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Materials and Methods
Reagents
Zinc nitrate hexahydrate (Zn(NO3)2·6H2O), citric acid monohydrate (CA), and ethanol 

were obtained from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). 

Cetyltrimethylammonium bromide (CTAB), thioacetamide (TAA), hexamethylene 

tetramine (HMTA), and dopamine hydrochloride (DA) were purchased from Sigma-

Aldrich Co., Ltd. (Shanghai, China). Glut 1 DNAzyme was synthesized by Sangon Co., 

Ltd. (Shanghai, China), and the sequence information was shown in Table S3. Cell 

culture reagents (such as fetal bovine serum) were from Excel Co., Ltd. (Xian, China), 

HyCloneTM DMEM was from Cytiva Co., Ltd. (Shanghai, China), and trypsin, 

penicillin-streptomycin and 2’,7’-dichlorodihydrofluorescein diacetate (DCFH-DA) 

were from Beyotime Co., Ltd. (Shanghai, China). The antibodies for western blotting 

(Glut1 and β-actin antibodies) were from Bioss Co., Ltd. (Beijing, China), and the 

antibodies for immunofluorescence were from Huabio Co., Ltd. (Hangzhou, China). 

Superoxide dismutase (SOD) and the GSH/GSSH detection kits were obtained from 

Beyotime Co., Ltd. (Shanghai, China). The CCK-8 kit, SOD detection kit, glucose 

detection kit, and lactate detection kit were from Dojindo Co., Ltd. (Shanghai, China). 

Seahorse XF cellular mitochondrial stress test kit (No. 103015-100) and Seahorse XF 

glycolysis stress test kit (No. 103020-100) were from Agilent. Deionized water (18.2 

MΩ·cm, Millipore) was used for material synthesis and cell culture. All these reagents 

were used without any further treatment. 

Instrumentation
The morphology of nanoparticles was obtained by transmission electron microscopes 

(TEM, FEI TECNAI 12, 120 kV and FEI TECNAI G2 F30S-Twin). Powder X-ray 

diffraction (XRD) patterns were obtained by using a diffractometer (Bruker-AXS, 

Germany). X-ray photoelectron spectroscopic (XPS) analysis was carried out by a 

Thermo Scientific K-Alpha spectrometer (Al Kα (1486 eV)), and the related software 

was used for data analysis. An IR thermographic camera was from FOTRIC Co., Ltd. 

(Suzhou, China). Seahorse XFe96 Analyzer for cell metabolic analysis was from 

Agilent (USA). Inductively coupled plasma spectrometry was performed on an Agilent 
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5110 instrument.

Synthesis of ZnS

ZnS was prepared by ligand-assisted coordination assembly, using CTAB as the 

template, zinc nitrate as the inorganic precursor, citric acid and HMTA as the ligands, 

and TAA as the sulfur source. Briefly, Zn(NO3)2·6H2O (138.8 mg), CTAB (85.0 mg), 

HMTA (35.0 mg), citric acid (25.0 mg), and TAA (20.0 mg) were mixed in 100 mL of 

deionized water. They were then stirred vigorously for 10 min at room temperature. 

Subsequently, the mixture was heated and kept in an air circulating oven at 85 °C for 5 

h. Then, the colloidal precipitate was obtained by centrifugation. The precipitate was 

washed with ethanol/water several times and dried for later use.

