Chemoselective, Regioselective, and Positionally Selective Fluorogenic Stapling of Unprotected Peptides for Cellular Uptake and Direct Cell Imaging

Naysilla L. Dayanara, ^[a] Juliette Froelich, ^[a] Pascale Roome, ^[a] and David M. Perrin*^[a]

 [a] Department of Chemistry University of British Columbia
 2036 Main Mall, Vancouver, BC, V6T1Z1, Canada E-mail: <u>dperrin@chem.ubc.ca</u>

Table of Contents

Experimental Procedures	3
Results and Discussion	4
Synthesis of 2-ketoarylketobenzaldehyde library Synthesis of benzhydrazides 2: Synthesis of salicylaldehyde derivatives: Synthesis of benzylidene hydrazides: Synthesis of 2-arylketobenzaldehydes	4 4 8 11 19
Optimization of FIICk reaction of 2-arylketobenzaldehyde	29
NMR analysis and discussion for 7aa	30
General protocol for the synthesis and photophysical determination of disubstituted isoindoles 7a-7ai	39
Quantum Yield Data	74
Intermolecular Chemoselectivity Studies Reaction of 6w with excess L-Trp-OH Reaction of 6w with mercaptopropionic acid followed by excess L-Trp-OH Reaction of 6w with excess L-Trp-OH followed by mercaptopropionic acid	<i>81</i> 81 82 83
Synthesis of linear peptides 11-21 Synthesis of 11 (Ac-HLCLWRKLQDK-NH2) Synthesis of 12 (Ac-HLKLWRCLCDS-NH2) Synthesis of 13 (Ac-ENPKCILDKWVQRVM-NH2) Synthesis of 14 (Ac-ENPECILDKWVQRVC-NH2) Synthesis of 15 (Ac-LSQEQLKHRERSLKTLRCIQRMLW-NH2) Synthesis of 16 (Ac-LSQEQLKHRERSLKTLRCIQRMLW-NH2) Synthesis of 16 (Ac-LSQEQLKHRERSLKTLRCIQRMLW-NH2) Synthesis of 17 (Ac-TIEEQAKTCLDkKNHEAEDLFYQKSLACWN-NH2) Synthesis of 18 (Ac-CWIAKELRKIGDCF-NH2) Synthesis of 20 Negative Control (Ac-IWIAQELRRIGDEFNAYYARR-NH2) Synthesis of 20' (Ac-IWIAQELRRIGDCFNAYYARR-NH2) Synthesis of 20a (Ac-IWIAQELRRIGDS5NAYYARR-NH2) Synthesis of 21 (Ac-RRPQKILDCHVRRVWR-NH2) Synthesis of 21a (FITC-Ahx-RRPQS5ILDS5HVRRVWR-NH2)	84 84 86 90 92 94 95 97 99 101 103 105 107
FIICk stapling of α-helices 11-21 Synthesis and characterization of 11a and 11b: Synthesis and characterization of 12a and 12b Confirming positional selectivity of 12b Synthesis and characterization of 13a and 13b Synthesis and characterization of 14a and 14b	<i>110</i> 110 113 116 128 131

Synthesis and characterization of 15a and 15b	134
Synthesis and characterization of 16a and 16b	138
Synthesis and characterization of 17a and 17b	141
Synthesis and characterization of 18a and 18b	144
Proving positional selectivity using orthogonal protecting group strategy:	147
	149
	149
Synthesis and characterization of 20b	150
Synthesis and characterization of 21b	152
Biological Assays	154
General Cell Culturing Protocol	154
Cell Viability Assays	154
Confocal Microscopy Imaging	155
Comparative modeling of FIICk-stapled helix with RCM-stapled helix	156
Exploring reactions on isoindole derivatives - Proof of concept of isoindole undergoing CuAAC reaction	157

NMR Spectra of hydrazide derivatives (2):	162
NMR Spectra of salicylaldehyde derivatives (4):	169
NMR Spectra of benzylidene benzohydrazides:	173
NMR Spectra of 2-ketobenzaldehyde derivatives (6):	191

Experimental Procedures

Materials

Unless otherwise stated, chemicals were purchased from Ambeed, Sigma Aldrich, TCI America, and Acros Organics and were used without further purification. Standard L-Fmoc-AA-OH and coupling reagents were purchased from Gyros Protein Technologies, Aapptec Peptides, and Ambeed. Fmoc-Rink-Amide-MBHA resin (0.70 mmol/g) was purchased from Iris Biotech GmbH and used in all Solid Phase Peptide Synthesis (SPPS) outlined in this supplementary material. HPLC-grade solvents (THF, DCM, DMF, and MeCN) were used unless otherwise stated.

