# **Supporting Information**

# Making the Inverted Keggin Ion Lacunary

Lu-Lu Liu,<sup>[a]</sup> Zi-Yu Xu,<sup>[a]</sup> Peng Yi,<sup>[a]</sup> Chao-Qin Chen,<sup>[a]</sup> Zhong-Ling Lang,<sup>[b]\*</sup> and Peng Yang<sup>[a]\*</sup>

- a College of Chemistry and Chemical Engineering Advanced Catalytic Engineering Research Center of the Ministry of Education Hunan University, Changsha 410082, P. R. China
- key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education
   Faculty of Chemistry
   Northeast Normal University, Changchun 130024, P. R. China

### **Corresponding Author**

\*E-mail: pengyang216@hnu.edu.cn (P.Y.)

\*E-mail: langzl554@nenu.edu.cn (Z.-L.L.)

# Table of Contents (31 pages)

| 1. | Experimental Details           | S2  |
|----|--------------------------------|-----|
| 2. | Synthesis of Compounds         | S4  |
| 3. | Characterizations on Compounds | S5  |
| 4. | References                     | S31 |

# 1. Experimental Details

### 1.1 Materials

Unless otherwise indicated, all chemicals and reagents were purchased from commercial suppliers and used without further purification.

#### **1.2 Physical measurements**

**FT-IR.** The Fourier transform infrared (FT-IR) spectra were recorded on KBr disk using a Shimadzu IRSpirit-T spectrometer between 400 and 4000 cm<sup>-1</sup>.

**Elemental Analyses.** CHN microanalyses were performed on a Perkin-Elmer 240C elemental analyzer, and ICP-OES analyses were performed on a Perkin-Elmer Optima 8300 optical emission spectrometer.

**NMR.** The <sup>1</sup>H and <sup>13</sup>C nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Avance III 400 MHz instrument at room temperature, using 5-mm tubes for <sup>1</sup>H and <sup>13</sup>C with respective resonance frequencies of 399.78 MHz (<sup>1</sup>H) and 100.71 MHz (<sup>13</sup>C).

**TGA.** Thermogravimetric analyses (TGA) were carried out on a TA Instruments SDT Q600 thermobalance with a 100 mL min<sup>-1</sup> flow of nitrogen; the temperature was ramped from 25 to 800 °C at a rate of 5 °C min<sup>-1</sup>.

**ESI-MS.** The electrospray-ionization mass spectrometry (ESI-MS) measurements were made in the negative ion mode on an Agilent 6520 Q-TOF LC/MS mass spectrometer coupled to an Agilent 1200 LC system, and all the MS data were processed by the MassHunter Workstation software. Sample solutions were ca. 10<sup>-5</sup> M in water and were transferred to the electrospray source by direct injection.

**Powder XRD.** Powder X-ray diffraction (Powder XRD) patterns were obtained using a Bruker D8 ADVANCE diffractometer with Cu *Ka* radiation ( $\lambda = 1.54056$  Å).

**XPS.** For X-ray photoelectron spectroscopy (XPS), a 100-nm-thick Ag film was deposited by sputtercoating on a silicon substrate. The samples were then dispersed in acetone and drop-casted on the Ag coated silicon substrate. After sample preparation, they were introduced into the XPS vacuum chamber equipped with a photoelectron spectrometer consisting of a hemispherical analyzer (Spec Phoebos 100) and a Mg/Al X-ray source (Spec XR-50). For excitation, the Mg K $\alpha$  (E = 1253.6 eV) anode was used. The shift in the binding energy due to surface charging was corrected with respect to the C 1s peak. The data evaluation was done by CASAXPS software.

EDX. Energy dispersive X-Ray (EDX) spectra were acquired on a JEM-2100Plus instrument.

**UV-vis Absorption.** The ultraviolet-visible (UV-vis) absorption spectra were measured at room temperature using a Shimadzu UV-1900i spectrophotometer.

**SEM.** Scanning electron microscopy (SEM) images were acquired on a Hitachi Regulus 8100 instrument.

**Nitrogen Adsorption-Desorption Isotherm**. Nitrogen physisorption isotherms were measured at 77 K using BSD-660M A6B6M apparatus to determine the Brunauer–Emmett–Teller (BET) surface area.

The samples were pre-degassed at 343 K under vacuum for 14 h.

X-ray Crystallography. Single crystals of the three compounds were mounted in a Hampton cryoloop with light oil to prevent efflorescence. The data collections for these compounds were performed at 150 K on a Bruker D8 Quest single-crystal diffractometer equipped with Mo Ka radiation ( $\lambda$  = 0.71073 Å). All structures were solved with the ShelXT structure solution program using Intrinsic Phasing<sup>S1</sup> and refined with the ShelXL refinement package using Least Squares minimization<sup>S2</sup> operated in the OLEX2 interface.<sup>S3</sup> All non-hydrogen atoms were refined anisotropically. The hydrogen atoms of the organic groups were introduced in geometrically calculated positions. It was not possible to locate all counter cations by X-ray diffraction, probably due to crystallographic disorder, which is a common problem in polyoxometalate crystallography. Thus, the SQUEEZE program<sup>S4</sup> or the Olex2 solvent mask function were further used to remove the contributions of weak reflections from the whole data. The newly generated hkl data were further used to refine the final crystal data. Therefore, the exact number of cations and solvent molecules was determined by elemental analysis and thermogravimetric diagrams. The resulting formula units were further used throughout the paper. In the Supporting Information, the crystal data and structure refinement for the three compounds is summarized in Table S7. CCDC-2367552 (SeAs<sub>3</sub>Mo<sub>10</sub>), CCDC-2367554 (Se<sub>2</sub>As<sub>2</sub>Mo<sub>10</sub>), and CCDC- 2367553 (Se<sub>2</sub>As<sub>6</sub>Mo<sub>20</sub>Ce<sub>2</sub>) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data request/cif.

