch.

Figure S10. SEC traces for each polymer, normalized to intensity of 1.

Polymer	^a PC:VCHC	[⊳] M _n (kDa)	b₽	^с N _{PO}	°N _{∨сно}	۵N
P _{0%A}	1.00 : 0	26.7	1.11	262	0	262
P _{100%A}	0.00 : 1	23.0	1.37	0	137	137
BCP _{25%A}	3.05 : 1	23.2	1.18	147	49	196
BCP _{49%A}	1.03 : 1	23.7	1.14	90	86	176
BCP _{72%A}	0.39 : 1	21.8	1.12	41	105	146
Stat _{24%A}	3.223: 1	20.2	1.14	130	41	171
Stat _{50%A}	1.01 : 1	20.5	1.12	76	76	152
Stat _{71%A}	0.40 : 1	24.6	1.20	48	117	165

Table S1. Polymer composition of BCP, Stat, and Homo aPCs used for DLP.

[a] Determined by ¹H NMR integration. [b] Determined by SEC in THF against PS standards. [c] Number of repeat units of each monomer based on M_n and molar ratio.

Figure S13. Modulated DSC for each polymer and the blend, separated into normalized nonreversing (dashed) and reversing (solid) heat flow. Y-axis tick marks are 0.02 W/g for all plots.

Equation S1. Linear combination of decomposition temperatures T_{d1} and T_{d2} (K) of homopolymers based on the weight fractions w_1 and w_2 of each component in the copolymer:

$$T_{d,mix} = w_1 T_{d1} + w_2 T_{d2}$$
(S1)

Equation S2. Fox equation¹ to describe composition dependence of thermal properties $T_{g,mix}$ (K) of copolymers, where w_1 and w_2 are the weight fractions of each component:

$$\frac{1}{T_{g,mix}} = \frac{w_1}{T_{g1}} + \frac{w_2}{T_{g2}}$$
(S2)

	Polymer	WA	WB	T _d (K)	T _{d,mix} (K)	T _g (K)	T _{g,mix} (K)
-	BCP _{25%A}	0.35	0.65	551	546	307	330
	BCP _{49%A}	0.61	0.39	528, 582	563	311, 354	349
_	BCP _{72%A}	0.81	0.19	573	576	339	364
	Stat _{24%A}	0.34	0.66	520	545	312	329
	Stat _{50%A}	0.62	0.38	559	564	336	349
_	Stat _{71%A}	0.80	0.20	556	575	352	364

 Table S2. Comparison of experimental and calculated thermodynamic properties using

 Equations S1 and S2.

2. Resin Formulation and 3D Printing

2.1. 3D Printing of bulk structures

Figure S14. Curing control experiment. The same resin formulation was used for two samples, except no thiol was added to one. Both were exposed to the DLP printer light for 15 minutes.

Figure S15. DLP 3D printer used in this work.

Equation S3. Calculation of resin stoichiometry of crosslinker relative to polymer:

$$mol\% PVCHC \times M_{n}$$
moles of alkene =
$$\frac{((mass_{PPC \ repeat \ unit} \times \ mol\% \ PPC) + (mass_{PVCHC \ repeat \ unit} \times \ mol\% \ PVCHC))}{mol\% \ PVCHC \times M_{n}}$$
=
$$\frac{((102\frac{g}{mol} \times \ mol\% \ PPC) + (168\frac{g}{mol} \times \ mol\% \ PVCHC))}{((102\frac{g}{mol} \times \ mol\% \ PPC) + (168\frac{g}{mol} \times \ mol\% \ PVCHC))}$$

Resin components	Specific Name	Amount
Solvent	Propylene Carbonate Ethyl Acetate	3:1 v/v
Polymer	Polycarbonate (BCP, Stat, Blend)	450 mg/mL
Crosslinking Agent	1,6-hexanedithiol	relative to mol% PVCHC
Photoinitiator	BAPO	0.5 wt%
Radical Inhibitor	1,2,3-trihydroxybenzene	0.1 wt%
Dye	Sudan I	0.02 wt%

Table S3. Resin components

 Table S4.
 Printing parameters

51		
	Parameter	Value
	Curing time	60 s
	Layer height	100 µm
	Light Wavelength	405 nm

Figure S16. FTIR comparing pristine polymer (light trace) to printed polymer (dark trace).

Figure S18. Plot of % shrinkage vs mol% PVCHC, as calculated by dividing the dry length by the original print dimensions (30 mm).

Table S5. Crosslink	ed polym	er thermal	properties	and swelling ratio.
---------------------	----------	------------	------------	---------------------

Polymer	T _g (°C)	T _d (°C)	^a Mass Loss (%)	^b Swelling Ratio (%)
X-P _{100%A}		332, 369	43	140 ± 3
X-BCP _{25%A}	-7.9	301, 360*	81	411 ± 18
X-BCP	2.5	310, 365	53	157 ± 6
X-BCP		323, 369	39	108 ± 11
X-Stat	5.2	313, 360*	85	326 ± 10

X-Stat _{50%A}	9.0	324, 384	49	80 ± 7
X-Stat 71%A		334, 384	51	97 ± 6

[a] Total % mass loss in each step. [b] n=3

igure S19. SEM images of surface and cross-section of X-BCP $_{\rm 25\% A}.$

igure S20. SEM images of surface and cross-section of X-BCP_{49%A}.

gure S21. SEM images of surface and cross-section of X-BCP $_{72\%A}$.

igure S22. SEM images of surface and cross-section of X-Stat $_{50\% A}$.

