Catalytic Enantioselective Synthesis of 2-Pyrazolines via One-Pot Condensation/6π-Electrocyclization: 3,5-Bis(Pentafluorosulfanyl)phenylthioureas as Powerful Hydrogen Bond Donors

Moises A. Romero Reyes,¹ Subhradeep Dutta,¹ Minami Odagi,¹ Chang Min,² and Daniel Seidel^{1,*}

 ¹ Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States.
² Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States

* Correspondence to: seidel@chem.ufl.edu

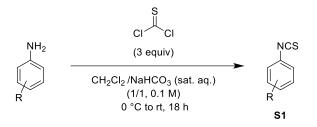

Supporting Information

Table of Contents

General Information	-2
General Procedure A for the Preparation of Isothiocyanates	-3
Characterization Data for Isothiocyanates	-4
General Procedure B for the Preparation of Aminoalcohol-Derived Thioureas	-8
Characterization Data for Aminoalcohol-Derived Thioureas	-9
General Procedure C for the Preparation of CBSCA Catalysts	5
Characterization Data for CBSCA Catalysts	6
Synthesis and Characterization of Takemoto-Type Catalyst	22
General Procedure D for the Catalytic Enantioselective Synthesis of 2-Pyrazolines	23
Characterization Data for Products	24
Enantioselective Michael Addition of Dimethyl Malonate to <i>trans</i> -β-Nitrostyrene	4
References	15
SFC Profiles	16
NMR Spectra	57

General Information: Reagents were purchased from commercial sources and were purified by distillation or recrystallization prior to use. Toluene was dried using a JC Meyer solvent purification system. Purification of reaction products was carried out by flash column chromatography using Sorbent Technologies Standard Grade silica gel (60 Å, 230–400 mesh). Analytical thin layer chromatography was performed on EM Reagent 0.25 mm silica gel 60 F254 plates. Visualization was accomplished with UV light and Dragendorff-Munier stains, followed by heating. Proton nuclear magnetic resonance spectra (¹H-NMR) were recorded on Bruker 400 MHz and 600 MHz instruments, and chemical shifts are reported in ppm using the solvent as an internal standard (CDCl₃ at 7.26 ppm, (CD₃)₂SO at 2.50 ppm). Data are reported as app = apparent, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, comp =complex, br = broad; coupling constant(s) in Hz. Proton-decoupled carbon nuclear magnetic resonance spectra (^{13}C -NMR) were recorded on Bruker 400 MHz and 600 MHz instruments and chemical shifts are reported in ppm using the solvent as an internal standard (CDCl₃ at 77.0 ppm, (CD₃)₂SO at 39.52 ppm). High resolution mass spectra (HRMS) were obtained from an Agilent 6230 ESI-TOF instrument. Supercritical fluid chromatography (SFC) analysis was carried out on an Agilent 1260 Infinity II series instrument with auto sampler and multiple wavelength detectors. Optical rotations were measured using a 1 mL cell with a 1 dm path length on a Jasco P-2000 polarimeter at 589 nm and at 20 °C. α , β -Unsaturated ketones were prepared according to established procedures.¹ 3,5-Bis(pentafluoro- λ^6 sulfanyl)aniline was prepared according to a literature report.²

General Procedure A for the Preparation of Isothiocyanates

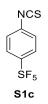
To an ice cooled solution of the corresponding aniline (1 mmol, 1 equiv) in a mixture of saturated aqueous NaHCO₃ and CH₂Cl₂(1:1, 5 mL/5 mL) was added thiophosgene (3 mmol, 3 equiv) under stirring. The resulting mixture was then allowed to warm to room temperature and stirred until the aniline was consumed as indicated by TLC (18 h). The layers were then separated, and the aqueous layer was extracted with CH₂Cl₂(3×10 mL). The combined organic layers were then dried over anhydrous Na₂SO₄, concentrated, and the residue purified by silica gel chromatography (using 2% EtOAc in hexanes as eluent).

(5-Isothiocyanato-1,3-phenylene)bis(pentafluoro-λ⁶-sulfane)

To an ice cooled solution of 3,5-bis(pentafluoro- λ^6 -sulfanyl)aniline (690 mg, 2 mmol) in a mixture of saturated aqueous NaHCO₃ and CH₂Cl₂(1:1, 10 mL/10 mL) was added thiophosgene (0.46 mL, 6 mmol, 3 equiv) under stirring. The resulting mixture was then allowed to warm to room temperature and stirred for 18 h, then transferred to a separatory funnel. The layers were then separated and the aqueous layer was extracted with CH₂Cl₂(3 × 20 mL). The combined organic layers were then dried over anhydrous Na₂SO₄, concentrated, and the residue purified by silica gel chromatography (using 2% EtOAc in hexanes as eluent) to provide **S1b** as a beige solid in 94% yield (728 mg).

Characterization data for S1b:

 $\mathbf{R}_{\mathbf{f}} = 0.70$ in hexanes/EtOAc 95:5 v/v.


mp = 102 - 104 °C.

¹**H** NMR (600 MHz, CDCl₃): $\delta = 8.03-7.99$ (m, 1H), 7.74 (d, J = 1.86 Hz, 2H).

¹³C NMR (150 MHz, CDCl₃): $\delta = 154.2$ (p, $J_{C-F} = 20.6$ Hz), 141.7, 133.7, 126.5–126.2 (m), 122.2.

¹⁹**F-NMR** (377 MHz, CDCl₃): δ = 80.25 (p, *J*_{*F*-*F*} = 151.1 Hz, 2F), 63.01 (d, *J*_{*F*-*F*} = 151.3 Hz, 8F).

Pentafluoro(4-isothiocyanatophenyl)- λ^6 -sulfane

Following general procedure A, compound **S1c** was obtained from 4-(pentafluoro- λ^6 -sulfanyl)aniline (219 mg, 1 mmol, 1 equiv) and thiophosgene (0.23 mL, 3 mmol, 3 equiv) as a beige solid in 93% yield (243 mg).

Characterization data for S1c:

 $\mathbf{R_f} = 0.75$ in hexanes/EtOAc 95:5 v/v.

mp = 82–84 °C.

¹**H NMR** (600 MHz, CDCl₃): δ = 7.77–7.73 (m, 2H), 7.28 (d, *J* = 8.7 Hz, 2H).

¹³C NMR (150 MHz, CDCl₃): $\delta = 151.7$ (p, $J_{C-F} = 18.5$ Hz), 139.1, 134.8, 127.6 (p, J = 4.5 Hz), 125.7.

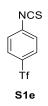
¹⁹**F-NMR** (565 MHz, CDCl₃): δ = 83.40 (p, *J*_{*F*-*F*} = 150.6 Hz, 1F), 63.07 (d, *J*_{*F*-*F*} = 150.4 Hz, 4F).

Pentafluoro(3-isothiocyanatophenyl)- λ^6 -sulfane

Following general procedure A, compound **S1d** was obtained from 3-(pentafluoro- λ^6 -sulfanyl)aniline (219 mg, 1 mmol, 1 equiv) and thiophosgene (0.23 mL, 3 mmol, 3 equiv) as a beige solid in 97% yield (253 mg).

Characterization data for S1d:

 $\mathbf{R_f} = 0.72$ in hexanes/EtOAc 95:5 v/v.


 $mp = 88-90 \ ^{\circ}C.$

¹**H NMR** (600 MHz, CDCl₃): δ = 7.68–7.64 (m, 1H), 7.60 (app t, *J* = 1.9 Hz 1H), 7.47 (app t, *J* = 8.2 Hz, 1H), 7.37 (app d, *J* = 7.9 Hz, 1H).

¹³**C** NMR (150 MHz, CDCl₃): $\delta = 154.4$ (p, $J_{C-F} = 18.1$ Hz), 138.7, 132.4, 129.8, 128.6, 124.5 (p, $J_{C-F} = 4.7$ Hz), 123.5 (p, $J_{C-F} = 4.8$ Hz).

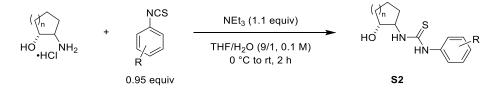
¹⁹**F-NMR** (565 MHz, CDCl₃): δ = 82.60 (p, *J*_{*F*-*F*} = 150.5 Hz, 1F), 62.68 (d, *J*_{*F*-*F*} = 150.6 Hz, 4F).

1-Isothiocyanato-4-((trifluoromethyl)sulfonyl)benzene

Following general procedure A, compound **S1e** was obtained from 4-((trifluoromethyl)sulfonyl)aniline (225 mg, 1 mmol, 1 equiv) and thiophosgene (0.23 mL, 3 mmol, 3 equiv) as a beige solid in 94% yield (251 mg).

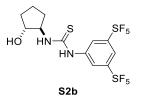
Characterization data for S1e:

 $\mathbf{R_f} = 0.70$ in hexanes/EtOAc 95:5 v/v.


mp = 71-73 °C.

¹**H NMR** (600 MHz, CDCl₃): $\delta = 8.03$ (d, J = 8.7 Hz, 2H), 7.50–7.43 (m, 2H).

¹³**C NMR** (150 MHz, CDCl₃): δ = 141.5, 140.2, 132.5, 129.0, 126.9, 119.67 (q, J_{C-F} = 325.6 Hz).


¹⁹**F-NMR** (565 MHz, CDCl₃): $\delta = -78.20$.

General Procedure B for the Preparation of Aminoalcohol-Derived Thioureas

To an ice cooled solution of the amino alcohol hydrochloride in THF/H₂O (9:1, 0.1 M) was added triethylamine (1.1 equiv), followed by isothiocyanate (0.95 equiv). The resulting mixture was then allowed to warm to room temperature and stirred for 2 h, then transferred to a separatory funnel. EtOAc (20 mL) was added, and the mixture washed with 1 M HCl (20 mL x 2). The combined aqueous layers were extracted with EtOAc (20 mL x 2), and the combined organic layers washed with brine (20 mL) and dried over anhydrous Na₂SO₄. Solvent was then removed under reduced pressure and the residue purified by silica gel chromatography (using 30% EtOAc in hexanes as eluent).

$1-(3,5-Bis(pentafluoro-\lambda^6-sulfanyl)phenyl)-3-((1R,2R)-2-hydroxycyclopentyl)thiourea$

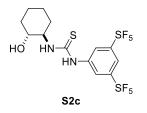
To an ice cooled solution of (1R, 2R)-2-aminocyclopentan-1-ol hydrochloride (248 mg, 1.8 mmol) in THF/H₂O (9:1, 16.5 mL/1.5 mL) was added triethylamine (0.28 mL, 1.98 mmol, 1.1 equiv), followed by isothiocyanate **S1b** (662 mg, 1.71 mmol, 0.95 equiv). The resulting mixture was then allowed to warm to room temperature and stirred for 2 h, then transferred to a separatory funnel. EtOAc (50 mL) was added, and the mixture washed with 1 M HCl (50 mL x 2). The combined aqueous layers were extracted with EtOAc (50 mL x 2), and the combined organic layers washed with brine (50 mL) and dried over anhydrous Na₂SO₄. Solvent was then removed under reduced pressure and the residue purified by silica gel chromatography (using 30% EtOAc in hexanes as eluent) to provide **S2b** as a white solid in 95% yield (793 mg).

Characterization data for S2b:

 $\mathbf{R}_{\mathbf{f}} = 0.20$ in hexanes/EtOAc 50:50 v/v.

mp = 117–119 °C.

 $[\alpha]_{\rm D}^{20} = +26.13 \text{ (c } 0.5, \text{CHCl}_3\text{)}.$


¹**H NMR** (500 MHz, (CD₃)₂SO): $\delta = 9.98$ (s, 1H), 8.44 (s, 2H), 8.31 (s, 1H), 7.94 (s, 1H), 4.83 (br s, 1H), 4.40–4.20 (m, 1H), 4.04–3.92 (m, 1H), 2.20–1.98 (m, 1H), 1.95–1.76 (m, 1H), 1.75–1.55 (comp, 2H), 1.55–1.31 (comp, 2H).

¹³C NMR (100 MHz, (CD₃)₂SO): $\delta = 180.2, 152.3 - 151.4$ (m), 142.0, 122.4, 116.8, 75.6, 62.3, 32.2, 29.1, 20.3.

¹⁹**F-NMR** (565 MHz, (CD₃)₂SO): δ = 89.12 (p, J_{F-F} = 151.9 Hz, 2F), 68.60 (d, J_{F-F} = 151.9 Hz, 8F).

HRMS (ESI-TOF): Calculated for $C_{12}H_{15}F_{10}N_2OS_3 [M + H]^+$: 489.0181, found 489.0183.

1-(3,5-Bis(pentafluoro-λ⁶-sulfanyl)phenyl)-3-((1R,2R)-2-hydroxycyclohexyl)thiourea

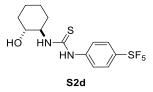
Following general procedure B, compound **S2c** was obtained from (1R, 2R)-2-aminocyclohexan-1-ol hydrochloride (76 mg, 0.5 mmol, 1 equiv) and isothiocyanate **S1b** (184 mg, 0.475 mmol, 0.95 equiv) as a white solid in 93% yield (222 mg).

Characterization data for S2c:

 $\mathbf{R}_{\mathbf{f}} = 0.24$ in hexanes/EtOAc 50:50 v/v.

mp = 139–141 °C.

 $[\alpha]_{\mathbf{D}}^{\mathbf{20}} = +86.67 \text{ (c } 0.5, \text{CHCl}_3\text{)}.$


¹**H** NMR (400 MHz, (CD₃)₂SO): $\delta = 10.03$ (s, 1H), 8.45–8.40 (m, 2H), 8.29 (s, 1H), 7.93 (s, 1H), 4.70 (br s, 1H), 4.08–3.82 (m, 1H), 3.43–3.35 (m, 1H), 2.18–2.01 (m, 1H), 1.94–1.87 (m, 1H), 1.67–1.57 (comp, 2H), 1.34–1.09 (comp, 4H).

¹³C NMR (100 MHz, (CD₃)₂SO): δ = 179.7, 152.3–151.6 (m), 142.0, 122.2, 116.6, 70.8, 59.4, 34.3, 29.9, 24.0, 23.7.

¹⁹**F-NMR** (377 MHz, (CD₃)₂SO): δ = 84.48 (p, J_{F-F} = 152.3 Hz, 2F), 63.92 (d, J_{F-F} = 152.2 Hz, 8F).

HRMS (ESI-TOF): Calculated for $C_{13}H_{17}F_{10}N_2OS_3 [M + H]^+$: 503.0338, found 503.0354.

1-((1R,2R)-2-Hydroxycyclohexyl)-3-(4-(pentafluoro-λ⁶-sulfanyl)phenyl)thiourea

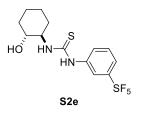
Following general procedure B, compound **S2d** was obtained from (1R, 2R)-2-aminocyclohexan-1-ol hydrochloride (121 mg, 0.8 mmol, 1 equiv) and isothiocyanate **S1c** (198 mg, 0.76 mmol, 0.95 equiv) as a white solid in 95% yield (272 mg).

Characterization data for S2d:

 $\mathbf{R}_{\mathbf{f}} = 0.31$ in hexanes/EtOAc 50:50 v/v.

mp = 125 - 127 °C.

 $[\alpha]_{\rm D}^{20} = +59.76 \text{ (c } 0.5, \text{CHCl}_3\text{)}.$


¹**H NMR** (600 MHz, (CD₃)₂SO): $\delta = 9.83$ (s, 1H), 8.03 (s, 1H), 7.86–7.68 (comp, 4H), 4.75 (br s, 1H), 4.10–3.78 (m, 1H), 3.44–3.35 (m, 1H), 2.24–2.04 (m, 1H), 1.95–1.83 (m, 1H), 1.68–1.55 (comp, 2H), 1.35–1.00 (comp, 4H).

¹³C NMR (150 MHz, (CD₃)₂SO): δ = 179.6, 147.2–146.5 (m), 143.3, 126.3, 120.7, 70.8, 59.3, 34.3, 30.0, 23.9, 23.7.

¹⁹**F-NMR** (565 MHz, (CD₃)₂SO): $\delta = 88.90$ (p, $J_{F-F} = 150.6$ Hz, 1F), 65.03 (d, $J_{F-F} = 150.4$ Hz, 4F).

HRMS (ESI-TOF): Calculated for $C_{13}H_{18}F_5N_2OS_2 [M + H]^+$: 377.0775, found 377.0789.

$1-((1R,2R)-2-Hydroxycyclohexyl)-3-(3-(pentafluoro-\lambda^6-sulfanyl)phenyl)thiourea$

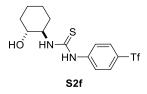
Following general procedure B, compound **S2e** was obtained from (1R, 2R)-2-aminocyclohexan-1-ol hydrochloride (61 mg, 0.4 mmol, 1 equiv) and isothiocyanate **S1d** (99 mg, 0.38 mmol, 0.95 equiv) as a white solid in 92% yield (132 mg).

Characterization data for S2e:

 $\mathbf{R}_{\mathbf{f}} = 0.23$ in hexanes/EtOAc 50:50 v/v.

mp = 149 - 151 °C.

 $[\alpha]_{\rm D}^{20} = +52.37 \text{ (c } 0.5, \text{CHCl}_3\text{)}.$


¹**H NMR** (400 MHz, (CD₃)₂SO): $\delta = 9.73$ (s, 1H), 8.28 (s, 1H), 7.95 (s, 1H), 7.70–7.60 (m, 1H), 7.59–7.46 (comp, 2H), 4.72 (br s, 1H), 4.06–3.81 (m, 1H), 3.44–3.34 (m, 1H), 2.17–2.04 (m, 1H), 1.94–1.83 (m, 1H), 1.70–1.52 (comp, 2H), 1.35–1.02 (comp, 4H).

¹³**C** NMR (100 MHz, (CD₃)₂SO): $\delta = 179.9$, 152.7–152.2 (m), 140.8, 129.2, 125.5, 120.2, 118.9, 70.9, 59.1, 34.3, 30.1, 24.0, 23.7.

¹⁹**F-NMR** (565 MHz, (CD₃)₂SO): $\delta = 87.53$ (p, $J_{F-F} = 150.6$ Hz, 1F), 63.73 (d, $J_{F-F} = 150.6$ Hz, 4F).

HRMS (ESI-TOF): Calculated for $C_{13}H_{18}F_5N_2OS_2 [M + H]^+$: 377.0775, found 377.0791.

1-((1R,2R)-2-Hydroxycyclohexyl)-3-(4-((trifluoromethyl)sulfonyl)phenyl)thiourea

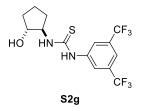
Following general procedure B, compound **S2f** was obtained from (1R, 2R)-2-aminocyclohexan-1-ol hydrochloride (121 mg, 0.8 mmol, 1 equiv) and isothiocyanate **S1e** (203 mg, 0.76 mmol, 0.95 equiv) as a white solid in 95% yield (276 mg).

Characterization data for S2f:

 $\mathbf{R}_{\mathbf{f}} = 0.34$ in hexanes/EtOAc 50:50 v/v.

mp = 101 - 103 °C.

 $[\alpha]_{\mathbf{D}}^{\mathbf{20}} = +98.87 \text{ (c } 0.5, \text{CHCl}_3\text{)}.$


¹**H NMR** (400 MHz, (CD₃)₂SO): $\delta = 10.19$ (s, 1H), 8.43 (s, 1H), 8.10–7.85 (comp, 4H), 4.80 (s, 1H), 4.05–3.85 (m, 1H), 3.48–3.35 (m, 1H), 2.22–2.07 (m, 1H), 1.96–1.84 (m, 1H), 1.72–1.52 (comp, 2H), 1.38–1.00 (comp, 4H).

¹³**C** NMR (100 MHz, (CD₃)₂SO): $\delta = 179.3$, 148.8, 131.9, 120.2, 119.6 (q, $J_{C-F} = 326.1$ Hz), 70.6, 59.5, 34.3, 29.7, 23.9, 23.7.

¹⁹**F-NMR** (377 MHz, (CD₃)₂SO): $\delta = -78.82$.

HRMS (ESI-TOF): Calculated for $C_{14}H_{18}F_3N_2O_3S_2 [M + H]^+$: 383.0705, found 383.0725.

1-(3,5-Bis(trifluoromethyl)phenyl)-3-((1R,2R)-2-hydroxycyclopentyl)thiourea

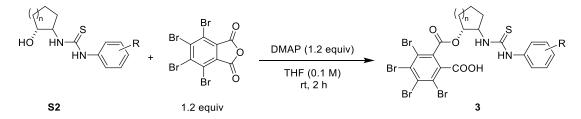
Following general procedure B, compound **S2g** was obtained from (1R, 2S)-2-aminocyclopentan-1-ol hydrochloride (110 mg, 0.8 mmol, 1 equiv) and 3,5-bis(trifluoromethyl)phenyl isothiocyanate (206 mg, 0.76 mmol, 0.95 equiv) as a white solid in 95% yield (269 mg).

Characterization data for S2g:

 $\mathbf{R}_{\mathbf{f}} = 0.34$ in hexanes/EtOAc 50:50 v/v.

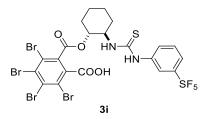
 $mp = 74-76 \ ^{\circ}C.$

 $[\alpha]_{\rm D}^{20} = +32.44 \text{ (c } 0.5, \text{CHCl}_3\text{)}.$


¹**H NMR** (400 MHz, (CD₃)₂SO): $\delta = 9.88$ (s, 1H), 8.50–8.00 (comp, 3H), 7.70 (s, 1H), 4.83 (br s, 1H), 4.43–4.16 (m, 1H), 4.04–3.93 (m, 1H), 2.20–2.02 (m, 1H), 1.96–1.77 (m, 1H), 1.75–1.25 (comp, 4H).

¹³**C NMR** (100 MHz, (CD₃)₂SO): δ = 180.3, 142.0, 130.1 (q, J_{C-F} = 32.2 Hz), 123.3 (q, J_{C-F} = 272.6 Hz), 121.6, 115.8, 75.6, 62.2, 32.2, 29.1, 20.3.

¹⁹**F-NMR** (565 MHz, $(CD_3)_2SO$): $\delta = -61.60$.


HRMS (ESI-TOF): Calculated for $C_{14}H_{15}F_6N_2OS [M + H]^+$: 373.0804, found 373.0817.

General Procedure C for the Preparation of CBSCA Catalysts

To a solution of **S2** in THF (0.1 M) were added 4-*N*,*N*-dimethylaminopyridine (DMAP) (1.2 equiv) and tetrabromophthalic anhydride (1.2 equiv). The resulting mixture was stirred at room temperature for 2 h and then transferred to a separatory funnel. EtOAc (50 mL) was added and the solution washed with 1 M HCl (25 mL × 2), saturated aqueous NaHCO₃ (25 mL), and 1 M HCl (25 mL), and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the residue purified by neutral Al₂O₃ chromatography (using a gradient eluent from CH₂Cl₂ to MeOH/CH₂Cl₂ 10:90 v/v to MeOH/CH₂Cl₂ 20:80 v/v to MeOH/CH₂Cl₂/HCOOH 20:79:1 v/v/v). The combined fractions were concentrated and re-dissolved in CH₂Cl₂ (2 \times 20 mL) and then washed with 1 M HCl (25 mL × 2). The combined aqueous layers were back-extracted with CH₂Cl₂ (2 \times 20 mL). The combined organic layers were dried over anhydrous Na₂SO₄. Finally, the solvent was removed under reduced pressure and the resulting solid dried under high vacuum.

 $2,3,4,5-Tetrabromo-6-((((1R,2R)-2-(3-(3-(pentafluoro-\lambda^6-sulfanyl)phenyl)thioureido)cyclohexyl) oxy) carbonyl) benzoic acid$

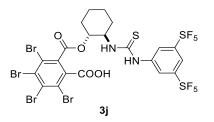
Following general procedure C, compound **3i** was obtained from **S2e** (94 mg, 0.25 mmol, 1 equiv) and tetrabromophthalic anhydride (139 mg, 0.3 mmol, 1.2 equiv) as a light-yellow solid in 72% yield (151 mg).

Characterization data for 3i:

 $R_f = 0.29$ in MeOH/CH₂Cl₂ 10:90 v/v.

mp = 163 - 165 °C.

 $[\alpha]_{\rm D}^{20} = +32.53 \text{ (c } 0.5, \text{CHCl}_3\text{)}.$


¹**H NMR** (600 MHz, (CD₃)₂SO): $\delta = 14.33$ (br s, 1H), 9.78 (s, 1H), 8.22 (s, 1H), 7.98 (s, 1H), 7.70–7.46 (comp, 3H), 5.14–4.96 (m, 1H), 4.68–4.38 (m, 1H), 2.12–1.96 (comp, 2H), 1.77–1.62 (comp, 2H), 1.54–1.25 (comp, 4H).

¹³**C NMR** (150 MHz, (CD₃)₂SO): δ = 180.1, 165.5, 163.9, 152.6–152.1 (m), 140.4, 136.5, 134.3, 131.7, 130.8, 129.1, 126.5, 122.0, 121.7, 120.8, 120.0, 76.3, 55.1, 30.3, 29.6, 23.4, 23.0.

¹⁹**F-NMR** (377 MHz, (CD₃)₂SO): $\delta = 87.49$ (p, $J_{F-F} = 151.2$ Hz, 1F), 63.81 (d, $J_{F-F} = 151.1$ Hz, 4F).

HRMS (ESI-TOF): Calculated for $C_{21}H_{16}^{79}Br^{79}Br^{81}BrF_5N_2O_4S_2 [M - H]^-: 838.7170$, found 838.7206.

 $\label{eq:linear} 2-((((1R,2R)-2-(3-(3,5-Bis(pentafluoro-\lambda^6-sulfanyl)phenyl)thioureido)cyclohexyl)oxy) carbonyl)-3,4,5,6-tetrabromobenzoic acid$

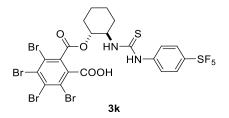
Following general procedure C, compound **3j** was obtained from **S2c** (126 mg, 0.25 mmol, 1 equiv) and tetrabromophthalic anhydride (139 mg, 0.3 mmol, 1.2 equiv) as a white solid in 81% yield (196 mg).

Characterization data for 3j:

 $R_f = 0.24$ in MeOH/CH₂Cl₂ 10:90 v/v.

mp = 146 - 148 °C.

 $[\alpha]_{\rm D}^{20} = +16.18 \text{ (c } 0.5, \text{CHCl}_3\text{)}.$


¹**H** NMR (600 MHz, (CD₃)₂SO): $\delta = 14.37$ (br s, 1H), 10.12 (s, 1H), 8.47–8.23 (comp, 3H), 7.99 (s, 1H), 5.11–5.01 (m, 1H), 4.63–4.47 (m, 1H), 2.15–2.05 (m, 1H), 2.04–1.94 (m, 1H), 1.79–1.61 (comp, 2H), 1.52–1.18 (comp, 4H).

¹³**C NMR** (150 MHz, (CD₃)₂SO): δ = 180.3, 165.5, 163.9, 152.1–151.0 (m), 141.8, 136.5, 134.3, 131.7, 130.7, 123.6, 122.0, 121.7, 117.3, 76.3, 55.3, 30.1, 29.5, 23.4, 22.9.

¹⁹**F-NMR** (377 MHz, (CD₃)₂SO): δ = 84.49 (p, J_{F-F} = 151.8 Hz, 2F), 64.05 (d, J_{F-F} = 151.9 Hz, 8F).

HRMS (ESI-TOF): Calculated for $C_{21}H_{15}^{79}Br^{79}Br^{81}Br^{81}BrF_{10}N_2O_4S_3$ [M – H]⁻: 964.6732, found 964.6724.

 $2,3,4,5-Tetrabromo-6-((((1R,2R)-2-(3-(4-(pentafluoro-\lambda^6-sulfanyl)phenyl)thioureido)cyclohexyl) oxy) carbonyl) benzoic acid$

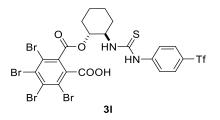
Following general procedure C, compound 3k was obtained from S2d (188 mg, 0.5 mmol, 1 equiv) and tetrabromophthalic anhydride (278 mg, 0.6 mmol, 1.2 equiv) as a white solid in 76% yield (319 mg).

Characterization data for 3k:

 $R_f = 0.30$ in MeOH/CH₂Cl₂ 10:90 v/v.

mp = 137 - 139 °C.

 $[\alpha]_{\rm D}^{20} = +17.76 \text{ (c } 0.5, \text{CHCl}_3\text{)}.$


¹**H NMR** (600 MHz, (CD₃)₂SO): δ = 14.32 (br s, 1H), 9.95 (s, 1H), 8.15–7.60 (comp, 4H), 5.23–4.85 (s, 1H), 4.73–4.33 (s, 1H), 2.30–1.93 (comp, 2H), 1.90–1.00 (comp, 7H).

¹³**C NMR** (150 MHz, (CD₃)₂SO): δ = 179.8, 165.6, 164.0, 147.9–147.0 (m), 143.0, 136.8, 134.3, 131.7, 130.8, 126.3, 122.1, 121.6, 76.3, 55.3, 30.2, 29.6, 23.4, 23.0.

¹⁹**F-NMR** (565 MHz, (CD₃)₂SO): δ = 88.70 (p, J_{F-F} = 150.6 Hz, 1F), 65.00 (d, J_{F-F} = 150.6 Hz, 4F).

HRMS (ESI-TOF): Calculated for $C_{21}H_{16}^{79}Br^{79}Br^{81}BrF_5N_2O_4S_2 [M - H]^-: 838.7170$, found 838.7214.

2,3,4,5-Tetrabromo-6-(((((1*R*,2*R*)-2-(3-(4-((trifluoromethyl)sulfonyl)phenyl)thioureido)cyclohexyl)oxy) carbonyl)benzoic acid

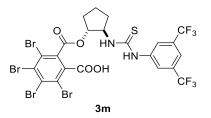
Following general procedure C, compound **31** was obtained from **S2f** (574 mg, 1.5 mmol, 1 equiv) and tetrabromophthalic anhydride (835 mg, 1.8 mmol, 1.2 equiv) as a white solid in 88% yield (1.12 g).

Characterization data for 31:

 $R_f = 0.25$ in MeOH/CH₂Cl₂ 10:90 v/v.

 $mp = 124 - 126 \ ^{\circ}C.$

 $[\alpha]_{\rm D}^{20} = +40.62 \text{ (c } 0.5, \text{CHCl}_3\text{)}.$


¹**H** NMR (600 MHz, (CD₃)₂SO): $\delta = 10.28$ (s, 1H), 8.46–8.28 (m, 1H), 8.08–7.93 (comp, 4H), 5.11–4.99 (m, 1H), 4.64–4.45 (m, 1H), 2.13–2.00 (comp, 2H), 1.76–1.63 (comp, 2H), 1.53–1.27 (comp, 4H).

¹³**C NMR** (150 MHz, (CD₃)₂SO): $\delta = 179.5$, 165.5, 163.9, 148.2, 136.6, 136.0, 134.2, 131.8, 130.9, 130.6, 122.1, 121.6, 121.2, 119.5 (q, $J_{C-F} = 326.1$ Hz), 76.1, 55.2, 29.9, 29.5, 23.3, 22.9.

¹⁹**F-NMR** (377 MHz, (CD₃)₂SO): $\delta = -78.77$.

HRMS (ESI-TOF): Calculated for $C_{22}H_{16}^{79}Br^{79}Br^{81}BrF_{3}N_{2}O_{6}S_{2}$ [M – H]⁻: 844.7101, found 844.7137.

2-((((1*R*,2*R*)-2-(3-(3,5-Bis(trifluoromethyl)phenyl)thioureido)cyclopentyl)oxy)carbonyl)-3,4,5,6-tetrabromobenzoic acid

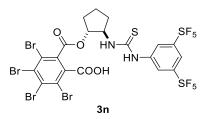
Following general procedure C, compound **3m** was obtained from **S2g** (558 mg, 1.5 mmol, 1 equiv) and tetrabromophthalic anhydride (835 mg, 1.8 mmol, 1.2 equiv) as a white solid in 65% yield (815 mg).

Characterization data for 3m:

 $R_f = 0.34$ in MeOH/CH₂Cl₂ 10:90 v/v.

mp = 105 - 107 °C.

 $[\alpha]_{\rm D}^{20} = +65.76 \text{ (c } 0.5, \text{CHCl}_3\text{)}.$


¹**H NMR** (600 MHz, (CD₃)₂SO): $\delta = 14.45$ (br s, 1H), 10.01 (s, 1H), 8.45 (s, 1H), 8.22 (s, 2H), 7.75 (s, 1H), 5.35–5.28 (m, 1H), 4.82–4.62 (m, 1H), 2.20–2.02 (comp, 2H), 1.83–1.71 (comp, 3H), 1.64–1.53 (m, 1H).

¹³**C NMR** (150 MHz, (CD₃)₂SO): δ = 180.5, 165.6, 163.8, 141.8, 136.5, 133.9, 131.9, 131.0, 130.1 (q, *J*_{*C*-*F*} = 32.2 Hz), 123.2 (q, *J*_{*C*-*F*} = 272.8 Hz), 122.2, 122.1, 116.3, 81.5, 59.6, 29.7, 29.3, 21.3.

¹⁹**F-NMR** (565 MHz, (CD₃)₂SO): $\delta = -61.54$.

HRMS (ESI-TOF): Calculated for $C_{22}H_{13}^{79}Br^{79}Br^{81}Br^{81}BrF_6N_2O_4S [M - H]^-: 834.7200$, found 834.7239.

 $\label{eq:linear} 2-((((1R,2R)-2-(3-(3,5-Bis(pentafluoro-\lambda^6-sulfanyl)phenyl)thioureido)cyclopentyl)oxy) carbonyl)-3,4,5,6-tetrabromobenzoic acid$

To a solution of **S2b** (796 mg, 1.63 mmol) in THF (16 mL) were added 4-*N*,*N*-dimethylaminopyridine (DMAP) (239 mg, 1.96 mmol, 1.2 equiv) and tetrabromophthalic anhydride (909 mg, 1.96 mmol, 1.2 equiv). The resulting mixture was stirred at room temperature for 2 h and then transferred to a separatory funnel. EtOAc (150 mL) was added and the solution washed with 1 M HCl (60 mL × 2), saturated aqueous NaHCO₃ (60 mL), and 1 M HCl (60 mL), and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the residue purified by neutral Al₂O₃ chromatography (using a gradient eluent from CH₂Cl₂ to MeOH/CH₂Cl₂ 10:90 v/v to MeOH/CH₂Cl₂ 20:80 v/v to MeOH/CH₂Cl₂/HCOOH 20:79:1 v/v/v). The combined fractions were concentrated and re-dissolved in CH₂Cl₂ (2 × 25 mL). The combined organic layers were dried over anhydrous Na₂SO₄. Finally, the solvent was removed under reduced pressure and the residue dried with CH₂Cl₂ (2 × 25 mL).

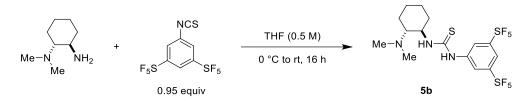
Characterization data for 3n:

 $R_f = 0.22$ in MeOH/CH₂Cl₂ 10:90 v/v.

mp = 129–131 °C.

 $[\alpha]_{D}^{20} = +48.17 \text{ (c } 0.5, \text{CHCl}_3\text{)}.$

¹**H NMR** (600 MHz, (CD₃)₂SO): δ = 14.37 (br s, 1H), 10.44 (s, 1H), 8.71 (s, 1H), 8.57–8.38 (m, 2H), 8.06–7.88 (m, 1H), 5.37–5.23 (m, 1H), 4.82–4.61 (m, 1H), 2.20–2.02 (comp, 2H), 1.84–1.54 (comp, 4H).


¹³**C NMR** (150 MHz, (CD₃)₂SO): δ = 180.5, 165.7, 163.8, 152.3–151.5 (m), 141.9, 136.7, 133.9, 131.9, 130.9, 130.6, 122.7, 122.0, 117.1, 81.5, 59.6, 29.6, 29.3, 21.2.

