Supporting Information

Photoinduced electron-transfer strategy for switchable fluorescence and phosphorescence in lanthanide-based

coordination polymers

Yu-Juan Ma,[†]^a Fei Xu,[†]^a Xin-Ye Ren,^a Fan-Yao Chen,^a Jie Pan,^a Jin-Hua Li,^{*a} Song-De Han,^{*a} and Guo-Ming Wang^{*a}

^a College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, Shandong 266071, P. R. China

E-mail: gmwang_pub@163.com; hansongde@qdu.edu.cn; jinhuali1978@163.com

[†] These authors contributed equally to this work.

Contents

Figure S1. The asymmetric unit of La.

Figure S2. Differential absorption spectra before and after irradiation for 30 min.

Figure S3. The PXRD spectra of La and Laa.

Figure S4. The IR spectra of La, Laa (a), La_{0.9}Eu_{0.1} and La_{0.9}Tb_{0.1} (b).

Figure S5. TGA plots of a series of CPs.

Figure S6. The corresponding CIE chromaticity coordinates of La excited by 280 nm UV light.

Figure S7. The excitation wavelength-dependent PL spectra of La and Laa.

Figure S8. The decay curves monitored in different emission peaks; (b) The corresponding CIE coordinates for the irradiation time-dependent fluorescent spectra excited by 370 nm UV light.

Figure S9. The photographs for La and Laa taken under a 365 nm UV lamp on and off.

Figure S10. Delayed PL spectra and photographs of TIBP after turning off the 365 nm UV lamp.

Figure S11. The temperature-dependent delayed emission spectra of La excited by 365 nm UV light.

Figure S12. Calculated molecular orbitals.

Figure S13. The PXRD spectra of Eu³⁺/Tb³⁺-doped CPs.

Figure S14. Photographs of different amounts of Eu³⁺-doped CPs (λ_{ex} =365 nm).

Figure S15. Apparent concentration and elemental mapping images of La0.9Eu0.1.

Figure S16. The irradiation time-dependent prompt PL spectra of **La**_{0.9}**Eu**_{0.1} excited by 280 nm (a) and 370 nm UV light (b), respectively.

Figure S17. EPR spectra of La_{0.9}Eu_{0.1} before and after irradiation.

Figure S18. The corresponding CIE chromaticity coordinates of La_{0.9}Eu_{0.1} at different delay time.

Figure S19. Photographs of different amounts of Tb³⁺-doped CPs (λ_{ex} =365 nm).

Figure S20. Apparent concentration, SEM and elemental mapping images of La0.9 Tb0.1.

Figure S21. The irradiation time-dependent prompt PL spectra of **La_{0.9}Tb_{0.1}** excited by 280 nm (a) and 370 nm UV light (b), respectively.

Figure S22. The irradiation time-dependent delayed PL spectra of **La_{0.9}Tb_{0.1}** excited by 365 nm UV light.

Figure S23. EPR spectra of La_{0.9}Tb_{0.1} before and after irradiation.

Figure S24. Long-lived decay curves for La_{0.9}Tb_{0.1}.

Figure S25. Face index of La crystal.

Figure S26. The letters used in Morse code application.

Table S1. Crystal data for La and Laa at 293 K.

Table S2. SHAPE analysis of the metal ions in La.

Table S3. Selected bond lengths (Å) and angles (°) for La at 293 K.

Table S4. Selected bond lengths (Å) and angles (°) for Laa at 293 K.

Table S5. The fitting parameters for fluorescence lifetimes.

Table S6. The fitting parameters for phosphorescence lifetimes.

Table S7. Chemical compositions of oxide products investigated by XRF technique.

Table S8. Surface area percentage of important facets for La by BFDH method.

Figure S1. The asymmetric unit of La.

Figure S2. Differential absorption spectra before and after irradiation for 30 min.

Figure S3. The PXRD spectra of La and Laa.