Figure S23. SEM images of surface and cross-section of X-Blend_{50%A}.

Figure S24. Optical microscopy images of the surface of X-BCP_{49%H} showing ~50 μ m resolution.

2.2. Thermal and mechanical properties of printed structures

Table S6. Comparison of thermal properties of pristine polymers and their corresponding prints.

	Т _g (°С)		T _d (°C)		Enthalpy Recovery (J/g)	
Polymer	Pristine	Print	Pristine	Print	Pristine	Print
P _{0%A}	34	N/A	250	N/A	2.26	N/A
^a P _{100%A}	108		315	332, 369	1.92	
Blend _{50%A}	36, 113	28.1	237, 303	336, 364	1.03, 0.85	0.19,
BCP _{25%A}	34	-7.9	278	301, 360*	1.33	1.29
BCP _{49%A}	38, 81	2.5	255, 309	310, 365	0.63	0.58
BCP _{72%A}	66		300	323, 369		
Stat _{24%A}	39	5.2	247	313, 365*	1.92	1.73
Stat _{50%A}	63	9.0	286	324, 384	1.37	1.46
Stat _{71%A}	79		283	334, 384	2.06	

[a] "Print" is P_{100%A} that is cured as a bulk liquid, not printed

Figure S25. TGA weight loss profiles comparing pristine polymer (lighter color trace) to printed polymer (darker color trace), with first derivative of weight loss (dashed lines of corresponding colors). X-BCP_{49%A} indicates T_d 's as the peaks of the deconvoluted derivative trace. X-Blend_{50%A} reports T_d as a single peak in the middle of the decomposition step.

Figure S26. Modulated DSC comparing pristine polymer (light trace) to printed polymer (dark trace), separated into normalized non-reversing (dashed) and reversing (solid) heat flow. Y-axis tick marks are 0.02 W/g for all plots.

Figure S27. Full-scale plots of tensile test for (A) X-BCP_{25%A}, (B) X-BCP_{49%A}, (C) X-BCP_{72%A}, and (D) X-Stat_{50%A}. Shaded area shows deviation of three samples.

Figure S28. Tensile strength of printed resins based on mol% PVCHC.

Figure S29. Full-scale plots of load vs time by nanoindentation for (A) X-BCP_{25%A}, (B) X-BCP_{49%A}, (C) X-BCP_{72%A}, (D) X-Stat_{24%A}, and (E) X-Stat_{50%A}. Shaded area shows standard deviation of three sample.

Table S7. Complete	nanoindentation	results
--------------------	-----------------	---------

Polymer	Maximum Load (mN)	Final Load after Hold (mN)	Total Relaxation (mN)	Percent Relaxation (%)	Hardness (GPa)	^d Young's Modulus (MPa)
X-BCP	1.47 ± 0.05	0.61 ± 0.03	0.85 ± 0.06	58 ± 3	0.117 ± 0.004	6.6 ± 0.4
X-BCP	7.17 ± 0.18	3.95 ± 0.70	3.22 ± 0.72	45 ± 8	1.0 ± 0.3	31 ± 2
X-BCP	12.3 ± 0.8	10.4 ± 0.8	2.0 ± 1.1	16 ± 2	2.5 ± 0.3	51 ± 3
X-Stat	0.329 ± 0.027	0.085 ± 0.014	0.244 ± 0.030	74 ± 11	0.018 ± 0.003	1.7 ± 0.2
X-Stat	0.136 ± 0.013	0.079 ± 0.007	0.057 ± 0.015	42 ± 6	0.015 ± 0.001	0.58 ± 0.04

3. Hydrolysis of printed objects

Figure S30. Cartoons demonstrating hydrolysis conditions employed in this study.

Table	S 8	Hydroly	/sis re	sults ir	various	conditions	for	X-BCP	
Iable	50.	riyulul	/ 313 1 0	suits ii	i vanous	CONTRICTIONS	IUI		Α.

		407071	
Condition	Temperature	Time in Solution	% Remaining
Condition	(°C)	(days)	(n=3)
pH = 7.4	37	60	97.2 ± 0.5
0.5 N H ₂ SO ₄	50	7	92.6 ± 1.7
0.5 N NaOH	50	7	17.0 ± 6.2
0.5 N NaOH + THF (1/1 v/v)	50	7	0.0 ± 0.0

Table S9. Hydrolysis r	esults for	prints in	0.5 N NaOH +	• THF (1	1/1 v/v) at 50	°C (n=3).
	-					

Sample	Time till Hydrolyzed (days)			
X-BCP	1			
X-BCP _{49%A}	2			
X-BCP	4			
X-Stat	3			

Figure S31. Hydrolysis ¹H NMR for X-Stat_{50%A} and X-BCP_{49%A} in 0.1 N NaOH + THF (1:1 v/v) at 50 °C.

4. References:

(1) Fox, T. G. Influence of Diluent and of Copolymer Composition on the Glass Temperature of a Polymer System. *Bull. Am. Phys. Soc.* **1956**, *1*.