¹⁹**F-NMR** (377 MHz, (CD₃)₂SO): δ = 84.49 (p, J_{F-F} = 151.7, 2F), 64.01 (d, J_{F-F} = 151.7 Hz, 8F).

HRMS (ESI-TOF): Calculated for $C_{20}H_{13}^{79}Br^{79}Br^{81}BrF_{10}N_2O_4S_3$ [M – H]⁻: 950.6576, found 950.6619.

Synthesis and Characterization of (dimethylamino)cyclohexyl)thiourea

1-(3,5-bis(pentafluoro- λ^6 -sulfanyl)phenyl)-3-((1R,2R)-2-

To an ice cooled solution of (1R,2R)-*N*,*N*-dimethylcyclohexane-1,2-diamine (71 mg, 0.5 mmol, 1 equiv) in THF (1 mL, 0.5 M) isothiocyanate **S1b** (184 mg, 0.475 mmol, 0.95 equiv) was added dropwise. The resulting mixture was then allowed to warm to room temperature and stirred for 16 h and then the solvent was evaporated under reduced pressure. The residue was purified by silica gel chromatography (using a gradient eluent from MeOH/CH₂Cl₂ 1:99 v/v to MeOH/CH₂Cl₂ 3:97 v/v) to provide **5b** as a white solid in 74% yield (187 mg).

Characterization data for 5b:

 $R_f = 0.26$ in CH₂Cl₂/MeOH 90:10 v/v.

mp = 165 - 167 °C.

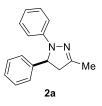
 $[\alpha]_{\rm D}^{20} = -99.22 \text{ (c } 0.5, \text{CHCl}_3\text{)}.$

¹**H NMR** (600 MHz, (CD₃)₂SO): δ = 10.22 (s, 1H), 8.49–8.19 (comp, 3H), 7.91 (s, 1H), 4.30–3.95 (m, 1H), 2.62–2.52 (m, 1H), 2.32–2.10 (comp, 7H), 1.91–1.55 (comp, 3H), 1.31–1.05 (comp, 4H).

¹³**C NMR** (150 MHz, (CD₃)₂SO): $\delta = 178.7$, 152.45–151.69 (m), 141.9, 121.6, 116.4, 65.1, 55.0, 54.9, 31.6, 24.6, 24.5, 21.2.

¹⁹**F-NMR** (377 MHz, (CD₃)₂SO): δ = 84.42 (p, J_{F-F} = 152.2 Hz, 2F), 63.82 (d, J_{F-F} = 152.1 Hz, 8F).

HRMS (ESI-TOF): Calculated for C₁₅H₂₁F₁₀N₃S₃ [M]⁺: 529.0738, found 529.0757.


General procedure D for the Catalytic Enantioselective Synthesis of 2-pyrazolines

To a flame dried vial were successively added the α , β -unsaturated ketone (0.26 mmol, 1.05 equiv), acid catalyst **3n** (23.8 mg, 0.025 mmol, 10 mol%), 4 Å MS (100 mg), and dry toluene (2.5 mL, 0.1 M). Aryl hydrazine (0.25 mmol, 1 equiv) was then added, and the resulting mixture was stirred under nitrogen at room temperature for the indicated time before being quenched with triethylamine (50 µL). The resulting mixture was directly purified by flash chromatography on silica gel using EtOAc/hexanes/Et₃N (2/98/0.1) as the eluent.

Racemic products (for SFC assays) were prepared from the α , β -unsaturated ketone (0.1 mmol, 1 equiv), hydrazine (0.2 mmol, 2 equiv), and concentrated sulfuric acid (0.5 mmol, 5 equiv) in ethanol (1 mL, 0.1 M). The resulting mixture was stirred under reflux until α , β -unsaturated ketone was consumed as indicated by TLC and then directly purified by flash chromatography on silica gel using EtOAc/hexanes (2/98) as the eluent.

Characterization Data of Products

(S)-3-Methyl-1,5-diphenyl-4,5-dihydro-1*H*-pyrazole

To a flame dried vial was added (*E*)-4-phenylbut-3-en-2-one (38 mg, 0.26 mmol, 1.05 equiv), acid catalyst **3n** (23.8 mg, 0.025 mmol, 10 mol%), 4 Å MS (100 mg), and dry toluene (2.5 mL, 0.1 M). To the resulting mixture phenylhydrazine (25 μ L, 0.25 mmol, 1.0 equiv) was then added and the resulting mixture was stirred under nitrogen at room temperature for 28 h before being quenched with triethylamine (50 μ L). The resulting mixture was directly purified by flash chromatography on silica gel using EtOAc/hexanes/Et₃N (2/98/0.1) as the eluent. Compound **2a** was obtained as a white solid in 96% yield (57 mg).

Characterization data for 2a:

 $\mathbf{R}_{\mathbf{f}} = 0.43$ in hexanes/EtOAc 80:20 v/v.

mp = 129–131 °C.

 $[\alpha]_{\rm D}^{20} = -222.34 \text{ (c } 0.5, \text{CHCl}_3, 92\% \text{ ee}).$

¹**H NMR** (400 MHz, CDCl₃) δ = 7.37–7.29 (comp, 4H), 7.29–7.23 (m, 1H), 7.18–7.11 (comp, 2H), 6.96–6.90 (comp, 2H), 6.78–6.71 (m, 1H), 5.02 (dd, *J* = 11.9, 8.1 Hz, 1H), 3.47–3.37 (m, 1H), 2.77–2.68 (m, 1H), 2.08 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ = 148.5, 146.0, 143.0, 129.0, 128.8, 127.3, 125.9, 118.6, 113.1, 64.7, 47.8, 15.9.

HRMS (ESI-TOF): Calculated for $C_{16}H_{17}N_2 [M + H]^+$: 237.1386, found 237.1387.

SFC: Daicel Chiralcel OJ-H, column temperature = 40 °C, $CO_2/MeOH = 80/20$, Flow rate = 2 mL/min, UV = 254 nm, t_R = 3.9 min (major) and t_R = 5.2 min (minor).

(S)-5-(2-Fluorophenyl)-3-methyl-1-phenyl-4,5-dihydro-1*H*-pyrazole

Following general procedure D (reaction performed at room temperature for 32 h), compound **2b** was obtained from phenylhydrazine (25 μ L, 0.25 mmol, 1 equiv) and (*E*)-4-(2-fluorophenyl)but-3-en-2-one (43 mg, 0.26 mmol, 1.05 equiv) as a white solid in 91% yield (58 mg).

Characterization data for 2b:

 $\mathbf{R}_{\mathbf{f}} = 0.39$ in hexanes/EtOAc 80:20 v/v.

 $mp = 76-78 \ ^{\circ}C.$

 $[\alpha]_{\rm D}^{20} = -198.45 \text{ (c } 0.5, \text{CHCl}_3, 93\% \text{ ee}).$

¹**H** NMR (400 MHz, CDCl₃) δ = 7.25–7.14 (comp, 2H), 7.14–7.07 (comp, 2H), 7.07–6.96 (m, 2H), 6.85 (d, *J* = 8.3 Hz, 2H), 6.70 (t, *J* = 7.3 Hz, 1H), 5.24 (dd, *J* = 12.0, 7.6 Hz, 1H), 3.44 (dd, *J* = 17.6, 12.0 Hz, 1H), 2.64 (dd, *J* = 17.6, 7.6 Hz, 1H), 2.01 (s, 3H).


¹³C NMR (100 MHz, CDCl₃) δ = 159.3 (d, J_{C-F} = 245.0 Hz), 149.0, 145.8, 129.5 (d, J_{C-F} = 13.3 Hz), 128.9, 128.8, 127.6 (d, J_{C-F} = 4.0 Hz), 124.66 (d, J_{C-F} = 3.5 Hz), 118.8, 115.5 (d, J_{C-F} = 20.9 Hz), 112.9, 58.0 (d, J_{C-F} = 2.9 Hz), 46.3, 15.9.

¹⁹**F-NMR** (377 MHz, CDCl₃): $\delta = -118.84$.

HRMS (ESI-TOF): Calculated for C₁₆H₁₅FN₂ [M]⁺: 254.1219, found 254.1218.

SFC: Daicel Chiralcel OJ-H, column temperature = 40 °C, $CO_2/MeOH = 90/10$, Flow rate = 2 mL/min, UV = 280 nm, $t_R = 3.1$ min (major) and $t_R = 5.1$ min (minor).

(S)-5-(2-Bromophenyl)-3-methyl-1-phenyl-4,5-dihydro-1H-pyrazole

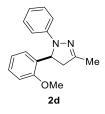
Following general procedure D (reaction performed at room temperature for 32 h), compound **2c** was obtained from phenylhydrazine (25 μ L, 0.25 mmol, 1 equiv) and (*E*)-4-(2-bromophenyl)but-3-en-2-one (59 mg, 0.26 mmol, 1.05 equiv) as a white solid in 74% yield (58 mg).

Characterization data for 2c:

 $\mathbf{R}_{\mathbf{f}} = 0.34$ in hexanes/EtOAc 80:20 v/v.

mp = 89–91 °C.

 $[\alpha]_{\rm D}^{20} = -216.5 \text{ (c } 0.5, \text{CHCl}_3, 93\% \text{ ee}).$


¹**H NMR** (400 MHz, CDCl₃) δ = 7.69 (d, *J* = 7.9 Hz, 1H), 7.39–7.17 (comp, 5H), 6.93 (d, *J* = 8.1 Hz, 2H), 6.84 (t, *J* = 7.3 Hz, 1H), 5.42 (dd, *J* = 12.0, 7.6 Hz, 1H), 3.67 (dd, *J* = 17.7, 12.1 Hz, 1H), 2.69 (dd, *J* = 17.8, 7.5 Hz, 1H), 2.15 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ = 148.6, 145.5, 141.3, 133.0, 129.0, 128.9, 128.2, 127.6, 121.8, 118.7, 112.8, 63.9, 46.1, 15.9.

HRMS (ESI-TOF): Calculated for $C_{16}H_{16}BrN_2 [M + H]^+$: 315.0491, found 315.0503.

SFC: Daicel Chiralcel OJ-H, column temperature = 40 °C, $CO_2/MeOH = 90/10$, Flow rate = 2 mL/min, UV = 280 nm, $t_R = 9.4$ min (major) and $t_R = 7.1$ min (minor).

(S)-5-(2-Methoxyphenyl)-3-methyl-1-phenyl-4,5-dihydro-1H-pyrazole

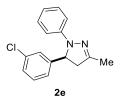
Following general procedure D (reaction performed at room temperature for 28 h), compound **2d** was obtained from phenylhydrazine (25 μ L, 0.25 mmol, 1 equiv) and (*E*)-4-(2-methoxyphenyl)but-3-en-2-one (46 mg, 0.26 mmol, 1.05 equiv) as a white solid in 97% yield (64 mg).

Characterization data for 2d:

 $\mathbf{R}_{\mathbf{f}} = 0.33$ in hexanes/EtOAc 80:20 v/v.

 $mp = 66-68 \ ^{\circ}C.$

 $[\alpha]_{\mathbf{D}}^{\mathbf{20}} = -145.08 \text{ (c } 0.5, \text{CHCl}_3, 83\% \text{ ee}).$


¹**H NMR** (400 MHz, CDCl₃) δ = 7.41–7.23 (comp, 4H), 7.07–6.95 (comp, 4H), 6.85 (t, *J* = 7.3 Hz, 1H), 5.43 (dd, *J* = 12.0, 7.6 Hz, 1H), 4.03 (s, 3H), 3.60 (dd, *J* = 17.7, 12.0 Hz, 1H), 2.71 (dd, *J* = 17.7, 7.6 Hz, 1H), 2.17 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ = 156.0, 149.3, 146.0, 130.4, 128.8, 128.2, 126.6, 120.9, 118.2, 112.8, 110.4, 58.9, 55.4, 46.2, 16.0.

HRMS (ESI-TOF): Calculated for C₁₇H₁₈N₂ONa [M + Na]⁺: 289.1311, found 289.1329.

SFC: Daicel Chiralcel OJ-H, column temperature = 40 °C, $CO_2/MeOH = 80/20$, Flow rate = 2 mL/min, UV = 280 nm, t_R = 7.8 min (major) and t_R = 8.5 min (minor).

(S)-5-(3-Chlorophenyl)-3-methyl-1-phenyl-4,5-dihydro-1H-pyrazole

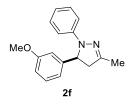
Following general procedure D (reaction performed at room temperature for 28 h), compound **2e** was obtained from phenylhydrazine (25 μ L, 0.25 mmol, 1 equiv) and (*E*)-4-(3-chlorophenyl)but-3-en-2-one (47 mg, 0.26 mmol, 1.05 equiv) as a white solid in 82% yield (56 mg).

Characterization data for 2e:

 $\mathbf{R}_{\mathbf{f}} = 0.37$ in hexanes/EtOAc 90:10 v/v.

 $mp = 75-77 \ ^{\circ}C.$

 $[\alpha]_{\mathbf{D}}^{\mathbf{20}} = -241.52 \text{ (c } 0.5, \text{CHCl}_3, 94\% \text{ ee}).$


¹**H** NMR (400 MHz, CDCl₃) δ = 7.26 (s, 1H), 7.24–7.16 (comp, 2H), 7.15–7.06 (comp, 3H), 6.85 (d, *J* = 8.2 Hz, 2H), 6.71 (t, *J* = 7.3 Hz, 1H), 4.91 (dd, *J* = 12.0, 8.1 Hz, 1H), 3.35 (dd, *J* = 17.6, 12.0 Hz, 1H), 2.64 (dd, *J* = 17.6, 8.1 Hz, 1H), 2.01 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ = 148.4, 145.9, 145.2, 134.9, 130.4, 128.9, 127.7, 126.1, 124.1, 118.9, 113.1, 64.3, 47.7, 15.8.

HRMS (ESI-TOF): Calculated for $C_{16}H_{16}CIN_2 [M + H]^+$: 271.0997, found 271.1003.

SFC: Daicel Chiralcel OJ-H, column temperature = 40 °C, $CO_2/MeOH = 80/20$, Flow rate = 2 mL/min, UV = 280 nm, $t_R = 4.1$ min (major) and $t_R = 6.1$ min (minor).

(S)-5-(3-Methoxyphenyl)-3-methyl-1-phenyl-4,5-dihydro-1H-pyrazole

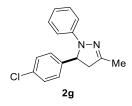
Following general procedure D (reaction performed at room temperature for 28 h), compound **2f** was obtained from phenylhydrazine (25 μ L, 0.25 mmol, 1 equiv) and (*E*)-4-(3-methoxyphenyl)but-3-en-2-one (46 mg, 0.26 mmol, 1.05 equiv) as a white solid in 93% yield (62 mg).

Characterization data for 2f:

 $\mathbf{R}_{\mathbf{f}} = 0.31$ in hexanes/EtOAc 90:10 v/v.

mp = 71-73 °C.

 $[\alpha]_{D}^{20} = -332.11 \text{ (c } 0.5, \text{CHCl}_{3}, 91\% \text{ ee}).$


¹**H** NMR (400 MHz, CDCl₃) δ = 7.34–7.27 (m, 1H), 7.20 (t, *J* = 7.8 Hz, 2H), 7.02–6.94 (comp, 3H), 6.91 (s, 1H), 6.88–6.76 (comp, 2H), 5.01 (dd, *J* = 11.9, 8.3 Hz, 1H), 3.82 (s, 3H), 3.45 (dd, *J* = 17.5, 11.9 Hz, 1H), 2.78 (dd, *J* = 17.6, 8.3 Hz, 1H), 2.12 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ = 160.2, 148.6, 146.2, 144.8, 130.1, 128.8, 118.7, 118.1, 113.1, 112.7, 111.3, 64.9, 55.2, 47.8, 15.9.

HRMS (ESI-TOF): Calculated for $C_{17}H_{19}N_2O [M + H]^+$: 267.1492, found 267.1488.

SFC: Daicel Chiralcel OJ-H, column temperature = 40 °C, $CO_2/MeOH = 90/10$, Flow rate = 2 mL/min, UV = 280 nm, $t_R = 4.1$ min (major) and $t_R = 5.1$ min (minor).

(S)-5-(4-Chlorophenyl)-3-methyl-1-phenyl-4,5-dihydro-1H-pyrazole

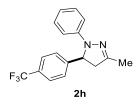
Following general procedure D (reaction performed at room temperature for 28 h), compound **2g** was obtained from phenylhydrazine (25 μ L, 0.25 mmol, 1 equiv) and (*E*)-4-(4-chlorophenyl)but-3-en-2-one (47 mg, 0.26 mmol, 1.05 equiv) as a white solid in 85% yield (57 mg).

Characterization data for 2g:

 $\mathbf{R}_{\mathbf{f}} = 0.37$ in hexanes/EtOAc 90:10 v/v.

mp = 94–96 °C.

 $[\alpha]_{D}^{20} = -143.18 \text{ (c } 0.5, \text{CHCl}_{3}, 92\% \text{ ee}).$


¹**H** NMR (400 MHz, CDCl₃) δ = 7.40 (d, *J* = 8.5 Hz, 2H), 7.33 (d, *J* = 8.5 Hz, 2H), 7.28–7.21 (m, 2H), 6.99 (d, *J* = 8.2 Hz, 2H), 6.86 (t, *J* = 7.3 Hz, 1H), 5.07 (dd, *J* = 11.9, 8.0 Hz, 1H), 3.49 (dd, *J* = 17.5, 11.9 Hz, 1H), 2.76 (dd, *J* = 17.5, 8.0 Hz, 1H), 2.16 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ = 148.4, 145.8, 141.5, 133.0, 129.2, 128.9, 127.3, 118.8, 113.1, 64.1, 47.7, 15.8.

HRMS (ESI-TOF): Calculated for $C_{16}H_{16}CIN_2 [M + H]^+$: 271.0997, found 271.1002.

SFC: Daicel Chiralcel OJ-H, column temperature = 40 °C, $CO_2/MeOH = 90/10$, Flow rate = 2 mL/min, UV = 280 nm, $t_R = 4.1$ min (major) and $t_R = 6.3$ min (minor).

(S)-3-Methyl-1-phenyl-5-(4-(trifluoromethyl)phenyl)-4,5-dihydro-1H-pyrazole

Following general procedure D (reaction performed at room temperature for 40 h), compound **2h** was obtained from phenylhydrazine (25 μ L, 0.25 mmol, 1 equiv) and (*E*)-4-(4-(trifluoromethyl)phenyl)but-3-en-2-one (56 mg, 0.26 mmol, 1.05 equiv) as a white solid in 73% yield (55 mg).

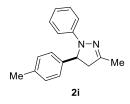
Characterization data for 2h:

 $\mathbf{R}_{\mathbf{f}} = 0.31$ in hexanes/EtOAc 90:10 v/v.

mp = 101 - 103 °C.

 $[\alpha]_{\mathbf{D}}^{\mathbf{20}} = -241.24 \text{ (c } 0.5, \text{ CHCl}_3, 96\% \text{ ee}).$

¹**H** NMR (400 MHz, CDCl₃) δ = 7.61 (d, *J* = 8.1 Hz, 2H), 7.44 (d, *J* = 8.1 Hz, 2H), 7.22–7.12 (m, 2H), 6.91 (d, *J* = 8.2 Hz, 2H), 6.79 (t, *J* = 7.3 Hz, 1H), 5.07 (dd, *J* = 12.0, 8.0 Hz, 1H), 3.45 (dd, *J* = 17.5, 12.1 Hz, 1H), 2.70 (dd, *J* = 17.5, 8.0 Hz, 1H), 2.09 (s, 3H).


¹³**C NMR** (100 MHz, CDCl₃) δ = 148.4, 147.0, 145.7, 129.7 (q, J_{C-F} = 32.5 Hz), 128.9, 126.3, 126.1 (q, J_{C-F} = 3.9 Hz), 124.05 (q, J_{C-F} = 272.2 Hz), 119.0, 113.1, 64.3, 47.6, 15.8.

¹⁹**F-NMR** (377 MHz, CDCl₃): $\delta = -62.44$.

HRMS (ESI-TOF): Calculated for $C_{17}H_{16}F_3N_2 [M + H]^+$: 305.1260, found 305.1253.

SFC: Daicel Chiralcel OJ-H, column temperature = 40 °C, $CO_2/MeOH = 97/3$, Flow rate = 2 mL/min, UV = 280 nm, $t_R = 2.8 \text{ min (major)}$ and $t_R = 4.6 \text{ min (minor)}$.

(S)-3-Methyl-1-phenyl-5-(p-tolyl)-4,5-dihydro-1H-pyrazole

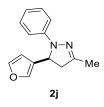
Following general procedure D (reaction performed at room temperature for 28 h), compound **2i** was obtained from phenylhydrazine (25 μ L, 0.25 mmol, 1 equiv) and (*E*)-4-(*p*-tolyl)but-3-en-2-one (42 mg, 0.26 mmol, 1.05 equiv) as a white solid in 90% yield (56 mg).

Characterization data for 2i:

 $\mathbf{R}_{\mathbf{f}} = 0.18$ in hexanes/EtOAc 90:10 v/v.

mp = 81 - 83 °C.

 $[\alpha]_{\rm D}^{20} = -213.4 \text{ (c } 0.5, \text{CHCl}_3, 88\% \text{ ee}).$


¹**H** NMR (400 MHz, CDCl₃) δ = 7.24–7.11 (comp, 6H), 6.98–6.91 (m, 2H), 6.75 (t, *J* = 7.3 Hz, 1H), 4.99 (dd, *J* = 11.9, 8.1 Hz, 1H), 3.46–3.34 (m, 1H), 2.76–2.65 (m, 1H), 2.34 (s, 3H), 2.08 (s, 2H).

 13 C NMR (100 MHz, CDCl₃) $\delta = 148.5, 146.1, 140.0, 137.0, 129.7, 128.8, 125.8, 118.5, 113.1, 64.5, 47.9, 21.1, 15.9.$

HRMS (ESI-TOF): Calculated for $C_{17}H_{19}N_2$ [M + H]⁺: 251.1543, found 251.1521.

SFC: Daicel Chiralcel OJ-H, column temperature = 40 °C, $CO_2/MeOH = 90/10$, Flow rate = 2 mL/min, UV = 280 nm, $t_R = 3.4$ min (major) and $t_R = 4.6$ min (minor).

(S)-5-(Furan-3-yl)-3-methyl-1-phenyl-4,5-dihydro-1H-pyrazole

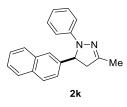
Following general procedure D (reaction performed at room temperature for 28 h), compound **2j** was obtained from phenylhydrazine (25 μ L, 0.25 mmol, 1 equiv) and (*E*)-4-(furan-3-yl)but-3-en-2-one (35 mg, 0.26 mmol, 1.05 equiv) as a white solid in 92% yield (52 mg).

Characterization data for 2j:

 $\mathbf{R}_{\mathbf{f}} = 0.41$ in hexanes/EtOAc 90:10 v/v.

 $mp = 72-74 \ ^{\circ}C.$

 $[\alpha]_{\rm D}^{20} = -236.12 \text{ (c } 0.5, \text{CHCl}_3, 89\% \text{ ee}).$


¹**H** NMR (600 MHz, CDCl₃) δ = 7.38–7.35 (m, 1H), 7.35–7.33 (m, 1H), 7.21–7.15 (m, 2H), 7.05–7.00 (m, 2H), 6.78 (t, *J* = 7.3 Hz, 1H), 6.34–6.31 (m, 1H), 4.98 (dd, *J* = 11.5, 7.7 Hz, 1H), 3.34–3.25 (m, 1H), 2.79–2.71 (m, 1H), 2.08 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ = 149.1, 146.3, 143.7, 139.2, 128.8, 127.1, 119.0, 113.5, 108.6, 57.0, 46.4, 16.0.

HRMS (ESI-TOF): Calculated for $C_{14}H_{15}N_2O [M + H]^+$: 227.1179, found 227.1167.

SFC: Daicel Chiralcel OJ-H, column temperature = 40 °C, $CO_2/MeOH = 80/20$, Flow rate = 2 mL/min, UV = 280 nm, $t_R = 4.3$ min (major) and $t_R = 7.0$ min (minor).

(S)-3-Methyl-5-(naphthalen-2-yl)-1-phenyl-4,5-dihydro-1H-pyrazole

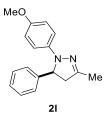
Following general procedure D (reaction performed at room temperature for 24 h), compound **2k** was obtained from phenylhydrazine (25 μ L, 0.25 mmol, 1 equiv) and (*E*)-4-(naphthalen-2-yl)but-3-en-2-one (52 mg, 0.26 mmol, 1.05 equiv) as a white solid in 97% yield (69 mg).

Characterization data for 2k:

 $\mathbf{R}_{\mathbf{f}} = 0.25$ in hexanes/EtOAc 90:10 v/v.

mp = 111 - 113 °C.

 $[\alpha]_{\rm D}^{20} = -154.24 \text{ (c } 0.5, \text{CHCl}_3, 90\% \text{ ee}).$


¹**H** NMR (400 MHz, CDCl₃) δ = 7.88–7.75 (comp, 4H), 7.53–7.41 (comp, 3H), 7.18–7.09 (m, 2H), 6.99 (d, *J* = 8.2 Hz, 2H), 6.75 (t, *J* = 7.3 Hz, 1H), 5.18 (dd, *J* = 12.0, 8.2 Hz, 1H), 3.48 (dd, *J* = 17.6, 12.0 Hz, 1H), 2.79 (dd, *J* = 17.6, 8.2 Hz, 1H), 2.11 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ = 148.6, 146.2, 140.4, 133.5, 132.8, 129.1, 128.9, 127.9, 127.7, 126.3, 125.9, 124.6, 124.0, 118.7, 113.2, 65.1, 47.8, 15.9.

HRMS (ESI-TOF): Calculated for $C_{20}H_{19}N_2$ [M + H]⁺: 287.1543, found 287.1534.

SFC: Daicel Chiralcel OJ-H, column temperature = 40 °C, $CO_2/MeOH = 95/5$, Flow rate = 2 mL/min, UV = 230 nm, $t_R = 11.9$ min (major) and $t_R = 13.3$ min (minor).

(S)-1-(4-Methoxyphenyl)-3-methyl-5-phenyl-4,5-dihydro-1H-pyrazole

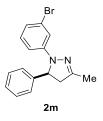
Following general procedure D (reaction performed at room temperature for 28 h), compound **21** was obtained from (4-methoxyphenyl)hydrazine (35 mg, 0.25 mmol, 1 equiv) and (*E*)-4-phenylbut-3-en-2-one (38 mg, 0.26 mmol, 1.05 equiv) as an off-white solid in 80% yield (53 mg).

Characterization data for 21:

 $\mathbf{R}_{\mathbf{f}} = 0.37$ in hexanes/EtOAc 85:15 v/v.

 $mp = 64-66 \ ^{\circ}C.$

 $[\alpha]_{\rm D}^{20} = -386.28 \text{ (c } 0.5, \text{CHCl}_3, 83\% \text{ ee}).$


¹**H NMR** (600 MHz, CDCl₃) δ = 7.38–7.34 (comp, 4H), 7.31–7.26 (m, 1H), 6.92–6.88 (m, 2H), 6.77–6.73 (m, 2H), 4.90 (dd, *J* = 11.6, 9.5 Hz, 1H), 3.73 (s, 3H), 3.38 (dd, *J* = 17.3, 11.7 Hz, 1H), 2.74 (dd, *J* = 17.3, 9.5 Hz, 1H), 2.08 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ = 153.1, 148.4, 143.1, 141.1, 129.0, 127.4, 126.2, 114.9, 114.3, 66.4, 55.6, 48.0, 15.9.

HRMS (ESI-TOF): Calculated for $C_{17}H_{19}N_2O [M + H]^+$: 267.1492, found 267.1504.

SFC: Daicel Chiralcel OJ-H, column temperature = 40 °C, $CO_2/MeOH = 80/20$, Flow rate = 2 mL/min, UV = 280 nm, t_R = 5.0 min (major) and t_R = 8.5 min (minor).

(S)-1-(3-Bromophenyl)-3-methyl-5-phenyl-4,5-dihydro-1H-pyrazole

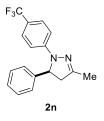
Following general procedure D (reaction performed at room temperature for 28 h), compound **2m** was obtained from (3-bromophenyl)hydrazine (47 mg, 0.25 mmol, 1 equiv) and (*E*)-4-phenylbut-3-en-2-one (38 mg, 0.26 mmol, 1.05 equiv) as a white solid in 83% yield (65 mg).

Characterization data for 2m:

 $\mathbf{R}_{\mathbf{f}} = 0.41$ in hexanes/EtOAc 90:10 v/v.

mp = 99–101 °C.

 $[\alpha]_{\rm D}^{20} = -221.08 \text{ (c } 0.5, \text{CHCl}_3, 90\% \text{ ee}).$


¹**H NMR** (400 MHz, CDCl₃) δ = 7.38–7.31 (m, 2H), 7.31–7.22 (comp, 4H), 6.94 (t, *J* = 8.1 Hz, 1H), 6.87–6.81 (m, 1H), 6.71–6.64 (m, 1H), 5.00 (dd, *J* = 11.9, 7.4 Hz, 1H), 3.49–3.36 (m, 1H), 2.77–2.67 (m, 1H), 2.07 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ = 149.3, 146.8, 142.3, 130.0, 129.1, 127.5, 125.7, 122.9, 121.1, 115.9, 111.1, 64.2, 47.8, 15.8.

HRMS (ESI-TOF): Calculated for C₁₆H₁₅BrN₂ [M]⁺: 314.0419, found 314.0400.

SFC: Daicel Chiralcel OJ-H, column temperature = 40 °C, $CO_2/MeOH = 90/10$, Flow rate = 2 mL/min, UV = 280 nm, $t_R = 4.7$ min (major) and $t_R = 8.2$ min (minor).

(S)-3-Methyl-5-phenyl-1-(4-(trifluoromethyl)phenyl)-4,5-dihydro-1*H*-pyrazole

Following general procedure D (reaction performed at room temperature for 28 h), compound **2n** was obtained from (4-(trifluoromethyl)phenyl)hydrazine (44 mg, 0.25 mmol, 1 equiv) and (*E*)-4-phenylbut-3-en-2-one (38 mg, 0.26 mmol, 1.05 equiv) as a white solid in 85% yield (65 mg).

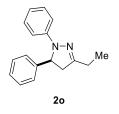
Characterization data for 2n:

 $\mathbf{R}_{\mathbf{f}} = 0.35$ in hexanes/EtOAc 90:10 v/v.

mp = 106 - 108 °C.

 $[\alpha]_{\rm D}^{20} = -356.06 \text{ (c } 0.5, \text{ CHCl}_3, 87\% \text{ ee}).$

¹**H NMR** (400 MHz, CDCl₃) δ = 7.38–7.32 (comp, 4H), 7.30–7.22 (comp, 3H), 6.93 (d, *J* = 8.7 Hz, 2H), 5.09 (dd, *J* = 12.0, 6.9 Hz, 1H), 3.52–3.43 (m, 1H), 2.80–2.72 (m, 1H), 2.09 (s, 3H).


¹³**C** NMR (100 MHz, CDCl₃) δ = 145.0, 147.6, 142.0, 129.2, 127.7, 126.2 (q, J_{C-F} = 3.6 Hz), 125.6, 124.9 (q, J_{C-F} = 270.7 Hz), 119.6 (q, J_{C-F} = 32.3 Hz), 112.0, 63.7, 47.8, 15.9.

¹⁹**F-NMR** (377 MHz, CDCl₃): $\delta = -62.44$.

HRMS (ESI-TOF): Calculated for $C_{17}H_{16}F_3N_2 [M + H]^+$: 305.1260, found 305.1272.

SFC: Daicel Chiralcel OJ-H, column temperature = 40 °C, $CO_2/MeOH = 80/20$, Flow rate = 2 mL/min, UV = 280 nm, $t_R = 2.9$ min (major) and $t_R = 3.9$ min (minor).

(S)-3-Ethyl-1,5-diphenyl-4,5-dihydro-1*H*-pyrazole

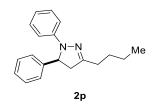
Following general procedure D (reaction performed at room temperature for 28 h), compound **20** was obtained from phenylhydrazine (25 μ L, 0.25 mmol, 1 equiv) and (*E*)-1-phenylpent-1-en-3-one (42 mg, 0.26 mmol, 1.05 equiv) as a white solid in 91% yield (57 mg).

Characterization data for 20:

 $\mathbf{R}_{\mathbf{f}} = 0.38$ in hexanes/EtOAc 90:10 v/v.

 $mp = 66-68 \ ^{\circ}C.$

 $[\alpha]_{\rm D}^{20} = -288.32 \text{ (c } 0.5, \text{CHCl}_3, 88\% \text{ ee}).$


¹**H** NMR (400 MHz, CDCl₃) δ = 7.38–7.29 (comp, 4H), 7.29–7.23 (m, 1H), 7.19–7.10 (m, 2H), 6.95 (d, *J* = 8.1 Hz, 2H), 6.74 (t, *J* = 7.3 Hz, 1H), 5.00 (dd, *J* = 11.9, 8.1 Hz, 1H), 3.43 (dd, *J* = 17.4, 11.9 Hz, 1H), 2.73 (dd, *J* = 17.4, 8.1 Hz, 1H), 2.42 (q, *J* = 7.5 Hz, 2H), 1.21 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ = 153.1, 146.2, 143.1, 129.0, 128.8, 127.3, 125.9, 118.6, 113.1, 64.6, 46.0, 23.6, 11.2.

HRMS (ESI-TOF): Calculated for $C_{17}H_{19}N_2 [M + H]^+$: 251.1543, found 251.1554.

SFC: Daicel Chiralcel OJ-H, column temperature = 40 °C, $CO_2/MeOH = 80/20$, Flow rate = 2 mL/min, UV = 280 nm, $t_R = 5.4$ min (major) and $t_R = 6.7$ min (minor).

(S)-3-Butyl-1,5-diphenyl-4,5-dihydro-1*H*-pyrazole

Following general procedure D (reaction performed at room temperature for 28 h), compound **2p** was obtained from phenylhydrazine (25 μ L, 0.25 mmol, 1 equiv) and (*E*)-1-phenylhept-1-en-3-one (49 mg, 0.26 mmol, 1.05 equiv) as a white solid in 91% yield (63 mg).

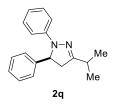
Characterization data for 2p:

 $\mathbf{R}_{\mathbf{f}} = 0.51$ in hexanes/EtOAc 90:10 v/v.

 $mp = 68-70 \ ^{\circ}C.$

 $[\alpha]_{\rm D}^{20} = -298.57 \text{ (c } 1.0, \text{CH}_2\text{Cl}_2, 90\% \text{ ee}).$

¹**H** NMR (400 MHz, CDCl₃) δ = 7.29–7.14 (comp, 5H), 7.10–7.01 (m, 2H), 6.85 (d, *J* = 8.1 Hz, 2H), 6.65 (t, *J* = 7.3 Hz, 1H), 4.91 (dd, *J* = 11.9, 8.0 Hz, 1H), 3.33 (dd, *J* = 17.4, 11.9 Hz, 1H), 2.63 (dd, *J* = 17.4, 8.0 Hz, 1H), 2.32 (t, *J* = 7.7 Hz, 2H), 1.55–1.45 (m, 2H), 1.38–1.26 (m, 2H), 0.86 (t, *J* = 7.3 Hz, 3H).


¹³**C NMR** (100 MHz, CDCl₃) δ = 152.2, 146.2, 143.1, 129.0, 128.8, 127.3, 125.9, 118.5, 113.1, 64.5, 46.2, 29.9, 28.9, 22.5, 13.8.

HRMS (ESI-TOF): Calculated for C₁₉H₂₂N₂ [M]⁺: 278.1783, found 278.1772.

