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1.Synthetic details
General comments

7-Bromo-N,N-diphenyl-9,10-dihydrophenanthren-2-amine, [4-(diphenylamino) phenyl]boronic acid?, 4'-
bromo-N,N-bis(4-(tert-butyl)phenyl)-[1,1'-biphenyl]-4-amine3, 4-bromo-4’-(N,N-diphenylamino)-biphenyl?4,
4’-bromo-N,N-dimethyl[1,1’-biphenyl]-4-amine®, [4-(9H-carbazol-9-yl) [1,1’-biphenyl]-4-yl]triphenyl-
phosphoniumbromide and 2[OTf] bwere synthesized according to the published literature. Tetrahydrofuran
(THF), toluene and diethyl ether were distilled over Na-benzophenone ketyl under a nitrogen atmosphere
prior to use. Other reagents and solvents were used as received. The solution *H, 3'P{1H}, 3C{1H} and *H-'H
COSY NMR spectra were recorded on Bruker Avance 400, AMX-400 and JEOL ECZ500R/M3 spectrometers.
Mass spectra were recorded on a Bruker maXis Il ESI-QTOF instrument in the ESI+ mode. Microanalyses were

carried out at the analytical laboratory of the University of Eastern Finland.

Synthesis
General procedure for the preparation of phosphonium salts 1[OTf], 3[OTf], 6[OTf] and 7[OTf]: Bromoaryl
derivative with an amine donor function (1.00 eq.), NiBr, (0.20 eq.), appropriate tertial phosphine (PPh; or
PCys, 1.05 eq.) and ethylene glycol (3—6 mL) were placed in a 15 mL sealed tube, degassed, and placed under
a nitrogen atmosphere. The suspension was stirred for 8 hours at 180 °C until the solution became
homogeneous. Then the reaction mixture was cooled down to room temperature and poured into
dichloromethane (50 mL). The organic layer was washed with water (3 x 100 mL), dried over anhydrous
Na2S04 for 30 min, filtered through a pad of Celite and evaporated in vacuo. The residue was washed with
toluene (3 x 50 mL), diethyl ether (3 x 50 mL), and finally purified by column chromatography (Silica gel 70-
230 mesh, 23x20 cm, eluent dichloromethane-methanol, 99:1—92:8 v/v mixture) to afford phosphonium
salts as amorphous solids. Bromide salts were subjected to subsequent ion exchange by dissolving them in a
saturated DCM solution of potassium trifluoromethanesulfonate. The resulting suspension was filtered
through a pad of Celite and evaporated. The crude solid was passed through a Silica column (Silica gel 70-230
mesh, 2.5x5 cm, eluent dichloromethane-methanol, 95:5 v/v mixture).
Br (al) The synthesis was carried out under a nitrogen atmosphere. To a mixture of 4-bromo-1-iodo-
O 2-methylbenzene (1.54 g, 5.20 mmol), [4-(diphenylamino)phenyl]boronic acid (1.50 g, 5.20 mmol),
Pd(PPhs),Cl, (0.07 g, 0.10 mmol) and K,CO; (2.15 g, 15.60 mmol) were added a separately
O degassed 1,4-dioxane (70 ml) and water (10 ml). The reaction mixture was stirred at 60 °C for 3 h,
NPh2  and after cooled down to room temperature, filtered through Celite and evaporated in vacuo. The
obtained pale slurry was extracted by DCM (3 x 50 ml). Combined organic layers were dried over anhydrous
Na,S0,, filtered, and evaporated in vacuo. The resulting pale-yellow solid was purified by column
chromatography (Silica gel 70-230 mesh, 3x15 cm, eluent hexane/DCM, 95/5, v/v) to afford a white powder
(1.70 g, 79%). *H NMR (CDCls, 298 K; &): 7.41 (s, -MeCgHs—, 1H), 7.35 (d, J = 8.2 Hz, -MeCgHs—, 1H), 7.26-7.29
(m, NPhy, 4H), 7.09-7.15 (m, 9H), 7.04 (t, J = 7.4 Hz, NPh,, 2H) 2.30 (s, Me, 3H). 13C NMR (CD.Cl,, 298 K; 6):

147.78 (s), 146.98 (s), 140.58 (s), 137.79 (s), 134.65 (s), 133.15 (s), 131.45 (s), 129.93 (s), 129.42 (s), 128.92
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(s), 124.63 (s), 123.14 (s), 120.86 (s), 20.62 (s).

%Dpha (1[OTf]) Prepared from 4’-bromo-N,N-dimethyl[1,1°-biphenyl]-4-amine (393 mg, 1.43 mmol),
O triphenylphosphine (394 mg, 1.50 mmol), nickel(ll)bromide (63 mg, 0.29 mmol), and 6 ml of
ng ethylene glycol to afford greenish precipitate (590 mg, 68 %). ESI-MS (m/z): [M]* 458.2027 (calcd

O 458.2033). 'H NMR (CD,Cl,, 298 K; 6): 7.87-7.91 (m, biph + PPhs, 5H), 7.73 (td, J = 8.0, 3.6 Hz,
N PPhs, 6H), 7.55-7.65 (m, PPhs + biph, 10H), 6.79 (d, J = 9.0 Hz, biph, 2H), (s, NMe,, 6H). 3!P{tH}

NMR (CD,Cl,, 298 K; 8): 23.43 (s, P*Phs, 1P). 3C NMR (CD,Cl,, 298 K; &): 151.48 (s), 148.36 (s), 135.63 (s),
134.83 (s), 134.41 (s), 130.63 (s), 128.09 (s), 127.25 (s), 124.49 (s), 118.51 (s), 117.79 (s), 112.45 (s), 40.03 (s).
9F{1H} NMR (CD,Cl,, 298 K; &): -78.80(s). Anal. Calc. for Cs3HasFsNO3PS Calculated: C, 65.23; H, 4.81; N, 2.31;

S, 5.28; Found: C, 65.34; H, 4.98; N, 2.17; S, 5.32.

