Supporting Information

Proton transfer induced excited-state aromaticity gain for chromophores with maximal Stokes shifts

Dong Xing, Florian Glöcklhofer, and Felix Plasser

E-mail: f.plasser@lboro.ac.uk Phone: +44 1509 226946

Table of contents

1. Aromaticity Analysis

Nucleus-independent chemical shifts $(NICS)^1$ were calculated at PBE0/def2-SVP level^{2,3} using gauge including atomic orbitals as implemented in Gaussian $09⁴$. NICS tensors were represented graphically using the visualization of chemical shielding tensors (VIST)⁵ method as implemented in TheoDORE⁶ and using VMD⁷ as a graphical interface. Note that all the presented Q forms are optimized in the S_0 state and all A forms in the S_1 state. The aromatic fluctuation index (FLU)^{8,} multicenter bond indices $MCI⁹$ and Iring¹⁰ were computed for molecules 3a and 5 with the AIMALL¹¹ added and $ESI-3D¹²$ programs.

Table S1. The out-of-plane component of NICS value (ppm) at the ring with carbonyl or hydroxyl groups (Ring 1) and further fused ring(s) (Ring 2, 3 and 4) for Molecules

Molecule	State	Ring 1	Ring 2	Ring 3	Ring 4					
$Q(S_0)$ $\mathbf{1}$		13	-23							
	$Q(T_1)$		31.3							
	$A(T_1)$	-12	-14							
	$A(S_0)$	378.9	152.1							
2a	$Q(S_0)$	13.2	-22.1	-27.7						
	$Q(T_1)$	11.2	32.8	small						
	$A(T_1)$	-12.4	-14.3	-18.3						
	$A(S_0)$	106.9	33.9	small						
2 _b	$Q(S_0)$	14.9	-23.3	-27.3						
	$Q(T_1)$	25.3	64.5	19.7						
	$A(T_1)$	-13.1	-7.6	42.9						
	$A(S_0)$	499.8	126.5	-27.9						
3a	$Q(S_0)$	12	-19.7	-27.9						
	$Q(T_1)$	8.8	19.7	small						
	$A(T_1)$	-10.9	-15.6	-17.6						
	$A(S_0)$	96.5	33.2	5.5						
3 _b	$Q(S_0)$	12.1	-21.9	-28.1						

1-**9**. (Values smaller than 5 ppm are labeled as "small")

		FLU^b	I_{ring}	MCI	$FLU(\alpha/\beta)$	$\Delta FLU_{\alpha\beta}/FLU$
3a Q(S ₀)	Ring1 (C_6)	0.010	0.029	0.040		
	$Ring2(C_6)$	0.023	0.019	0.025		
	$Ring3(C_4)$	0.101	0.013	0.014		
	Ring2+3 (C_8)	0.055	0.001	0.001		
$3aA(T_1)$	Ring1 (C_6)	0.023	0.018	0.024	0.016/0.034	-0.783
	$Ring2(C_6)$	0.029	0.010	0.011	0.036/0.032	0.138
	$Ring3(C_4)$	0.054	0.024	0.044	0.056/0.068	-0.222
	Ring2+3 (C_8)	0.024	0.002	0.006	0.031/0.029	0.083
$5 \text{ Q}(S_0)$	Ring1 (C_5)	0.033	0.021	0.017		
	$Ring2(C_5)$	0.069	0.008	0.007		
	Ring $1+2$ (C_8)	0.048	0.002	0.001		
$5A(T_1)$	Ring1 (C_5)	0.018	0.013	0.013	0.012/0.032	-1.111
	$Ring2(C_5)$	0.028	0.014	0.015	0.017/0.045	-1.000
	Ring1+2 (C_8)	0.010	0.004	0.016	0.006/0.019	-1.300

Table S2. Aromaticity descriptors for S_0 and T_1 states of molecules 3a and 5.^a

^a Ring1, Ring2, Ring3 are arranged from left to right in Figures 3 and 5 of the main article. Ring1+2 refers to the perimeter of Ring1 and Ring2 combined, etc. ^b Values of $FLU < 0.030$ and $FLU > 0.060$ are highlighted in blue and red, respectively, to indicate aromaticity and antiaromaticity.