SFC: Daicel Chiralcel OJ-H, column temperature = 40 °C, $CO_2/MeOH = 90/10$, Flow rate = 2 mL/min, UV = 280 nm, $t_R = 8.7$ min (major) and $t_R = 9.8$ min (minor).

The absolute configuration of (S)-2p ($[\alpha]_D^{20} = -298.57$ (c 1.0, CH₂Cl₂, 90% ee)) was assigned by comparison with the (*R*)-enantiomer reported in the literature ($[\alpha]_D^{23} = +336.02$ (c 1.0, CH₂Cl₂, 94% ee)).³

(S)-3-Isopropyl-1,5-diphenyl-4,5-dihydro-1H-pyrazole

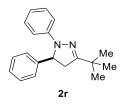
Following general procedure D (reaction performed at room temperature for 28 h), compound **2q** was obtained from phenylhydrazine (25 μ L, 0.25 mmol, 1 equiv) and (*E*)-4-methyl-1-phenylpent-1-en-3-one (46 mg, 0.26 mmol, 1.05 equiv) as a white solid in 89% yield (59 mg).

Characterization data for 2q:

 $\mathbf{R}_{\mathbf{f}} = 0.37$ in hexanes/EtOAc 90:10 v/v.

mp = 90-92 °C.

 $[\alpha]_{D}^{20} = -196.5 \text{ (c } 0.5, \text{CHCl}_{3}, 82\% \text{ ee}).$


¹**H** NMR (400 MHz, CDCl₃) δ = 7.31–7.17 (comp, 6H), 7.11–7.05 (m, 2H), 6.88 (d, *J* = 8.1 Hz, 2H), 6.68 (t, *J* = 7.3 Hz, 1H), 4.93 (dd, *J* = 11.9, 8.1 Hz, 1H), 3.37 (dd, *J* = 17.4, 11.9 Hz, 1H), 2.74–2.61 (comp, 2H), 1.15 (d, *J* = 1.4 Hz, 3H), 1.13 (d, *J* = 1.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ = 156.5, 146.3, 143.2, 129.0, 128.8, 127.3, 125.9, 118.5, 113.2, 64.7, 44.0, 29.7, 20.3.

HRMS (ESI-TOF): Calculated for $C_{18}H_{21}N_2 [M + H]^+$: 265.1699, found 265.1727.

SFC: Daicel Chiralcel OJ-H, column temperature = 40 °C, CO₂/MeOH = 98/2, Flow rate = 2 mL/min, UV = 280 nm, $t_R = 4.0 \text{ min (major)}$ and $t_R = 4.3 \text{ min (minor)}$.

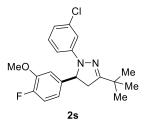
(S)-3-(Tert-butyl)-1,5-diphenyl-4,5-dihydro-1H-pyrazole

Following general procedure D (reaction performed at room temperature for 28 h), compound **2r** was obtained from phenylhydrazine (25 μ L, 0.25 mmol, 1 equiv) and (*E*)-4,4-dimethyl-1-phenylpent-1-en-3-one (49 mg, 0.26 mmol, 1.05 equiv) as a colorless oil in 86% yield (60 mg).

Characterization data for 2r:

 $\mathbf{R}_{\mathbf{f}} = 0.51$ in hexanes/EtOAc 90:10 v/v.

 $[\alpha]_{\rm D}^{20} = -171.18 \text{ (c } 0.5, \text{CHCl}_3, 69\% \text{ ee}).$


¹**H** NMR (600 MHz, CDCl₃) δ = 7.39–7.31 (comp, 4H), 7.30–7.26 (m, 1H), 7.19–7.14 (m, 2H), 7.01–6.96 (m, 2H), 6.79–6.73 (m, 1H), 5.01 (dd, *J* = 11.8, 8.1 Hz, 1H), 3.49 (dd, *J* = 17.2, 11.8 Hz, 1H), 2.78 (dd, *J* = 17.2, 8.1 Hz, 1H), 1.26 (s, 9H).

¹³C NMR (150 MHz, CDCl₃) δ = 158.7, 146.4, 143.2, 129.0, 128.8, 127.3, 125.9, 118.5, 113.2, 65.1, 43.2, 33.8, 28.3.

HRMS (ESI-TOF): Calculated for C₁₉H₂₂N₂ [M]⁺: 278.1783 found 278.1788.

SFC: Daicel Chiralcel OD-H, column temperature = 40 °C, $CO_2/MeOH = 95/5$, Flow rate = 2 mL/min, UV = 280 nm, $t_R = 8.8 \text{ min (major)}$ and $t_R = 9.7 \text{ min (minor)}$.

(S)-3-(Tert-butyl)-1-(3-chlorophenyl)-5-(4-fluoro-3-methoxyphenyl)-4,5-dihydro-1H-pyrazole

Following general procedure D (reaction performed at room temperature for 28 h), compound **2s** was obtained from (3-chlorophenyl)hydrazine (36 mg, 0.25 mmol, 1 equiv) and (*E*)-1-(4-fluoro-3-methoxyphenyl)-4,4-dimethylpent-1- en-3-one (62 mg, 0.26 mmol, 1.05 equiv) as a white solid in 88% yield (79 mg).

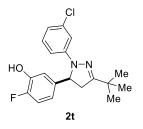
Characterization data for 2s:

 $\mathbf{R}_{\mathbf{f}} = 0.34$ in hexanes/EtOAc 80:20 v/v.

mp = 125–127 °C

 $[\alpha]_{\rm D}^{20} = -314.22 \text{ (c } 0.5, \text{CHCl}_3, 72\% \text{ ee}).$

¹**H NMR** (600 MHz, CDCl₃) δ = 7.07–6.99 (comp, 3H), 6.85–6.76 (comp, 2H), 6.73–6.64 (comp, 2H), 4.93 (dd, *J* = 11.7, 7.4 Hz, 1H), 3.83 (s, 3H), 3.46 (dd, *J* = 17.3, 11.7 Hz, 1H), 2.73 (dd, *J* = 17.3, 7.4 Hz, 1H), 1.23 (s, 9H).


¹³C NMR (150 MHz, CDCl₃) δ = 159.8, 151.7 (d, J_{C-F} = 246.0 Hz), 148.3 (d, J_{C-F} = 10.5 Hz), 147.1, 138.87 (d, J_{C-F} = 3.9 Hz), 134.6, 129.8, 118.5, 117.9 (d, J_{C-F} = 7.2 Hz), 116.5 (d, J_{C-F} = 18.2 Hz), 113.3, 111.0, 110.5 (d, J_{C-F} = 2.2 Hz), 64.4, 56.3, 43.2, 33.9, 28.2.

¹⁹**F-NMR** (377 MHz, CDCl₃): $\delta = -136.70$.

HRMS (ESI-TOF): Calculated for $C_{20}H_{23}ClFN_2O [M + H]^+$: 361.1477, found 361.1458.

SFC: Daicel Chiralcel OJ-H, column temperature = 40 °C, $CO_2/MeOH = 98/2$, Flow rate = 2 mL/min, UV = 280 nm, $t_R = 4.8 \text{ min (major)}$ and $t_R = 5.2 \text{ min (minor)}$.

(S)-5-(3-(Tert-butyl)-1-(3-chlorophenyl)-4,5-dihydro-1H-pyrazol-5-yl)-2-fluorophenol

Following general procedure D (reaction performed at room temperature for 28 h), compound **2t** was obtained from (3-chlorophenyl)hydrazine (36 mg, 0.25 mmol, 1 equiv) and (E)-1-(4-fluoro-3-hydroxyphenyl)-4,4-dimethylpent-1-en-3-one (58 mg, 0.26 mmol, 1.05 equiv) as a white solid in 92% yield (80 mg).

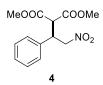
Characterization data for 2t:

 $\mathbf{R}_{\mathbf{f}} = 0.22$ in hexanes/EtOAc 60:40 v/v.

mp = 109–111 °C

 $[\alpha]_{\rm D}^{20} = -155.18 \text{ (c } 0.5, \text{CHCl}_3, 61\% \text{ ee}).$

¹**H** NMR (600 MHz, CDCl₃) δ = 7.07–6.98 (comp, 3H), 6.93–6.87 (m, 1H), 6.78–6.72 (m, 1H), 6.71–6.63 (comp, 2H), 5.26 (s, 1H), 4.91 (dd, *J* = 11.8, 7.2 Hz, 1H), 3.44 (dd, *J* = 17.4, 11.8 Hz, 1H), 2.71 (dd, *J* = 17.4, 7.2 Hz, 1H), 1.22 (s, 9H).


¹³C NMR (150 MHz, CDCl₃) δ = 159.6, 150.3 (d, J_{C-F} = 237.2 Hz), 146.9, 144.0 (d, J_{C-F} = 14.4 Hz), 139.5 (d, J_{C-F} = 3.3 Hz), 134.6, 129.8, 118.3, 117.9 (d, J_{C-F} = 6.6 Hz), 116.1 (d, J_{C-F} = 18.2 Hz), 114.5 (d, J_{C-F} = 1.6 Hz), 113.2, 110.9, 63.8, 43.1, 33.8, 28.2.

¹⁹**F-NMR** (377 MHz, CDCl₃): $\delta = -142.14$.

HRMS (ESI-TOF): Calculated for $C_{19}H_{21}ClFN_2O [M + H]^+$: 347.1321, found 347.1311.

SFC: Daicel Chiralcel OJ-H, column temperature = 40 °C, $CO_2/MeOH = 90/10$, Flow rate = 2 mL/min, UV = 280 nm, $t_R = 9.6$ min (major) and $t_R = 11.0$ min (minor).

Dimethyl (R)-2-(2-nitro-1-phenylethyl)malonate

To a flame dried vial were successively added dimethyl malonate (0.5 mmol, 2 equiv), catalyst **5b** (10.3 mg, 0.025 mmol, 10 mol%), and dry toluene (2.5 mL, 0.1 M). Trans- β -nitrostyrene (0.25 mmol, 1 equiv) was then added, and the resulting mixture was stirred under nitrogen at room temperature for 6 h. The resulting mixture was directly purified by flash chromatography on silica gel using EtOAc/hexanes (20/80) as the eluent to afford **4** as a colorless oil in 95% yield (67 mg).

Characterization data for 4:

 $\mathbf{R}_{\mathbf{f}} = 0.2$ in hexanes/EtOAc 80:20 v/v.

 $[\alpha]_{D}^{20} = -5.03$ (c 1.0, CHCl₃, 94% ee).

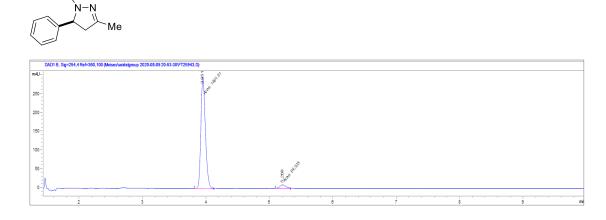
¹**H NMR** (400 MHz, CDCl₃) δ = 7.28–7.13 (comp, 5H), 4.89–4.76 (comp, 2H), 4.17 (td, *J* = 9.0, 5.2 Hz, 1H), 3.79 (d, *J* = 9.0 Hz, 1H), 3.68 (s, 3H), 3.48 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ = 167.8, 167.2, 136.1, 129.0, 128.4, 127.8, 77.3, 54.7, 53.0, 52.8, 42.9.

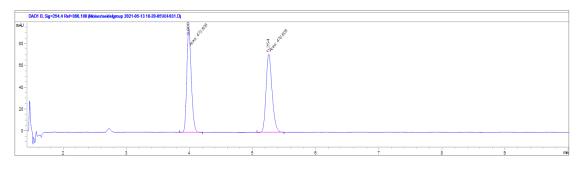
HRMS (ESI-TOF): Calculated for $C_{13}H_{15}NO_6Na [M + Na]^+$: 304.0792, found 304.0796.

SFC: Daicel Chiralcel AD-H, column temperature = 40 °C, $CO_2/MeOH = 90/10$, Flow rate = 2 mL/min, UV = 230 nm, t_R = 3.3 min (major) and t_R = 2.9 min (minor).

The absolute configuration of 8a ($[\alpha]_{\rm D}^{20} = -5.03$ (c 1.0, CHCl₃, 94% ee)) was assigned by comparison with the compound reported in the literature ($[\alpha]_{\rm D}^{23} = -6.02$ (c 1.0, CHCl₃, 97% ee)).⁴

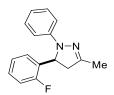

References

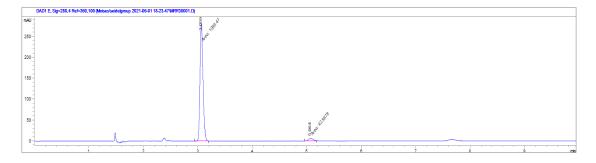
- 1 X. Liu, X. Xu, L. Pan, Q. Zhang and Q. Liu, Org. Biomol. Chem., 2013, 11, 6703-6706.
- 2 Y.-D. Yang, E. Tokunaga, H. Akiyama, N. Saito and N. Shibata, *ChemMedChem*, 2014, 9, 913-917.
- 3 D.-Y. Zhang, L. Shao, J. Xu and X.-P. Hu, *ACS Catal.*, 2015, **5**, 5026-5030.
- 4 L. Zhang, M.-M. Lee, S.-M. Lee, J. Lee, M. Cheng, B.-S. Jeong, H.-g. Park and S.-s. Jew, *Adv. Synth. Catal.*, 2009, **351**, 3063-3066.


SFC Profiles

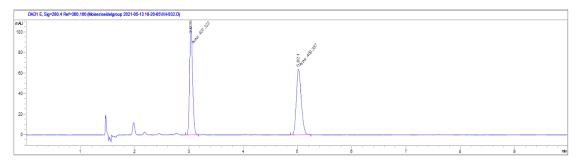
SFC Profile of 2a

Conditions: Daicel Chiralcel OJ-H, column temperature = 40 °C, CO₂/MeOH = 80/20, Flow rate = 2 mL/min, UV = 254 nm, t_R = 3.9 min (major) and t_R = 5.2 min (minor).

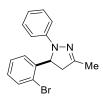

Peak	Retention time (min)	Area %
1	3.951	95.867
2	5.208	4.133

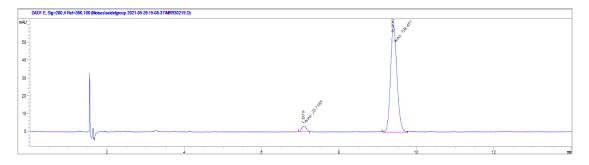


Peak	Retention time (min)	Area %
1	3.988	50.085
2	5.254	49.915

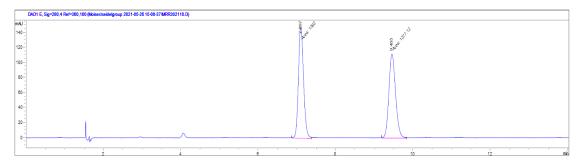

SFC Profile of 2b

Conditions: Daicel Chiralcel OJ-H, column temperature = 40 °C, CO₂/MeOH = 90/10, Flow rate = 2 mL/min, UV = 280 nm, t_R = 3.1 min (major) and t_R = 5.1 min (minor).

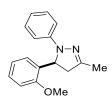

Peak	Retention time (min)	Area %
1	3.059	96.273
2	5.064	3.727

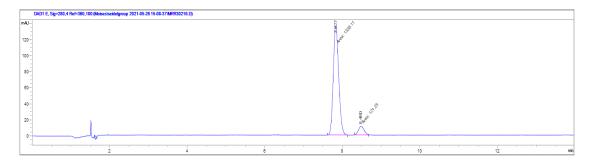


Peak	Retention time (min)	Area %
1	3.035	49.874
2	5.021	50.126

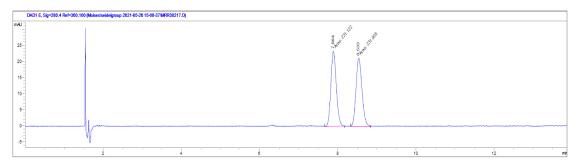

SFC Profile of 2c

Conditions: Daicel Chiralcel OJ-H, column temperature = 40 °C, CO₂/MeOH = 90/10, Flow rate = 2 mL/min, UV = 280 nm, t_R = 9.4 min (major) and t_R = 7.1 min (minor).

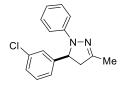

Peak	Retention time (min)	Area %
1	7.079	3.522
2	9.396	96.478

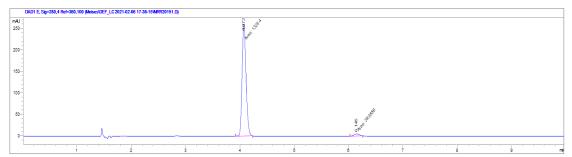


Peak	Retention time (min)	Area %
1	7.097	50.169
2	9.455	49.831

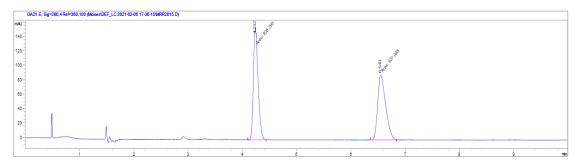

SFC Profile of 2d

Conditions: Daicel Chiralcel OJ-H, column temperature = 40 °C, CO₂/MeOH = 80/20, Flow rate = 2 mL/min, UV = 280 nm, t_R = 7.8 min (major) and t_R = 8.5 min (minor).

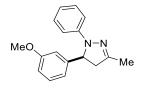

Peak	Retention time (min)	Area %
1	7.827	91.692
2	8.480	8.308



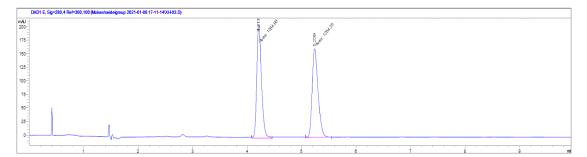
Peak	Retention time (min)	Area %
1	7.884	49.915
2	8.533	50.085


SFC Profile of 2e

Conditions: Daicel Chiralcel OJ-H, column temperature = 40 °C, CO₂/MeOH = 80/20, Flow rate = 2 mL/min, UV = 280 nm, t_R = 4.1 min (major) and t_R = 6.1 min (minor).

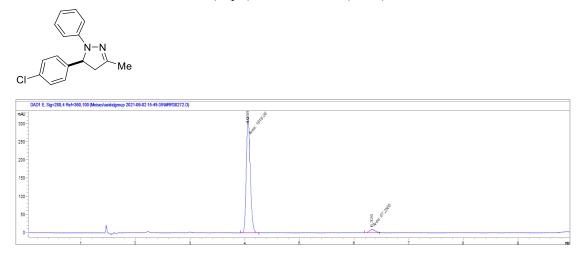


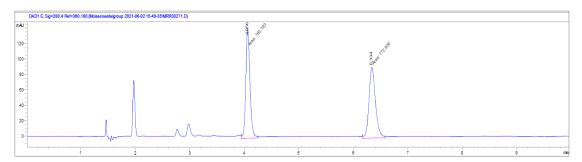
Peak	Retention time (min)	Area %
1	4.072	97.080
2	6.145	2.9200


Peak	Retention time (min)	Area %
1	4.232	50.008
2	6.543	49.992

Conditions: Daicel Chiralcel OJ-H, column temperature = 40 °C, CO₂/MeOH = 90/10, Flow rate = 2 mL/min, UV = 280 nm, t_R = 4.1 min (major) and t_R = 5.1 min (minor).

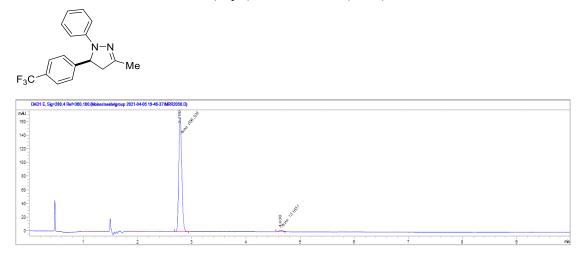
DAD1 E, Sig=280,4 Ref=360,100 (Moises\seidelgroup 2021-01-15 13-56-46\XH-931.D)	
m4U	ě v
300-	per de la companya de
250-	
200	
160-	
100	<i>A</i> ¹
50- -	


Peak	Retention time (min)	Area %
1	4.135	95.512
2	5.101	4.488

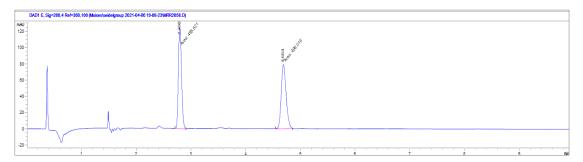

Peak	Retention time (min)	Area %
1	4.213	50.211
2	5.230	49.789

SFC Profile of 2g

Conditions: Daicel Chiralcel OJ-H, column temperature = 40 °C, CO₂/MeOH = 90/10, Flow rate = 2 mL/min, UV = 280 nm, t_R = 4.1 min (major) and t_R = 6.3 min (minor).

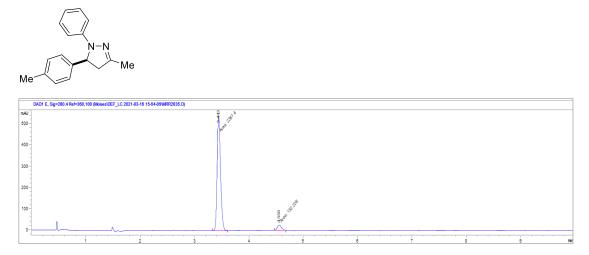


Peak	Retention time (min)	Area %
1	4.058	96.012
2	6.325	3.988

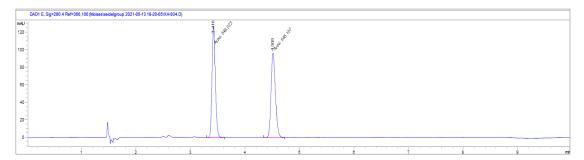


Peak	Retention time (min)	Area %
1	4.056	49.716
2	6.334	50.284

Conditions: Daicel Chiralcel OJ-H, column temperature = 40 °C, $CO_2/MeOH = 97/3$, Flow rate = 2 mL/min, UV = 280 nm, $t_R = 2.8 \text{ min (major)}$ and $t_R = 4.6 \text{ min (minor)}$.



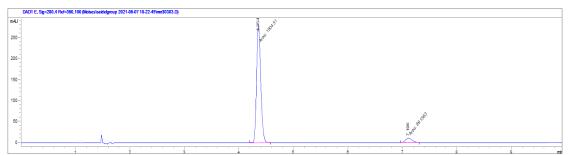
Peak	Retention time (min)	Area %
1	2.78	98.034
2	4.638	1.966



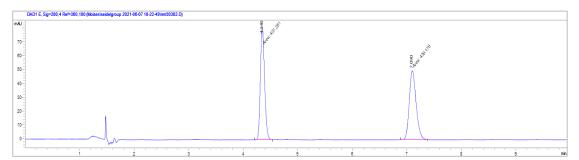
Peak	Retention time (min)	Area %
1	2.79	49.879
2	4.684	50.121

Conditions: Daicel Chiralcel OJ-H, column temperature = 40 °C, CO₂/MeOH = 90/10, Flow rate = 2 mL/min, UV = 280 nm, t_R = 3.4 min (major) and t_R = 4.6 min (minor).

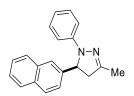
Peak	Retention time (min)	Area %
1	3.443	94.007
2	4.558	5.993

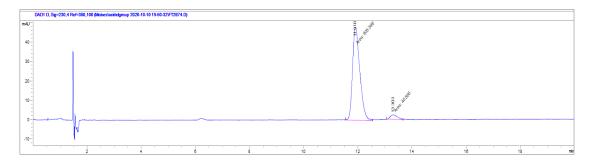


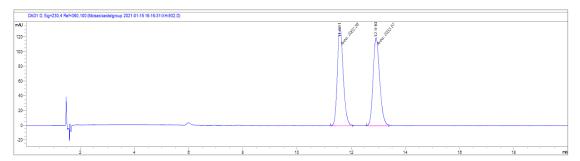
Peak	Retention time (min)	Area %
1	3.416	50.040
2	4.508	49.960


SFC Profile of 2j

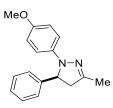
Conditions: Daicel Chiralcel OJ-H, column temperature = 40 °C, CO₂/MeOH = 80/20, Flow rate = 2 mL/min, UV = 280 nm, t_R = 4.3 min (major) and t_R = 7.0 min (minor).

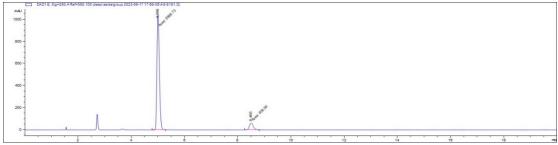


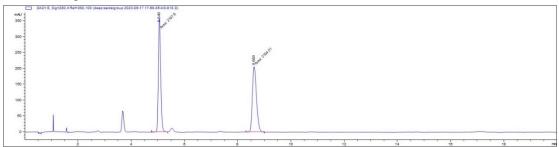

Peak	Retention time (min)	Area %
1	4.354	94.406
2	7.016	5.594


Peak	Retention time (min)	Area %
1	4.34	49.892
2	7.09	50.108

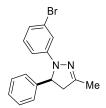
Conditions: Daicel Chiralcel OJ-H, column temperature = 40 °C, $CO_2/MeOH = 95/5$, Flow rate = 2 mL/min, UV = 230 nm, $t_R = 11.9$ min (major) and $t_R = 13.3$ min (minor).

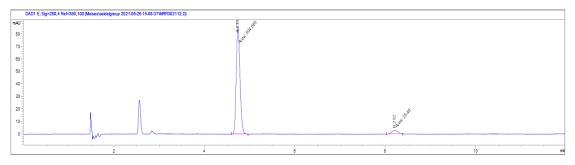



Peak	Retention time (min)	Area %
1	11.91	95.080
2	13.303	4.920

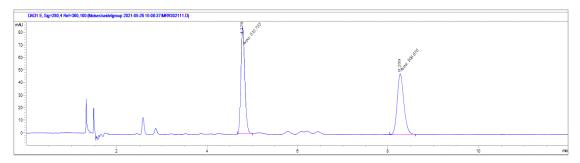

Peak	Retention time (min)	Area %
1	11.581	49.613
2	12.91	50.387

Conditions: Daicel Chiralcel OJ-H, column temperature = 40 °C, CO₂/MeOH = 80/20, Flow rate = 2 mL/min, UV = 280 nm, t_R = 5.0 min (minor) and t_R = 8.5 min (major).

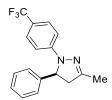

Peak	Retention time (min)	Area %
1	4.996	91.541
2	8.495	8.459

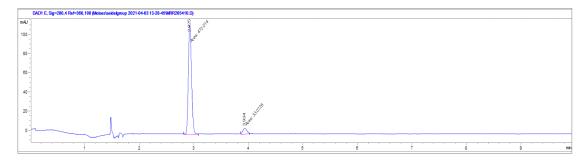


Peak	Retention time (min)	Area %
1	5.049	50.043
2	8.609	49.957

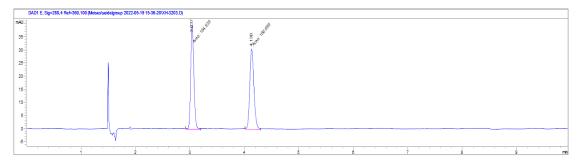

SFC Profile of 2m

Conditions: Daicel Chiralcel OJ-H, column temperature = 40 °C, $CO_2/MeOH = 90/10$, Flow rate = 2 mL/min, UV = 280 nm, $t_R = 4.7$ min (minor) and $t_R = 8.2$ min (major).

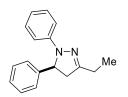

Peak	Retention time (min)	Area %
1	4.739	95.193
2	8.212	4.807

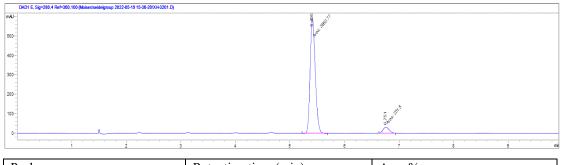


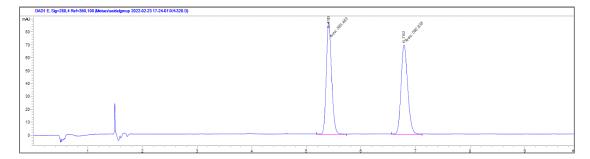
Peak	Retention time (min)	Area %
1	4.778	50.188
2	8.259	49.812


SFC Profile of 2n

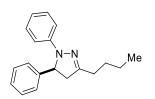
Conditions: Daicel Chiralcel OJ-H, column temperature = 40 °C, CO₂/MeOH = 80/20, Flow rate = 2 mL/min, UV = 280 nm, t_R = 2.9 min (major) and t_R = 3.9 min (minor).



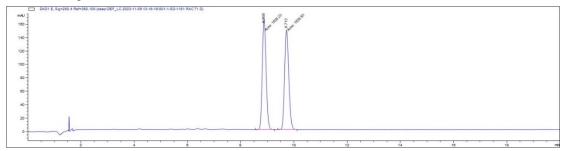

Peak	Retention time (min)	Area %
1	2.925	93.465
2	3.934	6.536


Peak	Retention time (min)	Area %
1	3.037	49.719
2	4.131	50.281

Conditions: Daicel Chiralcel OJ-H, column temperature = 40 °C, CO₂/MeOH = 80/20, Flow rate = 2 mL/min, UV = 280 nm, t_R = 5.4 min (major) and t_R = 6.7 min (minor).

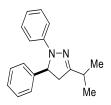

Peak	Retention time (min)	Area %
1	5.405	93.877
2	6.751	6.123

Peak	Retention time (min)	Area %
1	5.41	49.922
2	6.792	50.078

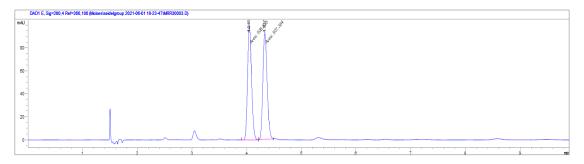

SFC Profile of **2p**:

Conditions: Daicel Chiralcel OJ-H, column temperature = 40 °C, CO₂/MeOH = 90/10, Flow rate = 2 mL/min, UV = 280 nm, $t_R = 8.7$ min (major) and $t_R = 9.8$ min (minor).

DAD1 E, Sig=250,4 Ref=360,100 (deep/DEF_LC 2023-11-09 05-41-27 002-2-8D-1181 EP.D)	
mU]	a state
350	1 menter
	-
300 -	
250 -	
200-	
150 -	
100 -	
	a martine second s
50-	See.
2 4 0	e 10 12 14 16 19 mil

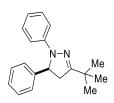

Peak	Retention time (min)	Area %
1	8.651	94.760
2	9.837	5.240

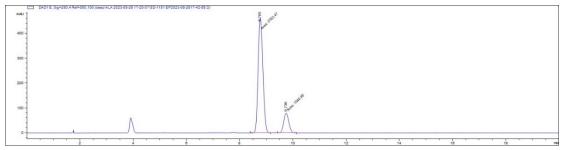
Peak	Retention time (min)	Area %
1	8.868	49.989
2	9.712	50.011


SFC Profile of 2q:

Conditions: Daicel Chiralcel OJ-H, column temperature = 40 °C, $CO_2/MeOH = 98/2$, Flow rate = 2 mL/min, UV = 280 nm, $t_R = 4.0$ min (major) and $t_R = 4.3$ min (minor).

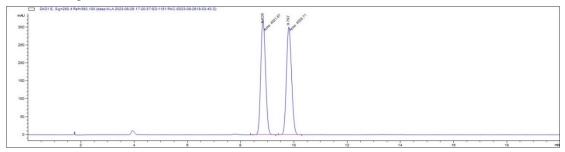
	DAD1 E, Sig=280,4 Ref=360,100 (Moisesleeidegroup 2021-06-01 18-23-471MIRR30002.D)
mAU 225	
200-	e de la constante d
175-	
150-	
100-	
75-	
50 · 25 ·	
0.	


Peak	Retention time (min)	Area %
1	4.028	90.851
2	4.313	9.149

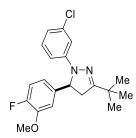


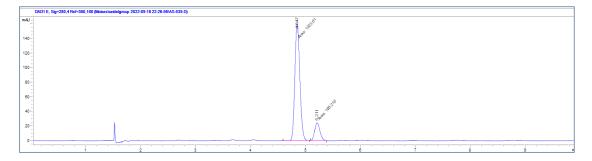
Peak	Retention time (min)	Area %
1	4.045	50.058
2	4.327	49.942

SFC Profile of 2r:

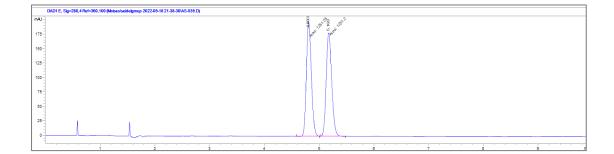

Conditions: Daicel Chiralcel OD-H, column temperature = 40 °C, CO₂/MeOH = 95/5, Flow rate = 2 mL/min, UV = 280 nm, t_R = 8.8 min (major) and t_R = 9.7 min (minor).

Peak	Retention time (min)	Area %
1	8.765	84.590
2	9.736	15.410

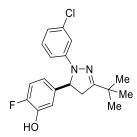

ъ ·	1
Racemic	sample
reacconne	bampie

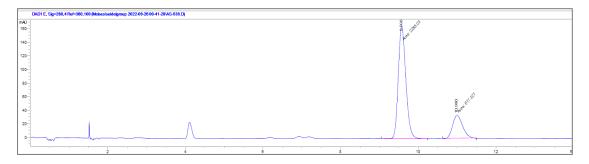


Peak	Retention time (min)	Area %
1	8.828	49.951
2	9.797	50.049

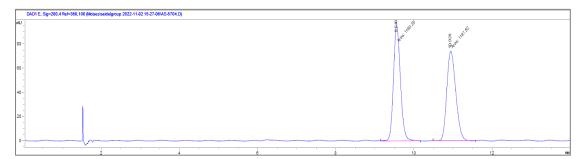

SFC Profile of 2s

Conditions: Daicel Chiralcel OJ-H, column temperature = 40 °C, $CO_2/MeOH = 98/2$, Flow rate = 2 mL/min, UV = 280 nm, $t_R = 4.8 \text{ min (major)}$ and $t_R = 5.2 \text{ min (minor)}$.

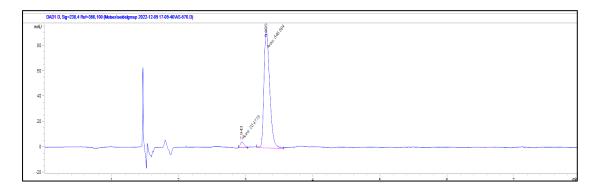

Peak	Retention time (min)	Area %
1	4.847	86.103
2	5.211	13.897

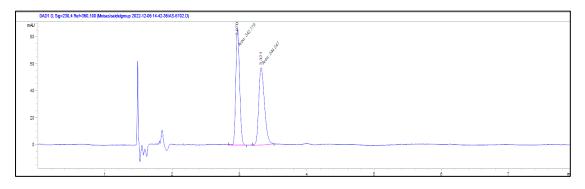


Peak	Retention time (min)	Area %
1	4.803	49.997
2	5.169	50.003


SFC Profile of 2t

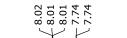
Conditions: Daicel Chiralcel OJ-H, column temperature = 40 °C, CO₂/MeOH = 90/10, Flow rate = 2 mL/min, UV = 280 nm, t_R = 9.6 min (major) and t_R = 11.0 min (minor).