%Ph3 (3[OTf]) Prepared from 4'-bromo-N,N-bis(4-(tert-butyl)phenyl)-[1,1'-biphenyl]-4-
O amine (159 mg, 0.31 mmol), triphenylphosphine (86 mg, 0.33 mmol),

o nickel(Il)bromide (14 mg, 0.06 mmol), and 3 ml of ethylene glycol to afford greenish-

O orange precipitate (154 mg, 59 %). ESI-MS (m/z): [M]* 694.3596 (calcd 694.3597) 'H

N NMR (CD,Cl,, 298 K; &): 7.83 — 7.97 (m, biph + PPhs), 7.74 (td, J = 7.9, 3.6 Hz, PPhs,
>(©/ O\K 6H), 7.56-7.64 (m, biph + PPhs, 8H), 7.31 (d, J = 8.5 Hz, NPh,®, 4H), 7.05 (d, J = 8.5
Hz, biph+NPh,®, 6H), 1.29 (s, NPh,®®, 18H). 3!P{*H} NMR (CD,Cl,, 298 K; &): 23.52 (s, P*Phs, 1P). 13C NMR
(CD4Cl,, 298 K; &): 149.80 (s), 147.28 (s), 144.23 (s), 135.71 (s), 134.93 (d), 134.46 (d), 130.62 (d), 129.48 (s),
127.95 (s), 127.83 (s), 126.42 (s), 125.10 (s), 121.12 (s), 118.31 (s), 117.59 (s), 31.17 (s). °F{*H} NMR (CD,Cl,

298 K; 6): -78.76(s). Anal. Calc. for Cs;Ha9FsNO3PS Calculated: C, 72.58; H, 5.85; N, 1.66; S, 3.80; Found: C,
72.36; H,5.91; N, 1.70; S, 3.88.

®

PPh, (4[OTf]). Potassium trifluoromethanesulfonate (175 mg, 0.92 mmol) was added to a solution

O of [4'-(9H-carbazol-9-yl)[1,1'-biphenyl]-4-ylltriphenyl-phosphoniumbromide (580 mg, 0.88
S

mmol) in dichloromethane (5 ml). The reaction mixture was stirred at room temperature for
20 min. The resulting suspension was filtered through a pad of Celite and evaporated. The
crude yellow solid was purified by column chromatography (Silica gel 70-230 mesh, 22.5x17