Figure S4. The IR spectra of La, Laa (a), La_{0.9}Eu_{0.1} and La_{0.9}Tb_{0.1} (b).

Figure S5. TGA plots of a series of CPs.

Figure S6. The corresponding CIE chromaticity coordinates of La excited by 280 nm UV light.

Figure S7. The excitation wavelength-dependent PL spectra of La and Laa.

Figure S8. (a) The decay curves monitored in different emission peaks; (b) The corresponding CIE coordinates for the irradiation time-dependent fluorescent spectra excited by 370 nm UV light.

Figure S9. The photographs for La and Laa taken under a 365 nm UV lamp on and off.

Figure S10. Delayed PL spectra and photographs of TIBP after turning off the 365 nm UV lamp.

Figure S11. The temperature-dependent delayed emission spectra of La excited by 365 nm UV light.

Figure S12. Calculated molecular orbitals.

Figure S13. The PXRD spectra of Eu³⁺/Tb³⁺-doped CPs.

Figure S14. Photographs of different amounts of Eu³⁺-doped CPs (λ_{ex} =365 nm).

Figure S15. Apparent concentration and elemental mapping images of La_{0.9}Eu_{0.1}.

Figure S16. The irradiation time-dependent prompt PL spectra of **La**_{0.9}**Eu**_{0.1} excited by 280 nm (a) and 370 nm UV light (b), respectively.

Figure 17. EPR spectra of La_{0.9}Eu_{0.1} before and after irradiation.

Figure 18. The corresponding CIE chromaticity coordinates of La_{0.9}Eu_{0.1} at different delay time.

Figure S19. Photographs of different amounts of Tb³⁺-doped CPs (λ_{ex} =365 nm).

Figure S20. Apparent concentration, SEM and elemental mapping images of La0.9Tb0.1

Figure S21. The irradiation time-dependent prompt PL spectra of La_{0.9}Tb_{0.1} excited by 280 nm (a) and 370 nm UV light (b), respectively.

Figure S22. The irradiation time-dependent delayed PL spectra of **La**_{0.9}**Tb**_{0.1} excited by 365 nm UV light.

Figure S23. EPR spectra of La_{0.9}Tb_{0.1} before and after irradiation.

Figure S24. Long-lived decay curves for La_{0.9}Tb_{0.1}.

Figure S25. Face index of La crystal.

Figure S26. The letters used in Morse code application.

	La	Laa
Formula	$C_{34}H_{57}N_8O_{38}P_{10}La_2Li$	$C_{34}H_{57}N_8O_{38}P_{10}La_2Li$
F _w (g mol ^{−1})	1780.28	1780.28
λ/Å	0.71073	0.71073
Crystal system	Triclinic	Triclinic
Space group	Pī	Pī
a/Å	12.2018(2)	12.1985(2)
b/Å	16.4476(2)	16.4328(3)
<i>c</i> /Å	16.9585(3)	16.9643(4)
α (°)	68.4420(10)	68.463(2)
в/°	69.632(2)	69.625(2)
γ (°)	79.1400(10)	79.152(2)
V∕ų	2960.26(9)	2958.14(12)
Ζ	2	2
D _c /g cm ⁻³	1.991	1.992
µ/mm⁻¹	1.805	1.806
F (000)	1764	1764
Total/unique reflns	42386/10440	44686/10438
R _{int}	0.0547	0.0453
Final R indices	$R_1 = 0.0297$	$R_1 = 0.0334$
[/>2 σ(/)]	wR ₂ = 0.0757	wR ₂ = 0.0838
wR_2 (all data)	$R_1 = 0.0356$ w $R_2 = 0.0785$	$R_1 = 0.0387$ w $R_2 = 0.0859$
GOF on F ²	1.053	1.118

Table S1.	Crystal	data	for L	a and	Laa at	293 K.