Synthesis of “copper nanoconsumer”

The designed “copper nanoconsumer” (i.e., ZnS@PDA/DNA) was synthesized as 

follows. To protect the ZnS core, a PDA shell was prepared by polymerization of 

dopamine hydrochloride (DA) on the surface of the core ZnS. ZnS and DA were mixed 

(weight ratio=1:1) in 10 mM Tris buffer (pH=8.5) at room temperature for 2 h. After 

the color of the reaction solution changed from ivory-white to light-black, the solution 

was centrifuged to obtain the precipitate (ZnS@PDA, termed ZP). Then, the precipitate 

was washed with deionized water several times and stored at 4 ℃ for further use. Next, 

the ZnS@PDA/DNA (termed ZPD) was obtained by adsorbing Glut1 DNAzyme 

(termed GD, sequences of GD and its substrate were listed in Table S3) on ZP. 10 nM 

GD was added to 50 μg/mL ZP with metal ions (pH=7.6, 10 mM HEPES buffer). After 

1 h of incubation, the precipitate was collected and washed for later use. GD absorption 

kinetics were determined by adsorbing Cy3-labeled GD with ZP, and the procedures 

were the same as those used for GD. 

Cation exchange of ZnS by Cu2+

CuCl2 was chosen as the donor of Cu2+. The total volume of ion exchanging solution 
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was set at 1 mL. Various final volumes of 1 mM Cu2+ (0, 5, 10, 20, 30, 40, 50, and 100 

μL) were added to the solution at room temperature while keeping the final 

concentration of ZnS at 20 μg/mL. The solution underwent a rapid reaction, resulting 

in a color change to yellow in seconds, and then the solution was allowed to stand for 

an additional 30 min to complete cation exchange reaction. Finally, the precipitated 

product was collected for metal content measurement by using inductively coupled 

plasma-optical emission spectrometry (ICP-OES).

ZPD photothermal effect analysis

Based on the photothermal effect of CuS, photothermal imaging was performed by a 

FOTRIC IR camera. In a typical test, 10 μg/mL materials were irradiated by an 808 nm 

laser with the power of 2 W/cm2, and the temperature change was recorded at each time 

point (0, 1, 2, 3, 4, and 5 min). The data were analyzed with AnalyzIR and Origin.

Evaluation of ZPD properties at the cellular level

Mouse breast cancer cell line 4T1, human breast cancer cell line MCF7, mouse 

melanoma cell line B16, mouse colon tumor cell line CT26, and human liver cell line 

L02 were from ATCC. Cells were refreshed and cultured with high glucose-DMEM 

plus 10% FBS at 37 °C in a 5% CO2 incubator. For cell toxicity analysis, cells were 

subcultured into plates with an 8×103 seeding density overnight. Then, cells were 

refreshed with the culture medium and incubated with different concentrations of ZPD 

for 24 h. Later, cell viability was estimated by CCK-8 kits. For copper uptake ability, 

cells were subcultured into 6-well plates overnight and then refreshed using culture 

medium with/without Cu2+ for next 24 h, 48 h and 72 h, respectively. Later, the cells 

were harvested in groups for copper content measurement by ICP-OES. Intercellular 

ROS level was monitored by a flow cytometer. Cells were subcultured into 6-well plates 

overnight and refreshed by culture medium and different concentrations of ZPD for 24 

h. Subsequently, they were incubated with ROS probes DCFH-DA, and then harvested 

for cytometric analysis. For SOD deactivation, cells were subcultured into 6-well plates 
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overnight and refreshed using culture medium and ZPD with different treatments for 

24 h, then cells were harvested and lysed with a sonicator. The supernatant was 

collected for the SOD-like activity measurement by using an SOD detection kit (WST-

8). For glutathione (GSH) detection, the cells were harvested in groups, washed with 

PBS, and then treated with a protein removal agent. After freezing-thawing twice, the 

supernatant was collected for GSH content measurement by using a GSH detection kit.

Glycolytic inhibition analysis

Based on the design, the Glut 1 DNAzyme was used to cleave the Glut 1 mRNA and 

induce the glycolytic inhibition. Cells were treated in groups and harvested for 

membrane protein extraction. Western blotting was performed for monitoring Glut 1 

expression. Meanwhile, the culture supernatant was collected for the glucose 

consumption and lactate excretion analysis. For glucose consumption detection, the 

supernatant was added to 96-well plates, and then working solution (from a glucose 

detection kit) was added to each well. Later, the reaction solution was fully mixed and 

incubated at 37 °C for 30 min. Finally, absorption at 450 nm was measured by a 

microreader. Lactate detection was executed using the same procedures as glucose 

detection, using a lactate detection kit.