Table S3. VIST plots for Q and A form of molecule in S_0 and T_1 states.

Table S4. VIST plots for Q and A form of molecule $2a$ in S_0 and T_1 states.

Table S5. VIST plots for Q and A form of molecule $2b$ in S_0 and T_1 states.

Table S6. VIST plots for Q and A form of molecule $3a$ in S_0 and T_1 states.

Table S7. VIST plots for Q and A form of molecule $3b$ in S_0 and T_1 states.

Table S8. VIST plots for Q and A form of molecule in S_0 and T_1 states.

Table S9. VIST plots for Q and A form of molecule in S₀ and T₁ states.

Table S10. VIST plots for Q and A form of molecule in S_0 and T_1 states.

Table S11. VIST plots for Q and A form of molecule $7a$ in S_0 and T_1 states.

Table S12. VIST plots for Q and A form of molecule $7b$ in S_0 and T_1 states.

Table S13. VIST plots for Q and A form of molecule in S_0 and T_1 states.

Table S14. VIST plots for Q and A form of molecule in S_0 and T_1 states.

2. Natural transition orbitals (NTOs)

Natural transition orbitals¹³ are computed after single point TDDFT calculation at M06- $2X^{14}/\text{def2-TZVP}$ level and visualized by Jmol. Note that all the NTOs of Q forms presented are at S_0 geometry and A forms are at S_1 geometry.

Table S15. Natural transition orbitals of molecule **1**. (blue/red for hole and

Table S16. Natural transition orbitals of molecule **2a**. (blue/red for hole and

16

Table S17. Natural transition orbitals of molecule **2b**. (blue/red for hole and

Table S18. Natural transition orbitals of molecule **3a**. (blue/red for hole and

Table S19. Natural transition orbitals of molecule **3b**. (blue/red for hole and

Table S20. Natural transition orbitals of molecule **4**. (blue/red for hole and

Table S21. Natural transition orbitals of molecule **5**. (blue/red for hole and

Table S22. Natural transition orbitals of molecule **6**. (blue/red for hole and

Table S23. Natural transition orbitals of molecule **7a**. (blue/red for hole and

Table S24. Natural transition orbitals of molecule **7b**. (blue/red for hole and

Table S25. Natural transition orbitals of molecule **8**. (blue/red for hole and

Table S26. Natural transition orbitals of molecule **9**. (blue/red for hole and

3. COT derivatives

Large difference between results of COT (Cyclooctatetraene) derivatives and the previous two groups of molecules were found. Considering molecules geometries, we note that for all four molecules, the COT ring of $Q(S_0)$ is not planar, whereas the planarity of $A(S_1)$ is higher, but the molecule shows a twisted structure, especially for the COT ring. Figure S1 illustrates the analysis on vertical excitations with COT derivatives. The vertical excitation energies for COT derivatives are similar among each other with only small variations. Even the absorption oscillator strengths for absorption are always small. The additional fused ring gives almost no difference on the photophysical property, and no trends can be observed.

Figure S1. Vertical absorption energies in the Q form (top) and emission energies in the A form (bottom) at the M06-2X/def2-TZVP level for COT derivatives studied. Oscillator strengths (in parentheses, blue) and Stokes shifts (red) are given as well.

COT derivates are characterized by extremely strong deshieding (antiaromaticity) of S_0 at their S_1 (A form) geometries. In line with this finding, the form S_1 emission energies are extremely low.

Viewing the properties of the COT derivatives we do not believe them to be suitable

for optical applications and discuss them no further.

Table S27. the out-of-plane NICS value of the COT ring in molecules c1 - c4

4. Ground-state tautomers

Three classes of ground-state diketo tautomers, D1, D2 and D3 are investigated as alternatives to the A and Q forms discussed in the main text. Representative structures are shown in Figure S2. It is worth noting that only tautomer D1 is reasonable for molecules **1**-**4** whereas molecules **5** and **6** also possess D2 forms and molecules **7**-**8** also have an accessible D3 form where a pyrrole ring is formed. Fig. 6 shows the energies of the most stable D-type tautomer. This refers to D1 for **1**-**4**, to D2 for **5** and **6**, and to D3 for **7**-**8**. It is notable that the D3 tautomer, which forms a pyrrole ring, possesses enhanced stability meaning that these structures will most likely to be found as D3 tautomers.