cm, eluent dichloromethane-methanol, 99:1 - 95:5 v/v mixture) to afford yellow solid (470
mg, 74 %). ESI-MS (m/z): [M]* 580.2181 (calcd 580.2189). *H NMR (CD,Cl,, 298 K; 6): 8.16 (d, Jun 7.9 Hz, 2H,
carbazole), 8.07-8.03 (m, 2H, -bph-), 7.9 =7.91 (m, 5H, -Ph + -biph-), 7.8 —=7.64 (m, 16H, -PPh3 + -bph-), 7.49
(d, Jun 8.3 Hz, 2H, carbazole), 7.45-7.41 (m, 2H, carbazole), 7.33-7.29 (m, 2H, carbazole). 3'P{*H} NMR (CD,Cl,,
298 K; 6): 23.75 (s, P*Phs, 1P). 3C NMR (CD,Cly, 298 K; 6): 147.53, 140.59, 138.93, 137.05, 135.82 (d), 135.17
(d), 134.53 (d), 130.71 (d), 129.04 (t), 127.59, 126.16, 123.62, 120.37 (d), 118.06, 117.35, 116.34, 115.62,
109.75. °F{*H} NMR (CD.Cl,, 298 K; 6): -78.84(s). Anal. Calc. for C43H3:FsNO3PS Calculated: C, 70.77; H, 4.28;
N, 1.92; S, 4.39; Found: C, 70.47; H, 4.39; N, 1.87; S, 4.48.
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PCy, (5[Br]) 4-Bromo-4’-(N,N-diphenylamino)-biphenyl (200 mg, 0.50 mmol), NiBr, (22 mg, 0.10 mmol),
O tricyclohexylphosphine (147 mg, 0.53 mmol) and ethylene glycol (3 mL) were placed in a 10 mL
Br sealed tube, degassed, and placed under a nitrogen atmosphere. The suspension was stirred for 3
O hours at 180 °C until the solution became homogeneous. Then the reaction mixture was cooled
NPh, down to room temperature and poured into dichloromethane (50 mL). The organic layer was
washed with water (3 x 100 mL), dried over anhydrous Na2S04 for 30 min, filtered through a pad of Celite,
and evaporated in vacuo. The residue was washed with toluene (3 x 50 mL), diethyl ether (3 x 50 mL), and
finally purified by column chromatography (Silica gel 70-230 mesh, @3x20 cm, eluent dichloromethane-
methanol, 99:1—92:8 v/v mixture) to afford phosphonium salts 5Br as amorphous solids (270 mg, 90 %).
Recrystallization of 5Br from methanol-hexane (1-1, v-v) mixture delivers crystals suitable for SC-XRD analysis.
ESI-MS (m/z): [M]* 600.3793 (calcd 600.3788).*H NMR (CD,Cl,, 298 K; &): 7.89 (dd, J = 8.5, 2.6 Hz, biph 2H),
7.66 (t, J = 8.5 Hz, biph, 2H), 7.53 (d, J = 8.6 Hz, biph, 2H), 7.28 (t, J = 7.8 Hz, NPh,, 4H), 7.06-7.12 (m,
biph+NPh,, 8H), 2.79 (br g, J = 9.2 Hz, PCys, 3H), 1.92-1.96 (m, PCys, 12H), 1.80 (d, J = 13.2 Hz, PCys, 3H),
1.41-1.51 (m, PCys, 9H), 1.24-1.28 (m, PCys, 3H). 31P{*H} NMR (CD,Cl,, 298 K; &): 29.89 (s, P*Cys, 1P). 3C NMR
(CD,Cl,, 298 K; &): 149.04 (s), 147.22 (s), 146.60 (s), 133.42 (d), 131.14 (s), 129.50 (s), 128.13 (s), 128.00(s),
125.18(s), 123.82(s), 122.65(s), 110.32 (s), 109.72 (s), 29.83 (d), 26.74 (s), 26.68 (s), 26.58 (s), 25.52 (s). °F{*H}
NMR (CD,Cl, 298 K; 6): -78.84(s). Anal. Calc. for C43Hs;NPBr Calculated: C, 74.10; H, 7.55; N, 2.06; Found: C,
73.98; H, 7.70; N, 2.09.
%)ch (5[OTf]) Prepared according to the procedure described for 40Tf from 5Br (240 mg, 0.40 mmol)
O by metathesis reaction with potassium trifluoromethanesulfonate (yield 92%). ESI-MS (m/2): [M]*
S 600.3794 (calcd 600.3788). 1H NMR (CD;Cly, 298 K; &): 7.89 (dd, J = 8.5, 2.6 Hz, biph 2H), 7.66 (t, J
O = 8.5 Hz, biph, 2H), 7.53 (d, J = 8.5 Hz, biph, 2H), 7.28 (t, J = 7.8 Hz, NPh,, 4H), 7.06-7.12 (m,
NPh, biph+NPh,, 8H), 2.79 (br g, J = 9.2 Hz, PCys, 3H), 1.92-1.96 (m, PCys, 12H), 1.80 (d, J = 13.2 Hz,
PCys, 3H), 1.41-1.51 (m, PCys, 9H), 1.24-1.28 (m, PCys, 3H). 3'P{*H} NMR (CD,Cl,, 298 K; &): 29.89 (s, P*Cys,
1P). 3C NMR (CD,Cl;, 298 K; 8): 149.04 (s), 147.22 (s), 146.60 (s), 133.42 (d), 131.14 (s), 129.50 (s), 128.13 (s),
128.00(s), 125.18(s), 123.82(s), 122.65(s), 110.32 (s), 109.72 (s), 29.83 (d), 26.74 (s), 26.68 (s), 26.58 (s), 25.52
(s). *F{*H} NMR (CD,Cl,, 298 K; 6): -78.84(s). Anal. Calc. for C43Hs:FsNOsPS Calculated: C, 68.87; H, 6.86; N,
1.87;S, 4.28; Found: C, 68.99; H, 6.71; N, 1.69; S, 4.11.
%)phs (6[OTf]) Prepared from 7-bromo-9,10-dihydro-N,N-diphenyl-2-phenanthrenamine (223 mg,
O 0.54 mmol), triphenylphosphine (149 mg, 0.57 mmol), nickel(ll)bromide (24 mg, 0.11 mmol),
%Tf and 3 ml of ethylene glycol to afford yellow solid (257 mg, 80 %). ESI-MS (m/z): [M]* 596.2508
O (caled 596.2502). *H NMR (CD,Cl,, 298 K; 6): 7.91 (t, J = 7.2 Hz, PPhs, 3H), 7.76 (td, J = 7.9, 3.5
NPh, Hz, PPhs, 6H), 7.65 (dd, J = 12.9, 7.6 Hz, biph+PPhs, 6H), 7.57 (dd, J = 7.7, 3.8 Hz, biph, 1H), 7.43
(t,J=11.0 Hz, biph, 2H), 7.19-7.34 (m, NPhy+biph, 6H), 7.00-7.17 (m, NPh,+biph, 8H), 2.38 (s, Me, 3H). 31P{1H}
NMR (CD,Cl,, 298 K; 6): 23.48 (s, P*Phs, 1P). 33C NMR (CDCl,, 298 K; 6): 149.26 (s), 148.13 (s), 147.42 (s),

138.76 (d), 136.06 (s), 135.98 (s), 134.52 (d), 129.77 (s), 129.47 (s), 125.00 (s), 123.60 (s), 122.38 (s), 118.30
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(s), 117.59 (s), 115.39 (s), 114.67 (s), 20.89 (s). *F{*H} NMR (CDCl,, 298 K; &): -78.60 (s). Anal. Calc. for

CasaH3sFsNOsPS Calculated: C, 70.86; H, 4.73; N, 1.88; S, 4.30; Found: C, 70.99; H, 4.70; N, 1.71; S, 4.80.

%)Ph3 (7[OTf]). Prepared from 7-Bromo-9,10-dihydro-N,N-diphenyl-2-phenanthrenamine (420 mg,
O 0.99 mmol), triphenylphosphine (270 mg, 1.0 mmol), nickel(ll)bromide (43 mg, 0.20 mmol),

‘ %)Tf and 6 ml of ethylene glycol to afford yellow solid (480 mg, 71 %). ESI-MS (m/z): [M]* 608.2497

(calcd 608.2502). *H NMR (CD,Cl,, 298 K; 6): 7.94-7.87 (m, 4H, -P*Ph; + -C¢Hs-), 7.77-7.71 (td,

NPh, Jun 7.8 Hz, 3.5 Hz, 6H, -P*Phs), 7.67-7.59 (m, 7H, -P*Phs + -C¢H3-), 7.42 (ddd, Jun 12.7 Hz, 8.1 Hz,