Table S2. SHAPE	analysis of the	metal ions in La .
-----------------	-----------------	---------------------------

_

Metal	Label	Shape	Symmetry	Distortion
La1	OP-8	Octagon	D _{8h}	28.099
La1	HPY-8	Heptagonal pyramid	C _{7v}	23.356
La1	HBPY-8	Hexagonal bipyramid	D _{6h}	16.063
La1	CU-8	Cube	O_h	11.376
La1	SAPR-8	Square antiprism	D _{4d}	1.822
La1	TDD-8	Triangular dodecahedron	D _{2d}	1.543
La1	JGBF-8	Johnson gyrobifastigium J26	D _{2d}	12.413
La1	JETBPY-8	Johnson elongated triangular bipyramid J14	D _{3h}	25.674
La1	JBTPR-8	Biaugmented trigonal prism J50	$C_{2\nu}$	2.088
La1	BTPR-8	Biaugmented trigonal prism	C_{2v}	1.325

La1	JSD-8	Snub diphenoid J84	D _{2d}	3.299
La1	TT-8	Triakis tetrahedron	T _d	11.967
La1	ETBPY-8	Elongated trigonal bipyramid	D _{3h}	21.464
La2	HP-7	Heptagon	D _{7h}	30.307
La2	HPY-7	Hexagonal pyramid	C_{6v}	19.300
La2	PBPY-7	Pentagonal bipyramid	D _{5h}	6.446
La2	COC-7	Capped octahedron	C_{3v}	1.963
La2	CTPR-7	Capped trigonal prism	C_{2v}	0.776
La2	JPBPY-7	Johnson pentagonal bipyramid J13	D _{5h}	9.828
La2	JETPY-7	Johnson elongated triangular pyramid J7	<i>C</i> _{3v}	17.900
			_	
Li1	TP-3	Trigonal	D _{3h}	3.708
Li1	vT-3	Vacant tetrahedron	C_{3v}	2.570
Li1	fvOC-3	fac-Trivacant octahedron	C_{3v}	6.844

Table S3. Selected bond lengths (Å) and angles (°) for La at 293 K.

	•		
La(1)-O(1)	2.556(2)	O(1)-P(1)	1.507(2)
La(1)-O(14)	2.533(2)	O(10)-P(3)	1.511(2)
La(1)-O(15)	2.479(2)	O(12)-P(4)	1.509(2)
La(1)-O(20)	2.625(3)	O(13)-P(4)	1.580(3)
La(1)-O(3)#1	2.414(2)	O(14)-P(4)	1.504(2)
La(1)-O(5)#1	2.561(2)	O(15)-P(6)	1.518(2)
La(1)-O(7)	2.563(2)	O(16)-P(6)	1.569(2)
La(1)-O(8)	2.534(2)	O(17)-P(6)	1.498(2)
La(2)-O(10)	2.425(2)	O(19)-P(5)	1.565(3)
La(2)-O(12)	2.561(3)	O(2)-P(1)	1.556(3)
La(2)-O(17)	2.445(2)	O(20)-P(5)	1.511(2)
La(2)-O(22)	2.475(2)	O(21)-P(5)	1.501(3)
La(2)-O(24)#2	2.481(2)	O(22)-P(7)	1.509(3)
La(2)-O(26)#2	2.569(2)	O(23)-P(7)	1.566(3)
La(2)-O(28)	2.476(3)	O(24)-P(7)	1.497(3)
O(24)-La(2)#2	2.481(2)	O(26)-P(8)	1.510(3)
Li(1)-O(20)	1.964(7)	O(27)-P(8)	1.575(3)
Li(1)-O(30)	1.918(7)	O(28)-P(8)	1.490(3)
Li(1)-O(7)	1.959(7)	O(3)-P(1)	1.505(2)
Li(1)-O(8)	2.082(7)	O(30)-P(9)	1.532(3)
O(26)-La(2)#2	2.569(2)	O(31)-P(9)	1.521(3)