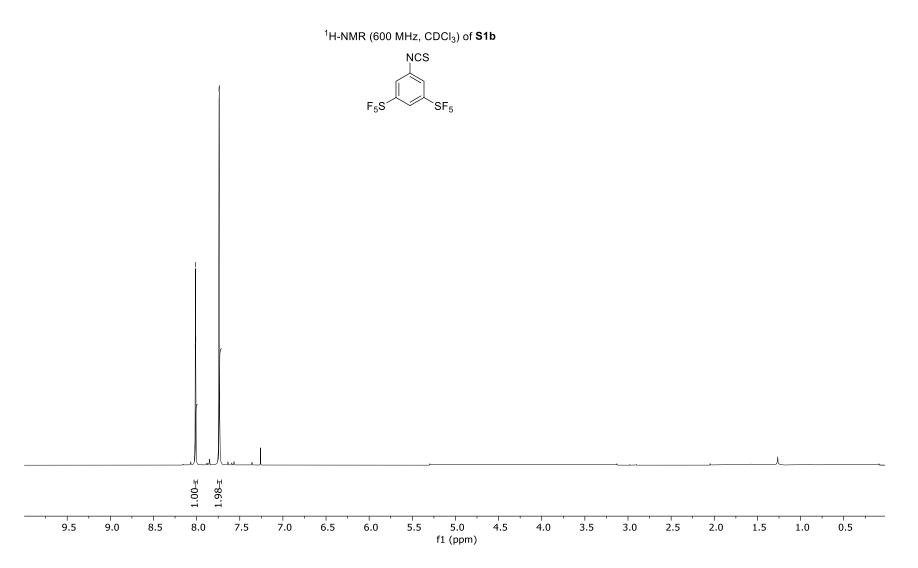

Peak	Retention time (min)	Area %
1	9.566	80.621
2	10.99	19.379

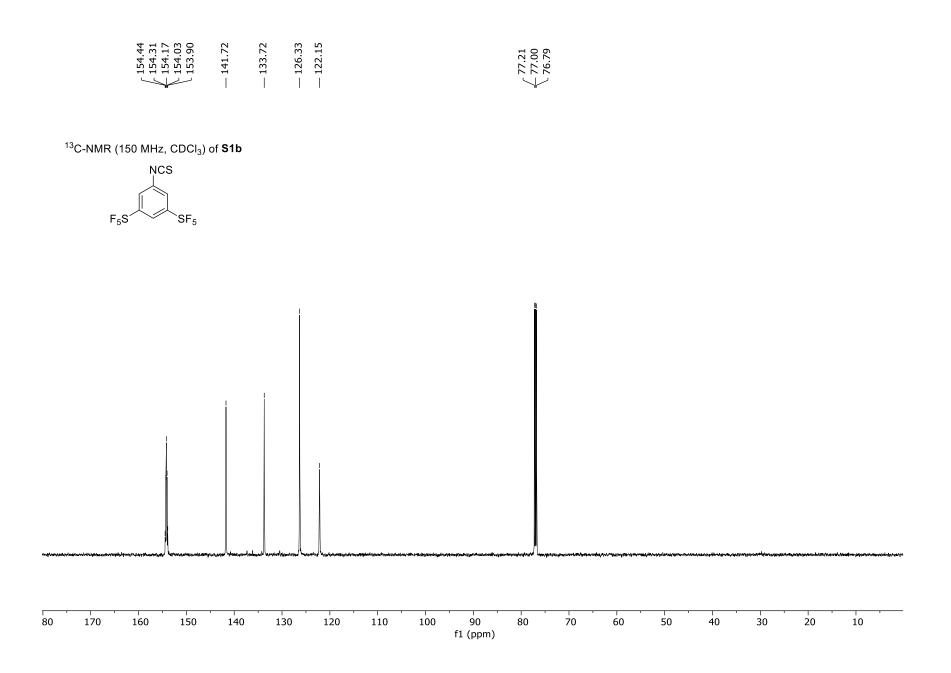

Peak	Retention time (min)	Area %
1	9.546	50.051
2	10.928	49.949

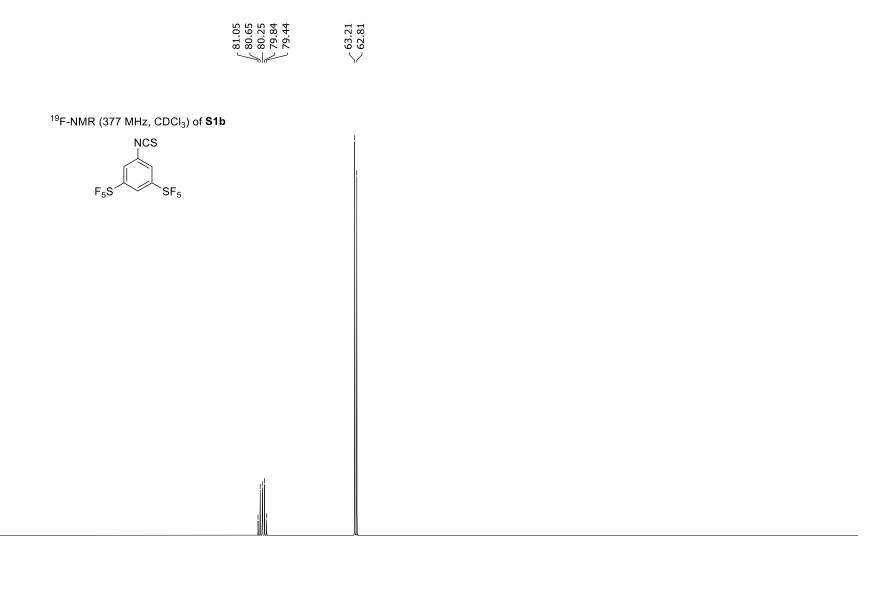
SFC Profile of 4

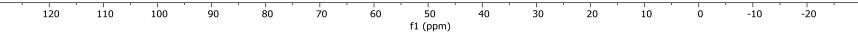
Conditions: Daicel Chiralcel AD-H, column temperature = 40 °C, CO₂/MeOH = 90/10, Flow rate = 2 mL/min, UV = 230 nm, t_R = 3.3 min (major) and t_R = 2.9 min (minor).