1.9 Hz, 1H, -CgHs-), 7.36-7.27 (m, 5H, -NPh;, + -CgH3-), 7.14-7.08 (m, 6H, -NPh,), 6.96 (dd, Juu 8.6 Hz, 2.5 Hz,

1H, -CHs-), 6.90 (d, Jun 2.4 Hz, 1H, -CsH3-), 2.88-2.82 (m, 2H, -CH,-CH,-), 2.80-2.74 (m, 2H, -CH,-CH,-). 3'P{*H}

NMR (CD,Cly, 298 K; 8): 23.34 (s, P*Phs, 1P). 3C NMR (CD,Cl,, 298 K; &): 149.63, 147.02, 142.10, 139.66, 138.98

(d), 135.61 (d), 134.45 (d), 133.34 (dd), 130.57 (d), 129.52, 125.81, 125.47, 125.15, 124.49 (d), 124.05, 120.94,

120.61, 118.52, 117.81, 113.25, 112.51, 28.96, 28.45. *F{*H} NMR (CD,Cl,, 298 K; 6): —78.88 (s). Anal. Calc.
for CasH3sF3sNOsPS Calculated: C, 71.32; H, 4.66; N, 1.85; S, 4.23; Found: C, 72.47; H, 4.97; N, 1.85; S, 2.81.

X-ray single-crystal structure determination

The crystal of 5[Br] was immersed in a film of NVH oil, mounted on a polyimide microloop (MicroMounts
of MiTeGen), transferred to a stream of cold nitrogen (Bruker Kryoflex2), and measured at a temperature of
150K. The X-ray diffraction data were collected on a Bruker D8 Venture diffractometer with a CMOS Photon
100 and multilayer optics monochromated MoKa (0.71073 A) radiation (INCOATEC microfocus sealed tube).
The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The
APEX3 v2018.7-0 program package was used for cell refinements and data reductions. The structure was
solved using intrinsic phasing method”®, refined and visualized with the OLEX2-1.3 and Diamond-4.6.4
programs. A semiempirical absorption correction (SADABS) was applied to all data. All non-hydrogen atoms
were refined anisotropically. Hydrogen atoms were included in structure factors calculations. All Hydrogen

atoms were assigned to idealized geometric positions.
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Table S1 Crystal data and structure refinement parameters for 5[Br].

Identification code 5[Br]

CCDC number 2366427

Empirical formula Ca3HssBrNOP

Formula weight 712.76

Temperature/K 150

Crystal system monoclinic

Space group C2/c

a/A 43.754(11)

b/A 9.850(3)

c/A 17.372(5)

o/° 90

B/® 95.708(16)

v/° 90

Volume/A3 7450(3)

z 8

Peacg/cm? 1.271

p/mm-? 1.180

F(000) 3024.0

Crystal size/mm3 0.21 x0.11 x 0.09
Radiation MoKa (A =0.71073)

20 range for data collection/® 1.87 to 51.998

Index ranges -53<h<52,-12<k<12,-18<1<21
Reflections collected 25695

Independent reflections 7149 [Rint = 0.0725, Rsigma = 0.0863]
Data/restraints/parameters 7149/0/426
Goodness-of-fit on F? 0.986

Final R indexes [I>=20 (1)] R:1 =0.0450, wR;, =0.0843
Final R indexes [all data] R1=0.0867, wR, = 0.0962
Largest diff. peak/hole / e A3 0.70/-0.38

@R1=3|[Fol-IFclI/Z|Fol; WR2 = [Z[W(Fo?-F2)?/S[(WFo?)2]]V%; w = 1/[0%(Fo?)+(aP)>+bP], where P = (Fo*+2F:?)/3

®) GooF =S = [[Sw(F.2-F2)2/(m-n)]*2, where m = number of reflexes and n = number of parameters
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2.Steady-state measurements

Steady-state absorption spectra were measured by a UH-5700 (Hitachi) absorbance meter. The light source
was a deuterium lamp with a wavelength of 200~340nm and a xenon lamp with a wavelength of 340~900nm.
We prepared two clean cuvettes (light path 1 ¢cm) containing the same solvent and placed them into the
reference holder and the sample holder. We then calibrated the system using the above settings and ensured
that the baseline noise was below 2x10-3 before measurement. In addition, the absorbance of the sample

was kept around 0.1 to avoid the inner filter effect. (Purity examination results are shown in Fig. S1)
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Fig. S1 Excitation spectra of the salts in toluene. 1[OTf] and 7[OTf] are excited with 415 nm and 400 nm

respectively to avoid interference from impurities.
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Fig. S2 The steady-state spectra of the salts in polar solvents. Absorption spectra are dash line and emission

spectra are solid line.
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Table S2. Steady-state properties of 1[OTf]-7[OTf] in polar solvents.

solvent Aaps (nm) A, (nm) Stokes shift (cm!) PLQY
chloroform 382 462 4533 0.73
1[OTf] | DCM 380 474 5219 0.54
ACN 366 509 7676 0.05
chloroform 405 553 6608 0.51
3[0Tf] | DCM 398 563 7364 0.36
ACN 378 587 9419 0.19
chloroform 343 483 8451 0.74
4[0Tf] | DCM 342 486 8664 0.78
ACN 339 510 9891 0.54
chloroform 374 500 6738 0.82
510Tf] | DCM 375 506 6904 0.78
ACN 359 514 8400 0.68
chloroform 373 513 7316 0.70
6]OTf] | DCM 368 517 7832 0.72
ACN 350 547 10290 0.46
chloroform 407 511 5001 0.73
7|0Tf] | DCM 402 516 5496 0.74
ACN 386 540 7388 0.57