**Basic Procedure of the Condensation-Cyclization Reaction.** Hydrazine (0.2 mmol), 1,3-diketone (0.2 mmol), catalyst (1.5 mol%), and DMC (dimethyl carbonate, 0.5 mL) were added to a 5-mL reaction vial with a Teflon screw cap. Then the reaction was carried out at varying temperature and time. After the reaction was complete, the mixture was purified by column chromatography on silica gel (200-300 mesh) using petroleum ether (60-90 °C) and ethyl acetate to obtain the desired products.

**Basic Procedure of the Acetalization Reaction.** 2-aminobenzamide (0.2 mmol), benzaldehyde (0.2 mmol), catalyst (1.5 mol%), and acetonitrile (1.0 mL) were added to a 5-mL reaction vial with a Teflon screw cap. Then the reaction was carried out at 80 °C and different reaction time. After the reaction was complete, the mixture was purified by column chromatography on silica gel (200-300 mesh) using petroleum ether (60-90 °C) and ethyl acetate to obtain the desired products.

**DFT computational details:** To qualitatively compare the surface electronic character between the plenary  $As_4Mo_{12}$  as well as lacunary  $SeAs_3Mo_{10}$  and  $Se_2As_2Mo_{10}$  molecules, the electrostatic potential distribution was computed for the three polyanions with density functional theory method. All calculations were performed through the facilities provided by the Gaussian09 package.<sup>S5</sup> Geometry optimizations were carried out with B3LYP functional, and the LANL2DZ basis set was employed for the Mo atom, whereas the 6–31G (d, p) basis set was used for the H, C, N, Se, As, and O atoms.<sup>S6</sup> The continuum PCM implicit solvation model was used to simulate the effect of the aqueous solution.<sup>S7</sup>

## 2. Synthesis of Compounds

#### Synthesis of (NH<sub>4</sub>)<sub>3</sub>[(SeO<sub>3</sub>)(*p*-H<sub>3</sub>NC<sub>6</sub>H<sub>4</sub>AsO<sub>3</sub>)<sub>3</sub>Mo<sub>10</sub>O<sub>29</sub>]·15H<sub>2</sub>O (SeAs<sub>3</sub>Mo<sub>10</sub>)

 $(NH_4)_6Mo_7O_{24}\cdot 4H_2O$  (2.001 g, 1.619 mmol), SeO<sub>2</sub> (0.201 g, 1.811 mmol), *p*-aminophenylarsonic acid (0.199 g, 0.917 mmol), and glycine (0.200 g, 5.328 mmol) were dissolved in 15 mL of distilled water for 20 min upon stirring. Then, the pH of the above solution was adjusted to 0.9 using HCl (6 M). The mixture was stirred and heated at 90 °C for 2 h, cooled to room temperature and filtered. Slow evaporation of the filtrate in an open vial resulted in block-shaped, dark yellow crystals after two weeks, which were then collected by filtration and air dried. Yield: 0.255 g (33% based on *p*-aminophenylarsonic acid). Elemental analysis (%): Calcd: C 8.57, N 3.33, Se 3.13, As 8.91, Mo 38.03; Found: C 8.14, N 3.51, Se 3.28, As 8.44, Mo 38.56. IR (2% KBr pellet, v/cm<sup>-1</sup>): 3426 (w), 1632 (m), 1419 (m), 1396 (m), 1096 (s), 913 (s), 855 (s), 670 (s), 549 (s).

#### Synthesis of (NH<sub>4</sub>)<sub>4</sub>[(SeO<sub>3</sub>)<sub>2</sub>(p-H<sub>3</sub>NC<sub>6</sub>H<sub>4</sub>AsO<sub>3</sub>)<sub>2</sub>Mo<sub>10</sub>O<sub>29</sub>]·11H<sub>2</sub>O (Se<sub>2</sub>As<sub>2</sub>Mo<sub>10</sub>)

(NH<sub>4</sub>)<sub>6</sub>Mo<sub>7</sub>O<sub>24</sub>·4H<sub>2</sub>O (2.001 g, 1.619 mmol), SeO<sub>2</sub> (0.300 g, 2.750 mmol), and *p*-aminophenylarsonic acid (0.199 g, 0.917 mmol) were dissolved in 15 mL of distilled water for 20 min upon stirring. Then, the pH was adjusted to 1.1 using HCl (6 M). The mixture was stirred and heated at 90 °C for 30 min, cooled to room temperature and filtered. Slow evaporation of the filtrate in an open vial resulted in rod-shaped, colorless crystals after one week, which were then collected by filtration and air dried. Yield: 0.305 g (28% based on *p*-aminophenylarsonic acid). Elemental analysis (%): Calcd: C 6.06, N 3.53, Se 6.64, As 6.30, Mo 40.32; Found: C 5.73, N 3.23, Se 6.36, As 6.44, Mo 39.56. IR (2% KBr pellet, v/cm<sup>-1</sup>): 3430 (w), 3150 (w), 1732 (m), 1625 (m), 1504 (m), 1405 (m), 1133 (m), 1073 (m), 914 (s), 853 (s), 650 (s), 569 (s).