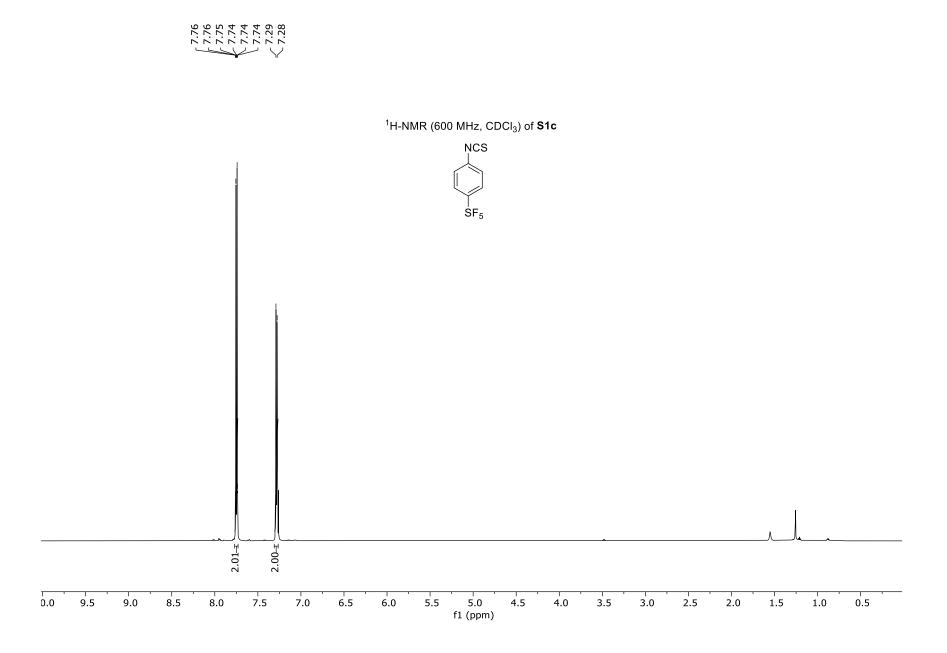


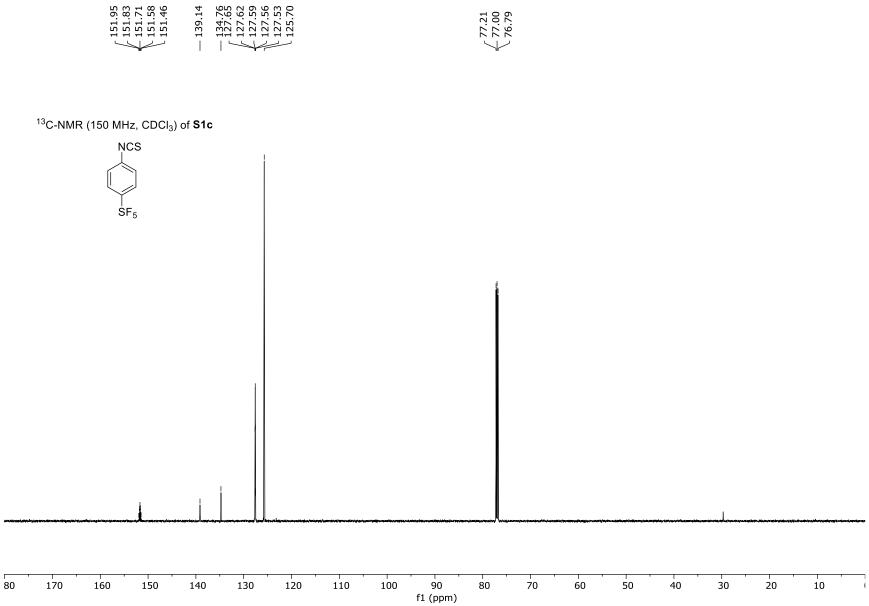

Peak	Retention time (min)	Area %
1	2.943	2.924
2	3.305	97.076

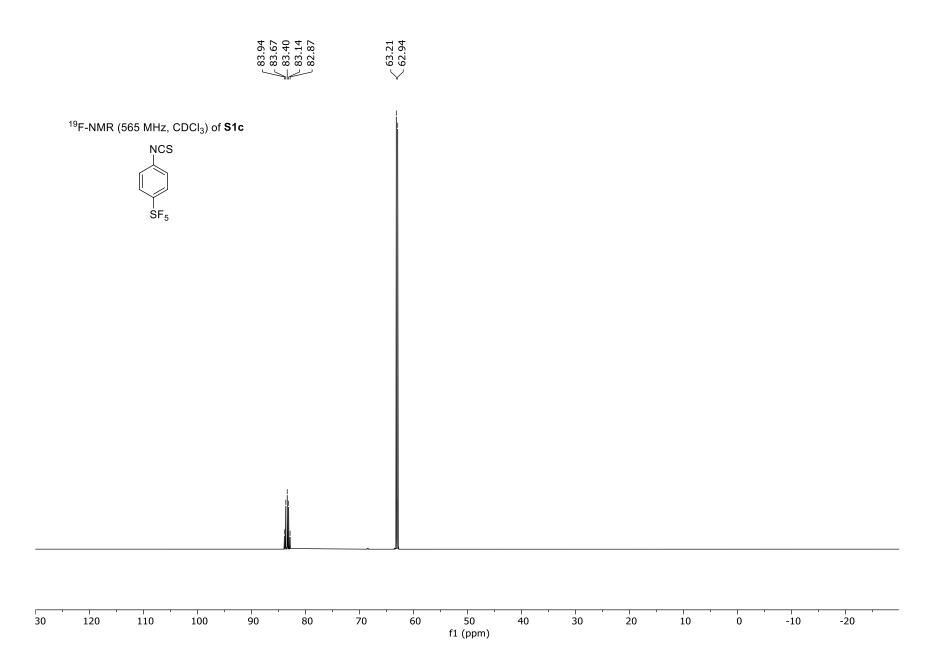


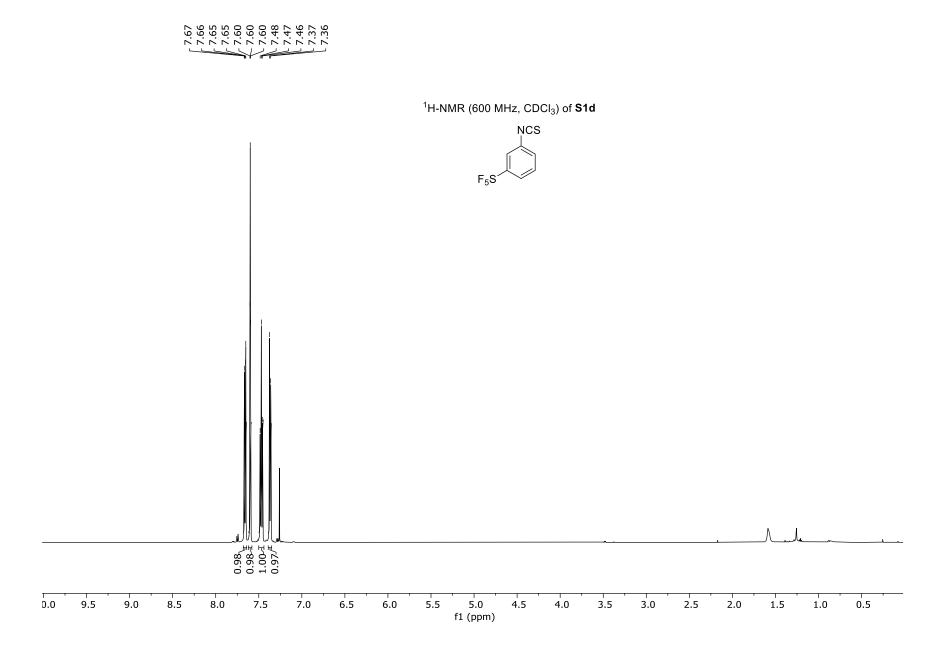

Peak	Retention time (min)	Area %
1	2.97	49.908
2	3.321	50.092

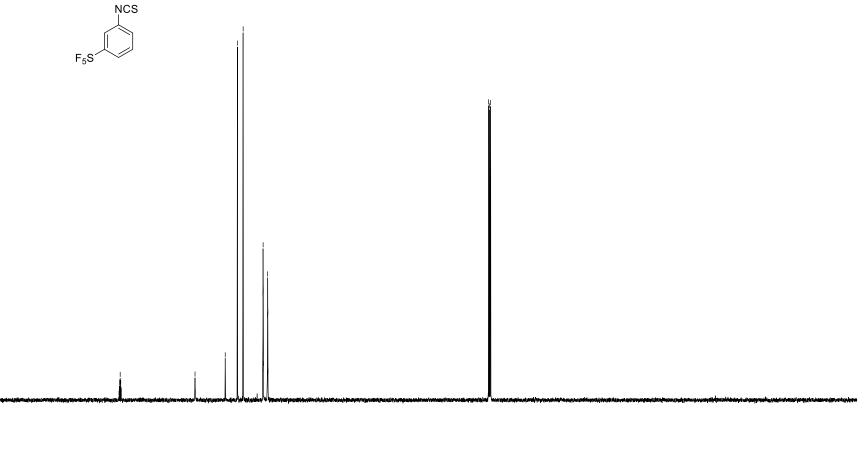

NMR Spectra

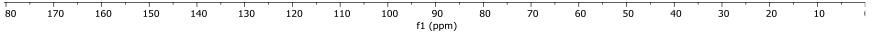


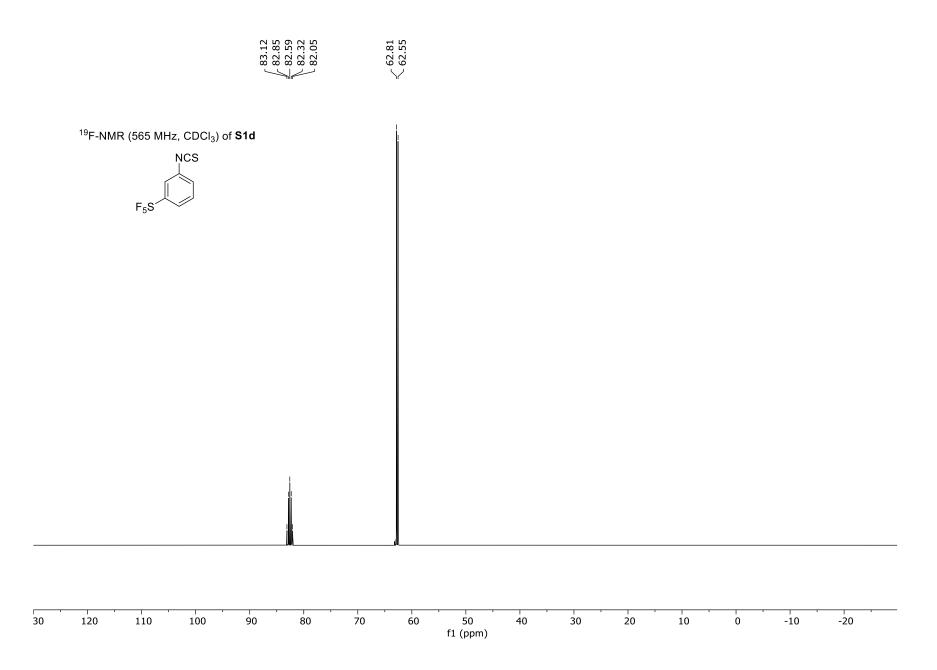


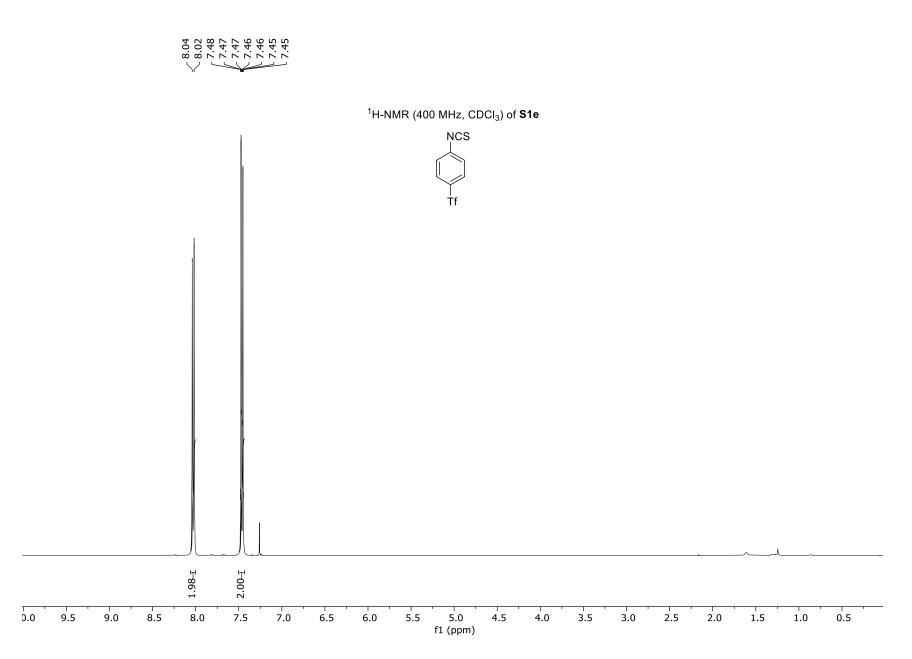


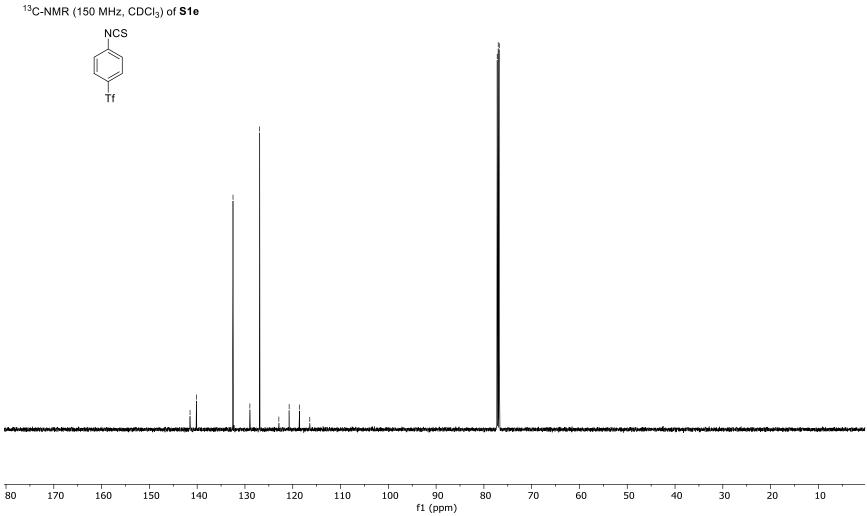


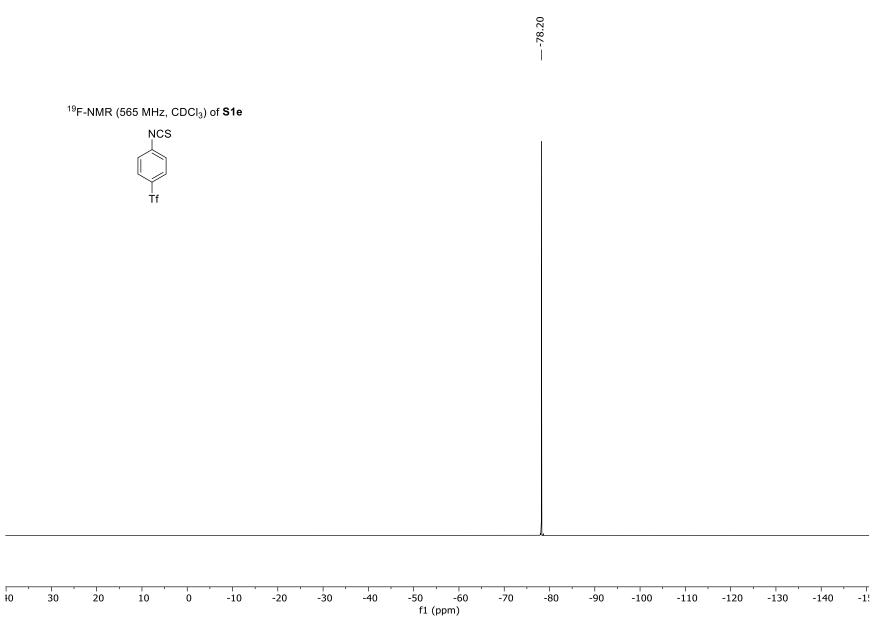


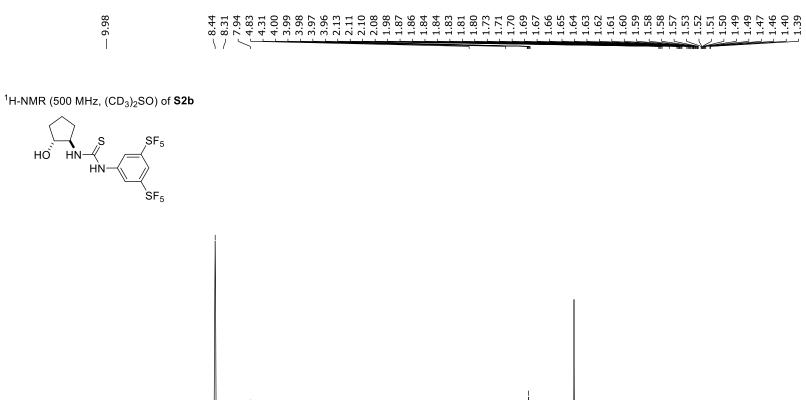


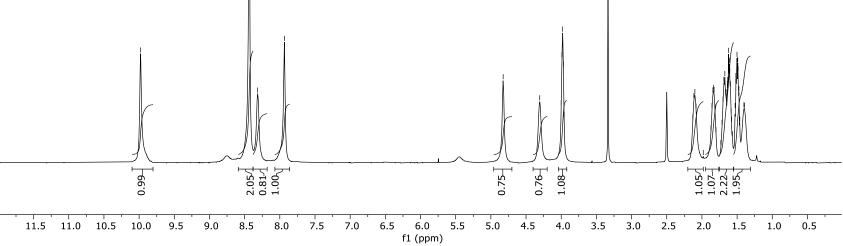


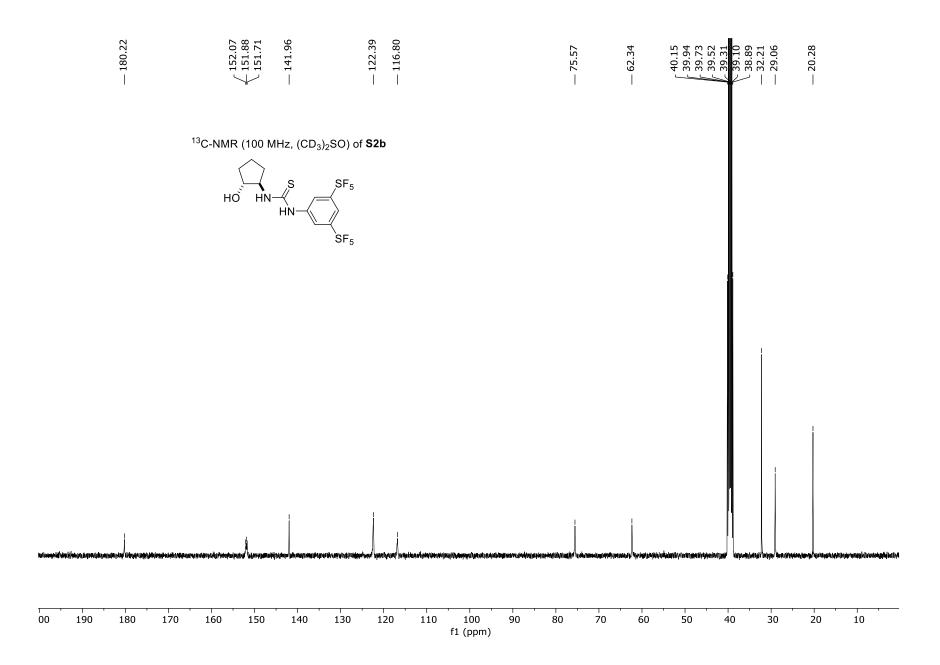

¹³C-NMR (150 MHz, CDCl₃) of **S1d** NCS

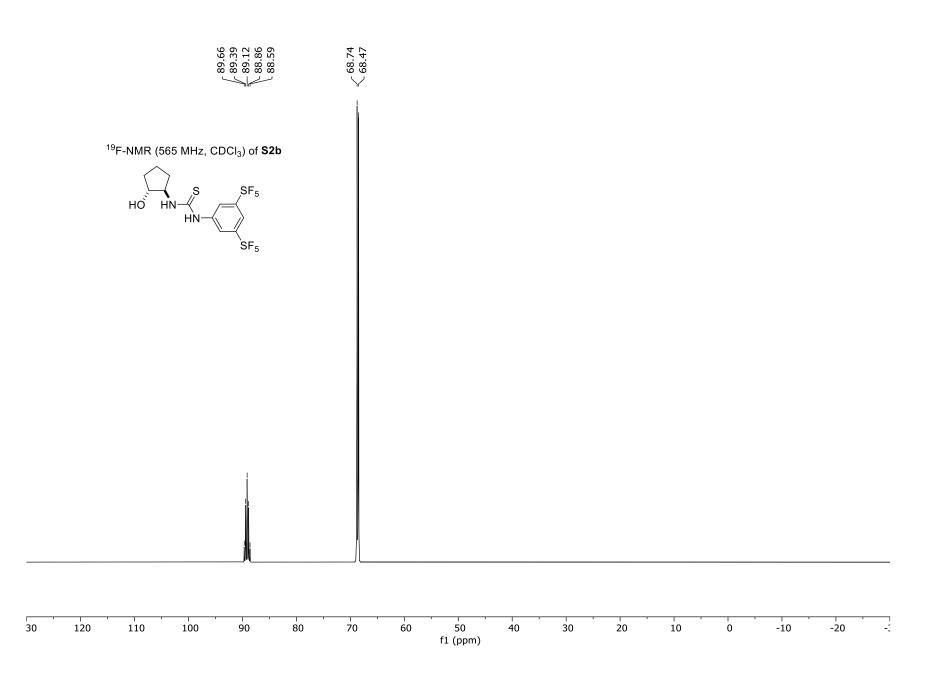

 $\overbrace{76.79}^{77.21}$

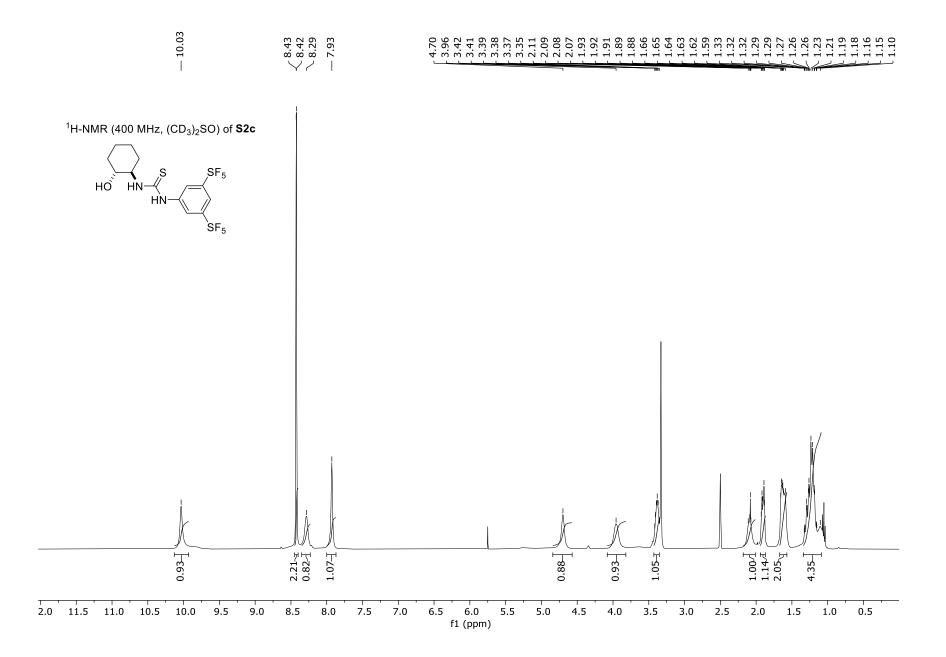


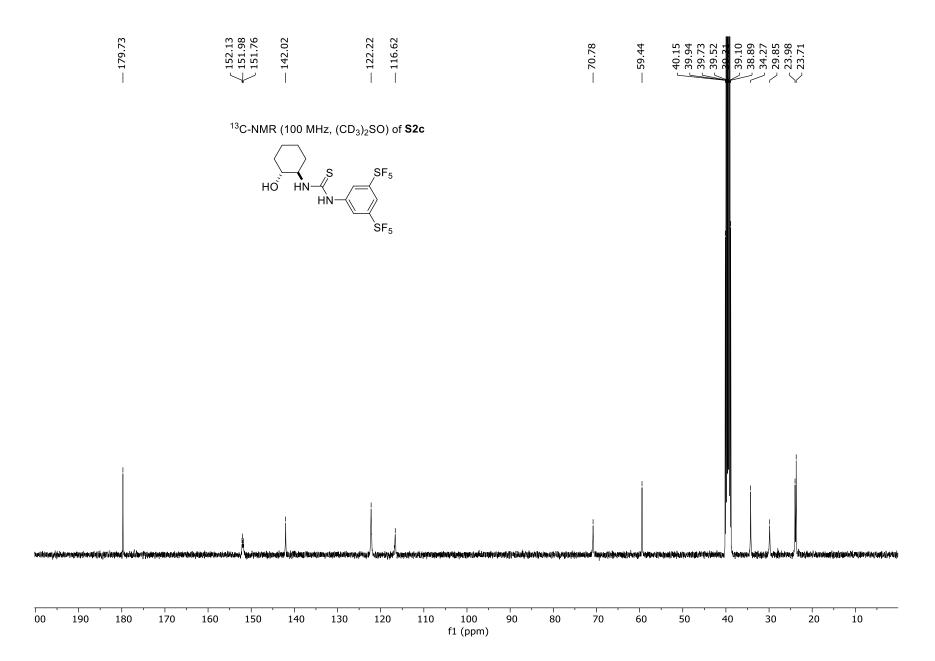


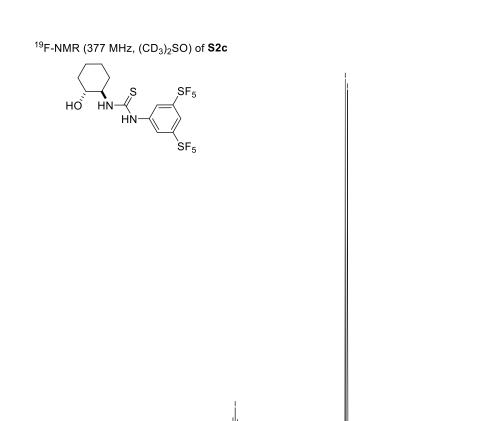


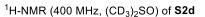


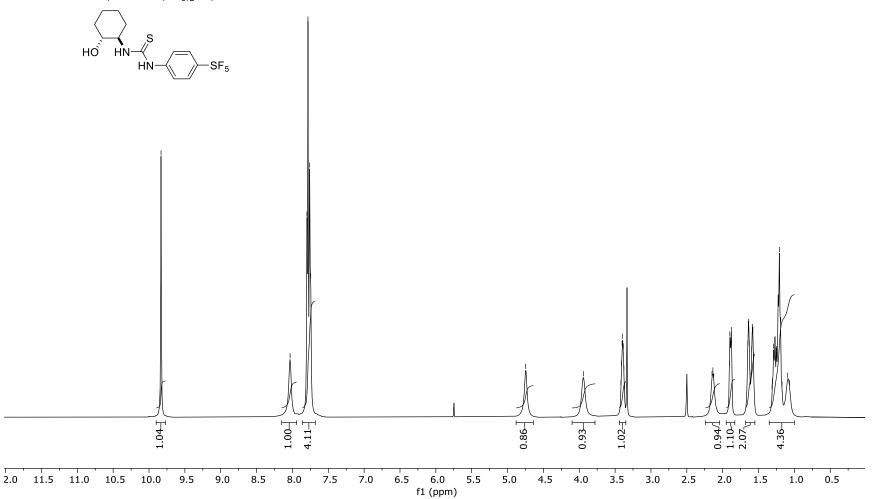


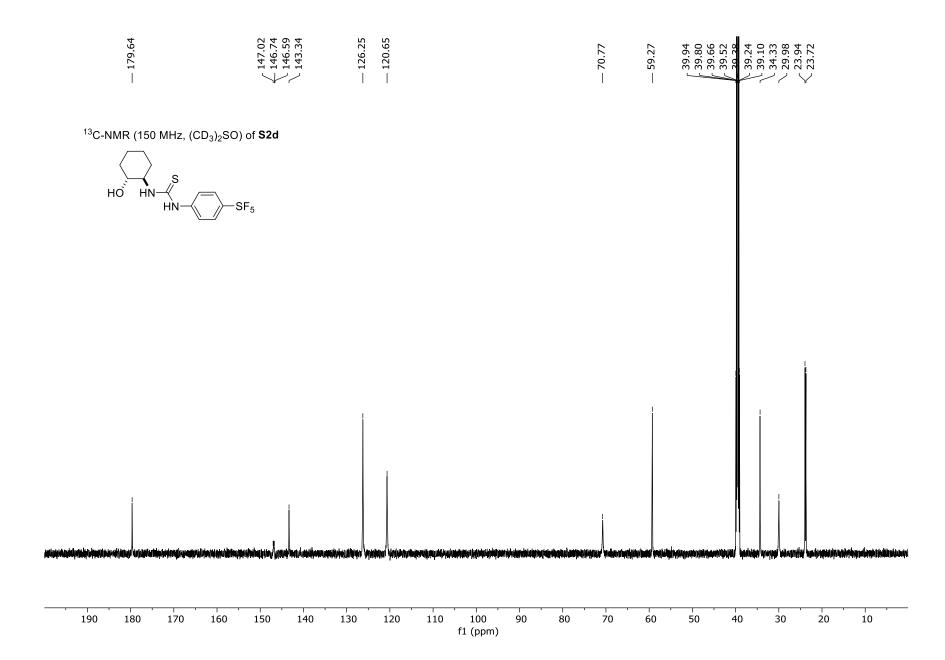




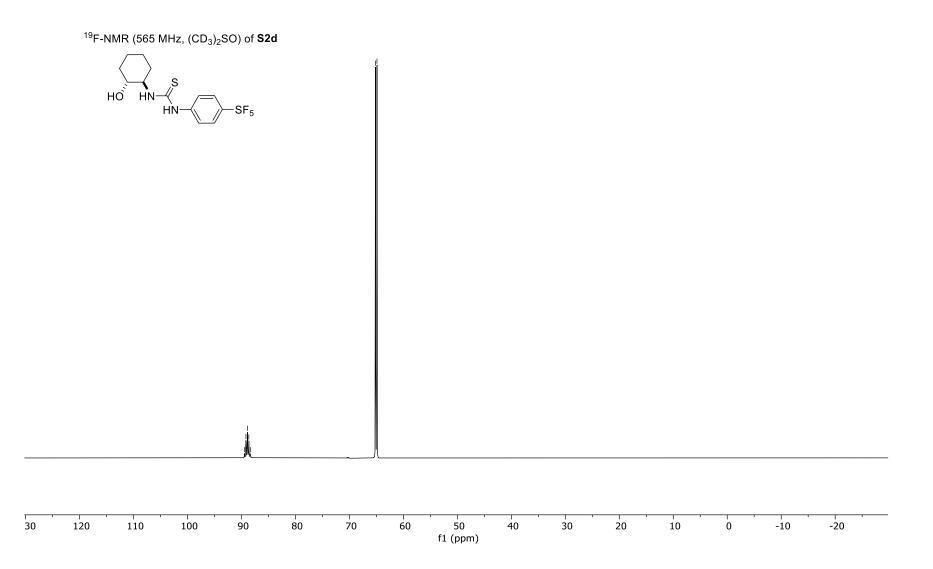


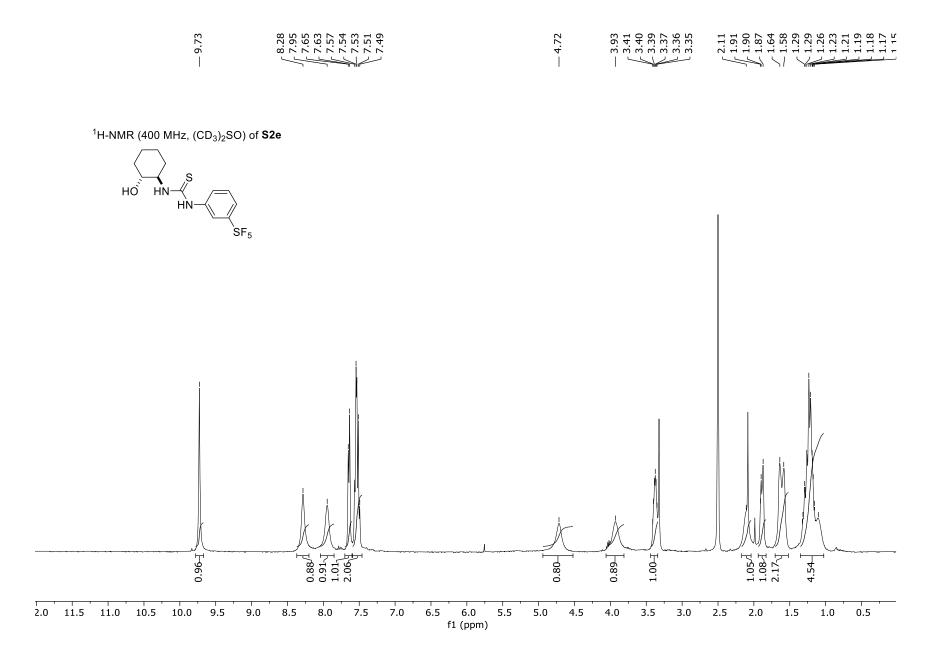


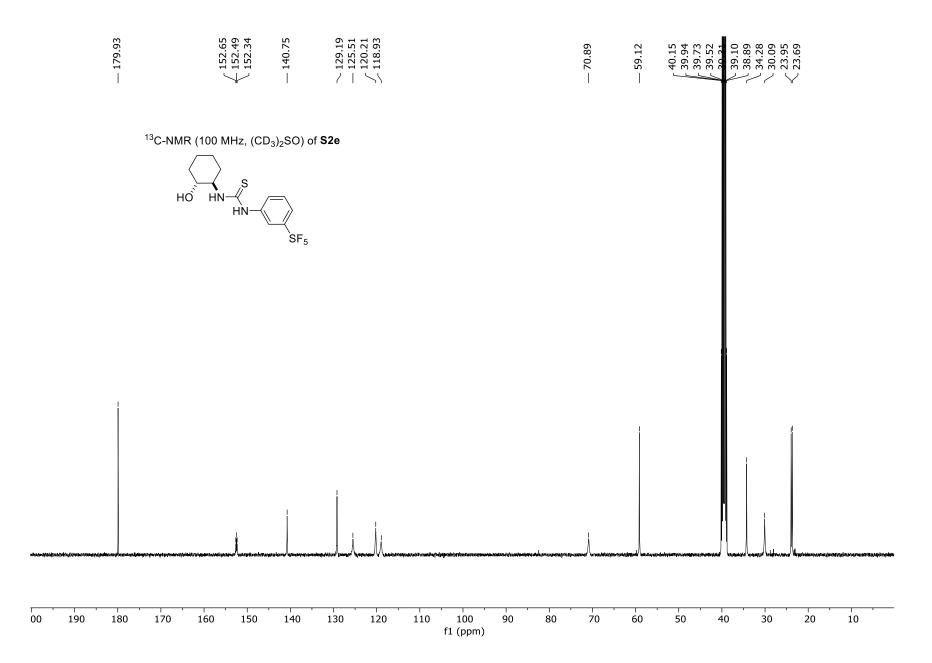


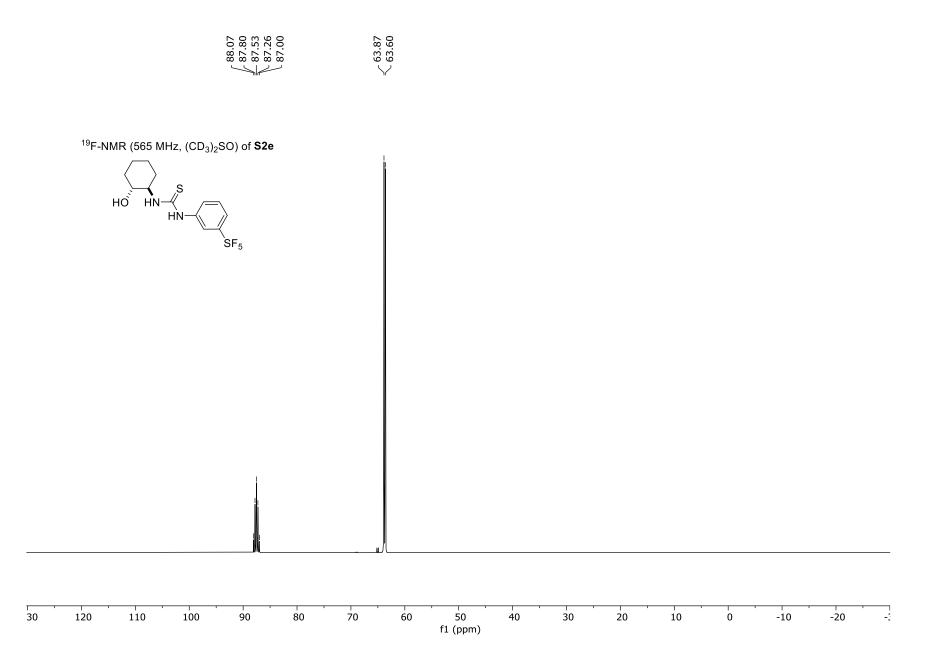


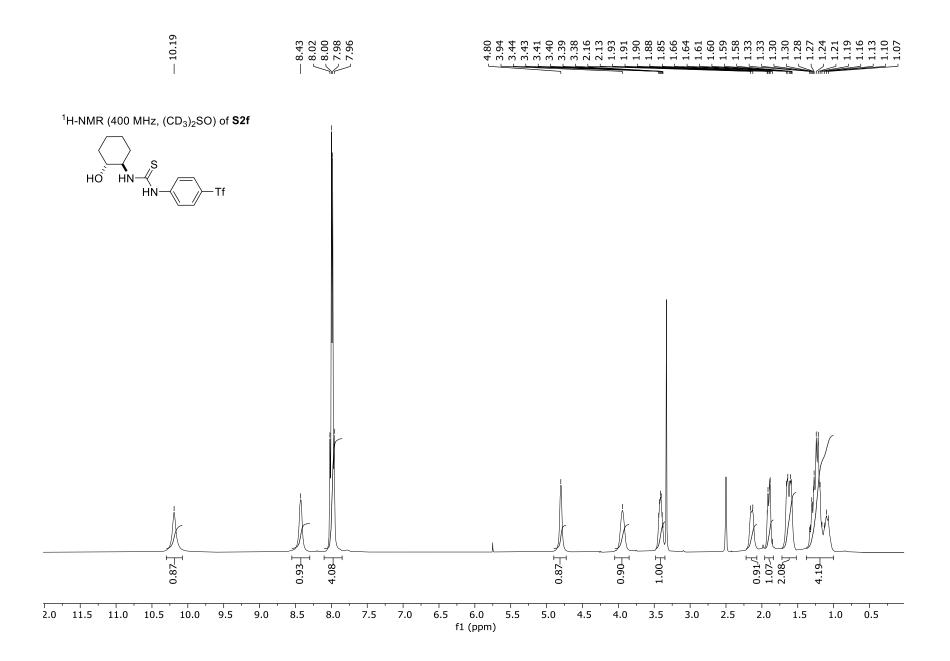
120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