Steady-state emission and excitation spectra were measured by an FLS980 (Edinburgh) fluorometer. The
light source was a Xenon arc lamp, and the detector was a visible light PMT (R928P, Hamamatsu Photonics)
which was suitable to the wavelength range 200 ~ 900 nm. The output emission spectrum has been corrected
according to an emission correction file to eliminate wavelength-dependent responses of the detector. The
excitation correction was performed by dividing the emission signal with the excitation signals from the
reference detector after the excitation monochromator. The photoluminescence quantum yield (PLQY) of the
sample was compared with the standard coumarin 480 in methanol (D = 87%°) and was obtained by the
following formulal®

&; 0Di X F, X n?
@y ODg X F X112
where the subscripts S and R represent sample and reference, while @, OD, F, and n stand for PLQY, the

absorbance at excitation wavelength, integral of emission spectra, refractive index.
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(2)
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Fig. S3 (a) Fitting data of the emission spectra in the toluene except 4[OTf]. (b) 4[OTf] is fitted with three and

two Gaussian functions, and the former is more reasonable because an emission peak at about 23224 cm™

was observed in the TRES results (183.12 ps).

Toluene, chloroform, dichloromethane (DCM), and acetonitrile (ACN) were solvents for UV/vis

spectroscopy (Merck). The purity of ethylbenzene, cumene, n-propylbenzene, and sec-butylbenzene was 98

~ 99 % and the impurities in solvents did not affect our spectroscopic measurements (Fig. S4).
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Fig. S4 Steady-state measurement in the weakly polar solvents (toluene, ethylbenzene, cumene, n-

propylbenzene, sec-butylbenzene). (a) exhibits the absorption spectra, while (b) exhibits the emission spectra.
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3.Time-resolved measurements

The time-correlated single photon counting (TCSPC) technique was employed for picosecond to
nanosecond lifetime measurements using the OB-900L lifetime spectrometer from Edinburgh. The excitation
pulse was generated by second harmonic generation (SHG) of an 82 MHz femtosecond Ti:Sapphire-based
oscillator (Spectra-Physics) and we tuned the pulse repetition rate by the pulse picker (model 3980, Spectra-
Physics). Sample fluorescence was collected perpendicular to the excitation light path. A half-wave plate,
which was set as 54.7° (magic angle) relative to the excitation pulse polarization, was placed between the
sample and the detector. The delayed time of fluorescence was recorded using a time-to-amplitude converter
(TAC), with the residual fundamental frequency (FF) and the sample fluorescence serving as the start and
stop signals, respectively. To enhance temporal resolution, we integrated the TCSPC system with a
multichannel plate (MCP), replacing the regular photomultiplier, thereby reducing the temporal resolution to
15~20 ps.

Table S3 Lifetime information of 1[OTf] in the weakly polar solvents

1]OT{] T at 460 nm (ps) T at 650 nm (ps)
46.90 (0.84) 82.94 (-0.40)
Toluene 336.7 (0.16) 1035 (0.60)
34.46 (0.81) 80.91 (-0.43)
Ethylbenzene 296.2 (0.19) 1014 (0.57)
45.29 (0.87) 73.02 (-0.50)
Cumene 442.4 (0.13) 1022 (0.50)
34.93 (0.85) 81.84 (-0.46)
Sec-butylbenzene 354.2(0.15) 1144 (0.54)

Table S4 Lifetime information of 3[OTf] in the weakly polar solvents

310TH] T at 450 nm (ps) T at 700 nm (ps)
42.38 (0.70) 403.9 (-0.47)
Toluene 567.1(0.30) 1569 (0.53)
46.30(0.72) 394.8 (-0.47)
Ethylbenzene 653.4(0.28) 1618 (0.53)
51.12(0.72) 435.7(-0.47)
Cumene 762.2 (0.28) 1643 (0.53)
49.58 (0.73) 461.2 (-0.47)
N-propylbenzene 783.2(0.27) 1615 (0.53)
56.13(0.74) 499.2 (-0.47)
Sec-butylbenzene 945.3 (0.26) 1876 (0.53)
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Table S5 Lifetime information of 4[OTf] in the weakly polar solvents

4|OTH] T at 440 nm (ps) T at 680 nm (ps)
69.23 (0.60) 495.5(-0.41)
Toluene 560.5(0.37) 5918 (0.59)
4900 (0.03)
63.82(0.59) 504.5(-0.41)
Ethylbenzene 550.9(0.38) 5934 (0.59)
5083 (0.03)
88.78 (0.62) 490.6 (-0.41)
Cumene 688.2(0.35) 6137(0.59)
4776 (0.03)
122 (0.61) 590.1(-0.39)
Sec-butylbenzene 876.7(0.36) 6375(0.61)
5323 (0.03)
Table S6 Lifetime information of 5[OTf] in the weakly polar solvents
5]0TH] T at 440 nm (ps) T at 650 nm (ps)
883 (0.64) 930.8 (-0.49)
Toluene 3000 (0.36) 3415(0.51)
995.2 (0.63) 1028 (-0.48)
Ethylbenzene 3111(0.37) 3430(0.52)
1118 (0.66) 1220 (-0.47)
Cumene 3101 (0.34) 3548 (0.53)
1273 (0.64) 1389 (-0.47)
Sec-butylbenzene 2984 (0.36) 3735(0.53)
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Table S7 Lifetime information of 6[OTf] in the weakly polar solvents

6]OTH] T at 440 nm (ps) T at 680 nm (ps)

66.08 (0.54) 299.7 (-0.46)

Toluene 398.4 (0.46) 4272 (0.54)
91.33(0.53) 338.4(-0.47)

Ethylbenzene 484.1(0.47) 4199 (0.53)
94.99 (0.58) 362.3 (-0.46)