#### Synthesis of [{Ce(H<sub>2</sub>O)<sub>6</sub>(SeO<sub>3</sub>)(p-H<sub>3</sub>NC<sub>6</sub>H<sub>4</sub>AsO<sub>3</sub>)<sub>3</sub>Mo<sub>10</sub>O<sub>29</sub>}<sub>2</sub>]·35H<sub>2</sub>O (Se<sub>2</sub>As<sub>6</sub>Mo<sub>20</sub>Ce<sub>2</sub>)

**Precursor Approach:** SeAs<sub>3</sub>Mo<sub>10</sub> (0.252 g, 0.100 mmol) and Ce(NO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O (0.201 g, 0.463 mmol) were dissolved in 15 mL of distilled water for 20 min upon stirring. Then, the pH of the above solution was adjusted to 1.2 using HCl (6 M). The mixture was stirred and heated at 90 °C for 2 h, cooled to room temperature and filtered. Slow evaporation of the filtrate in an open vial resulted in block-shaped, yellow crystals after two weeks, which were then collected by filtration and air dried. Yield: 0.083 g (15% based on SeAs<sub>3</sub>Mo<sub>10</sub>). Elemental analysis (%): Calcd: C 7.83, N 1.52, Se 2.86, As 8.14, Ce, 5.07, Mo 34.74; Found: C 8.02, N 1.78, Se 2.69, As 8.24, Ce, 4.47, Mo 35.32. IR (2% KBr pellet, v/cm<sup>-1</sup>): 3438 (w), 3134 (w), 2808 (w), 1629 (m), 1544 (m), 1414 (m), 946 (s), 876 (s), 702 (s), 668 (s).

In situ Approach:  $(NH_4)_6Mo_7O_{24}\cdot 4H_2O$  (2.001 g, 1.619 mmol), SeO<sub>2</sub> (0.201 g, 1.811 mmol), *p*-aminophenylarsonic acid (0.199 g, 0.917 mmol), and Ce(NO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O (0.300 g, 0.691 mmol) were dissolved in 15 mL of distilled water for 20 min upon stirring. Then, the pH of the above solution was adjusted to 1.2 using HCl (6 M). The mixture was stirred and heated at 90 °C for 2 h, cooled to room temperature and filtered. Slow evaporation of the filtrate in an open vial resulted in block-shaped, yellow crystals after two weeks, which were then collected by filtration and air dried. Yield: 0.405 g (24% based on *p*-aminophenylarsonic acid).

## 3. Characterizations on Compounds



**Fig. S1.** Structural representation of the expected three terminal metal–oxygen bonds in a *mer* fashion. The terminal oxygen atoms are marked in green color.



Fig. S2. XPS analysis for Mo<sup>VI</sup> in SeAs<sub>3</sub>Mo<sub>10</sub>.



Fig. S3. XPS analysis for  $Mo^{VI}$  in  $Se_2As_2Mo_{10}$ .



Fig. S4. UV-vis spectra of the aqueous solution containing  $SeAs_3Mo_{10}$  (a) and  $Se_2As_2Mo_{10}$  (b) at different time intervals.



Fig. S5. (a) The filtration test of  $SeAs_3Mo_{10}$  as heterogeneous catalyst. (b) The filtration test of  $Se_2As_6Mo_{20}Ce_2$  as heterogeneous catalyst.



Fig. S6. SEM images and average size distribution of  $SeAs_3Mo_{10}$  (a),  $Se_2As_2Mo_{10}$  (b), and  $Se_2As_6Mo_{20}Ce_2$  (c).



**Fig. S7.** N<sub>2</sub> adsorption (orange) and desorption (purple) curves of  $SeAs_3Mo_{10}$  (a),  $Se_2As_2Mo_{10}$  (b), and  $Se_2As_6Mo_{20}Ce_2$  (c) at 77 K.



**Fig. S8.** FT-IR spectra of **SeAs**<sub>3</sub>**Mo**<sub>10</sub> (a), **Se**<sub>2</sub>**As**<sub>2</sub>**Mo**<sub>10</sub> (b) and **Se**<sub>2</sub>**As**<sub>6</sub>**Mo**<sub>20</sub>**Ce**<sub>2</sub> (c) before and after catalysis.



Fig. S9. <sup>1</sup>H NMR (a) and <sup>13</sup>C NMR (b) spectra of 3,5-dimethyl-1-tosyl-1H-pyrazole (3a).



Fig. S10. <sup>1</sup>H NMR (a) and <sup>13</sup>C NMR (b) spectra of 3,4,5-trimethyl-1-tosyl-1H-pyrazole (3b).



Fig. S11. <sup>1</sup>H NMR (a) and <sup>13</sup>C NMR (b) spectra of 4-chloro-3,5-dimethyl-1-tosyl-1H-pyrazole (3c).



**Fig. S12.** <sup>1</sup>H NMR (a) and <sup>13</sup>C NMR (b) spectra of 3,5-dimethyl-1-(phenylsulfonyl)-1H-pyrazole (**3d**).



**Fig. S13.** <sup>1</sup>H NMR (a) and <sup>13</sup>C NMR (b) spectra of 3,4,5-trimethyl-1-(phenylsulfonyl)-1H-pyrazole (**3e**).



**Fig. S14.** <sup>1</sup>H NMR (a) and <sup>13</sup>C NMR (b) spectra of 4-chloro-3,5-dimethyl-1-(phenylsulfonyl)-1H-pyrazole (**3f**).



**Fig. S15.** <sup>1</sup>H NMR (a) and <sup>13</sup>C NMR (b) spectra of (3,5-dimethyl-1*H*-pyrazol-1-yl)(phenyl)methanone (**3g**).

![](_page_16_Figure_0.jpeg)

**Fig. S16.** <sup>1</sup>H NMR (a) and <sup>13</sup>C NMR (b) spectra of phenyl(3,4,5-trimethyl-1H-pyrazol-1-yl) methanone (**3h**).

![](_page_17_Figure_0.jpeg)

**Fig. S17.** <sup>1</sup>H NMR (a) and <sup>13</sup>C NMR (b) spectra of (4-chloro-3,5-dimethyl-1H-pyrazol-1-yl)(phenyl)methanone (**3i**).