O(3)-La(1)#1	2.414(2)	O(32)-P(9)	1.526(3)
O(5)-La(1)#1	2.561(2)	O(34)-P(10)	1.493(3)
C(3)-P(3)	1.826(4)	O(35)-P(10)	1.601(3)
C(3)-P(4)	1.844(4)	O(36)-P(10)	1.500(3)
C(5)-P(5)	1.843(4)	O(5)-P(2)	1.526(2)
C(5)-P(6)	1.853(4)	O(6)-P(2)	1.557(2)
C(7)-P(7)	1.845(4)	O(7)-P(2)	1.507(2)
C(7)-P(8)	1.832(4)	O(8)-P(3)	1.513(2)
C(9)-P(10)	1.849(3)	O(9)-P(3)	1.559(3)
C(9)-P(9)	1.850(4)		

O(1)-La(1)-O(20)	130.23(8)	O(24)#2-La(2)-O(12)	72.25(8)
O(1)-La(1)-O(5)#1	93.96(8)	O(24)#2-La(2)-O(26)#2	74.35(8)
O(1)-La(1)-O(7)	72.02(8)	O(24)-P(7)-C(7)	106.57(15)
O(1)-P(1)-C(1)	109.71(15)	O(24)-P(7)-O(22)	115.54(16)
O(1)-P(1)-O(2)	110.08(14)	O(24)-P(7)-O(23)	112.78(14)
O(10)-La(2)-O(12)	75.97(8)	O(26)-P(8)-C(7)	106.70(15)
O(10)-La(2)-O(17)	102.23(8)	O(26)-P(8)-O(27)	110.22(15)
O(10)-La(2)-O(22)	132.39(9)	O(27)-P(8)-C(7)	108.48(16)
O(10)-La(2)-O(24)#2	90.36(8)	O(28)-La(2)-O(12)	140.45(8)
O(10)-La(2)-O(26)#2	150.92(9)	O(28)-La(2)-O(24)#2	77.02(9)
O(10)-La(2)-O(28)	79.99(8)	O(28)-La(2)-O(26)#2	118.90(8)
O(10)-P(3)-C(3)	107.60(15)	O(28)-P(8)-C(7)	109.59(15)
O(10)-P(3)-O(8)	114.16(15)	O(28)-P(8)-O(26)	116.45(16)
O(10)-P(3)-O(9)	109.03(15)	O(28)-P(8)-O(27)	105.21(14)
O(12)-La(2)-O(26)#2	75.84(8)	O(3)#1-La(1)-O(1)	116.58(8)
O(12)-P(4)-C(3)	109.37(15)	O(3)#1-La(1)-O(14)	146.93(8)
O(12)-P(4)-O(13)	110.95(14)	O(3)#1-La(1)-O(15)	89.14(8)
O(13)-P(4)-C(3)	106.24(16)	O(3)#1-La(1)-O(20)	76.80(8)
O(14)-La(1)-O(1)	72.70(7)	O(3)#1-La(1)-O(5)#1	71.60(8)
O(14)-La(1)-O(20)	123.24(8)	O(3)#1-La(1)-O(7)	75.46(7)
O(14)-La(1)-O(5)#1	76.25(7)	O(3)#1-La(1)-O(8)	136.62(8)
O(14)-La(1)-O(7)	134.98(7)	O(3)-P(1)-C(1)	107.01(14)
O(14)-La(1)-O(8)	74.93(8)	O(3)-P(1)-O(1)	110.13(14)
O(14)-P(4)-C(3)	109.51(14)	O(3)-P(1)-O(2)	112.18(15)