Metabolic analysis

For mitochondrial stress test: A Seahorse XF cellular mitochondrial stress test kit (No. 

103015-100) and a Seahorse XFe96 analyzer were used. 4T1 cells were subcultured 

into Seahorse XF96 cell culture microplates for 12 h; then cells were washed and 

incubated with ZnS, ZP, and ZPD (final concentration 20 μg/mL) in the glycolysis 

stress test medium for 24 h; finally, oxygen consumption rate (OCR) was measured by 

ordered injection of 1.5 μM oligomycin, 0.5 μM carbonyl cyanide-4 

(trifluoromethoxy)phenylhydrazone (FCCP), and 0.5 μM Rotenone & Antimycin A 

(final concentration of per well). 

For glycolysis stress analysis: A Seahorse XF glycolysis stress test kit (No. 
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103020-100) and a Seahorse XFe96 analyzer were used. 4T1 cells were subcultured 

into Seahorse XF96 cell culture microplates for 12 h; then cells were washed and 

incubated with ZnS, ZP, and ZPD (final concentration 20 μg/mL) in the glycolysis 

stress test medium without glucose or pyruvate for 24 h; finally, extracellular 

acidification rate (ECAR) was measured by ordered injection of 10 mM glucose, 1 μM 

oligomycin, and 50 mM 2-deoxy-glucose (final concentration of per well). 

“Copper nanoconsumer”-mediated anti-tumor ability

All animal procedures were performed in accordance with the Guidelines for Care and 

Use of Laboratory Animals of Nanjing University and approved by the Animal Ethics 

Committee of Experimental Animals Welfare and Ethics of Nanjing Drum Tower 

Hospital, the Affiliated Hospital of Medical School, Nanjing University (No: 

2021AE01042). BLAB/c mice were chosen for the construction of the breast cancer 

model. Mice were purchased from Nanjing Medical University and fed in a standard 

specific pathogen free (SPF) environment. 4T1 cells were cultured, harvested, and then 

washed with PBS several times. The cell suspension was obtained and subcutaneously 

injected into the right flank of mice with a density of 1×106 cells/mouse. The volume 

of tumors was monitored and calculated according to the formula V = length × width × 

width/2 (length and width of tumor were measured by using a digital caliper). When 

the tumor volume reached 50 mm3, the mice were separated into groups according to 

the experimental plan and treated with drugs by intravenous injection (5 mg/kg per drug 

per mouse). In the laser group, 12 h after the drugs were injected, the tumors were 

irradiated with a laser (808 nm for 5 min at 2 W/cm2). After treatments, the mice were 

kept for another several days and harvested for anti-tumor analysis. Each tumor was 

dissected for the immunofluorescence analysis. The major organs, such as the heart, 

liver, spleen, lung, and kidney, were also dissected for biosafety estimation.

“Copper nanoconsumer”-mediated anti-metastasis ability

BLAB/c mice were also chosen for the construction of an anti-metastasis model. Mice 
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were fed in a standard SPF environment. First, a 4T1 subcutaneous tumor model was 

obtained using the same procedure as mentioned above. After the tumor formation, the 

cell suspension was intravenously injected into mice. Then, the mice were treated with 

drugs by intratumoral injection. The laser irradiation (808 nm for 5 min at 2 W/cm2) 

was also used for the treatment. Later, the lungs were harvested for the anti-metastasis 

analysis. The metastatic nodules were calculated. The lungs were also analyzed using 

the hematoxylin and eosin (H&E) staining.