Cumene 582.7(0.42) 4280 (0.54)
112.85(0.57) 392.2 (-0.46)

N-propylbenzene 620.0(0.43) 4337 (0.54)
114.1(0.58) 464.5 (-0.47)

Sec-butylbenzene 741.0(0.42) 4431 (0.53)

Table S8 Lifetime information of 7[OTf] in the weakly polar solvents
710TH] T at 440 nm (ps) T at 680 nm (ps)

384.1(0.96) 436.2 (-0.49)

Toluene 2944 (0.04) 3851 (0.51)
408.4 (0.97) 441.2 (-0.49)

Ethylbenzene 2603 (0.03) 3937(0.51)
467.8 (0.95) 525.1(-0.48)

Cumene 2012 (0.05) 3981 (0.52)
445.1 (~0.99) 663.4 (-0.48)

Sec-butylbenzene 4052 (0.52)
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Time-resolved emission spectra (TRES)'! in weakly polar solvents were calculated by

IO = F(o/lo) xI(4,¢t)
Jy 1A, tdt
I(A,t) is the emission intensity decay at different wavelengths from TCSPC measurements, F(4) is the
steady-state emission intensity at certain wavelength, and I'(4,t) is the result. By substituting the specific
time into I'(4,t), the emission spectrum at this moment can be obtained. Next, we normalized each area of
TRES to a constant value. Note that, since we cannot obtain TRES over the complete spectral wavelength
range, we calculated the area of each spectrum according to Gaussian function fitting. In this way, all spectra
would possess equal areas. If the reaction is strictly a two-state process, we would observe a distinct iso-
emissive point.** Our results (Fig. 2(a) and S5(a)) confirm that anion migration involves multiple emitting
species. In order to obtain the time evolution of the Stokes shift of the long-wavelength emission peak and
calculate the spectral response function C(t) of anion migration, we selected the time-dependent emission
spectrum after 100 ps and fitted it with two Gaussian functions (single Gaussian function fitting for 4[OTf]).
The gradually red-shifted emission peaks are taken as v(t). The v(o) value is given by the longest
wavelength emission peak from steady-state measurement or the minimum value of v(t). Consequently, we
restrict the C(t) value between 0 and 1. After removing the deviation points, the C(t) is fitted with a
single exponential function. Noteworthy, we believe excited-state intramolecular charge transfer is no longer
significant after 100 ps, so the only factor to influence the charge transfer state of solute is anion, i.e., anion
migration occurs after completion of ESICT. As for the solvent relaxation of 3[OTf] in DCM, we select the TRES

around 1 ps as the starting point and the remaining fitting process is the same as 4[OTf] in toluene.
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Fig. S5 (a) The TRES of 5[0Tf], 6[0Tf], and 7[OTf]. We normalized the area of each spectrum to the same
value.! (b)The spectral response functions C(t) of 5[OTf], 6[OTf], and 7[OTf].
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Fig. S6 Details of translocation rate fitting and relationship between translocation rate of 3[OTf] and viscosity.

(a) shows the fitting of C(t) and (b) shows the rate-viscosity correlation of 3[OTf].
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Fig. S7 Details of translocation rate fitting and relationship between translocation rate of 4[0Tf] and viscosity.

(a) shows the fitting of C(t) and (b) shows the rate-viscosity correlation of 4[OTf].
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Fig. S8 Details of translocation rate fitting and relationship between translocation rate of 5[0Tf] and viscosity.

(a) shows the fitting of C(t) and (b) shows the rate-viscosity correlation of 5[OTf].
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Fig. S9 Details of translocation rate fitting and relationship between translocation rate of 6[0OTf] and viscosity.

(a) shows the fitting of C(t) and (b) shows the rate-viscosity correlation of 6[OTf].
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Fig. $10 Details of translocation rate fitting and relationship between translocation rate of 7[OTf] and viscosity.

(a) shows the fitting of C(t) and (b) shows the rate-viscosity correlation of 7[OTf].
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Temperature-dependent lifetime measurements were conducted using temperature controller and

variable temperature cell holder from Specac. To maintain the viscosity of the environment, we utilized

toluene, ethylbenzene, cumene, n-propylbenzene, and sec-butylbenzene at different temperatures. (Table

S9)*? Viscosity-dependent lifetime measurements were also performed in the same pure solvents but at the

constant temperature (20~21°C, room temperature).
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Fig. S11 Translocation rate fitting details of 3[OTf] at different temperatures and solvents to maintain

invariable viscosity: (a) shows the fitting of C(t) at different temperatures and (b) shows the Arrhenius plot of

3[OTf].
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Table S9 Viscosity of weakly polar solvents at different temperatures.!?

Temperature (K) Viscosity (cP)
294.15 0.5964
Toluene
267.15 0.8487
294.15 0.6751
Ethylbenzene
276.15 0.8417
294.15 0.7877
Cumene
287.15 0.8637
b 294.15 0.8417
n-pro enzene
PIOPY 293.15 0.8534
294.15 0.9669
sec-butylbnezene
302.15 0.8611