O(14)-P(4)-O(12)	115.06(14)	O(30)-Li(1)-O(20)	133.4(4)
O(14)-P(4)-O(13)	105.30(14)	O(30)-Li(1)-O(7)	118.4(3)
O(15)-La(1)-O(1)	148.32(8)	O(30)-Li(1)-O(8)	122.9(3)
O(15)-La(1)-O(14)	75.71(8)	O(30)-P(9)-C(9)	108.60(16)
O(15)-La(1)-O(20)	70.93(8)	O(31)-P(9)-C(9)	106.03(16)
O(15)-La(1)-O(5)#1	76.12(8)	O(31)-P(9)-O(30)	109.99(14)
O(15)-La(1)-O(7)	135.99(8)	O(31)-P(9)-O(32)	112.98(16)
O(15)-La(1)-O(8)	95.49(8)	O(32)-P(9)-C(9)	107.33(15)
O(15)-P(6)-C(5)	108.84(15)	O(32)-P(9)-O(30)	111.63(15)
O(15)-P(6)-O(16)	110.74(14)	O(34)-P(10)-C(9)	111.17(17)
O(16)-P(6)-C(5)	109.04(16)	O(34)-P(10)-O(35)	109.52(18)
O(17)-La(2)-O(12)	76.81(8)	O(34)-P(10)-O(36)	116.15(17)
O(17)-La(2)-O(22)	79.21(8)	O(35)-P(10)-C(9)	101.42(16)
O(17)-La(2)-O(24)#2	142.53(9)	O(36)-P(10)-C(9)	109.70(16)
O(17)-La(2)-O(26)#2	78.06(8)	O(36)-P(10)-O(35)	107.81(17)
O(17)-La(2)-O(28)	139.55(9)	O(5)#1-La(1)-O(20)	134.11(7)
O(17)-P(6)-C(5)	106.75(16)	O(5)#1-La(1)-O(7)	133.03(7)
O(17)-P(6)-O(15)	114.72(15)	O(5)-P(2)-C(1)	107.47(15)
O(17)-P(6)-O(16)	106.57(14)	O(5)-P(2)-O(6)	106.21(13)
O(19)-P(5)-C(5)	106.36(16)	O(6)-P(2)-C(1)	108.04(15)
O(2)-P(1)-C(1)	107.62(15)	O(7)-La(1)-O(20)	65.52(7)
O(20)-Li(1)-O(8)	85.6(3)	O(7)-Li(1)-O(20)	91.4(3)
O(20)-P(5)-C(5)	105.61(15)	O(7)-Li(1)-O(8)	94.9(3)
O(20)-P(5)-O(19)	108.72(15)	O(7)-P(2)-C(1)	107.15(14)
O(21)-P(5)-C(5)	107.75(15)	O(7)-P(2)-O(5)	115.46(13)
O(21)-P(5)-O(19)	110.03(15)	O(7)-P(2)-O(6)	112.22(14)
O(21)-P(5)-O(20)	117.73(15)	O(8)-La(1)-O(1)	78.70(8)
O(22)-La(2)-O(12)	146.50(8)	O(8)-La(1)-O(20)	64.37(8)
O(22)-La(2)-O(24)#2	117.48(8)	O(8)-La(1)-O(5)#1	151.15(7)
O(22)-La(2)-O(26)#2	76.57(9)	O(8)-La(1)-O(7)	71.49(7)
O(22)-La(2)-O(28)	70.89(8)	O(8)-P(3)-C(3)	109.21(16)
O(22)-P(7)-C(7)	107.66(15)	O(8)-P(3)-O(9)	110.20(14)
O(22)-P(7)-O(23)	107.21(15)	O(9)-P(3)-C(3)	106.32(16)
O(23)-P(7)-C(7)	106.63(16)		

Symmetry code: #1: -x+2, -y+1, -z; #2: -x+1, -y, -z+1; #3: -x+1, -y+2, -z; #4: -x, -y+1, -z+1.

Table S4. Selected bond lengths (Å) and angles (°) for Laa at 293 K.