Biodistribution analysis

For biodistribution analysis, different organs (heart, liver, spleen, lung, kidney, and 

tumor) were collected 24 h after ZPD treatment. 500 mg of each organ was separated 

and digested for elemental content analysis (including copper, zinc, and sulfur) by ICP-

OES. Each group was prepared for three independent samples. The content was 

calculated and depicted using histograms.

Immunofluorescence analysis of the dissected tumor

To explore the anti-tumor and anti-metastasis mechanisms, the dissected tumors were 

prepared for immunofluorescence analysis, such as glucose transporter 1 (Glut 1) 

expression, CRT (calreticulin) exposure, HMGB1 (high mobility group protein 1) 

release, and CD8+ T cell infiltration. The dissected tumors were mounted by OCT 

compound for 5 µm slices. The slices were used for immunofluorescence analysis by 

standard protocols and were observed by a confocal microscope. The fluorescent 

intensity was analyzed by ImageJ and data were obtained by Origin.

Cytokine detection

Tumor-bearing mice were treated with drugs and laser irradiation. Later, the peripheral 

blood was collected and left for clotting, and then the serum was used for TNF α and 

IFN γ detection. The detection was carried out using the corresponding enzyme-linked 

immunosorbent assay (ELISA) kits. Each experiment was performed four times 
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independently.
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Table S1. Solubility product constants of ZnS and CuS in some studies.

Year of publish Ksp of ZnS Ksp of CuS References

1936 1.15×10-26 3.48×10-38 [1]

1952 8×10-25 8×10-36 [2]

1958 8.8×10-25~1.1×10-21 8.7×10-36 [3]

2010 1.6×10-24 6.3×10-36 [4]

2011 1.6×10-24 6.3×10-36 [5]

2015 1.6×10-24 6.3×10-36 [6]

2020 1.6×10-24 6.3×10-36 [7]

2020 4.0×10-24 2.0×10-47 [8]

2021 3.0×10-25 1.0×10-48 [9]

2022 1.6×10-24 1.3×10-36 [10]

2022 2.2×10-22 2.5×10-48 [11]

2024 2.9×10-25 6.3×10-36 [12]

Table S2. Representative copper-based clinical/preclinical therapies.

Agent Action Indication and testing stage References

Clioquinol Ionophore Fungal infection (approved) [13]

CuII(atsm) Ionophore Amyotrophic lateral sclerosis (phase II) [14]

Disulfiram Ionophore Glioblastoma (phase I/II) [14-16]

Elesclomol Ionophore Melanoma (phase III) [17]

D-penicillamine Chelator Wilson’s disease (approved) [18]

Tetrathiomolybdat

e

Chelator Wilson’s disease (phase II) [16,19,20]

Trientine Chelator Wilson’s disease (approved) [18]

WTX101 Chelator Wilson’s disease (phase III) [21]

DC_AC50 Inhibitor Melanoma (preclinical) [22]

PTU dendrimers Chelation --- [23]

CDN nanoparticles Depleting --- [24]

ZPD nanoparticles Depleting --- This study
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Table S3. Sequences of DNAzyme and substrate.

Name Sequence (5' to 3')