![](_page_18_Figure_0.jpeg)

**S18.** <sup>1</sup>H NMR (a) and <sup>13</sup>C NMR (b) spectra of 3,5-dimethyl-1-phenyl-1H-pyrazole (**3j**).

![](_page_19_Figure_0.jpeg)

Fig. S19. <sup>1</sup>H NMR (a) and <sup>13</sup>C NMR (b) spectra of 3,4,5-trimethyl-1-phenyl-1H-pyrazole (3k).

![](_page_20_Figure_0.jpeg)

**Fig. S20.** <sup>1</sup>H NMR (a) and <sup>13</sup>C NMR (b) spectra of 4-chloro-3,5-dimethyl-1-phenyl-1H-pyrazole (**3I**).

![](_page_21_Figure_0.jpeg)

Fig. S21. <sup>1</sup>H NMR (a) and <sup>13</sup>C NMR (b) spectra of 2-Phenyl-2,3-dihydroquinazolin-4(1H)-one.

![](_page_22_Figure_0.jpeg)

Fig. S22. Thermogravimetric curve of Se<sub>2</sub>As<sub>6</sub>Mo<sub>20</sub>Ce<sub>2</sub>.

![](_page_22_Figure_2.jpeg)

Fig. S23. XPS analysis for  $Mo^{VI}$  in  $Se_2As_6Mo_{20}Ce_2$ .

![](_page_22_Figure_4.jpeg)

Fig. S24. Powder XRD patterns of  $SeAs_3Mo_{10}(a)$ ,  $Se_2As_2Mo_{10}(b)$  and  $Se_2As_6Mo_{20}Ce_2(c)$ .

| Мо   | BVS value | 0               | BVS value                        | 0    | BVS value |  |  |
|------|-----------|-----------------|----------------------------------|------|-----------|--|--|
| Mo1  | 5.761     | 07              | 1.967                            | 024  | 2.198     |  |  |
| Mo2  | 5.966     | 08              | 1.480                            | O25  | 1.803     |  |  |
| Mo3  | 5.760     | O9              | 2.570                            | O26  | 1.969     |  |  |
| Mo4  | 5.582     | O10             | 2.007                            | 027  | 2.362     |  |  |
| Mo5  | 6.104     | O11             | 2.008                            | O28  | 1.452     |  |  |
| Mo6  | 5.814     | O12             | 2.165                            | O29  | 1.618     |  |  |
| Mo7  | 5.721     | O13             | 1.852                            | O30  | 1.533     |  |  |
| Mo8  | 5.724     | O14             | 1.983                            | O31  | 2.176     |  |  |
| Mo9  | 5.722     | O15             | 1.618                            | O32  | 1.452     |  |  |
| Mo10 | 6.316     | O16             | 1.754                            | O33  | 2.317     |  |  |
| 0    | BVS value | O17             | 1.575                            | O34  | 1.533     |  |  |
| O1   | 2.243     | O18             | 1.492                            | O35  | 1.533     |  |  |
| O2   | 1.865     | O19             | 1.575                            | O36  | 1.708     |  |  |
| O3   | 2.044     | O20             | 2.015                            | O37  | 2.170     |  |  |
| O4   | 1.741     | O21             | 2.029                            | O38  | 1.533     |  |  |
| O5   | 2.438     | O22             | 1.694                            | O39  | 2.008     |  |  |
| O6   | 1.708     | O23             | 2.069                            | O40  | 2.102     |  |  |
|      |           |                 |                                  | O41  | 2.025     |  |  |
|      | 1         | Se <sub>2</sub> | As <sub>2</sub> Mo <sub>10</sub> |      |           |  |  |
| Мо   | BVS value | 0               | BVS value                        | 0    | BVS value |  |  |
| Mo12 | 6.082     | O89             | 1.662                            | O106 | 1.618     |  |  |
| Mo16 | 5.867     | O90             | 1.966                            | O107 | 1.803     |  |  |
| Mo24 | 5.862     | O91             | 1.708                            | O108 | 1.708     |  |  |
| Mo25 | 6.001     | O92             | 1.855                            | O109 | 1.533     |  |  |
| Mo26 | 6.230     | O93             | 1.618                            | O110 | 1.918     |  |  |
| Mo27 | 5.961     | O94             | 1.618                            | O111 | 1.950     |  |  |
| Mo28 | 6.326     | O95             | 2.158                            | O112 | 1.662     |  |  |
| Mo29 | 6.013     | O96             | 1.957                            | O113 | 1.841     |  |  |
| Mo30 | 6.008     | O97             | 1.921                            | O114 | 1.769     |  |  |
| Mo31 | 6.103     | O98             | 1.452                            | O115 | 1.662     |  |  |
| 0    | BVS value | O99             | 1.829                            | O116 | 2.066     |  |  |
| O42  | 2.022     | O100            | 1.533                            | O117 | 1.984     |  |  |
| O84  | 1.983     | O101            | 1.900                            | O118 | 1.810     |  |  |
| O85  | 1.662     | O102            | 1.662                            | O119 | 1.618     |  |  |
| O86  | 1.846     | O103            | 1.533                            | O120 | 2.104     |  |  |
| O87  | 1.575     | O104            | 1.769                            | O121 | 1.772     |  |  |
| O88  | 1.929     | O105            | 1.662                            | O122 | 1.925     |  |  |
|      |           |                 |                                  | O123 | 1.575     |  |  |