La(1)-O(1)	2.560(3)	O(10)-P(4)	1.503(3)
La(1)-O(13)	2.524(3)	O(12)-P(3)	1.576(3)
La(1)-O(15)	2.623(3)	O(13)-P(3)	1.511(3)
La(1)-O(19)	2.477(3)	O(14)-P(3)	1.507(3)
La(1)-O(3)#3	2.412(3)	O(15)-P(6)	1.510(3)
La(1)-O(6)#3	2.560(3)	O(16)-P(6)	1.562(3)
La(1)-O(7)	2.562(3)	O(17)-P(6)	1.504(3)
La(1)-O(8)	2.534(3)	O(19)-P(5)	1.512(3)
La(2)-O(10)	2.427(3)	O(2)-P(1)	1.553(3)
La(2)-O(14)	2.559(3)	O(20)-P(5)	1.563(3)
La(2)-O(21)	2.440(3)	O(21)-P(5)	1.504(3)
La(2)-O(22)	2.473(3)	O(22)-P(7)	1.492(3)
La(2)-O(24)#4	2.560(3)	O(23)-P(7)	1.572(3)
La(2)-O(26)#4	2.476(3)	O(24)-P(7)	1.510(3)
La(2)-O(28)	2.473(3)	O(26)-P(8)	1.498(3)
Li(1)-O(15)	1.960(8)	O(27)-P(8)	1.565(3)
Li(1)-O(34)	1.914(8)	O(28)-P(8)	1.510(3)
Li(1)-O(7)	1.957(8)	O(29)-P(10)	1.600(4)
Li(1)-O(8)	2.085(8)	O(3)-P(1)	1.511(3)
C(1)-P(1)	1.835(4)	O(30)-P(10)	1.493(3)
C(1)-P(2)	1.843(4)	O(31)-P(10)	1.501(3)
C(3)-P(3)	1.841(4)	O(33)-P(9)	1.528(3)
C(3)-P(4)	1.832(4)	O(34)-P(9)	1.527(3)
C(5)-P(5)	1.859(4)	O(35)-P(9)	1.522(3)
C(5)-P(6)	1.841(4)	O(5)-P(2)	1.555(3)
C(7)-P(7)	1.834(4)	O(6)-P(2)	1.525(3)
C(7)-P(8)	1.844(4)	O(7)-P(2)	1.505(3)
C(9)-P(10)	1.845(5)	O(8)-P(4)	1.514(3)
C(9)-P(9)	1.853(4)	O(9)-P(4)	1.560(3)
O(1)-P(1)	1.510(3)		
O(1)-La(1)-O(15)	130.14(9)	O(23)-P(7)-C(7)	108.56(19)
O(1)-La(1)-O(6)#3	94.06(9)	O(24)-P(7)-C(7)	106.74(18)
O(1)-La(1)-O(7)	72.10(9)	O(24)-P(7)-O(23)	110.73(19)