We study the solvent relaxation dynamics of 3[OTf] in DCM by FOG 100 up-conversion setup (CDP). The
light source is produced by a Ti:Sapphire seed laser (Element 2, Spectra-Physics) coupled with a regeneration
amplifier (Spifire Ace, Spectra-Physics) with a wavelength 800 nm and a frequency 1 kHz. Using the same
method as TCSPC to obtain the excitation pulse 400 nm and gate pulse 800 nm. These two pulses are split
into two different light paths, and we again use half-wave plate to set the polarization angle between these
two pulses at magic angle. The excitation pulse travels through a rotating cell and generates the fluorescence.
While the gate pulse is controlled by a retroreflector coupled to a delay stage and determines the delay time
with respect to the excitation pulse. A BBO crystal is used for sum frequency generation of the focused
fluorescence signal and the gate pulse. The experimental full width at half maximum (FWHM) of instrument
response function (IRF) is about 90 fs, determined from Raman scattering. By fitting the intensity variations
of the sum-frequency signals at different delay times with a given IRF, lifetime information at specific

wavelength can be obtained.
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Fig. S12 (a) The TRES of 3[OTf] in dichloromethane (DCM) without normalization. (b) The spectral response
function C(t) of 3[OTf]. The time-resolved emission peaks were fitted with a single Gaussian function at each

TRES and the result shows a typical single-exponential decay.
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Fig. S13 (a) Viscosity-temperature correlation of toluene.'®* (AE = 2.19 kcal/mol and n, = 0.013 mPa - s)
The AE is activation energy of the diffusion in the viscous liquid, while 7, is called pre-exponential factor

or entropic factor is related to viscosity under gas phase.**>
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4.Computational information

Computation study on phosphonium cations was performed by the Gaussian 16 package®. The structural
optimization of ground state (So) were calculated by the density functional theory (DFT) at M06-2X/6-
31+G(d,p)*"*8 level with a polarizable continuum model (PCM)?* in toluene solvents. And the time-dependent
density functional theory (TDDFT) calculations for transition energies and optimized structures in the lowest
singlet excited state (S;’) were carried out with the same functional and basis set. The output results from
DFT/TDDFT calculations were subsequently employed in the Multiwfn?® program to complete the following

calculations.

Hole-electron distribution?! of cation was analyzed by Multiwfn. We used the optimized ground state
structure to calculate the hole-electron distribution for the So—S;, while the So’—S,’ transition was calculated
using the optimized excited state structure. The definitions and indices for investigating charge transfer
characteristics of cations are introduced below and details can refer to the manual of Multiwfn.

First, p"°%(r) and p®°‘(r) indicate the density distribution of hole and electron. They are defined as:

P = ) D WG @e ) + ) > wiwte ), ()
i a i j#i a
occ vir occ vir vir
P = ) N W PR + ) DY wiwb (1), (1)
i a i a a#b

where i/j and a/b are indices which represent the occupied and virtual molecular orbital (MO)
respectively. w is the configuration coefficient of excitation. ¢ isthe MO wavefunction. ris position vector.
(Bold letters indicate vectors)

Sr exhibits the overlap of electron and hole density distributions:

S, index = fSr(r)dr = fw/ph"’e(r)pe’ec(r)dr

D index means the centroid distance between hole and electron:

D index = \/|Xelec - Xhole|2 + |Yelec - Yholel2 + |Zelec - Zholel2

Here, X/Y/Z is coordinate of centroid of hole or electron. For example:

KXetec = fxpeleco,.)dr

and other coordinates can be shown in a similar manner.

The root-mean-square deviation (RMSD) of hole and electron reflect the extent of spatial distribution:

s = | [ = Xpa)2pP1e)ar

Oeclec,d = f(x - Xelec)zpdec(r)dr

A canbesetasx,y, z.
H index implies the average degree of spatial extension:

Hindex = (|G potel + |Oetec])/2
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where |0p,.| and |o,| are magnitude of overall RMSD of hole and electron.
tindex shows the separation degree of hole and electron in CT direction:
tindex = D index — H¢p
Note that H.r is expressed as:
Her = |H - ucrl
Hy = (Onoten + Oetec,1)/2

and ucr is the unit vector in CT direction.

Table $10 Hole-electron analysis on the cations at the So—S; transition in the toluene. We performed the

calculation using the optimized structures of the cations in the ground state.

Si—S, S, Dindex (A) Hindex (A)  tindex (A)
1 0.5755 4.246 3.355 1.306
2 0.6197 3.971 3.701 0.742
3 0.5883 4.632 3.836 1.320
4 0.5304 4.963 3.584 1.869
5 0.6320 3.690 3.652 0.502
6 0.5844 4.316 3.659 1.152
7 0.6346 3.950 3.843 0.578

Fig. S14 Hole-electron distribution maps of the cations at So—S; transition in the toluene. Blue means the

hole distribution and green means the electron distribution. All the surface of isovalue of map is set to 0.002.
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Table S11 Hole-electron analysis on the cations at the So’—S;’ transition in the toluene. We performed the

calculation using the optimized structures of the cations in the relaxed excited state.

So’ =S/’ S, Dindex (A) Hindex(A)  tindex(A)
1 0.5349 4.144 3.395 1.150
2 0.5654 4.294 3.830 0.959
3 0.5179 5.133 3.935 1.793
4 0.5757 4.373 3.824 0.980
5 0.6028 3.741 3.707 0.512
6 0.5454 4.476 3.639 1.333
7 0.5731 4.236 3.694 1.004

Fig. S15 Hole-electron distribution maps of the cations at the So’—S,’ transition in the toluene. Blue means
the hole distribution and green means the electron distribution. All the surface of isovalue of map is set to

0.002.
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The atomic charges were determined by restrained electrostatic potential (RESP)?223 calculation in
Multiwfn. We also used Visual molecular dynamics (VMD) to visualize the electrostatic potential maps of the
cations based on the RESP calculations. By this method, we could distinguish the strength of donor or
acceptor obviously. The translocation rate of anion is influenced by the Coulomb interaction between the
anion and the atoms belonging to the donor/acceptor. Our proposed models (Fig. $18-S20) maintain a
distance of 6 A between the negative charge center ([OTF]- anion) and the phosphorus (acceptor) or nitrogen
(donor) atom. The resultant force acting on the negative charge center (Table S12) can be used as an indicator

to determine the positive charge localization of cation backbone.