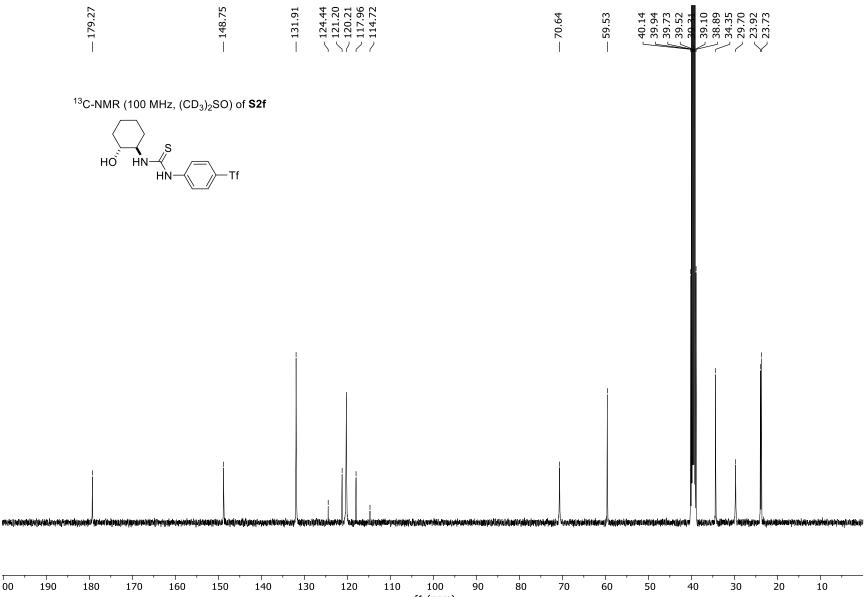


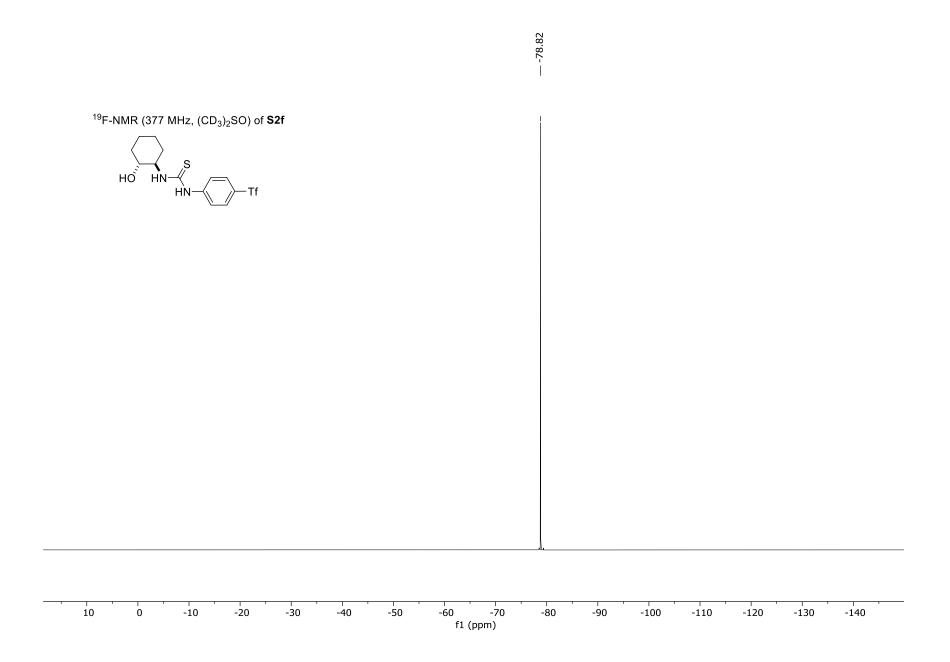


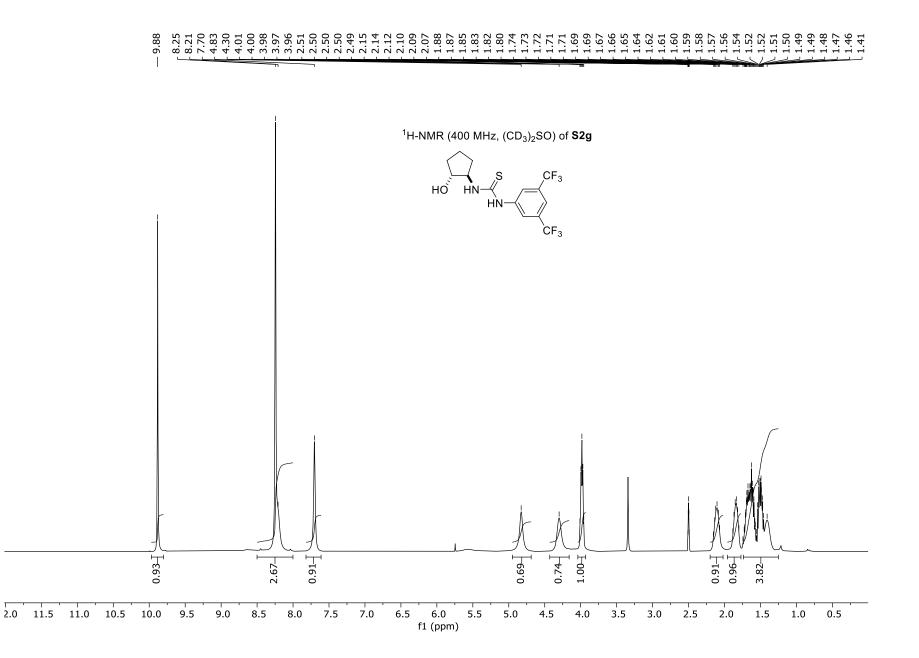


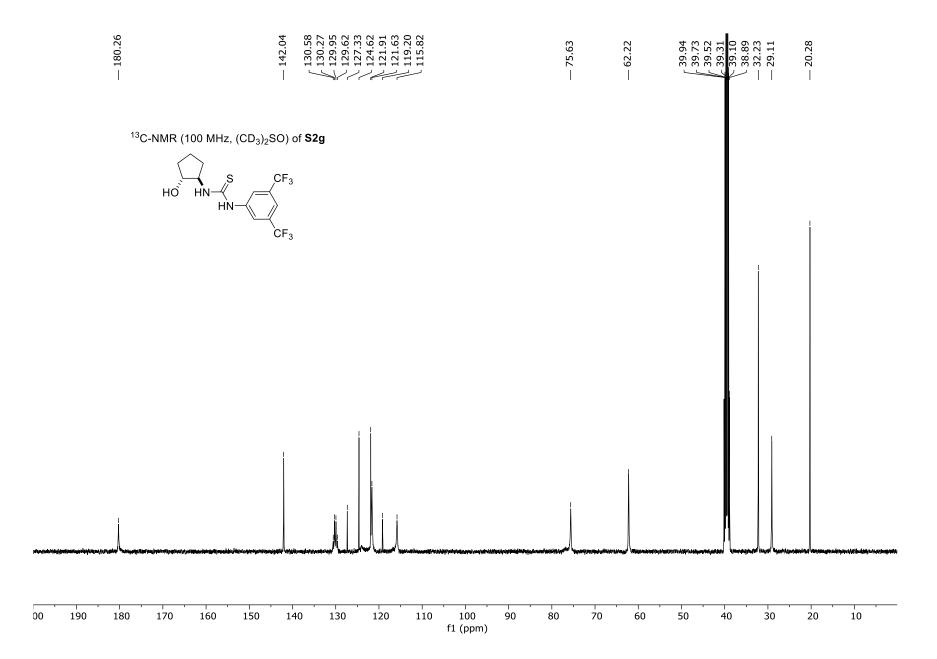


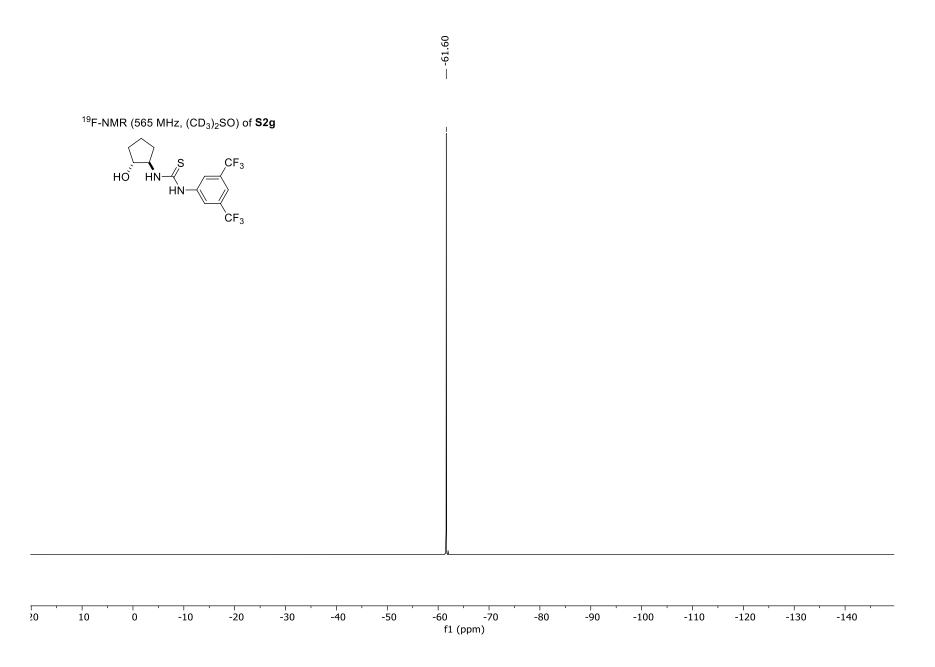




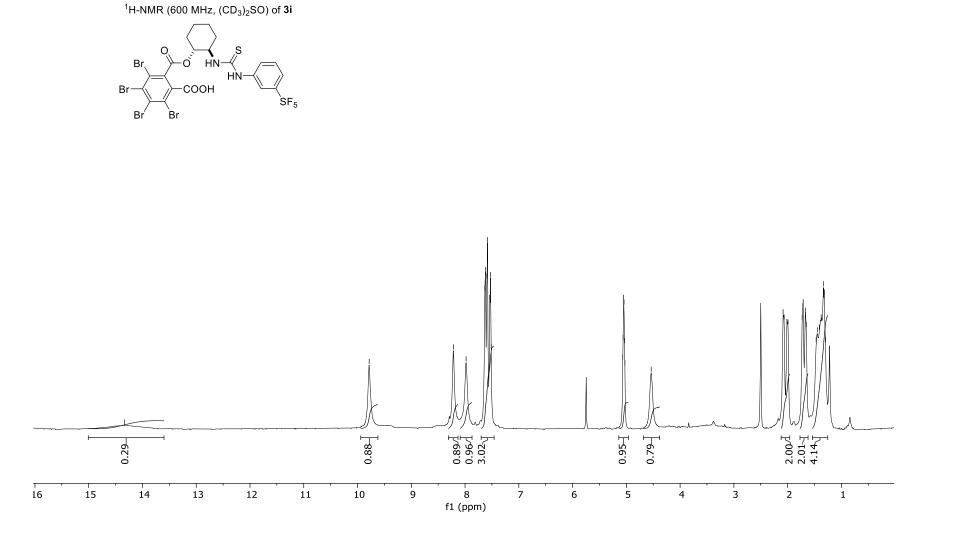


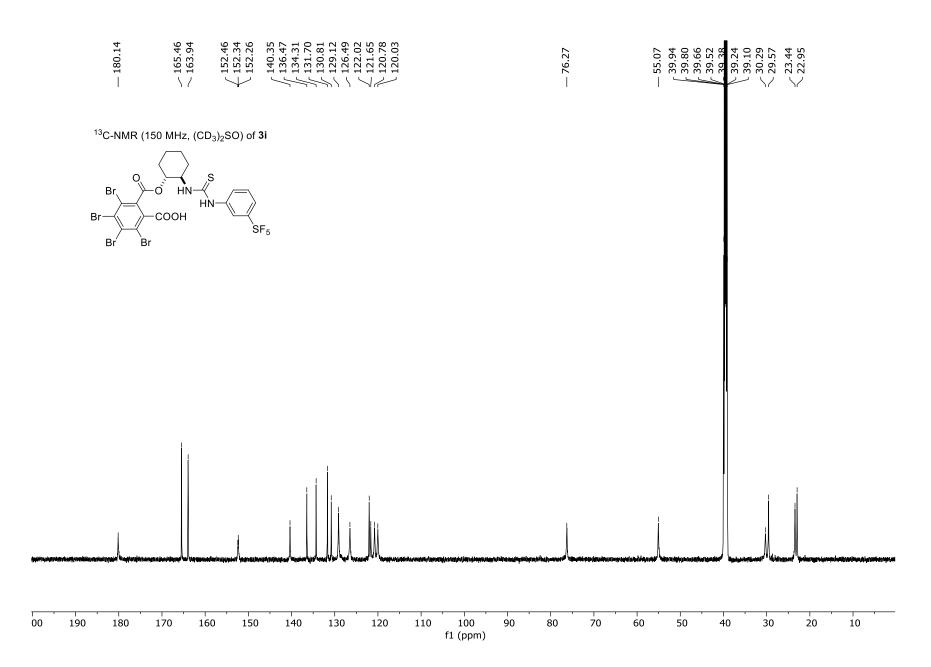


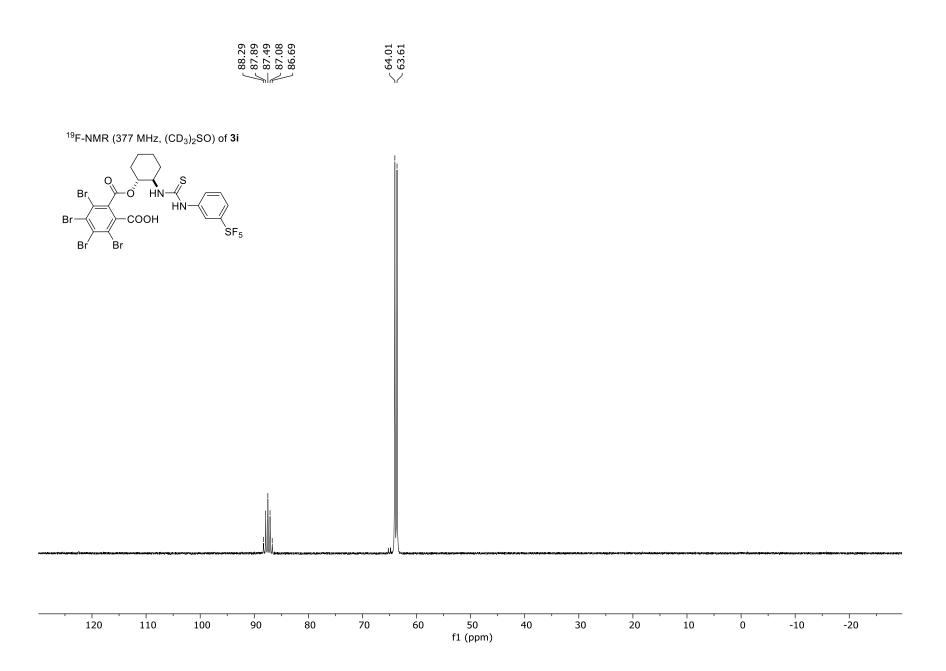


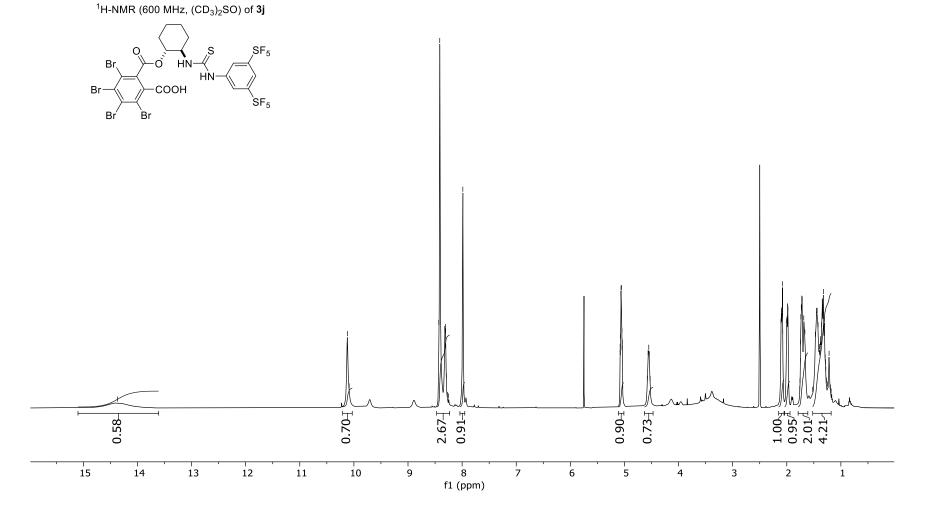


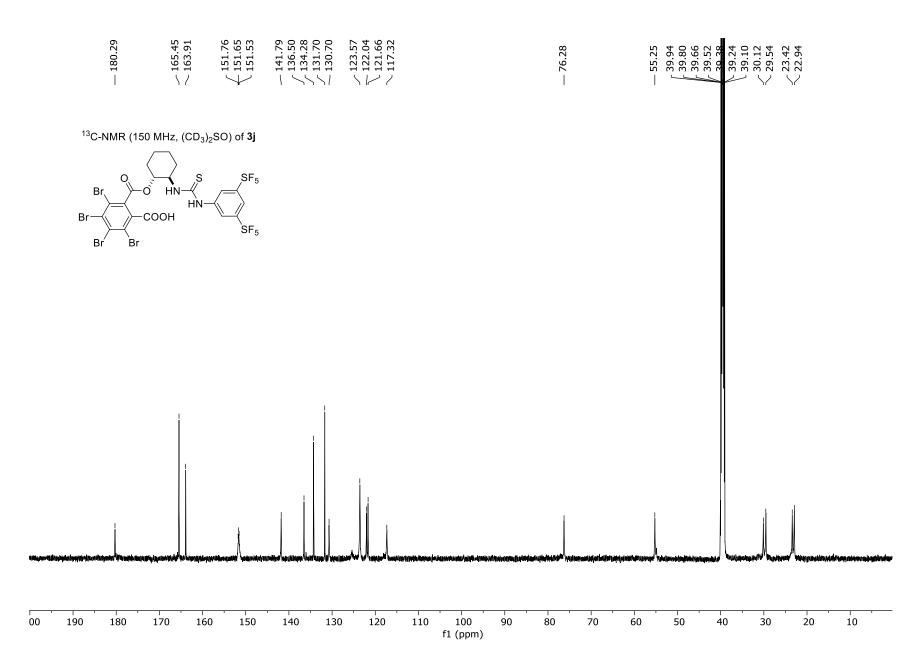
00

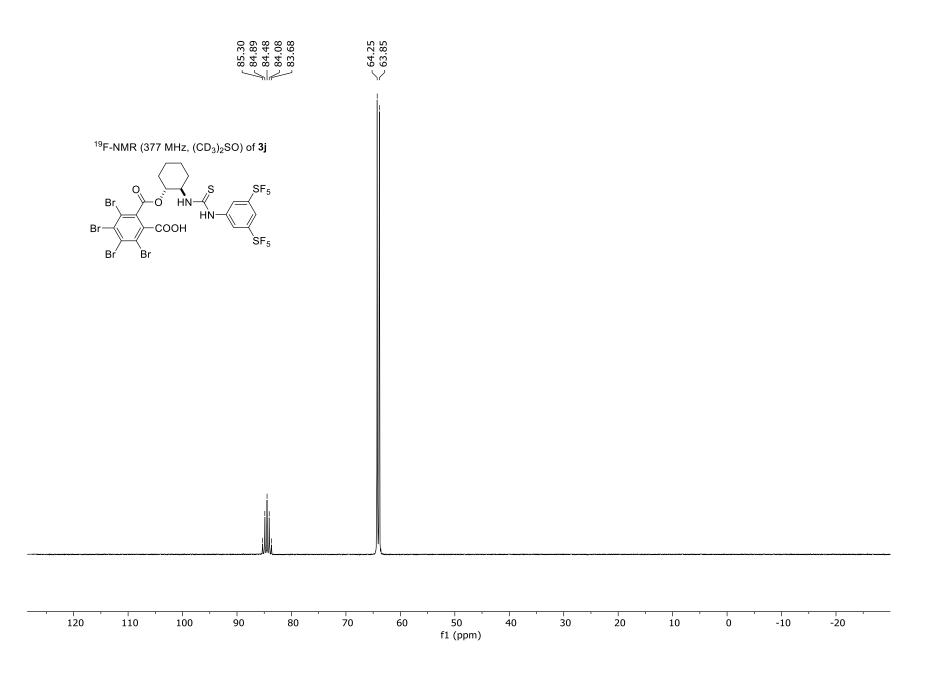


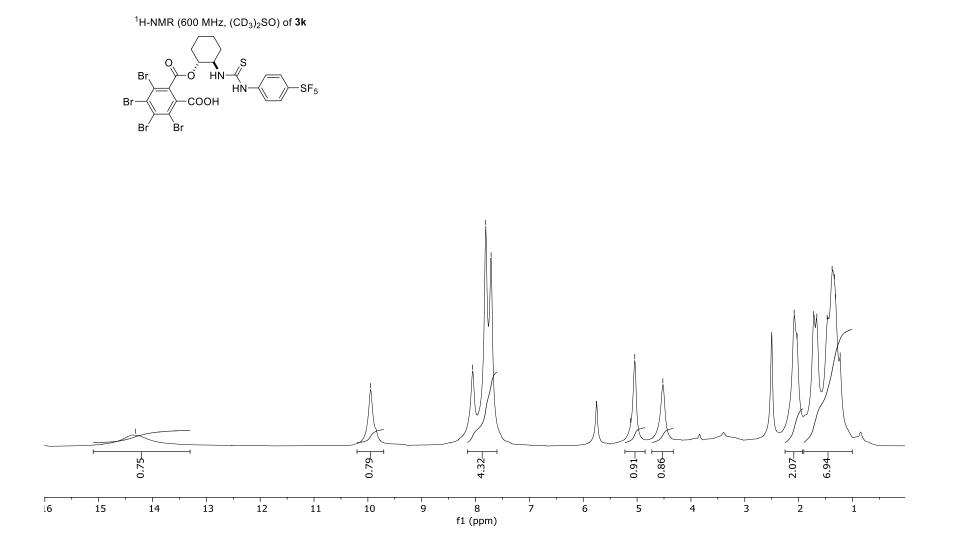


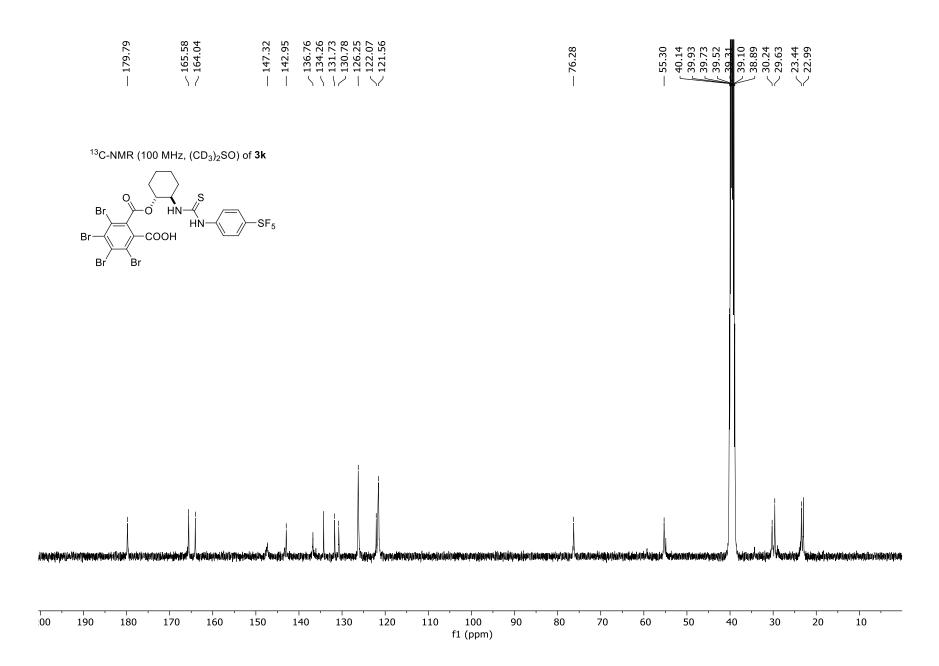


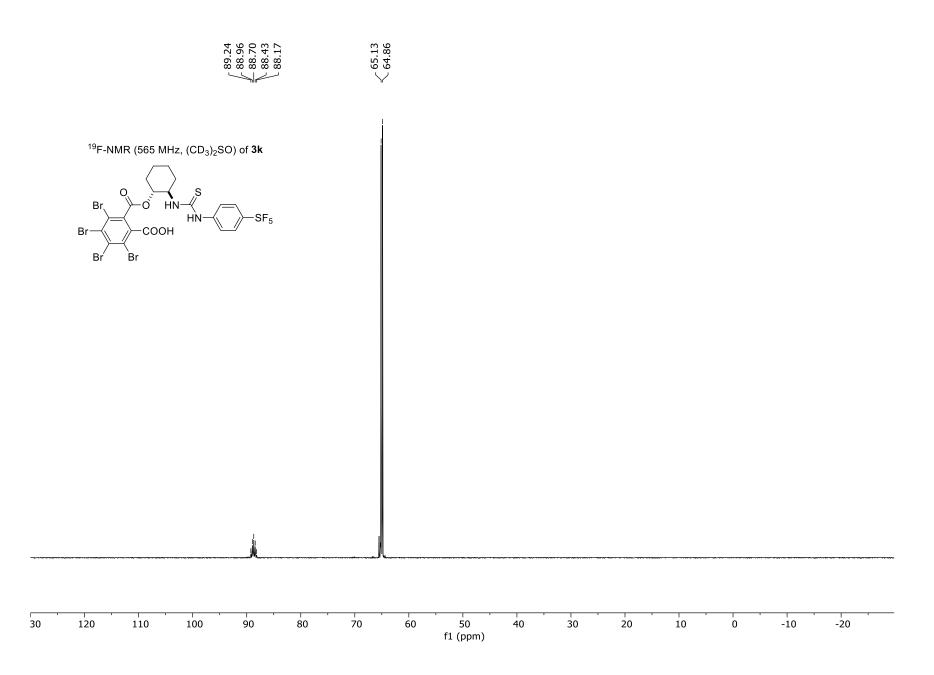


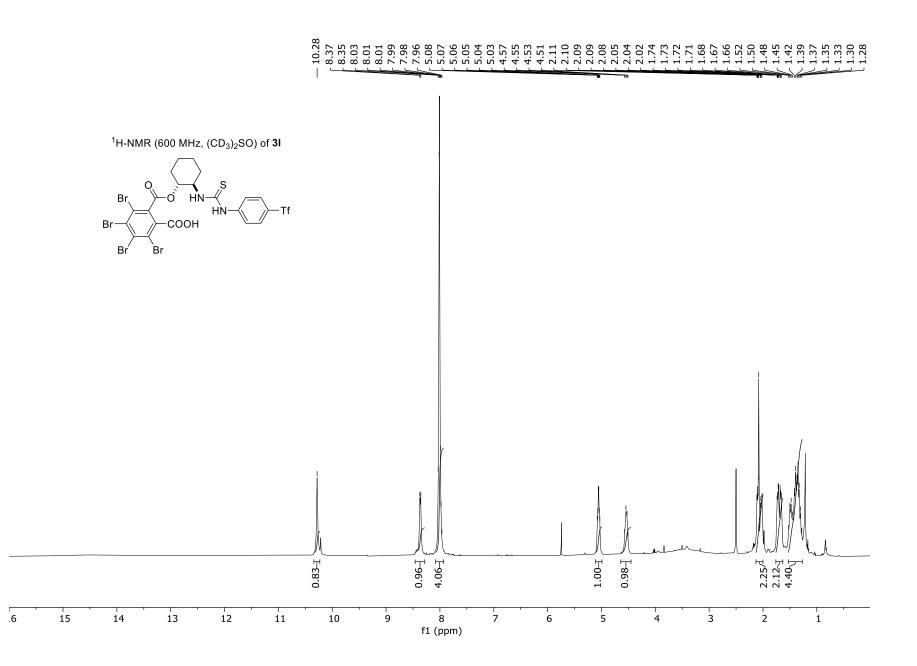


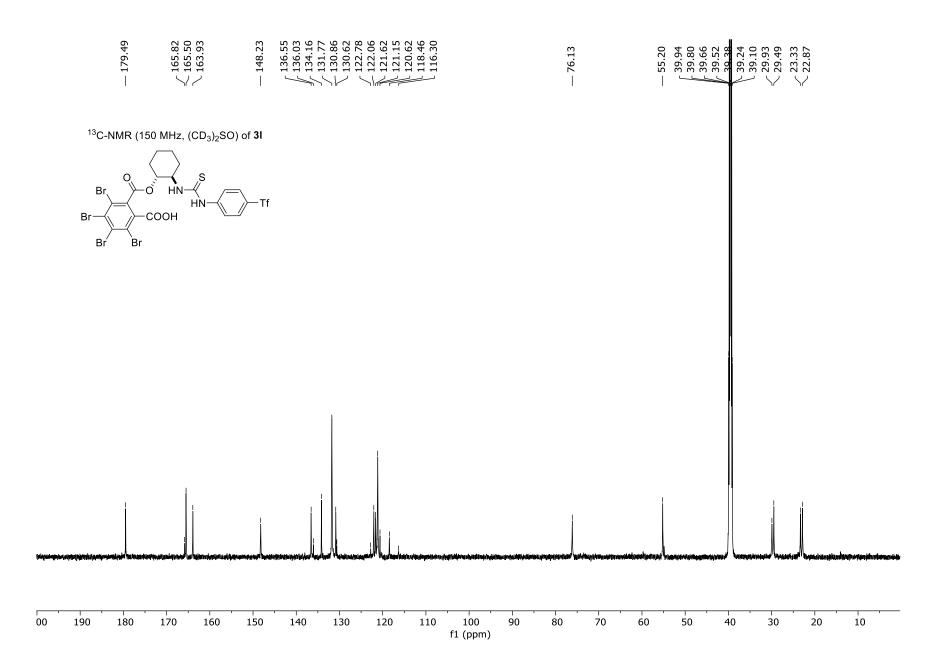


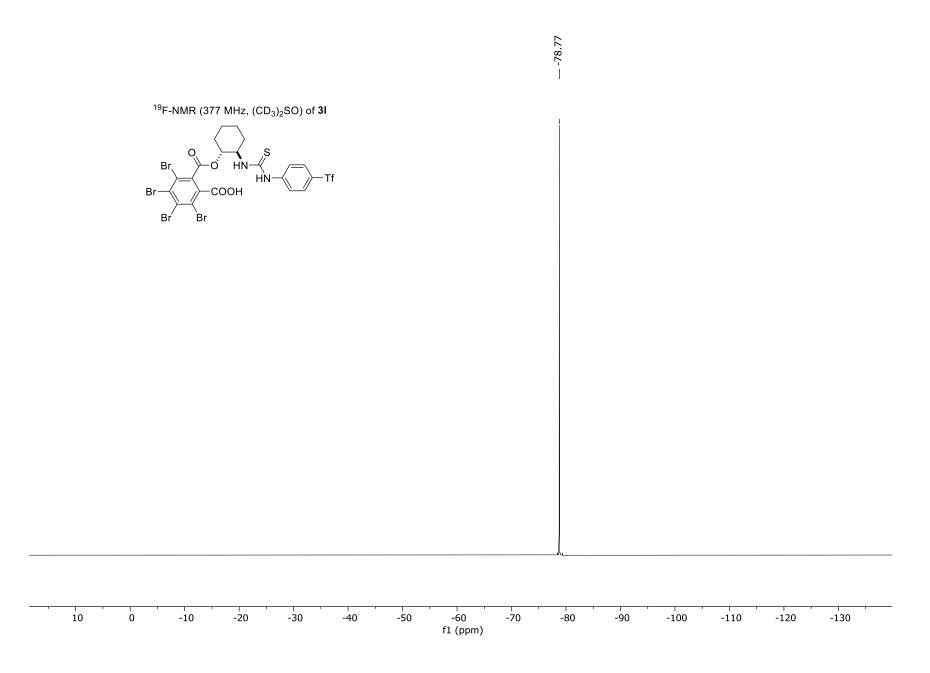


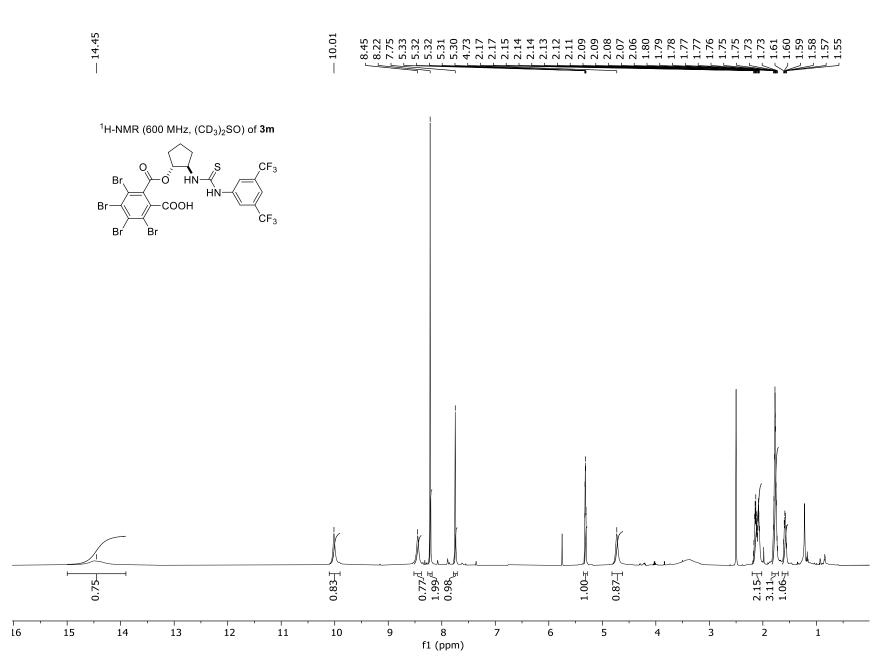


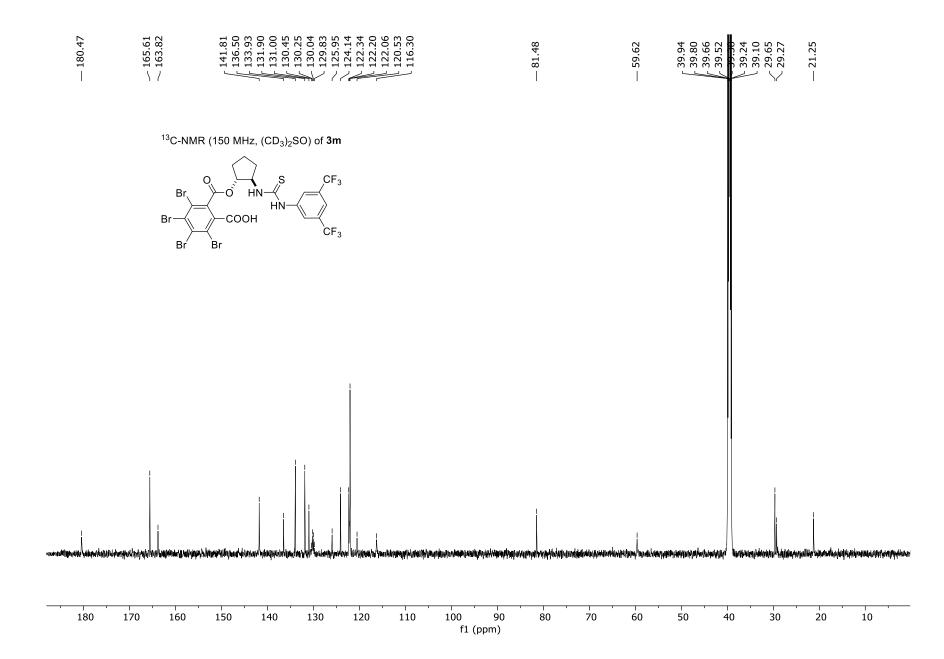


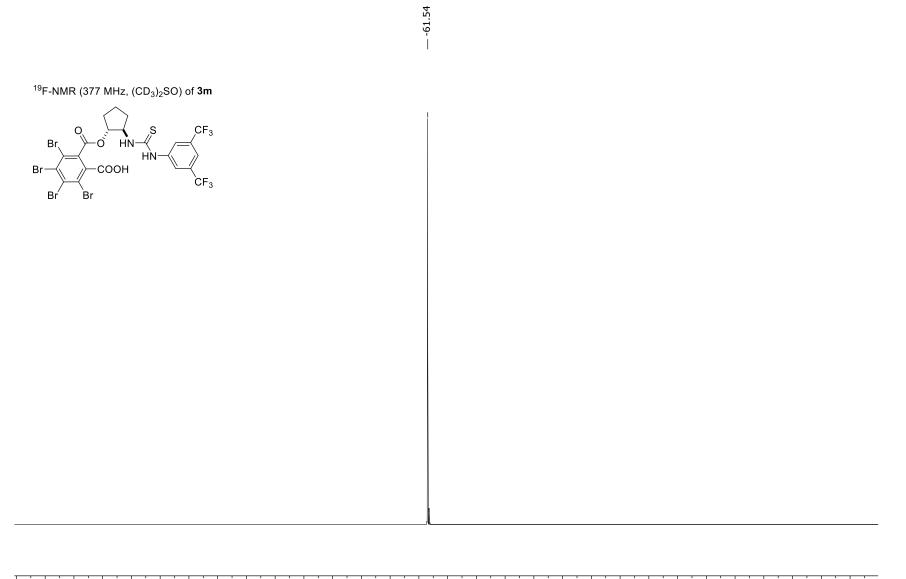


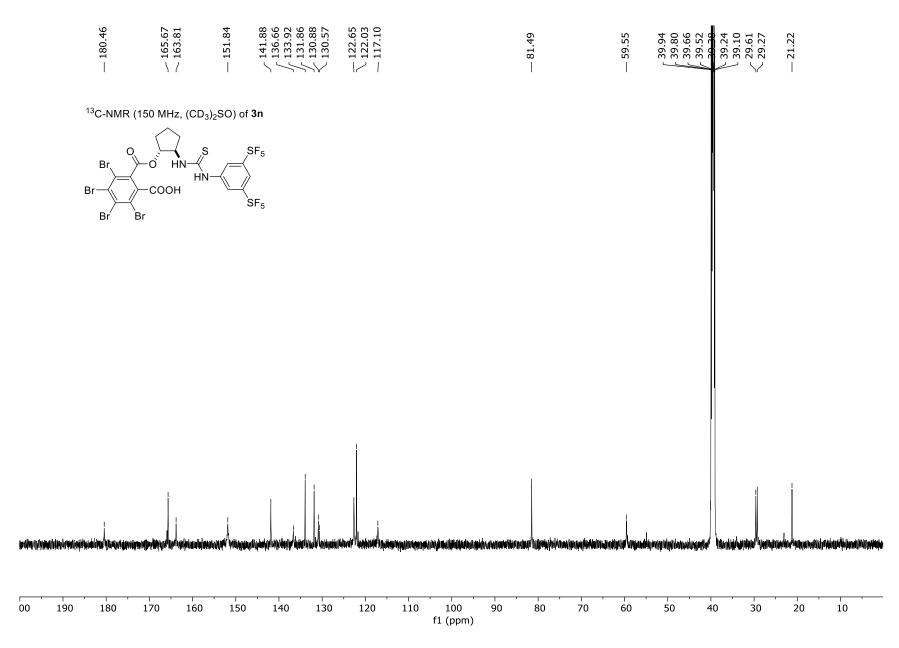


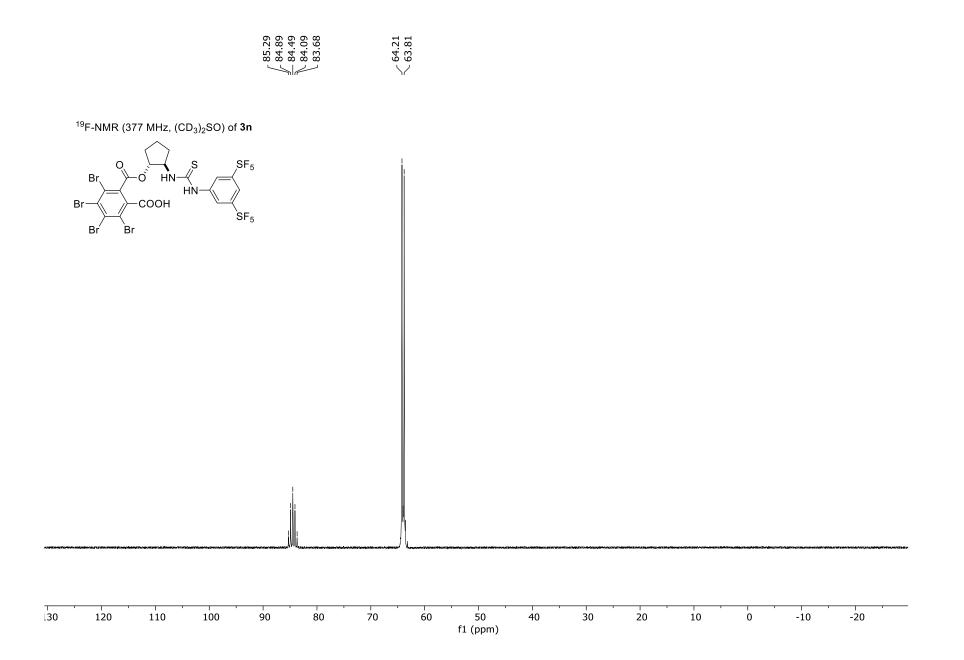


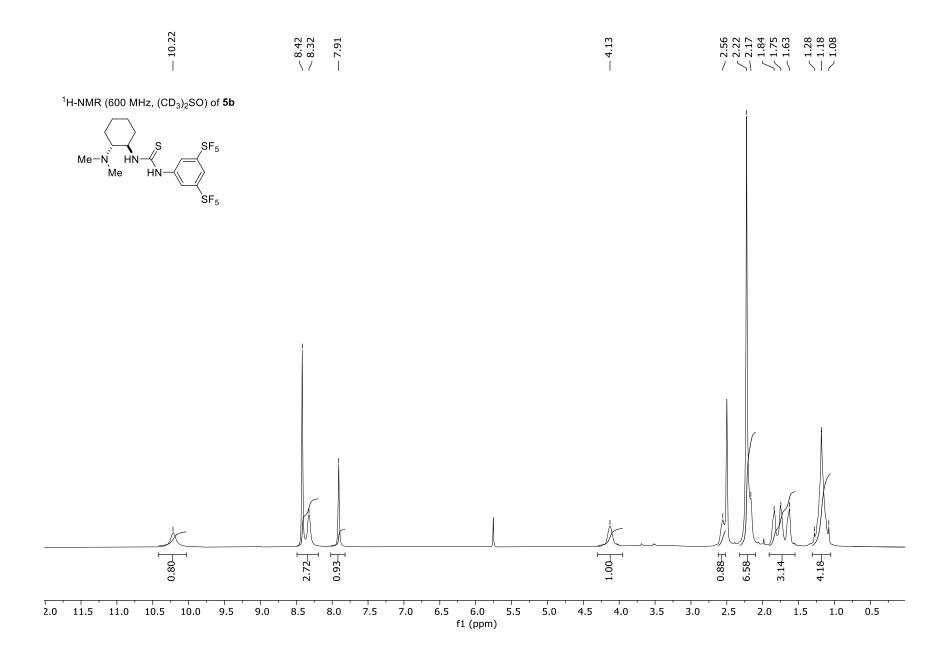


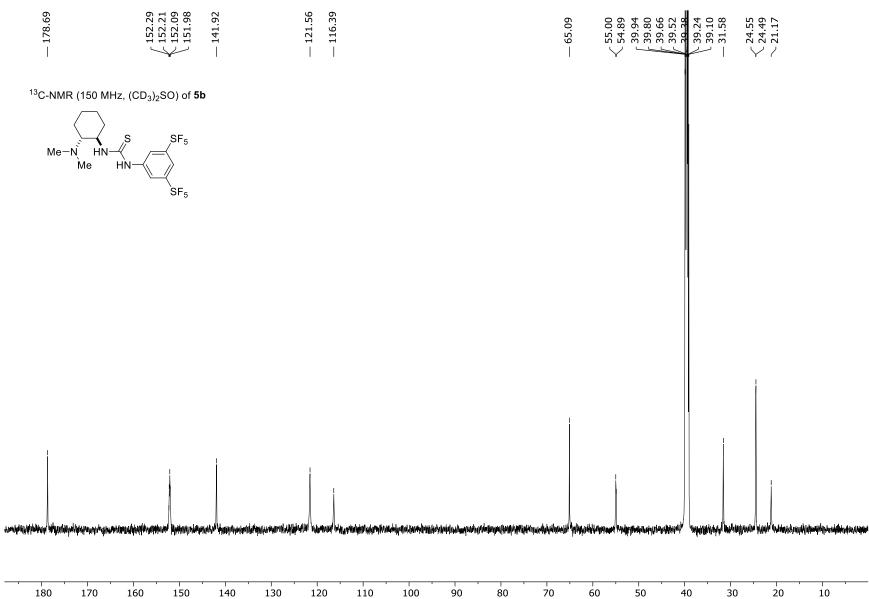


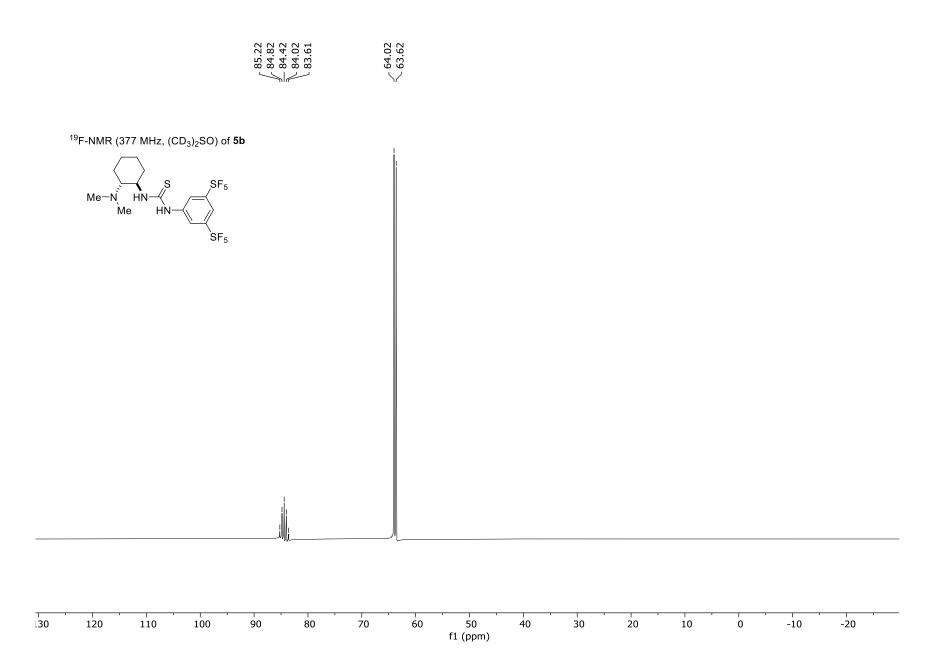


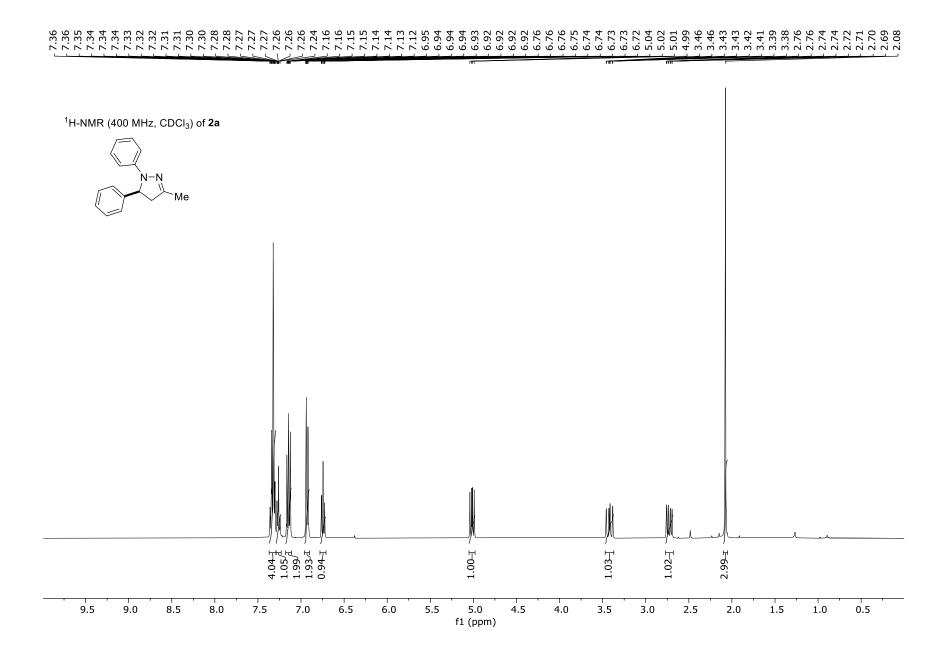


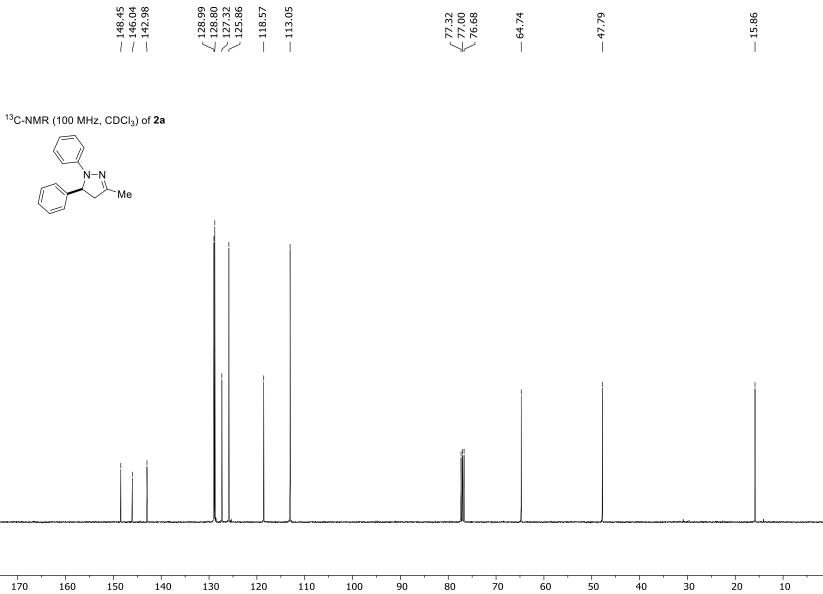


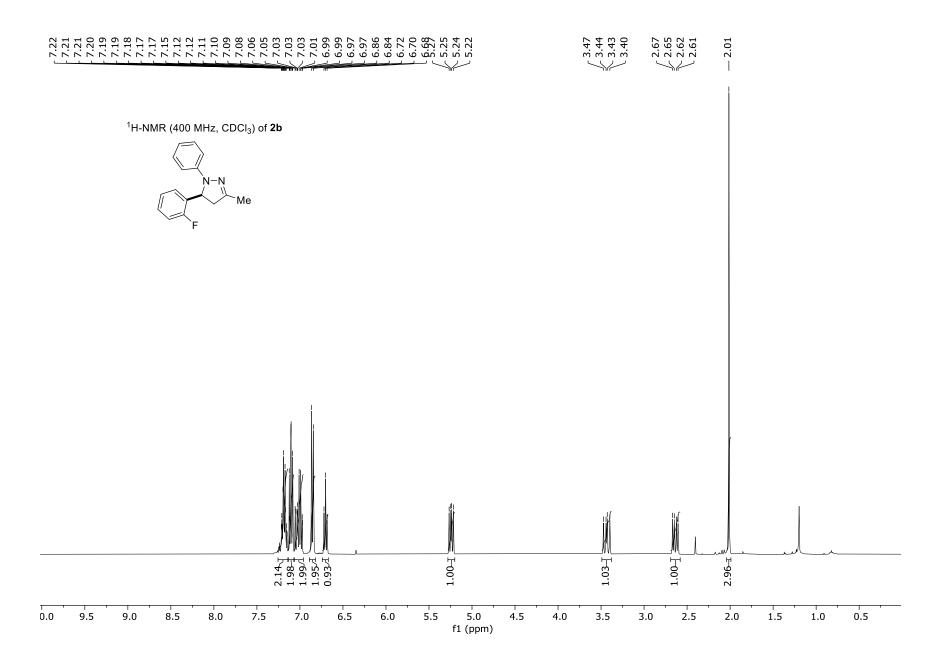


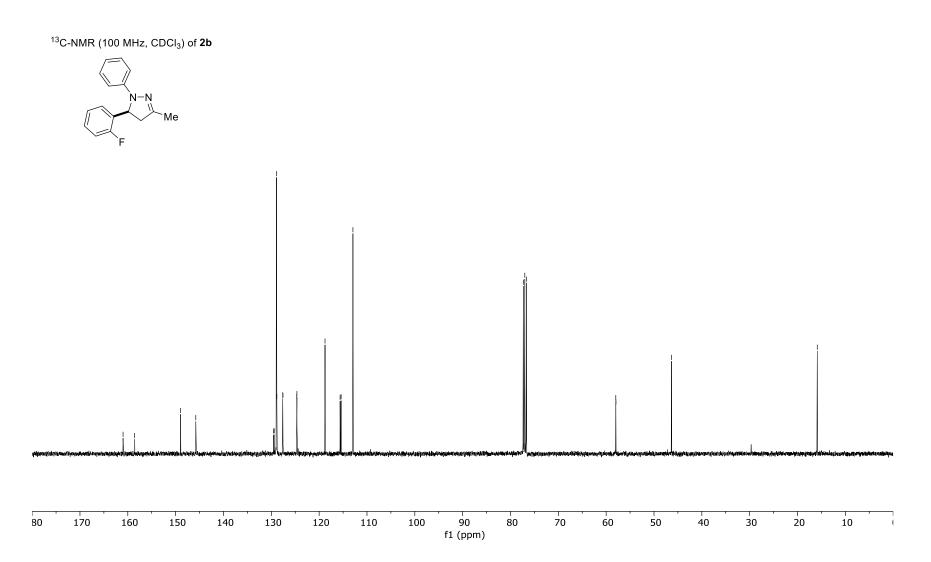

10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 f1 (ppm)