**Table S1** BVS values for different structural types of addenda and oxygen atoms in **SeAs**<sub>3</sub>**Mo**<sub>10</sub> and **Se**<sub>2</sub>**As**<sub>3</sub>**Mo**<sub>10</sub>

| SeAs <sub>3</sub> Mo <sub>10</sub>                        |                                                                                                                                                                                                      |  |  |  |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| mlz                                                       | Formula                                                                                                                                                                                              |  |  |  |
| 539.21                                                    | ${(NH_4)_3Mo_4O_{13}(NH_3C_6H_4AsO_3)(SeO_3)(H_2O)_5}^{2-}$                                                                                                                                          |  |  |  |
| 609.15                                                    | ${(NH_4)_5Mo_6O_{21}(NH_3C_6H_4AsO_3)}^{2-}$                                                                                                                                                         |  |  |  |
| 1272.51                                                   | {(NH <sub>4</sub> ) <sub>6</sub> Mo <sub>6</sub> O <sub>21</sub> (NH <sub>3</sub> C <sub>6</sub> H <sub>4</sub> AsO <sub>3</sub> )(H <sub>2</sub> O) <sub>2</sub> }⁻                                 |  |  |  |
| 1343.88 ${(NH_4)_6Mo_6O_{21}(NH_3C_6H_4AsO_3)(H_2O)_6}^-$ |                                                                                                                                                                                                      |  |  |  |
| Se <sub>2</sub> As <sub>2</sub> Mo <sub>10</sub>          |                                                                                                                                                                                                      |  |  |  |
| mlz                                                       | Formula                                                                                                                                                                                              |  |  |  |
| 475.19                                                    | {(NH <sub>4</sub> ) <sub>5</sub> Mo <sub>3</sub> O <sub>11</sub> (NH <sub>3</sub> C <sub>6</sub> H <sub>4</sub> AsO <sub>3</sub> )(SeO <sub>3</sub> )(H <sub>2</sub> O) <sub>3</sub> } <sup>2-</sup> |  |  |  |
| 539.73                                                    | $\{(NH_4)_2Mo_4O_{13}(SeO_3)_2(H_2O)_{11}\}^{2-1}$                                                                                                                                                   |  |  |  |
| 788.55                                                    | ${(NH_4)_4Mo_3O_{11}(NH_3C_6H_4AsO_3)(H_2O)_2}^-$                                                                                                                                                    |  |  |  |

Table S2 Assignments and m/z values for the main peaks observed in the ESI-MS spectra of

 $\ensuremath{\texttt{SeAs}_3\texttt{Mo}_{10}}\xspace$  and  $\ensuremath{\texttt{Se}_2\texttt{As}_2\texttt{Mo}_{10}}\xspace$ 

|       | $ \begin{array}{c} \mathbf{O} \\ \mathbf{S}^{-}\mathbf{N}\mathbf{H}\mathbf{N}\mathbf{H}_{2} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{P}^{-}\mathbf{P} \\ \mathbf{O} \\ \mathbf{P} \\ \mathbf{P} \\ \mathbf{O} \\ \mathbf{P} \\ \mathbf{P} \\ \mathbf{O} \\ \mathbf{P} \\ \mathbf{P} \\ \mathbf{P} \\ \mathbf{O} \\ \mathbf{P} \\ $ |            | Cat.       | O N-    | )<br>N                 |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|---------|------------------------|
|       | 1a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2a         |            | 3a      |                        |
| Entry | Catalyst<br>(1.5 mol%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Temp. (°C) | Time (min) | Solvent | Yield <sup>b</sup> (%) |
| 1     | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RT         | 10         | DMC     | 28                     |
| 2     | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RT         | 60         | DMC     | 55                     |
| 3     | SeAs <sub>3</sub> Mo <sub>10</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RT         | 30         | DMC     | 74                     |
| 4     | SeAs <sub>3</sub> Mo <sub>10</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RT         | 60         | DMC     | 93                     |
| 5     | SeAs <sub>3</sub> Mo <sub>10</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RT         | 90         | DMC     | 99                     |
| 6     | SeAs <sub>3</sub> Mo <sub>10</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RT         | 90         | DCE     | 99                     |
| 7     | SeAs <sub>3</sub> Mo <sub>10</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RT         | 90         | Ph-Cl   | 99                     |
| 8     | Se <sub>2</sub> As <sub>2</sub> Mo <sub>10</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RT         | 3          | DMC     | 81                     |
| 9     | Se <sub>2</sub> As <sub>2</sub> Mo <sub>10</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RT         | 5          | DMC     | 98                     |
| 10    | Se <sub>2</sub> As <sub>2</sub> Mo <sub>10</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RT         | 10         | DMC     | 99                     |
| 11    | Se <sub>2</sub> As <sub>2</sub> Mo <sub>10</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RT         | 10         | DCE     | 99                     |
| 12    | Se <sub>2</sub> As <sub>2</sub> Mo <sub>10</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RT         | 10         | Ph-Cl   | 99                     |
| 13    | Se <sub>2</sub> As <sub>6</sub> Mo <sub>20</sub> Ce <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RT         | 10         | DMC     | 68                     |
| 14    | Se <sub>2</sub> As <sub>6</sub> Mo <sub>20</sub> Ce <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RT         | 30         | DMC     | 97                     |
| 15    | Se <sub>2</sub> As <sub>6</sub> Mo <sub>20</sub> Ce <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RT         | 40         | DMC     | 99                     |
| 16    | Se <sub>2</sub> As <sub>6</sub> Mo <sub>20</sub> Ce <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RT         | 40         | DCE     | 99                     |
| 17    | Se <sub>2</sub> As <sub>6</sub> Mo <sub>20</sub> Ce <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RT         | 40         | Ph-Cl   | 99                     |
| 18    | As <sub>4</sub> Mo <sub>12</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RT         | 30         | DMC     | 66                     |
| 19    | As <sub>4</sub> Mo <sub>12</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RT         | 60         | DMC     | 75                     |
| 20    | As <sub>4</sub> Mo <sub>12</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RT         | 120        | DMC     | 99                     |
| 21    | As <sub>4</sub> Mo <sub>12</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RT         | 120        | DCE     | 99                     |
| 22    | As <sub>4</sub> Mo <sub>12</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RT         | 120        | Ph-Cl   | 99                     |

| Table S3 Condition optimization for the model reaction |
|--------------------------------------------------------|
|--------------------------------------------------------|