O(1)-P(1)-C(1)	109.70(18)	O(26)#4-La(2)-O(14)	72.35(10)
O(1)-P(1)-O(3)	110.10(17)	O(26)#4-La(2)-O(24)#4	74.30(9)
O(10)-La(2)-O(14)	75.86(9)	O(26)-P(8)-C(7)	106.56(18)
O(10)-La(2)-O(21)	102.13(10)	O(26)-P(8)-O(27)	112.87(18)
O(10)-La(2)-O(22)	80.03(10)	O(26)-P(8)-O(28)	115.78(19)
O(10)-La(2)-O(24)#4	151.16(10)	O(27)-P(8)-C(7)	106.46(18)
O(10)-La(2)-O(26)#4	90.55(10)	O(28)-La(2)-O(14)	146.57(10)
O(10)-La(2)-O(28)	132.24(10)	O(28)-La(2)-O(22)	70.96(9)
O(10)-P(4)-C(3)	107.85(18)	O(28)-La(2)-O(24)#4	76.47(10)
O(10)-P(4)-O(8)	114.42(18)	O(28)-La(2)-O(26)#4	117.58(10)
O(10)-P(4)-O(9)	109.18(18)	O(28)-P(8)-C(7)	107.48(18)
O(12)-P(3)-C(3)	105.93(18)	O(28)-P(8)-O(27)	107.20(17)
O(13)-La(1)-O(1)	72.56(9)	O(29)-P(10)-C(9)	101.3(2)
O(13)-La(1)-O(15)	123.24(9)	O(3)#3-La(1)-O(1)	116.57(10)
O(13)-La(1)-O(6)#3	76.25(9)	O(3)#3-La(1)-O(13)	147.06(9)
O(13)-La(1)-O(7)	134.96(9)	O(3)#3-La(1)-O(15)	76.89(10)
O(13)-La(1)-O(8)	75.01(9)	O(3)#3-La(1)-O(19)	89.35(10)
O(13)-P(3)-C(3)	109.32(18)	O(3)#3-La(1)-O(6)#3	71.67(9)
O(13)-P(3)-O(12)	105.58(16)	O(3)#3-La(1)-O(7)	75.30(9)
O(14)-La(2)-O(24)#4	76.19(10)	O(3)#3-La(1)-O(8)	136.51(10)
O(14)-P(3)-C(3)	109.74(18)	O(3)-P(1)-C(1)	107.15(17)
O(14)-P(3)-O(12)	110.78(16)	O(3)-P(1)-O(2)	112.20(17)
O(14)-P(3)-O(13)	115.05(17)	O(30)-P(10)-C(9)	111.3(2)
O(15)-Li(1)-O(8)	85.5(3)	O(30)-P(10)-O(29)	109.8(2)
O(15)-P(6)-C(5)	105.47(18)	O(30)-P(10)-O(31)	116.1(2)
O(15)-P(6)-O(16)	108.74(18)	O(31)-P(10)-C(9)	109.6(2)
O(16)-P(6)-C(5)	106.17(19)	O(31)-P(10)-O(29)	107.5(2)
O(17)-P(6)-C(5)	107.83(19)	O(33)-P(9)-C(9)	107.32(19)
O(17)-P(6)-O(15)	117.62(17)	O(34)-Li(1)-O(15)	133.8(4)
O(17)-P(6)-O(16)	110.33(18)	O(34)-Li(1)-O(7)	118.5(4)
O(19)-La(1)-O(1)	148.23(9)	O(34)-Li(1)-O(8)	122.5(4)
O(19)-La(1)-O(13)	75.76(9)	O(34)-P(9)-C(9)	108.71(18)
O(19)-La(1)-O(15)	70.89(9)	O(34)-P(9)-O(33)	111.67(19)
O(19)-La(1)-O(6)#3	76.16(9)	O(35)-P(9)-C(9)	106.0(2)
O(19)-La(1)-O(7)	135.91(9)	O(35)-P(9)-O(33)	113.05(19)

O(19)-La(1)-O(8)	95.56(10)	O(35)-P(9)-O(34)	109.82(18)
O(19)-P(5)-C(5)	108.69(18)	O(5)-P(2)-C(1)	108.14(18)
O(19)-P(5)-O(20)	110.86(17)	O(6)#3-La(1)-O(15)	134.14(9)
O(2)-P(1)-C(1)	107.81(18)	O(6)#3-La(1)-O(7)	133.07(9)
O(20)-P(5)-C(5)	108.72(19)	O(6)-P(2)-C(1)	107.40(17)
O(21)-La(2)-O(14)	76.85(10)	O(6)-P(2)-O(5)	106.22(16)
O(21)-La(2)-O(22)	139.49(10)	O(7)-La(1)-O(15)	65.47(9)
O(21)-La(2)-O(24)#4	78.16(10)	O(7)-Li(1)-O(15)	91.4(3)
O(21)-La(2)-O(26)#4	142.57(10)	O(7)-Li(1)-O(8)	94.6(3)
O(21)-La(2)-O(28)	79.03(10)	O(7)-P(2)-C(1)	106.97(17)
O(21)-P(5)-C(5)	106.54(19)	O(7)-P(2)-O(5)	112.24(16)
O(21)-P(5)-O(19)	114.98(17)	O(7)-P(2)-O(6)	115.58(16)
O(21)-P(5)-O(20)	106.83(18)	O(8)-La(1)-O(1)	78.49(9)
O(22)-La(2)-O(14)	140.42(9)	O(8)-La(1)-O(15)	64.32(9)
O(22)-La(2)-O(24)#4	118.72(10)	O(8)-La(1)-O(6)#3	151.24(9)
O(22)-La(2)-O(26)#4	77.03(10)	O(8)-La(1)-O(7)	71.35(9)
O(22)-P(7)-C(7)	109.31(18)	O(8)-P(4)-C(3)	109.03(18)
O(22)-P(7)-O(23)	105.22(17)	O(8)-P(4)-O(9)	109.85(17)
O(22)-P(7)-O(24)	116.12(18)	O(9)-P(4)-C(3)	106.17(19)