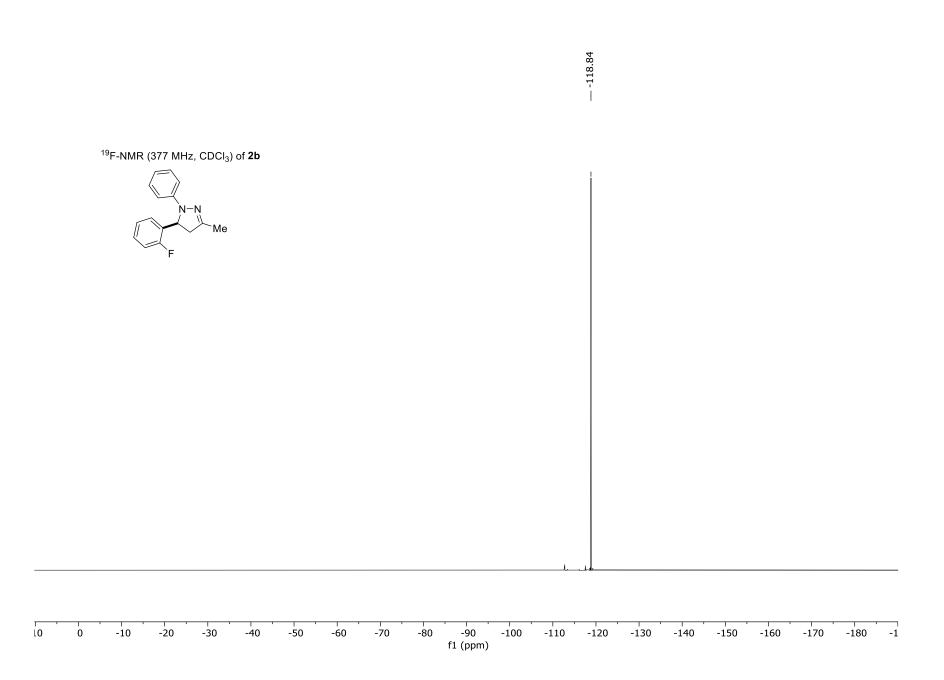


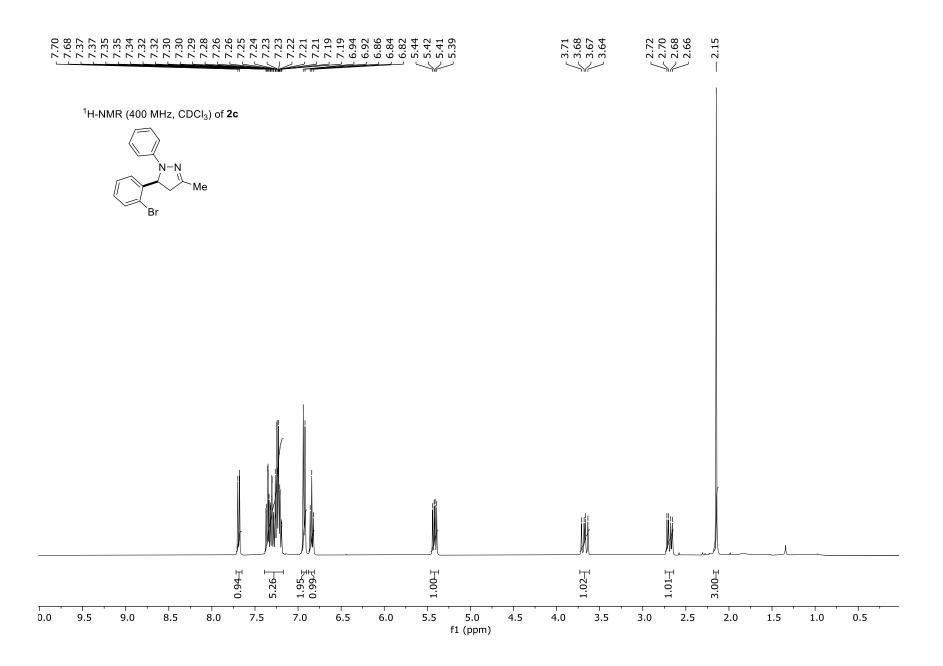


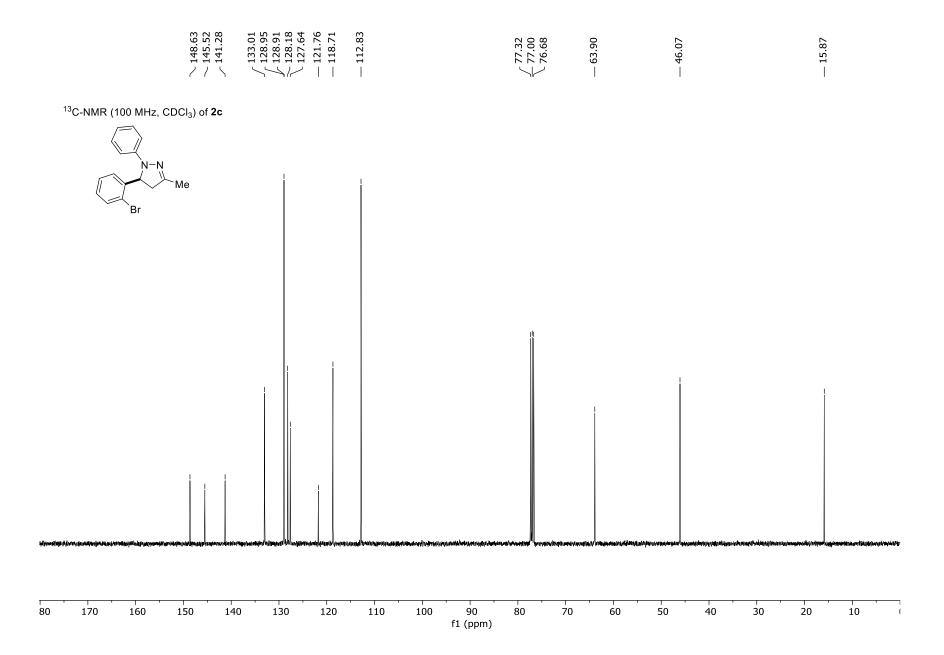


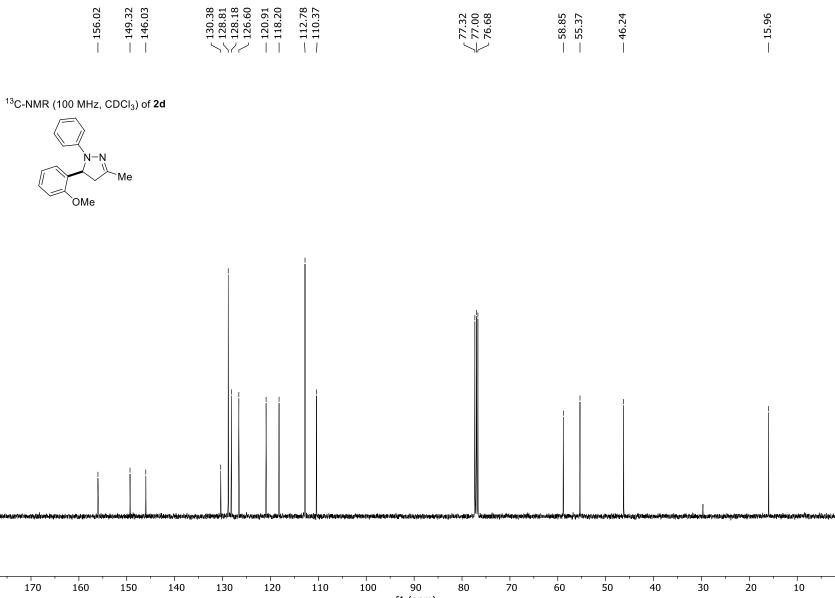


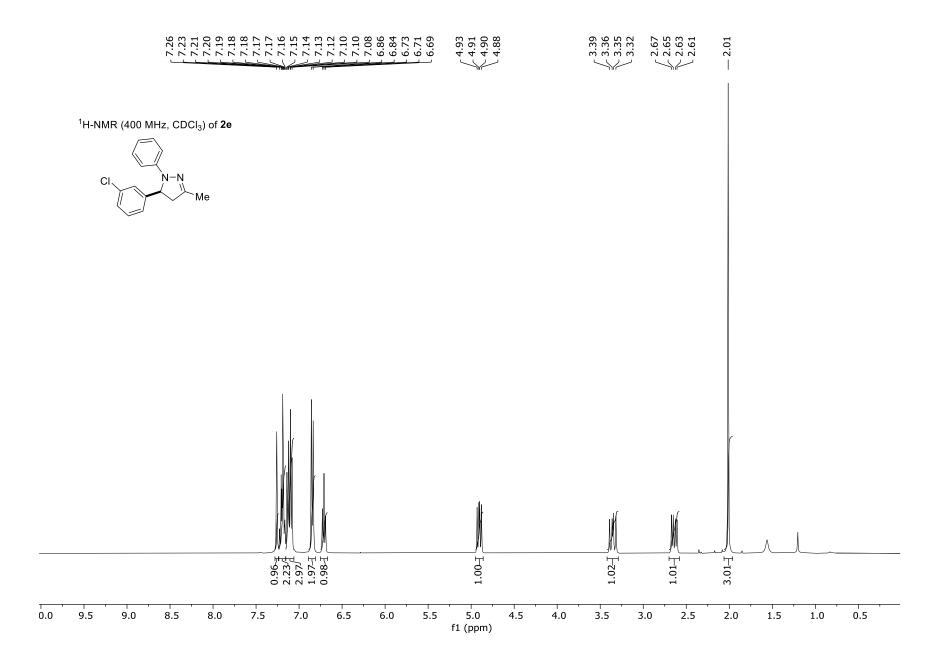


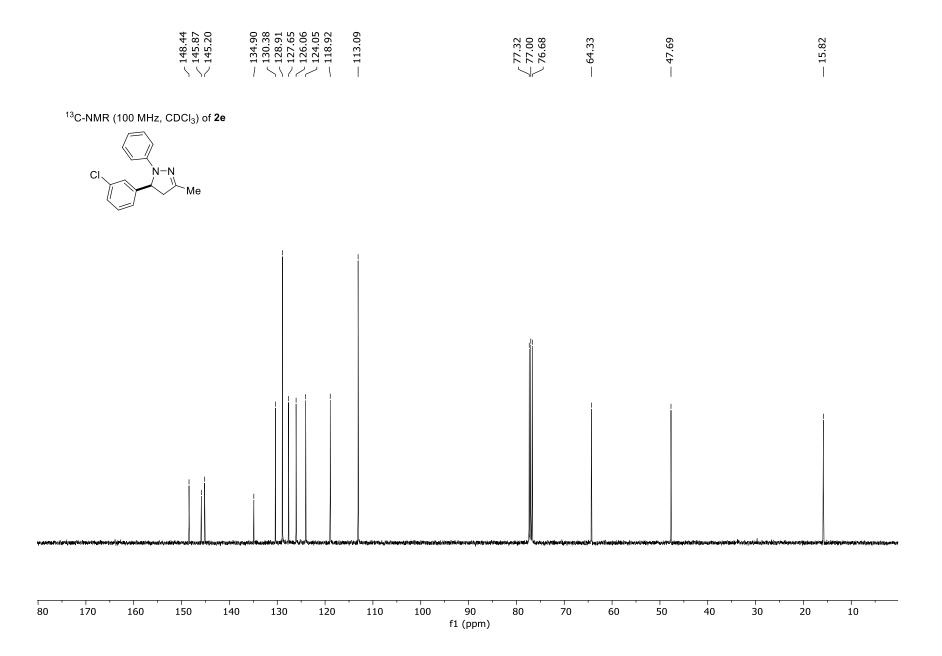


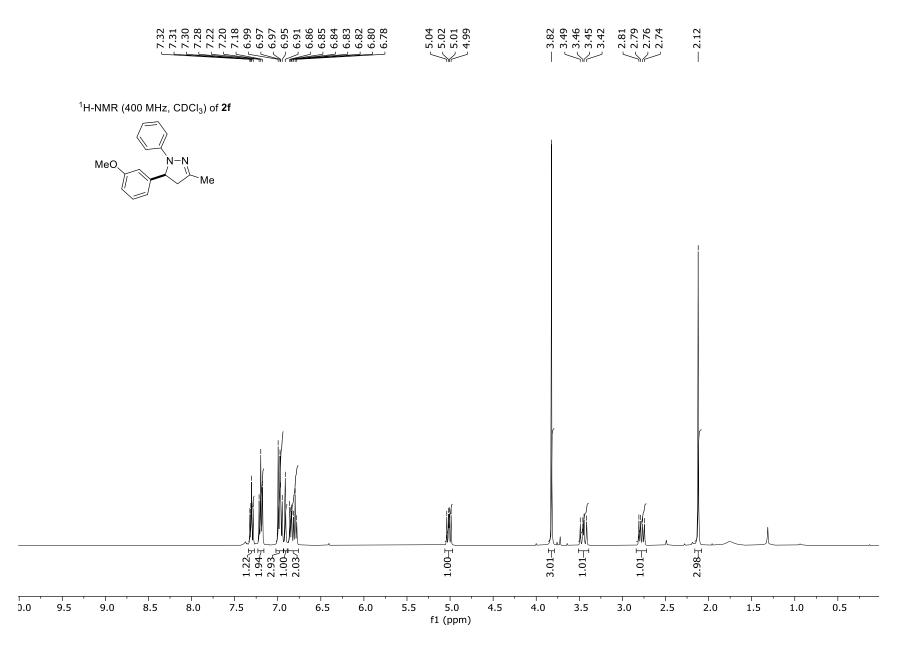

80

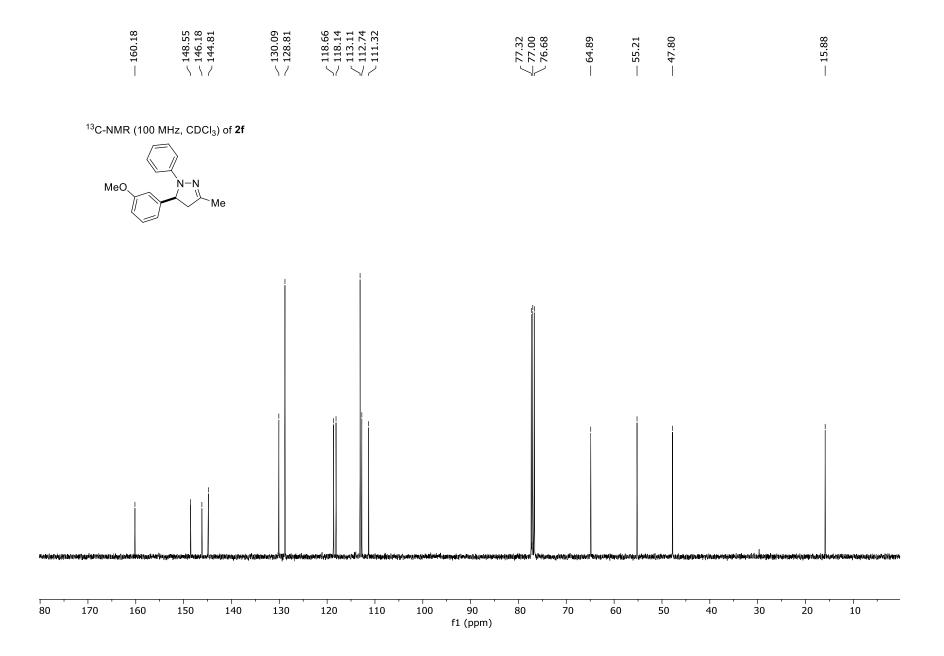


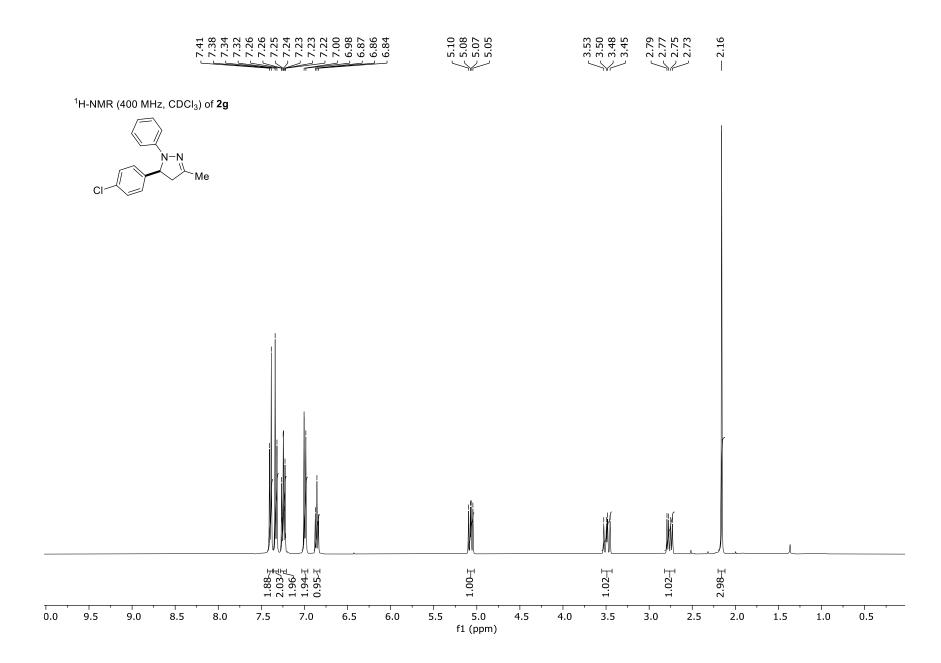


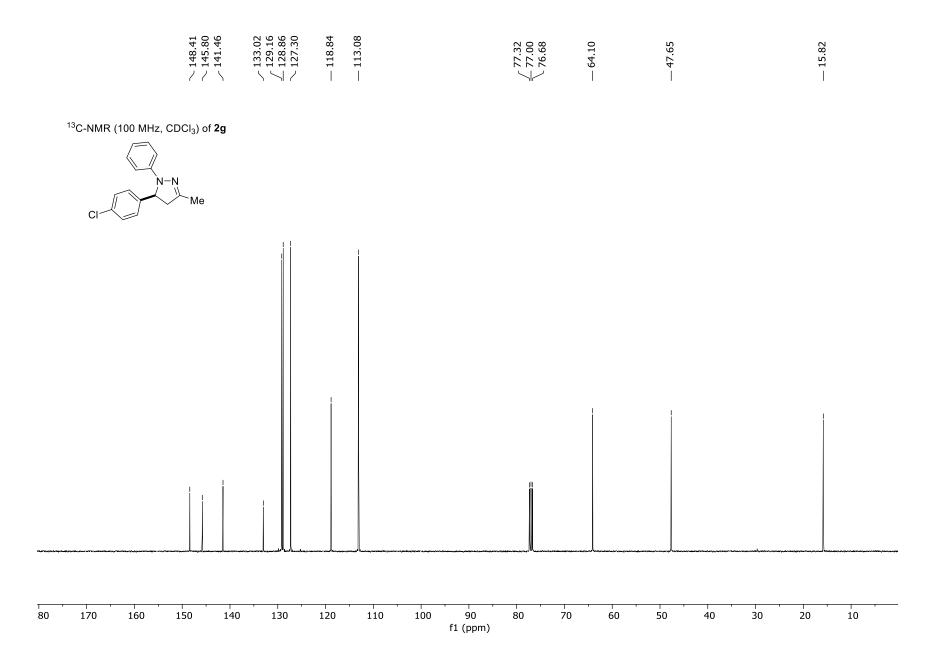


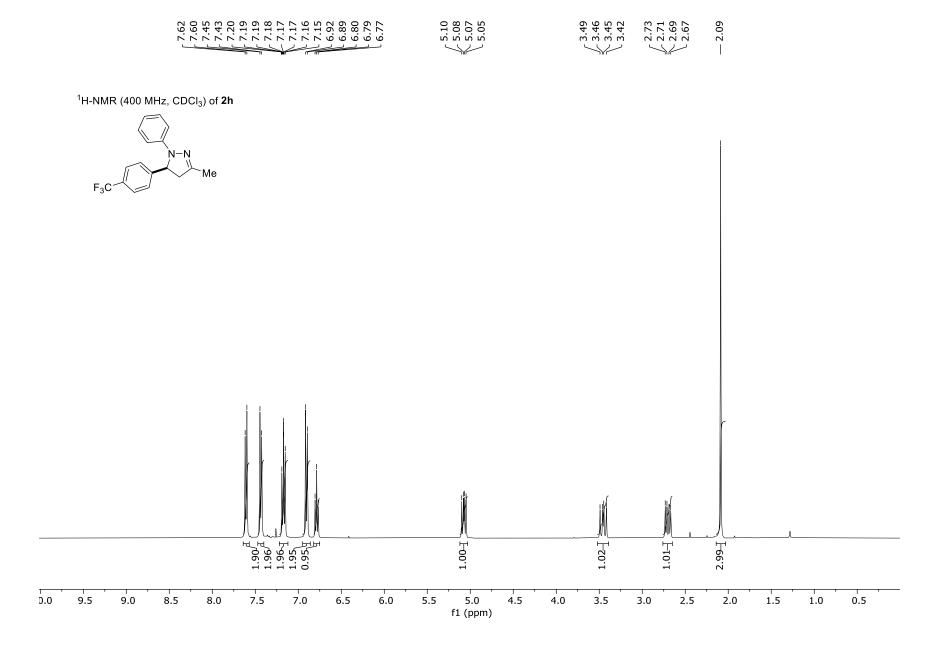


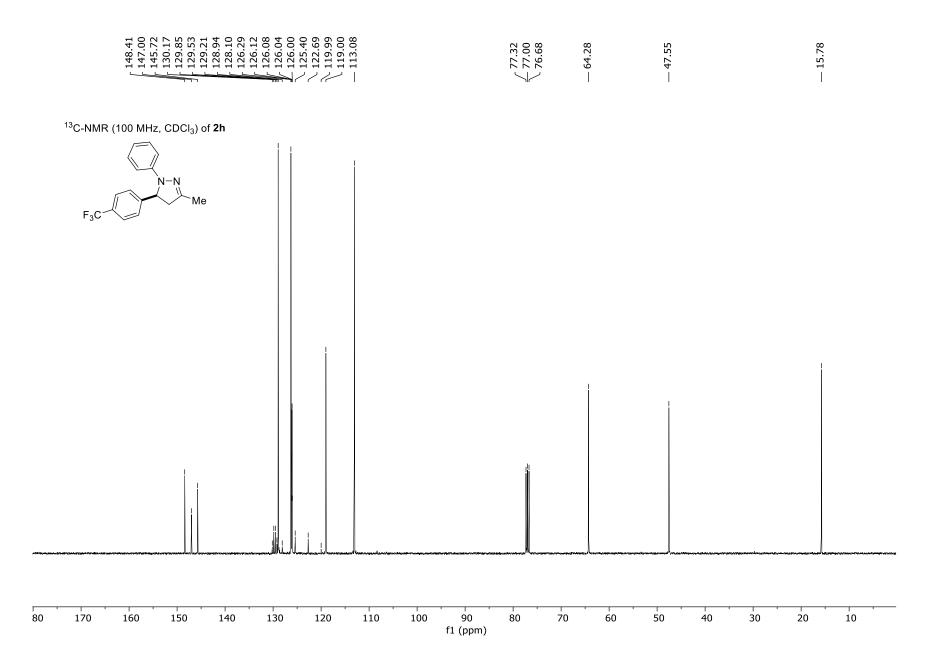


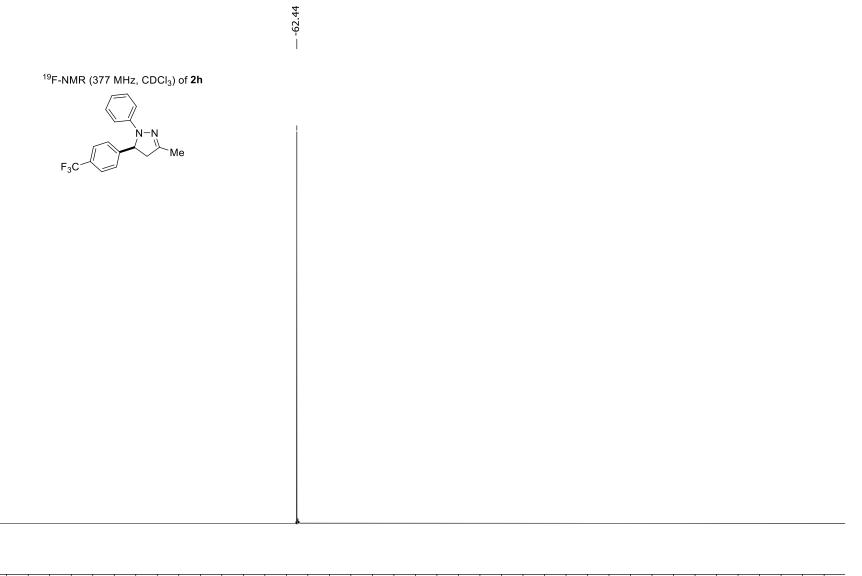


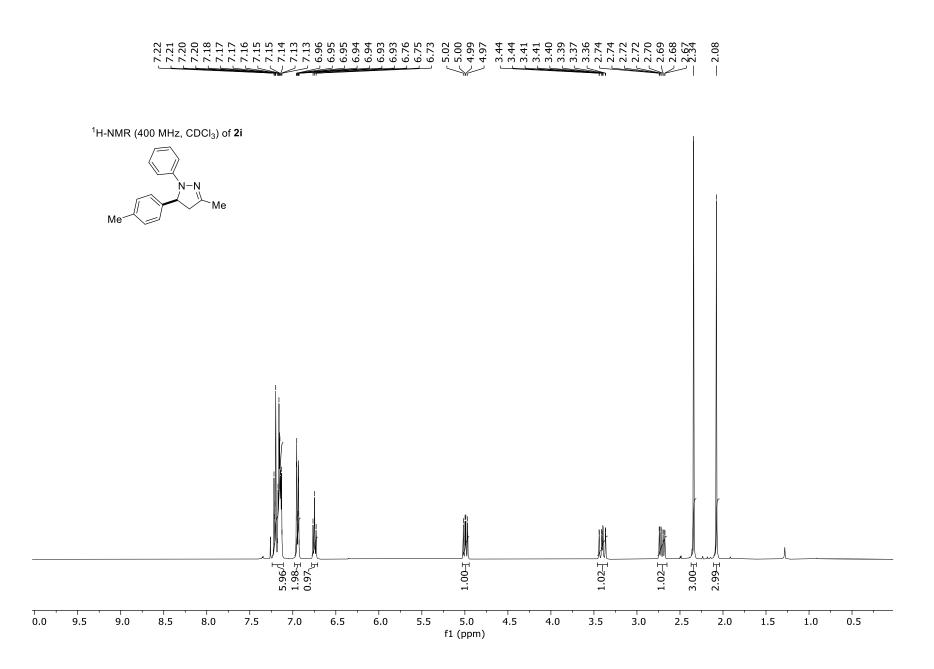

80

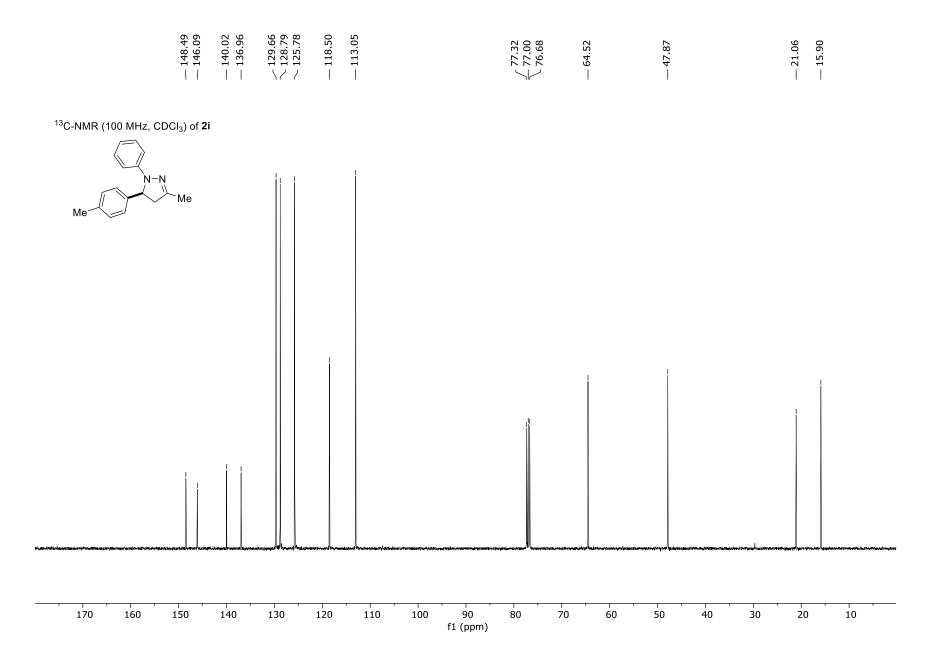


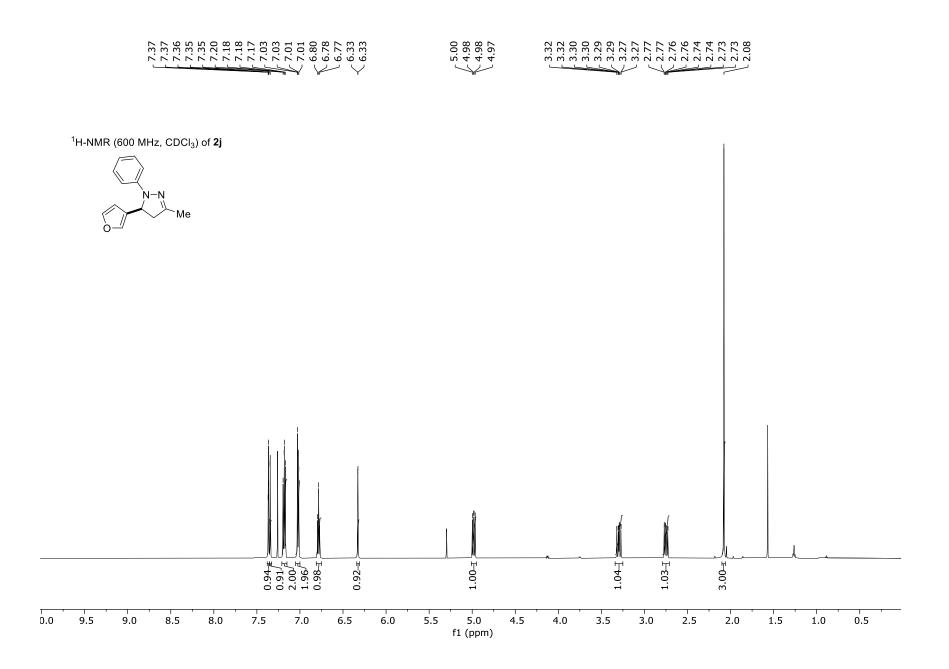


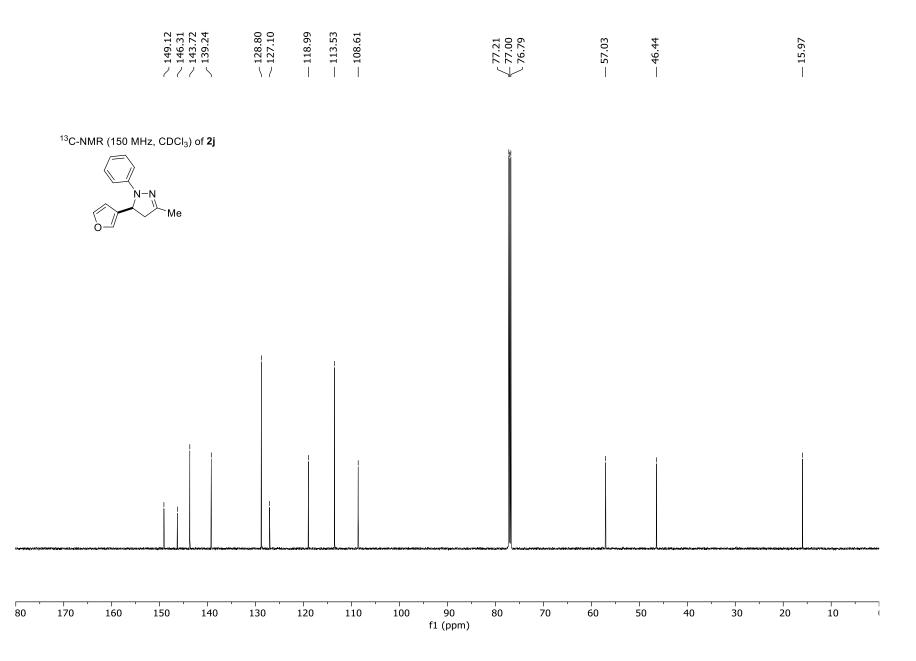


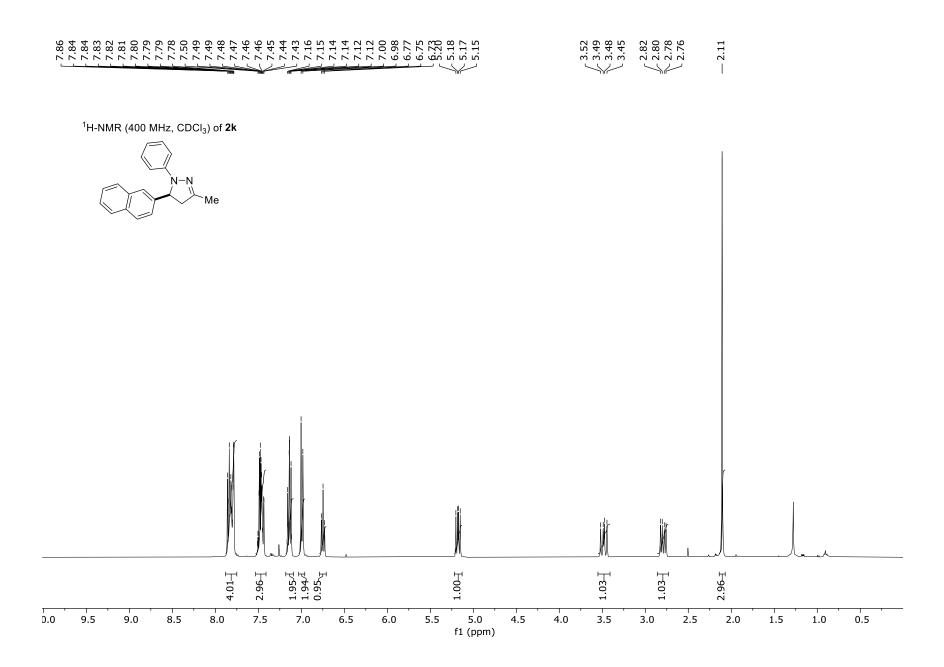


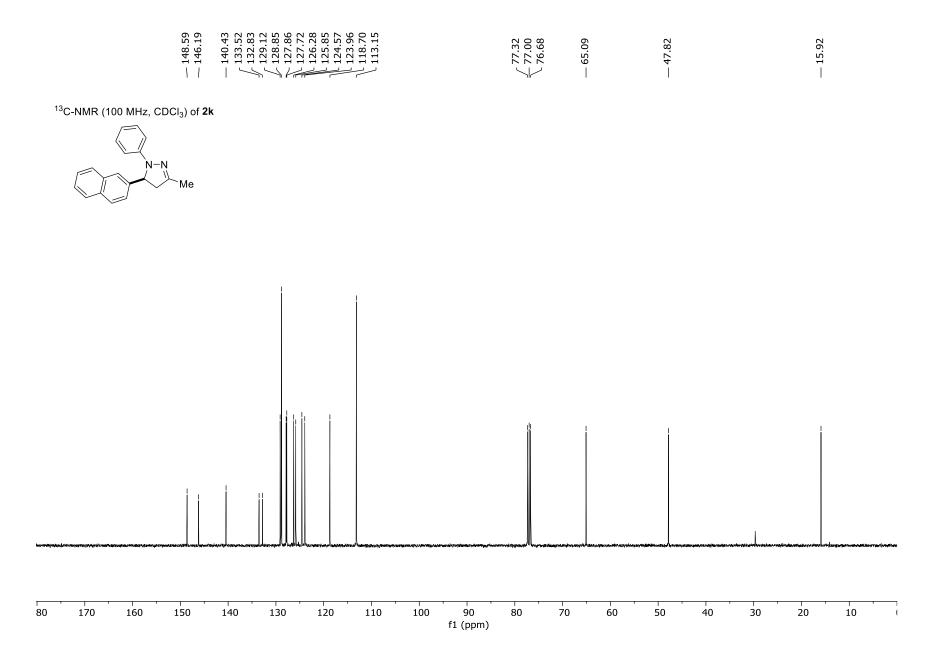


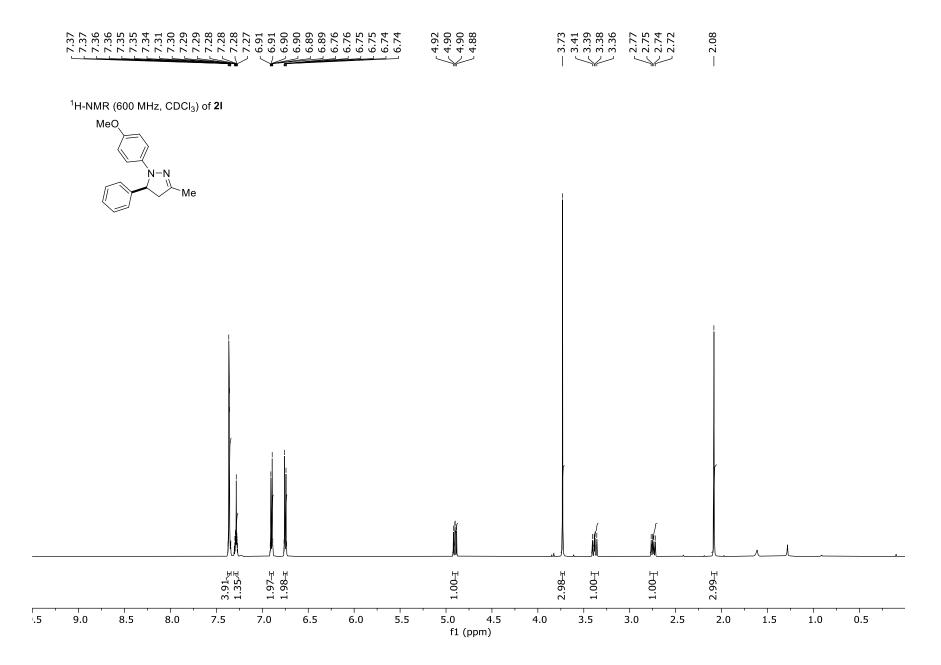


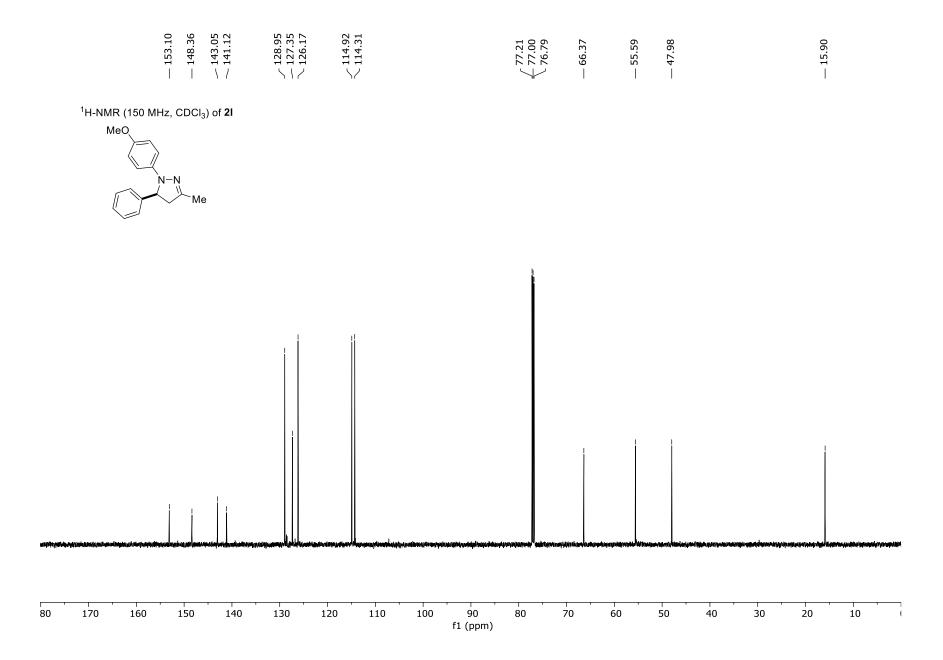


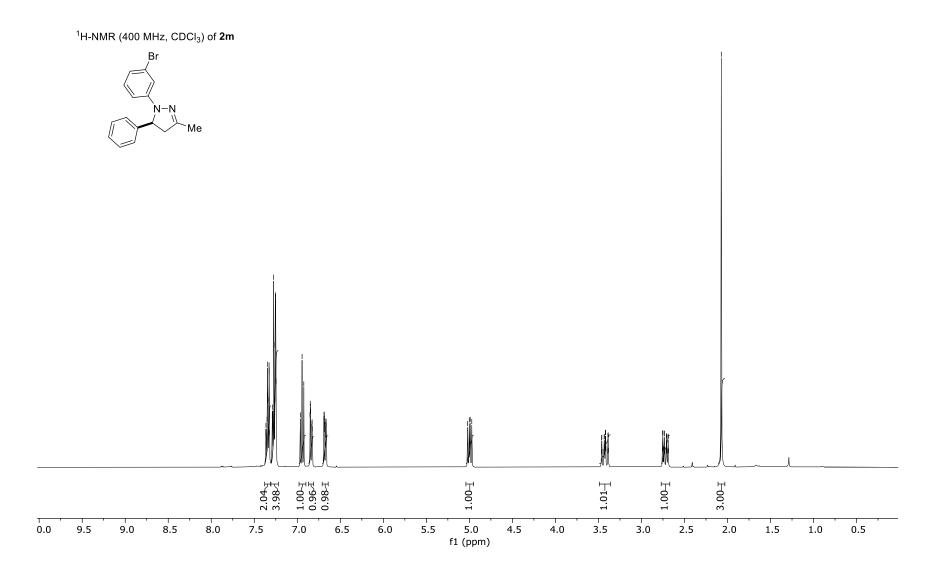


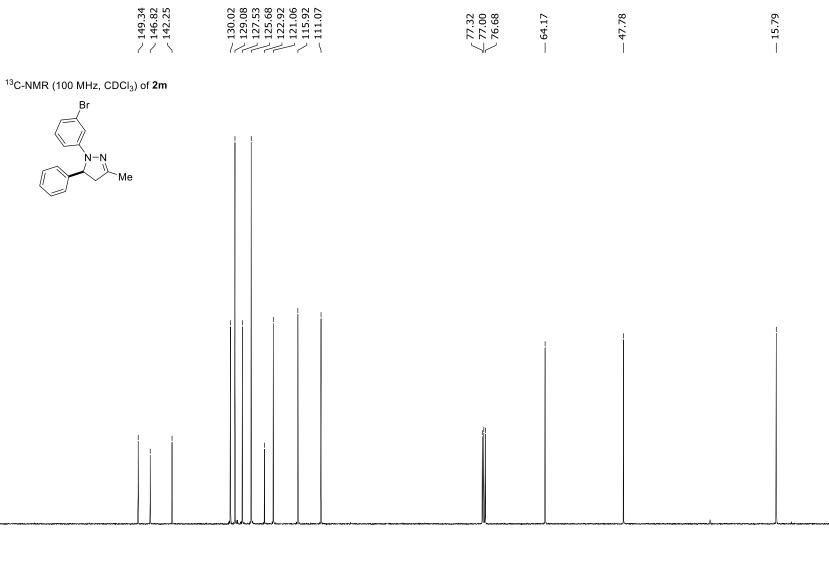

ίO -70 -10 -20 -30 -40 -50 -60 -80 -90 -100 -110 -120 -130 -140 -150 -160 ò -170 -180 f1 (ppm)