ESP(kcal/mol)

\
X

3.90 X 10'1°N

Fig. S16 Electrostatic potential maps of the cations in Group B calculated by the restrained electrostatic
potential (RESP) method. We also exhibit the coulombic interaction between the anion and the atoms of

acceptor here. (see model in Fig. S19)
(a) 6 2

4
% ‘u -

2.08 x 10"1°N ; 3
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l P 5
(b) 2 7

B O } B N 7

2.57x 101N J’J 2.43x 10°1ON

1.84 x 1071°N

ESP(kcal/mol)
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/7
|
Ji\'\
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Fig. S17 (a) Electrostatic potential maps of the cations in Group C calculated by the restrained electrostatic
potential (RESP) method. We also exhibit the coulombic interaction between the anion and the atoms of

acceptor in (a) and (b). (see models in Figure S20(a) and (b))
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Table S12 The net electrostatic interaction acting on the negatively charged center based on models in Figure
$18-S20.

Coulomb force (10-1°N)
2.81
1.84
1.76
1.48
2.08
1.84
3.12
3.90
2.57
2.43

(a)

(b)

N RN RS R W N -

(c)

(a) is calculated using a model where the negative charge center is perpendicular to the donor plane, and the
distance between the negative charge center and the nitrogen (blue) atom is fixed at 6 A, e.g., 1 in the Fig.
S18. (b) is calculated using a model where the distance between the negative charge center and the
phosphorus atom is kept at 6 A along the z-axis (CT direction), e.g., 5 in the Fig. $19. (c) is calculated using a
model where the distance between the negative charge center and the nitrogen atom is kept at 6 A along the

z-axis (CT direction), e.g., 2 in Fig. S20(b).

Fig. S18 The models of Group A cations for calculating Coulomb interaction. The negative charge center
(green) is located normal to the donor plane (labeled with red tick), with the distance between the negative
charge center and the nitrogen (blue) atom is fixed at 6 A. The net Coulomb interaction acting on the negative
charge center is calculated with respect to the other atoms within the red frame (the same as Fig. S19 and

S20).
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Fig. $19 The models of Group B cations for calculating Coulomb interaction. The negative charge center (green)
is placed along the z-axis (CT direction), with the distance between the negative charge center and the

phosphorus (orange) atom is fixed at 6 A.

Fig. S20 (a) The models of Group C cations for calculating Coulomb interaction. The negative charge center
(green) is located normal to the donor plane (labeled with red tick), with the distance between the negative
charge center and the nitrogen (blue) atom is fixed at 6 A. (b) To eliminate the influence of the positive charge
on the biphenyl bridge, we place the negative charge center along the z-axis (CT direction), maintaining a 6
A distance between the negative charge center and the nitrogen atom. This ensures that the biphenyl bridge
is far from the negatively charged center compared to the former and the results show that 2 has stronger

Coulomb interaction acting on the negative charge center.
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Table S13 The dipole moment of cation backbone in the ground state (So) and excited state (S:’) after

relaxation. Note: The calculation does not include the counter anion. The discrepancy between the

experimental and computational results may be due to the influence of anion. (unit: debye)

Dipole moment in So Dipole momentin S;’

1

N o o N

5.3287
17.1897
23.6586
20.8944
15.4845
17.3755
16.7723

11.7234
0.9481
2.6289
0.2320
1.6648
1.7431
1.4013
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Fig. $21 The left column displays the permanent dipole moments of the entitled compounds (1-7) optimized
in the ground state (S:’). The right column presents the permanent dipole moments of the same structures

optimized in the excited state (S;) which are mark as 1'-7".
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Fig. S22 In the S1 state, the anion translocation process of compound 1 effectively reduces the energy level,

resulting in a red-shift in the emission (from 390.38 nm to 453.04 nm).
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5.NMR Appendix
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Fig. $23 'H NMR spectrum of al, measured in CDCl; at 298K.
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Fig. S24 13C NMR spectrum of al, measured in CDCl; at 298K.
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Fig. $25 'H NMR spectrum of 1[OTf], measured in CD,Cl, at 298K.
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Fig. $26 3C NMR spectrum of 1[OTf], measured in CD,Cl, at 298K.
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Fig. S27 3P NMR spectrum of 1[OTf], measured in CD,Cl, at 298K.
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Fig. S28 'H NMR spectrum of 3[OTf], measured in CD,Cl, at 298K.
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Fig. $29 3C NMR spectrum of 3[OTf], measured in CD,Cl, at 298K.
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Fig. $30 3P NMR spectrum of 3[OTf], measured in CD,Cl, at 298K.
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Fig. S31 'H NMR spectrum of 4[OTf], measured in CD,Cl, at 298K.
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Fig. $32 13C NMR spectrum of 4[OTf], measured in CD,Cl, at 298K.
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Fig. S33 3P NMR spectrum of 4[OTf], measured in CD,Cl, at 298K.
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Fig. S34 'H NMR spectrum of 5[OTf], measured in CD,Cl, at 298K.
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Fig. $36 3P NMR spectrum of 5[OTf], measured in CD,Cl, at 298K.
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Fig. S37 'H NMR spectrum of 6[OTf], measured in CD,Cl, at 298K.
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Fig. $39 3P NMR spectrum of 6[0Tf], measured in CD,Cl, at 298K.
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Fig. S40 'H NMR spectrum of 7[OTf], measured in CD,Cl, at 298K.
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Fig. S41 3C NMR spectrum of 7[OTf], measured in CD,Cl, at 298K.
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Fig. S42 3P NMR spectrum of 7[OTf], measured in CD,Cl, at 298K.
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