<sup>a</sup> Reaction conditions: *p*-toluenesulfonyl hydrazide **1a** (0.2 mmol), acetylacetone **2a** (0.2 mmol), solvent (0.5 mL). <sup>b</sup> The yields were determined by GC with biphenyl as the internal standard.

|       |                                                                                    |            | Cat.       | ************************************** | 2528030                |
|-------|------------------------------------------------------------------------------------|------------|------------|----------------------------------------|------------------------|
|       | 1a                                                                                 | 2a         |            | <b>3</b> a                             |                        |
| Entry | Catalyst                                                                           | Temp. (°C) | Time (min) | Solvent                                | Yield <sup>b</sup> (%) |
| 1     | SeAs <sub>3</sub> Mo <sub>10</sub>                                                 | RT         | 10         | DMC                                    | 61                     |
| 2     | Se <sub>2</sub> As <sub>2</sub> Mo <sub>10</sub>                                   | RT         | 10         | DMC                                    | 99                     |
| 3     | Se <sub>2</sub> As <sub>6</sub> Mo <sub>20</sub> Ce <sub>2</sub>                   | RT         | 10         | DMC                                    | 68                     |
| 4     | As <sub>4</sub> Mo <sub>12</sub>                                                   | RT         | 10         | DMC                                    | 56                     |
| 5     | (NH <sub>4</sub> ) <sub>6</sub> Mo <sub>7</sub> O <sub>24</sub> ·4H <sub>2</sub> O | RT         | 10         | DMC                                    | 47                     |
| 6     | $p-H_2NC_6H_4AsO_3H_2$                                                             | RT         | 10         | DMC                                    | 45                     |
| 7     | SeO <sub>2</sub>                                                                   | RT         | 10         | DMC                                    | 54                     |
| 8     | Mixture <sup>c</sup>                                                               | RT         | 10         | DMC                                    | 51                     |
| 9     | _                                                                                  | RT         | 10         | DMC                                    | 28                     |

# Table S4 Dehydration condensation of *p*-toluenesulfonyl hydrazide and acetylacetone by different catalysts<sup>a</sup>

<sup>*a*</sup> Reaction conditions: *p*-toluenesulfonyl hydrazide **1a** (0.2 mmol), acetylacetone **2a** (0.2 mmol), catalyst (1.5 mol%), and DMC (0.5 mL) at RT for 10 min. <sup>*b*</sup> Yield was determined by GC with biphenyl as the internal standard. <sup>*c*</sup> The composition of the mixture is (NH<sub>4</sub>)<sub>6</sub>Mo<sub>7</sub>O<sub>24</sub>·4H<sub>2</sub>O (1.5 mol%), *p*-H<sub>2</sub>NC<sub>6</sub>H<sub>4</sub>AsO<sub>3</sub>H<sub>2</sub> (1.5 mol%) and SeO<sub>2</sub> (1.5 mol%).

|                                                                                                                                                                                                                               |               | Catalyst Loading   | Yield |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------|-------|--|
| Catalyst                                                                                                                                                                                                                      | Conditions    | (mmol)             | (%)   |  |
| [NaCo <sub>2</sub> Mo <sub>2</sub> O <sub>7</sub> (OH) <sub>3</sub> ] <sub>n</sub> <sup>S8</sup>                                                                                                                              | 80 °C, 60 min | 2×10 <sup>-2</sup> | 98    |  |
| [Cu <sub>3</sub> (µ <sub>3</sub> -OH)(tba) <sub>3</sub> (Htba)(H <sub>2</sub> O) <sub>2</sub> (HPMo <sub>12</sub> O <sub>40</sub> )]·7H <sub>2</sub> O <sup>S9</sup>                                                          |               | 1:10-2             | 00    |  |
| (Htba = 3-(4H-1,2,4-triazol-4-yl)-benzoic acid )                                                                                                                                                                              | 80 °C, 90 min | 1×10-              | 99    |  |
| $(NH_4)_7[(SeO_3)_2Mo_{12}O_{36}(CH_3COO)_3]14H_2O^{S10}$                                                                                                                                                                     | RT, 60 min    | 3×10 <sup>-3</sup> | 99    |  |
| (NH <sub>4</sub> ) <sub>4</sub> [(SeO <sub>3</sub> ) <sub>1.3</sub> (HPO <sub>3</sub> ) <sub>0.7</sub> Mo <sub>12</sub> O <sub>36</sub> (NH <sub>3</sub> CH <sub>2</sub> COO) <sub>3</sub> ]10H <sub>2</sub> O <sup>S10</sup> | RT, 60 min    | 3×10 <sup>-3</sup> | 99    |  |
| $(NH_4)_4 [(SeO_3)_{1.4} (HPO_3)_{0.6} Mo_{12} O_{36} (L-NH_3 C_2 H_3 OHCOO)_3] 18 H_2 O^{S10}$                                                                                                                               | RT, 60 min    | 3×10 <sup>-3</sup> | 99    |  |
| Na <sub>3</sub> [H <sub>19</sub> (UO <sub>2</sub> ) <sub>2</sub> O(Se <sub>2</sub> W <sub>14</sub> O <sub>52</sub> ) <sub>2</sub> ]·41H <sub>2</sub> O <sup>S11</sup>                                                         | 80 °C, 60 min | 2×10 <sup>-3</sup> | 98    |  |
| $(C_2H_8N)_{12}Na_2[H_{10}\{Ce(H_2O)_5\}_2(Te_2W_{37}O_{132})]$ ·39H <sub>2</sub> O <sup>S12</sup>                                                                                                                            | 80 °C, 60 min | 1×10 <sup>-3</sup> | 99    |  |
| Na <sub>11</sub> H(H <sub>2</sub> O) <sub>31</sub> [Na(UO <sub>2</sub> )(A-PW <sub>9</sub> O <sub>34</sub> )] <sub>2</sub> ·7H <sub>2</sub> O <sup>S13</sup>                                                                  | 80 °C, 60 min | 1×10 <sup>-2</sup> | 99    |  |
| SeAs <sub>3</sub> Mo <sub>10</sub> (This Work)                                                                                                                                                                                | RT, 90 min    | 3×10 <sup>-3</sup> | 99    |  |
| Se <sub>2</sub> As <sub>2</sub> Mo <sub>10</sub> (This Work)                                                                                                                                                                  | RT, 10 min    | 3×10 <sup>-3</sup> | 99    |  |
| Se <sub>2</sub> As <sub>6</sub> Mo <sub>20</sub> Ce <sub>2</sub> (This Work)                                                                                                                                                  | RT, 40 min    | 3×10 <sup>-3</sup> | 99    |  |