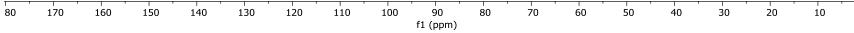


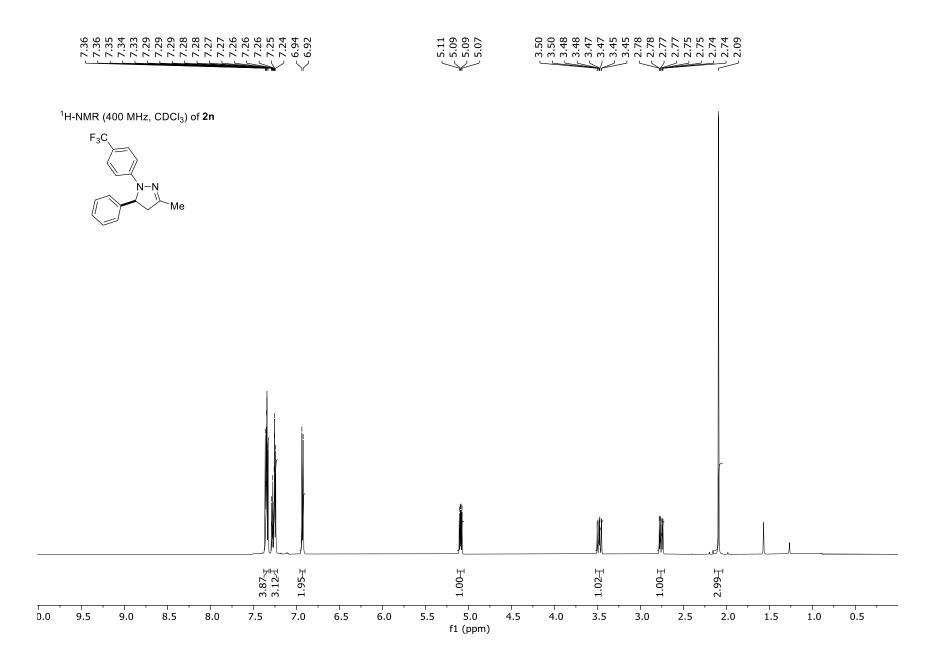


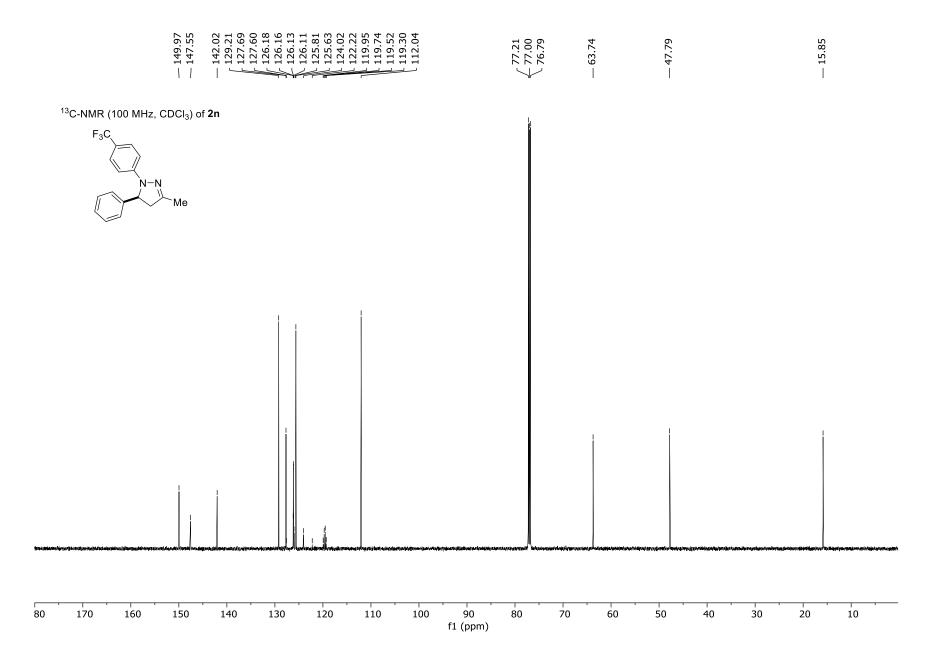


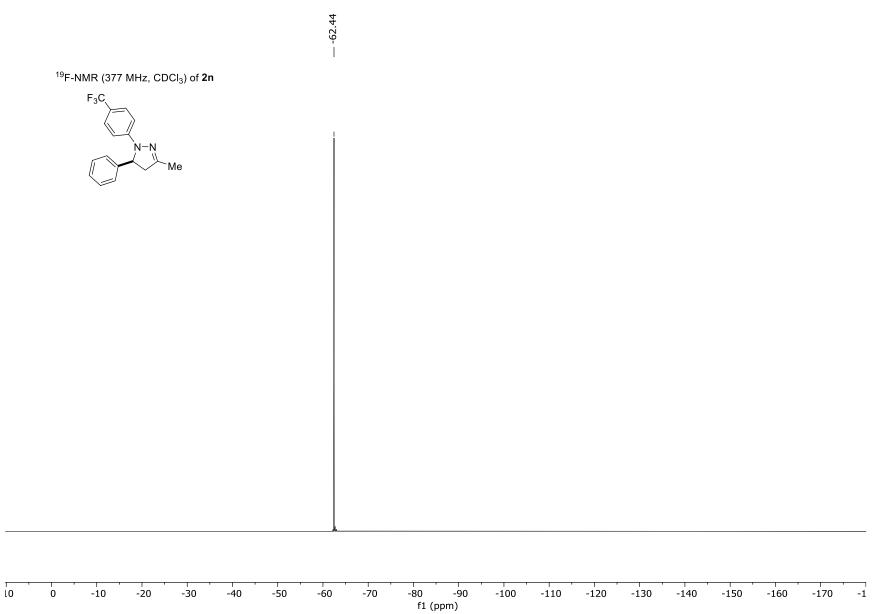


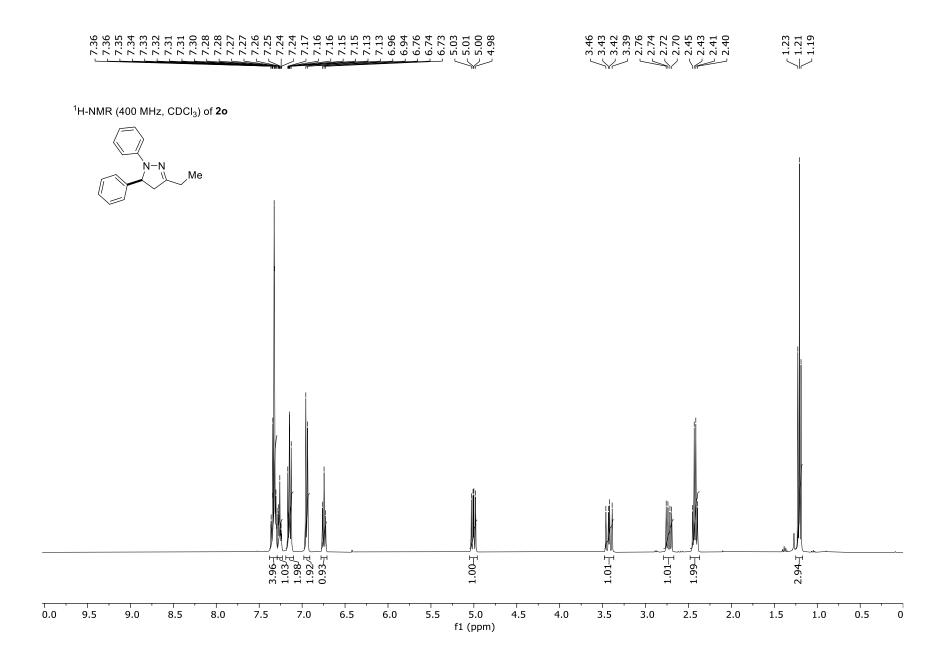


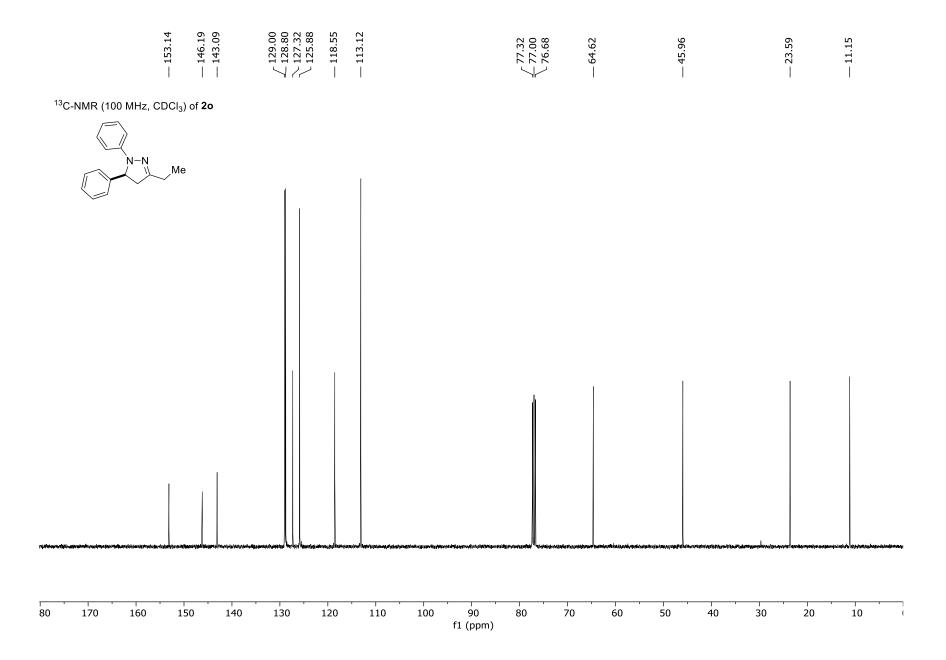


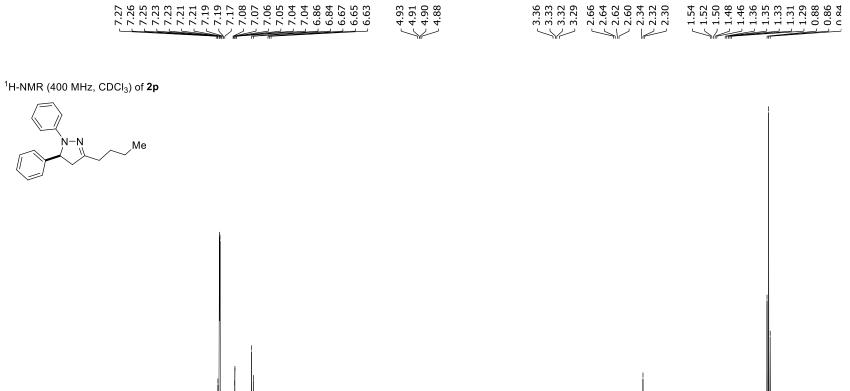












S-151

1.00H

5.0

f1 (ppm)

5.5

4.5

1.01-

3.0

3.5

4.0

1.01<u>-</u> 2.00-J

2.5

2.07<u>-</u> 2.06-J

1.5

2.0

3.03H

0.5

1.0

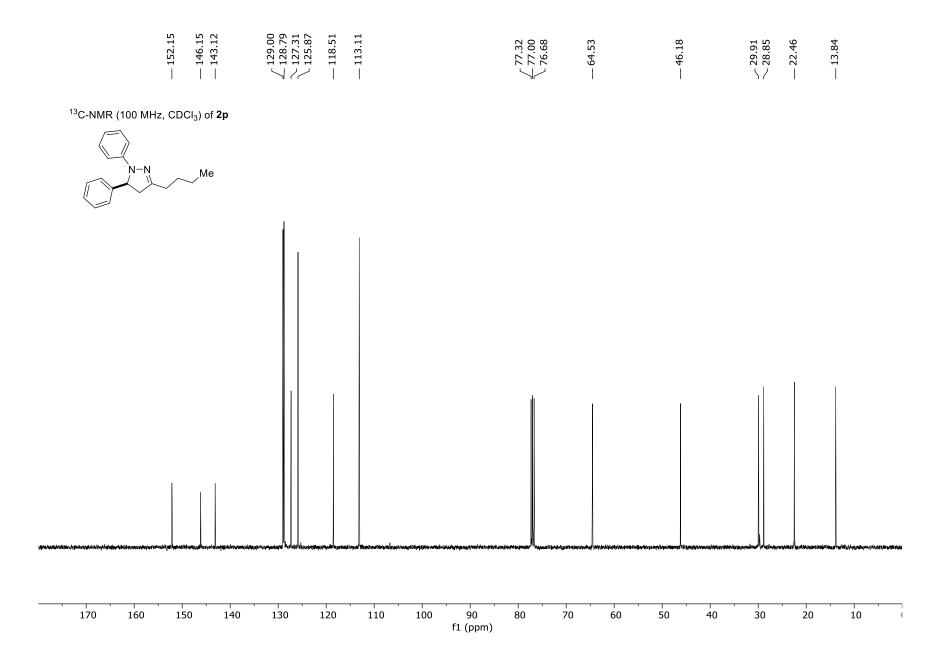
5.11년 2.01년 1.92_년 0.95_년

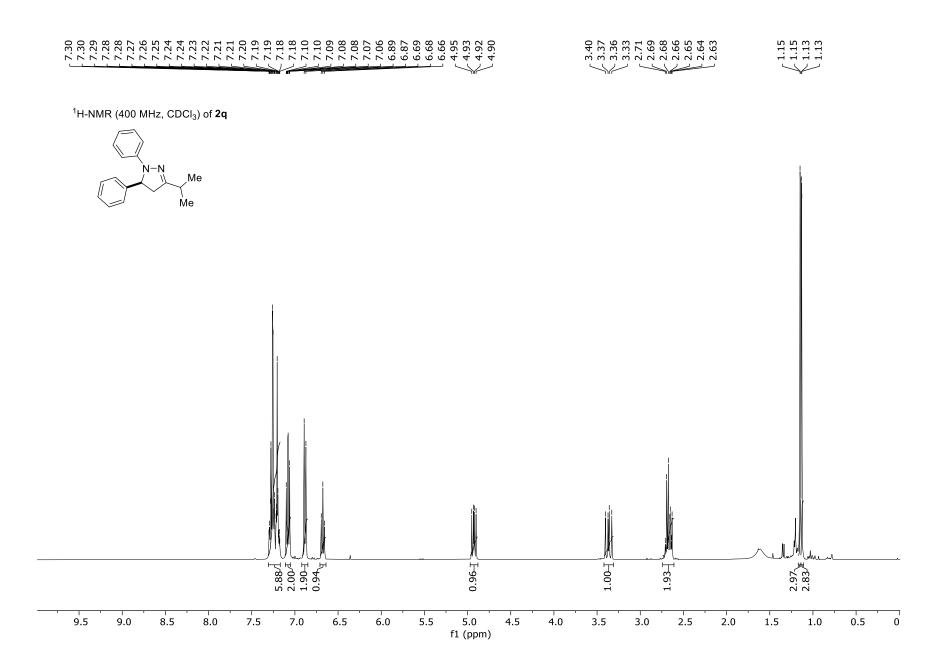
7.0

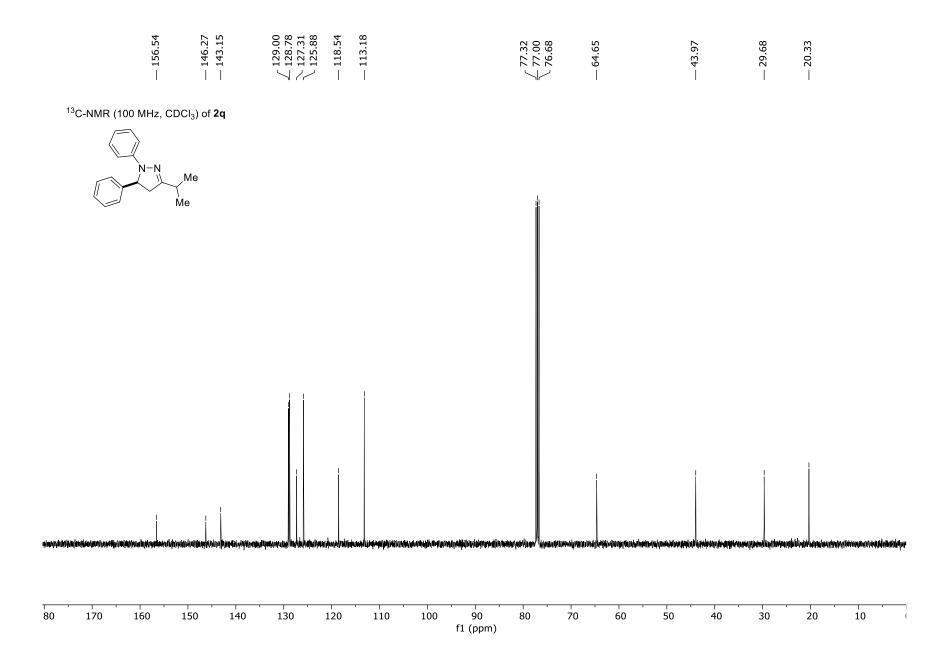
6.5

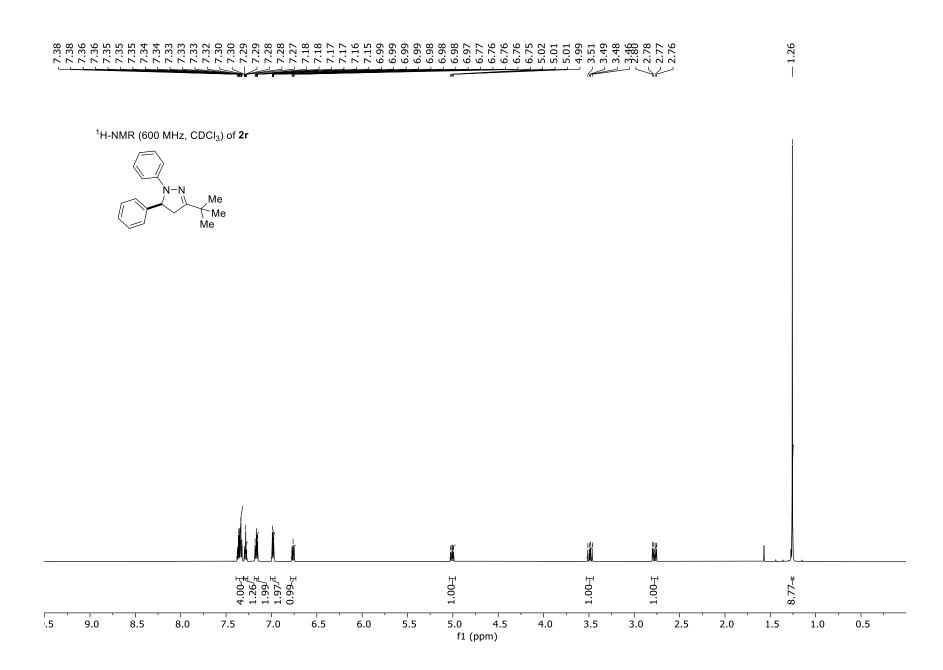
6.0

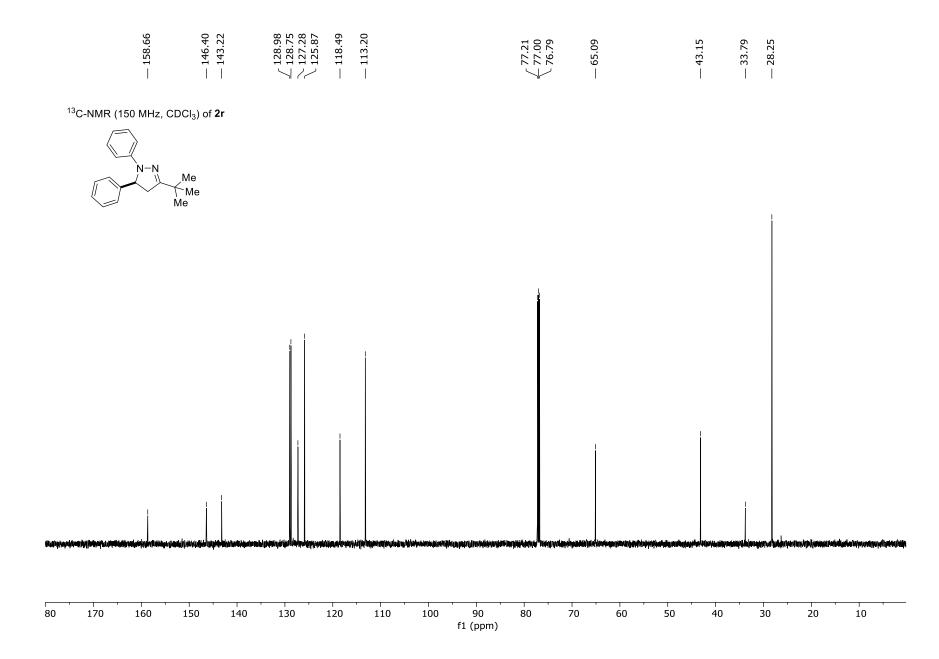
7.5

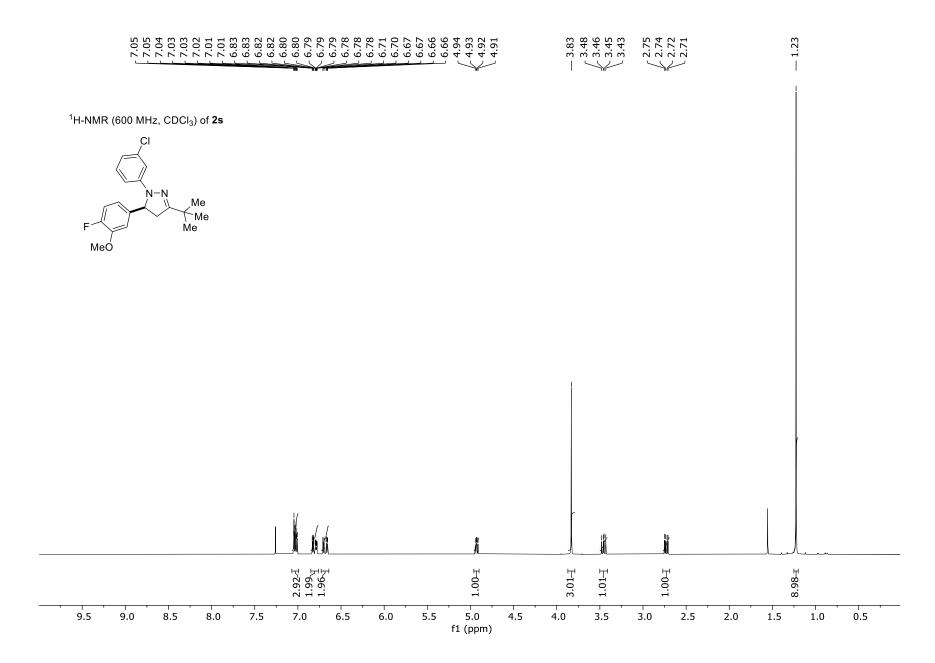

).0

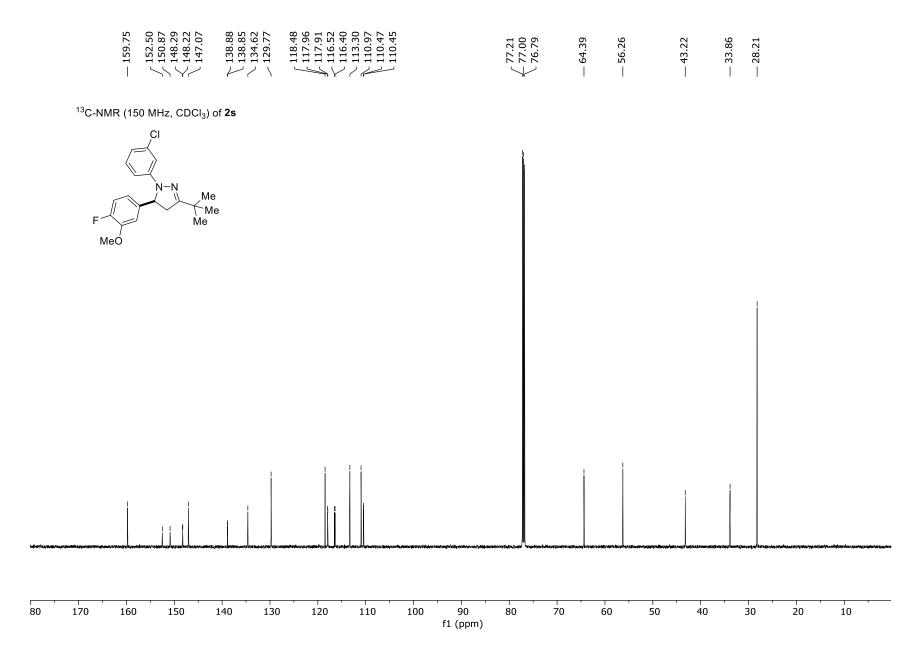

9.5

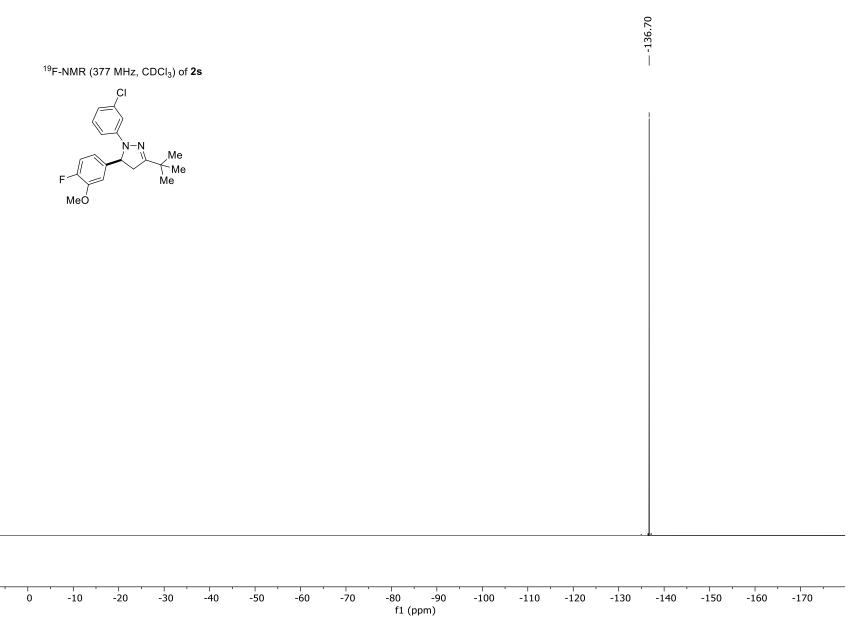

8.5

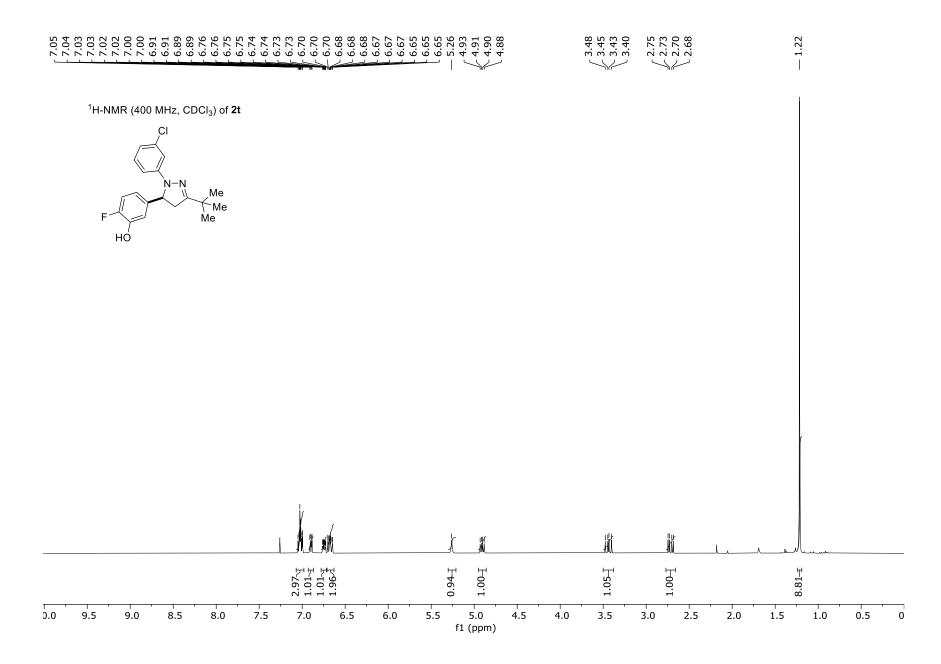

8.0

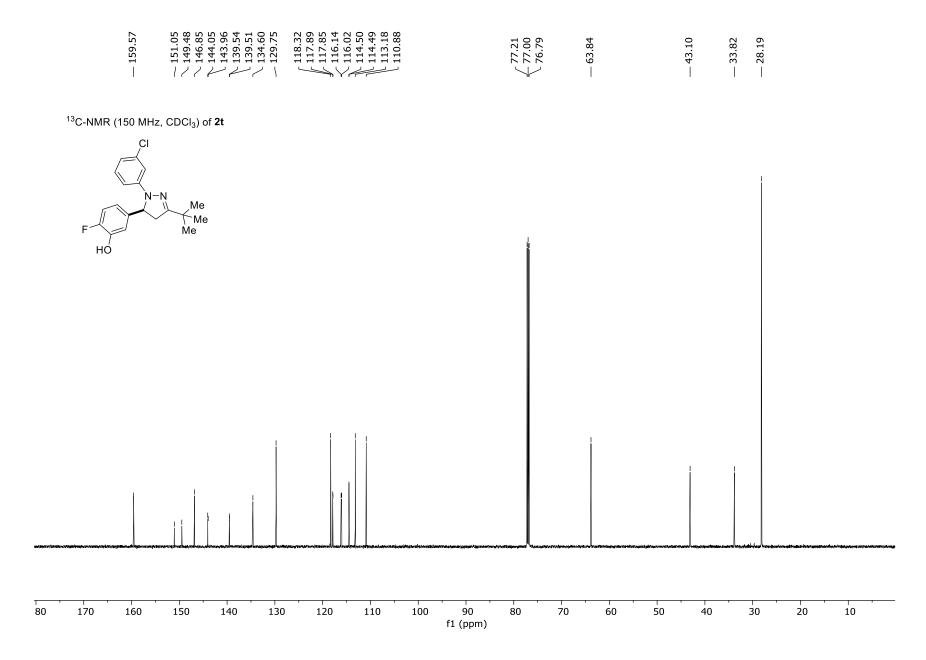

9.0

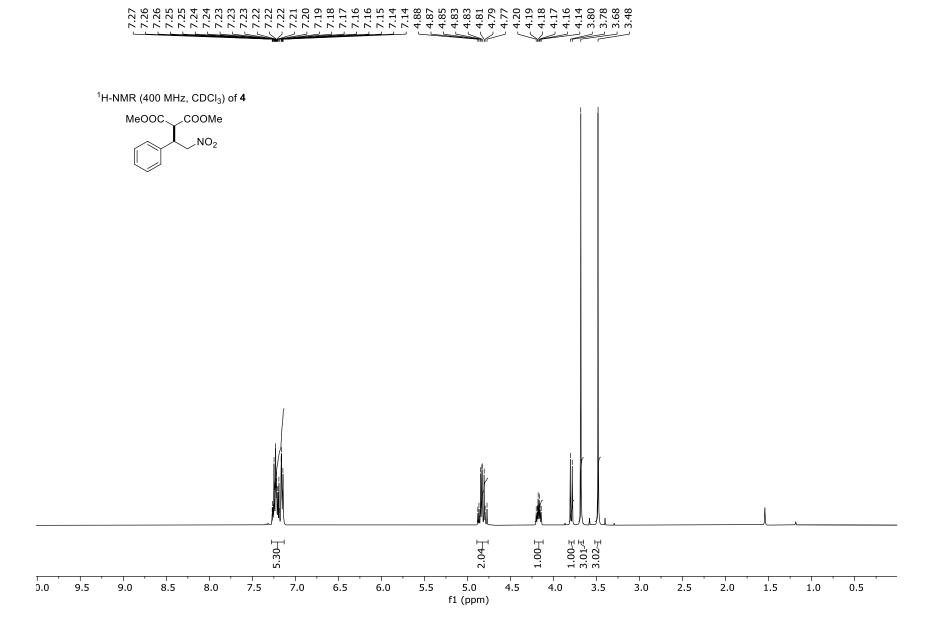


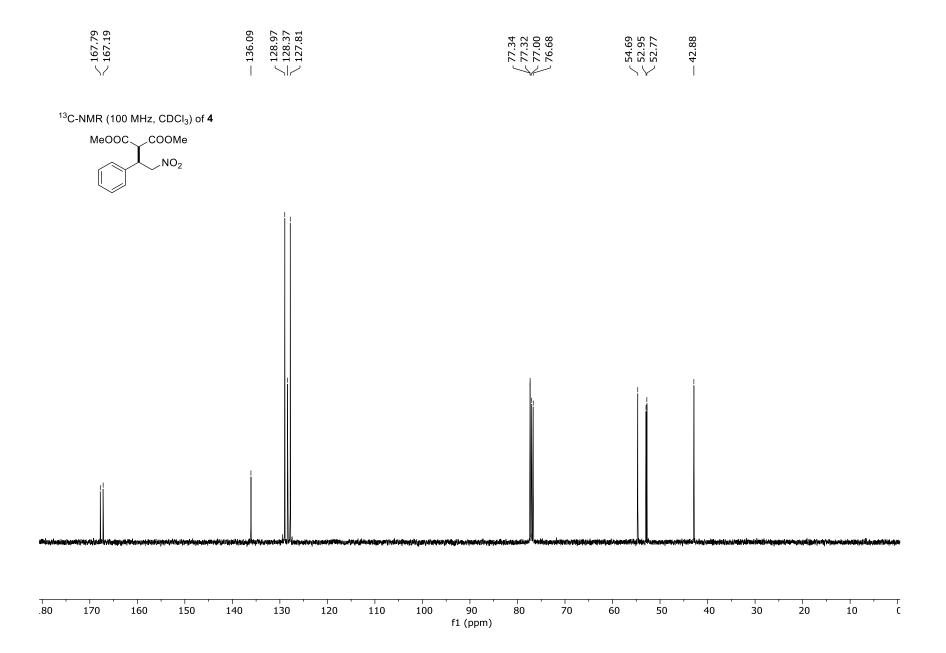









10



$ \begin{array}{c} & & \\ & & $	¹⁹ F-NMR (377 MHz, CDCl ₃) of 2t				— -142.14	
	F Me					

· · · ·																		
LO	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170
									f1 (p	pm)								