Figure S2. Chemical structures of 3 classes of tautomer investigated.

5. Further computational and experimental results

Table S28. Vertical energies (in eV) of o-hydroxybenzaldehyde (OHBA)¹⁵, salicylic acid $(SA)^{16}$, 10-hydroxybenzo[h]quinoline $(HBQ)^{17}$, benzocyclobutenedione¹⁸ and [2,2'-bipyridyl]- 3,3'-diol [BP(OH)₂]¹⁹ at the geometry of $A(S_0)$ and $Q(S_1)$ using the TDA/M06-2X/def2-TZVP and ADC(2)/def2-TZVPP methods as well as the

experimental absorption maxima.

Figure S3. Vertical absorption energies in the Q form (top) and emission energies in the A form (bottom) at the M06-2X/def2-TZVP level for CBD

Figure S4. Vertical absorption energies in the Q form (top) and emission energies in the A form (bottom) at the M06-2X/def2-TZVP level for pentalene derivatives studied. Oscillator strengths (in parentheses, blue) and Stokes shifts (red) are given as well.

6. References

- (1) P. V. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, N. J. R. Van and E. Hommes, *J. Am. Chem. Soc.*, 1996, **118**, 6317.
- (2) C. Adamo and V. Barone, *J. Chem. Phys*., 1999, **110**, 6158–6170.
- (3) F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, **7**, 3297–330.
- (4) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, *Gaussian 09, Revision E.01*, Wallingford, CT, 2013. (5) F. Plasser and F. Glocklhofer, *Eur. J. Org. Chem.*, 2021, **2021**, 2529–2539.
- (6) F. Plasser, *J. Chem. Phys.*, 2020, **152**, 084108.
- (7) W. Humphrey, A. Dalke and K. Schulten, *J. Mol. Graphics*, 1996, **14**, 33–38.
- (8) E. Matito, M. Duran and M. Sol, *J. Chem. Phys.*, 2005, **122**, 014109.

(9) M. Giambiagi, M. S. D. Giambiagi, C. D. D. S. Silva and A. P. D. Figueiredo, *Phys. Chem. Chem. Phys.*, 2000, **2**, 3381–3392.

- (10) P. Bultinck, R. Ponec and S. V. Damme, *J. Phys. Org. Chem.*, 2005, **18**, 706–718.
- (11) T. A. Keith, *AIMAll (Version 19.10.12)*, 2019, TK Gristmill Software, Overland Park KS, USA.

(12) E. Matito, *ESI-3D: Electron Sharing Indexes Program for 3D*

Molecular Space Partitioning, 2014, Institute of Computational Chemistry and Catalysis, Girona, Catalonia, Spain, 2014. http://iqc.udg.es/eduard/ESI.

(13) R. L. Martin, *J. Chem. Phys.*, 2003, **118**, 4775–477.

- (14) Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.*, 2008, **120**, 215–241.
- (15) S. ichi Nagaoka, N. Hirota, M. Sumitani, K. Yoshihara, E. Lipczynska-Kochany and H. Iwamura, *J. Am. Chem. Soc*, 1984, **106**, 6913–6916.
- (16) D. D. Pant, H. C. Joshi, P. B. Bisht and H. B. Tripathi, *Chem. Phys.*, 1994, **185**, 137–144.
- (17) C. Schriever, M. Barbatti, K. Stock, A. J. Aquino, D. Tunega, S. Lochbrunner, E. Riedle, R. de Vivie-Riedle and H. Lischka, *Chem. Phys.*, 2008, **347**, 446–461.
- (18) K. Lohmann, Z. S. E. Biochem, G. Kerr, E. W. Huber and T. W. Sutherland, *J. Biol. Chem*, 1957, **233**, 3608.

(19) E. S. S. Iyer and A. Datta, *J. Phys. Chem. B*, 2012, **116**, 5302–5307.