**Table S5** Comparison of the catalytic efficiency of POM-based catalysts in the condensationcyclization reactions of *p*-toluenesulfonyl hydrazide and acetylacetone

Table S6 Acetalization of 2-aminobenzamide and benzaldehyde by different catalysts<sup>a</sup>

|       | $ \bigcirc_{NH_2}^{O} + \bigcirc_{H}^{O} - $                                                                                                                  | Cat.         | $\rightarrow$                 |         |                           |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------|---------|---------------------------|
| Entry | Catalyst                                                                                                                                                      | Conditions   | Catalyst<br>Loading<br>(mmol) | Solvent | Yield <sup>b</sup><br>(%) |
| 1     | —                                                                                                                                                             | 80 °C, 2 h   | _                             | CH₃CN   | 13                        |
| 2     | SeAs <sub>3</sub> Mo <sub>10</sub>                                                                                                                            | 80 °C, 2 h   | 3×10 <sup>-3</sup>            | CH₃CN   | 99                        |
| 3     | Se <sub>2</sub> As <sub>2</sub> Mo <sub>10</sub>                                                                                                              | 80 °C, 1 h   | 3×10 <sup>-3</sup>            | CH₃CN   | 99                        |
| 4     | Se <sub>2</sub> As <sub>6</sub> Mo <sub>20</sub> Ce <sub>2</sub>                                                                                              | 80 °C, 2 h   | 3×10 <sup>-3</sup>            | CH₃CN   | 99                        |
| 5     | As <sub>4</sub> Mo <sub>12</sub>                                                                                                                              | 80 °C, 2 h   | 3×10 <sup>-3</sup>            | CH₃CN   | 89                        |
| 6     | SRMIST-1 <sup>S14</sup>                                                                                                                                       | Reflux, 10 h | 2.5×10 <sup>-3</sup>          | EtOH    | 99                        |
| 7     | Na <sub>3.3</sub> H <sub>2.7</sub> (H <sub>2</sub> O) <sub>9</sub> [Ni <sub>0.58</sub> UMo <sub>12</sub> O <sub>42</sub> ]·4.5H <sub>2</sub> O <sup>S15</sup> | 80 °C, 9 h   | 6×10⁻³                        | CH₃CN   | 91                        |

<sup>*a*</sup> Reaction conditions: 2-aminobenzamide (0.2 mmol), benzaldehyde (0.2 mmol), catalyst (1.5 mol%), and acetonitrile (1.0 mL) at 80 °C and different reaction time. <sup>*b*</sup> Yield was determined by GC with biphenyl as the internal standard.