Symmetry code: #1: -x, -y+1, -z+1; #2: -x+1, -y+2, -z; #3: -x, -y+1, -z+2; #4: -x+1, -y+2, -z+1.

	1 (19.00)) (mm)	- (A (0/)	- (A (0/)	(?
Compound	$\Lambda_{\rm ex}$ (nm)	λ_{em} (nm)	τ_1 (ns)	A ₁ (%)	τ_2 (ns)	A ₂ (%)	<τ> (ns)	χ-
La.	295	334	0.6736	50.78	2.301	49.22	1.47	1.0628
La	375	434	1.519	42.72	5.835	57.28	3.99	1.0933
Laa	295	334	0.52	60.21	1.624	39.79	0.96	1.0851
		422	3.707	100			3.707	1.0908
	375	434	2.794	100			2.794	1.2363
		582	10.54	100			10.54	1.3097
		632	10.88	100			10.88	1.2100

 Table S5.
 The fitting parameters for fluorescence lifetimes.

Compound	$\lambda_{ m ex}$ (nm)	$\lambda_{ m em}$ (nm)	τ ₁ (ms)	A ₁ (%)	τ ₂ (ms)	A ₂ (%)	<τ> (ms)	χ ²
La	365	545	45.10	18.23	298.5	81.77	252.31	1.377
La _{0.9} Eu _{0.1}	365	545	67.90	12.70	329.7	87.30	296.45	1.309
		592	9.705	45.63	69.05	54.37	41.97	1.288
		616	14.75	31.48	80.87	68.52	60.06	1.304
		700	12.59	35.63	71.39	64.37	50.44	1.291
La _{0.9} Tb _{0.1}	365	490	8.635	29.04	81.01	70.96	59.28	1.300
		545	42.17	38.15	197.6	61.85	138.30	1.257
		585	6.501	39.35	73.52	60.65	47.15	1.297
		620	8.675	24.81	79.95	75.19	62.27	1.300

Table S6. The fitting parameters for phosphorescence lifetimes.

Table S7. Chemical compositions of oxide products investigated by XRF technique.

Compound	La_2O_3	Eu_2O_3	Tb ₄ O ₇	Content (%)
La _{0.9} Eu _{0.1}	16.237	1.644		8.57
$La_{0.9}Tb_{0.1}$	13.109		3.668	19.61

Table S8. Surface area percentage of important facets for La by BFDH method

hkl	Multiplicity	dhkl	Distance	Total facet	% Total facet area
				area	
{0 1 0}	2	15.26012853	6.55302476	290.0209611	27.26522235
{0 0 1}	2	15.01937939	6.65806472	263.8286319	24.80284972
{0 1 1}	2	13.05639103	7.65908433	142.7032668	13.41570721
$\{1 \ 0 \ 0\}$	2	11.41130963	8.76323606	171.9284164	16.16319898
$\{1 0 1\}$	2	10.81457506	9.24678034	96.14342937	9.03856042
$\{1\ 1\ 1\}$	2	10.43352688	9.58448674	86.88873337	8.16851522
$\{1\ 1\ 0\}$	2	9.45907731	10.57185566	12.18946177	1.14594609