DNAzyme ACCAGGGCTCCGAGCCGGTCGAAACTTCAAAGA

Substrate TCTTTGAAGT/rA/GGCCCTGGT

Cy3-DNAzyme Cy3-ACCAGGGCTCCGAGCCGGTCGAAACTTCAAAGA

Note: all the DNA samples were synthesized by Sangon Biotech (Shanghai) Co., Ltd.
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Figure S1. Scheme of cation exchange reaction between Cu2+ and ZnS based on the 
large difference of their solubility product (Ksp).
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Figure S2. Zn-Cu stack proportion by adding Cu2+ into ZnS solution. Each error bar 
represents the standard deviation of four independent measurements.
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Figure S3. EDS analysis of copper and zinc contents. SEM images of ZnS (a) and ZnS 
after Cu chelation (b). Orange squares indicate the areas for EDS analysis. (c) 
Percentage of atoms in each group by normalizing to the S element. Each error bar 
represents the standard deviation of three independent measurements.
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Figure S4. Metal ion-mediated fluorescence quenching of Cy3-labled GD. Each error 
bar represents the standard deviation of four independent measurements.
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Figure S5. Gel electrophoresis analysis of the GD conjugation.
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Figure S6. Size distribution histogram of ZPD. Inset: digital photo of ZPD solution.
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Figure S7. Elemental mapping analysis of ZPD.
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Figure S8. Acid-induced PDA-shell degradation of ZPD. TEM images of ZPD 
nanoparticles after treatment with acid (pH 5.8) for (a) 12 h and (b) 24 h.
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Figure S9. Cellular copper stack percentage with/without addition of Cu2+ to culture 
medium after different time point treatment (48 h and 72 h). CM: culture medium, 
CM+Cu: culture medium plus Cu2+. Each error bar represents the standard deviation of 
four independent measurements. Ordinary one-way ANOVA was used for discrepancy 
analysis (*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001).
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Figure S10. Cellular copper stack percentage with/without addition of Cu2+ to culture 
medium (24 h). CM: culture medium, CM+Cu: culture medium plus Cu2+. Each error 
bar represents the standard deviation of four independent measurements.
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Figure S11. Cell viability analysis of ZPD at different concentrations for L02 cells. 
Each error bar represents the standard deviation of four independent measurements. 
Ordinary one-way ANOVA was used for discrepancy analysis (*P<0.05, **P<0.01, 
***P<0.001, ****P<0.0001).



S24

Figure S12. High-angle annular dark-field scanning transmission electron microscopy 
(HAADF-STEM) imaging and elemental mapping for 4T1 cells.
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Figure S13. Transcripts per million (TPM) difference between different comparison. 
(a) ZnS vs Ctrl, (b) ZP vs Ctrl, and (c) ZPD vs Ctrl.
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Figure S14. TPM ratio of different targeting proteins including dihydrolipoamide S-
acetyltransferase (DLAT) (a) and Fe-S (iron-sulfur) clusters (b).
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Figure S15. Cellular ROS by flow cytometry with different ZPD concentrations.
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Figure S16. (a) Intracellular SOD deactivation by ZPD in 4T1 cells. (b) Change in GSH 
content by ZPD in 4T1 cells. Each error bar represents the standard deviation of four 
independent measurements. Ordinary one-way ANOVA was used for discrepancy 
analysis (*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001).



S29

Figure S17. Gene function classification analysis of ZPD vs Ctrl.
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Figure S18. GO (gene ontology) enrichment analysis of ZPD vs Ctrl.
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Figure S19. Analysis of Glut 1 expression by western blotting.
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Figure S20. Changes in mouse weight after indicated treatments. Each error bar 
represents the standard deviation of four independent measurements.
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Figure S21. H&E staining of major organs after indicated treatments. Scale bar: 500 
μm.
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Figure S22. Biodistribution of Cu, Zn and S between Ctrl and ZPD-treated groups. 
Each error bar represents the standard deviation of three independent measurements.
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Figure S23. Anti-metastasis ability analysis. (a) Images of metastatic nodules. (b) H&E 
staining of metastatic nodules. Scale bar: 500 μm.
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Figure S24. (a) Quantification of CRT exposure by fluorescent intensity. (b) HMGB1 
release percentage after indicated treatments. Each error bar represents the standard 
deviation of four independent measurements. Ordinary one-way ANOVA was used for 
discrepancy analysis (*P<0.05, **P<0.01, P<0.001, ****P<0.0001). 
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Figure S25. Decreasing percentage of Glut 1 relative expression after indicated 
treatments by fluorescent intensity measurement. Each error bar represents the standard 
deviation of four independent measurements. Ordinary one-way ANOVA was used for 
discrepancy analysis (*P<0.05, **P<0.01, P<0.001, ****P<0.0001). 
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