Table S7 Crystal data and structure refinement for the as-made compounds

| Compound                                               | SeAs₃Mo <sub>10</sub>                                                             | Se <sub>2</sub> As <sub>2</sub> Mo <sub>10</sub>                                                | Se <sub>2</sub> As <sub>6</sub> Mo <sub>20</sub> Ce <sub>2</sub> |
|--------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| Empirical formula                                      | SeAs <sub>3</sub> Mo <sub>10</sub> C <sub>18</sub> H <sub>63</sub> N <sub>6</sub> | Se <sub>2</sub> As <sub>2</sub> Mo <sub>10</sub> C <sub>12</sub> H <sub>52</sub> N <sub>6</sub> | $Ce_2Se_2As_6Mo_{20}C_{36}H_{136}N_6$                            |
|                                                        | O <sub>56</sub>                                                                   | O <sub>52</sub>                                                                                 | O <sub>129</sub>                                                 |
| Formula weight, g/mol                                  | 2522.82                                                                           | 2379.71                                                                                         | 5523.91                                                          |
| Crystal system                                         | Orthorhombic                                                                      | Triclinic                                                                                       | Triclinic                                                        |
| Space group                                            | Pbcn                                                                              | <i>P</i> -1                                                                                     | <i>P</i> -1                                                      |
| a, Å                                                   | 31.326(3)                                                                         | 13.930(3)                                                                                       | 12.1018(14)                                                      |
| <i>b</i> , Å                                           | 23.4652(19)                                                                       | 20.189(5)                                                                                       | 15.6636(19)                                                      |
| с, Å                                                   | 24.275(2)                                                                         | 24.369(6)                                                                                       | 22.209(3)                                                        |
| α, °                                                   | 90                                                                                | 91.991(7)                                                                                       | 99.665(4)                                                        |
| β, °                                                   | 90                                                                                | 99.609(8)                                                                                       | 94.683(4)                                                        |
| γ, °                                                   | 90                                                                                | 90.075(8)                                                                                       | 108.620(4)                                                       |
| Volume, Å <sup>3</sup>                                 | 17844(3)                                                                          | 6753(3)                                                                                         | 3891.5(8)                                                        |
| Z                                                      | 8                                                                                 | 2                                                                                               | 1                                                                |
| D <sub>calc</sub> , g/cm <sup>3</sup>                  | 1.637                                                                             | 2.021                                                                                           | 2.076                                                            |
| Absorption coefficient,<br>mm <sup>-1</sup>            | 2.931                                                                             | 3.550                                                                                           | 3.941                                                            |
| F(000)                                                 | 8248                                                                              | 3833                                                                                            | 2270                                                             |
| Theta range for data collection, °                     | 2.12 to 25.00                                                                     | 2.16 to 25.00                                                                                   | 2.40 to 28.38                                                    |
| Completeness to $\Theta_{max}$                         | 99.9 %                                                                            | 98.1 %                                                                                          | 99.9 %                                                           |
|                                                        | -37<=h<=36                                                                        | -16<=h<=16                                                                                      | -16<=h<=16                                                       |
| Index ranges                                           | -27<=k<=27                                                                        | -23<=k<=24                                                                                      | -20<=k<=20                                                       |
|                                                        | -27<= <=28                                                                        | -28<= <=28                                                                                      | -29<=l<=29                                                       |
| Reflections collected                                  | 136137                                                                            | 77446                                                                                           | 87718                                                            |
| Independent reflections                                | 15705                                                                             | 23326                                                                                           | 19408                                                            |
| R(int)                                                 | 0.2492                                                                            | 0.0569                                                                                          | 0.0579                                                           |
| Absorption correction                                  | Semi-empirical from                                                               | Semi-empirical from                                                                             | Semi-empirical from                                              |
|                                                        | equivalents                                                                       | equivalents                                                                                     | equivalents                                                      |
| Data / restraints /<br>parameters                      | 15705 / 270 / 688                                                                 | 23326 / 4298 / 1259                                                                             | 19408 / 36 / 778                                                 |
| Goodness-of-fit on F <sup>2</sup>                      | 1.078                                                                             | 1.226                                                                                           | 1.049                                                            |
|                                                        | <i>R</i> <sub>1</sub> = 0.0619                                                    | <i>R</i> <sub>1</sub> = 0.1410                                                                  | R <sub>1</sub> = 0.0309                                          |
| $R_{1}^{(\alpha)} W R_{2^{(\alpha)}} (I > 2\sigma(I))$ | <i>wR</i> <sub>2</sub> = 0.1647                                                   | $wR_2 = 0.3559$                                                                                 | <i>wR</i> <sub>2</sub> = 0.0724                                  |
| P [a] $wP$ [b] (all data)                              | <i>R</i> <sub>1</sub> = 0.0759                                                    | <i>R</i> <sub>1</sub> = 0.1878                                                                  | <i>R</i> <sub>1</sub> = 0.0422                                   |
|                                                        | wR <sub>2</sub> = 0.1721                                                          | wR <sub>2</sub> = 0.3731                                                                        | <i>wR</i> <sub>2</sub> = 0.0759                                  |
| Largest diff. peak and<br>hole, e/ų                    | 1.875 and -1.870                                                                  | 7.396 and -3.177                                                                                | 1.983 and -1.223                                                 |

<sup>[a]</sup>  $R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$ . <sup>[b]</sup>  $wR_2 = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w (F_o^2)^2]^{1/2}$ .

# References

- S1 G. M. Sheldrick, Acta Cryst., 2015, C71, 3–8.
- S2 G. M. Sheldrick, Acta Cryst., 2008, A64, 112–122.
- S3 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Cryst.*, 2009, **42**, 339–341.
- S4 A. L. Spek, Acta Cryst., 2015, C71, 9–18.
- S5 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. M ontgomery Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian09W, Revision A02, Gaussian, Inc., Wallingford, CT, 2009.
- S6 (a) A. D. Becke, J. Chem. Phys., 1993, 98, 5648; (b) C. Lee, W. Yang and R. G. Parr, Phys. Rev. B: Condens. Matter Mater. Phys., 1988, 37, 785.
- S7 J. Tomasi, B. Mennucci and R. Cammi, Chem. Rev., 2005, 105, 2999–3094.
- S8 G. Yang, Y. Liu, X. Lin, B. Ming, K. Li and C.Hu, Chin. Chem. Lett., 2022, 33, 354–357.
- S9 K. Li, Y.-F. Liu, X.-L. Lin and G.-P. Yang, *Inorg. Chem.*, 2022, **61**, 6934–6942.
- S10 L.-L. Liu, Y.-H. Wang, X.-Y. Xiao, K.-W. Tong, Y. Zhao, C.-Q. Chen, J. Du and P. Yang, *Rare Met.*, 2023, **42**, 3345–3353.
- S11 M. Cheng, Y. Liu, W. Du, J. Shi, J. Li, H. Wang, K. Li, G. Yang and D. Zhang, *Chin. Chem. Lett.*, 2022, **33**, 3899–3902.
- S12 G.-P. Yang, S.-X. Shang, B. Yu and C.-W. Hu, Inorg. Chem. Front., 2018, 5, 2472–2477.
- S13 G.-P. Yang, X.-L. Zhang, Y.-F. Liu, D.-D. Zhang, K. Li and C.-W. Hu, *Inorg. Chem. Front.*, 2021, 8, 4650–4656.
- S14 V. Jeevananthan, G. C. Senadi, K. Muthu, A. Arumugam and S. Shanmugan, *Inorg. Chem.*, 2024, **63**, 5446–5463.
- S15 K. Li, Y. F. Liu, G. P. Yang, Z. J. Zheng, X. L. Lin, Z. B. Zhang, S. J. Li, Y. H. Liu and Y. G. Wei, *Green Chem.*, 2024, 26, 6454–6460.