NMR Spectroscopy:

¹H and ¹³C and ¹⁹F NMR spectra for 2-arylketobenzaldehydes compounds and their intermediates (**1-6**) were acquired on Bruker Avance 300 Spectrometer equipped with a BACS-120 autosampler and Bruker Avance 400inv Spectrometer. Field strengths for samples are reported in the text and NMR data.

¹H and ¹³C NMR spectra for peptide **7aa** were acquired on Bruker Avance 400inv Spectrometer, equipped with VT module and Bruker 5mm BBI probe. Details of this experiment are outlined in the text.

¹H and ¹³C NMR spectra for peptide **S4** were acquired on Bruker Avance 600 Spectrometers equipped with xyz-gradient TCI cryoprobe. All NMR data were processed using MestReNova v14.2.0

Mass Spectrometry:

Low-Resolution mass spectra (LRMS) were obtained on Waters ZQ equipped with ESCI ion source. Waters 2695 HPLC was used to deliver the samples. All samples were dissolved in MeOH (for polar organic compounds) and MeCN/H₂O (0.1% formic acid) for peptides. High-Resolution mass spectra (HRMS) were obtained on Agilent 6545 QTOF LCMS and samples were dissolved in MeCN/H₂O (0.1% formic acid).

UV Spectrophotometry:

Peptide quantification and calibration plots were obtained via UV spectrophotometry on Carry 5000 UV-Vis-NIR spectrophotometer. Linear and Grubbs-stapled peptides (**11-20**) were quantified at 280nm ε = 7100 cm⁻¹ M⁻¹ and the corresponding FIICk peptides were quantified at 365nm (ε = 14300 cm⁻¹ M⁻¹). All samples were dissolved in 1:1 MeCN/H₂O (v/v).

Analytical Reverse-Phase HPLC:

Agilent 1100 HPLC system was used for analytical reinjections of purified material as outlined in the text. This instrument was outfitted with G1379A Degasser, G1311A Quat Pump, G1313A Autosampler, G1316A COLCOM, G1315B DAD, G1364C Analytical Fraction Collector

Preparative Reverse-Phase HPLC:

All peptide purification was done on Agilent 1260 Infinity II Preparative LC system using Agilent Prep 100Å C18, (21.2 x 50 mm, 5 µm) or Phenomenex Aeris PEPTIDE XB-C18 Axia packed (21.2 x 50 mm, 5µm), with optimized solvents and methods detailed in each dataset. Agilent 1260 Infinity II instrument is equipped with the following modules: G1379A Degasser, G1311A Quat Pump, G1313A Autosampler, G1316A COLCOM, G1315B DAD, G1364C Analytical Fraction Collector. HPLC 2 was outfitted with the following modules: G7161A Prep Pump, G7157A Prep Autosampler, G7115A DAD, G1364E Fraction Collector.

HPLC-MS/MS:

LC-MS/MS analysis was carried out using an Agilent 6546 LC/Q-TOF. Reverse-phased LC was carried out using an Agilent Eclipse plus C18 1.8µm, 2.1x50 mm column with a flow rate of 0.400 mL/min an an injection volume of 5 µL. Deionized water and acetonitrile containing 0.1 % formic acid was used as eluent A and B, respectively. A gradient profile of 5%-95% over 15 minutes was used as the analytical LC method. MS-MS data was acquired with three different collision energies at 50, 75, and 100 eV.

Circular Dichroism (CD):

CD spectra were acquired on Jasco J-815 CD spectrophotometer and a quartz cuvette of path length 1mm. Peptides were dissolved in H₂O (20% TFE) to a concentration of 50µM and all measurements were done with the following parameters: 190-260nm, step resolution 0.5nm, scanning speed of 1000nm/min, 10 accumulations, 1s response time, and 1nm bandwidth. α -helical content of each peptide was calculated by dividing the mean residue ellipticity [θ]222_{obs} by the reported value for model helical polylysine [θ]₂₂₂ = -37400 deg cm² dmol⁻¹.¹

Quantum Yield

Absolute photoluminescence quantum yields were determined using an Edinburgh Instruments FS5 spectrofluorometer equipped with an SC–30 Integrating Sphere Module, with optical densities less than 0.1 and we report the values in the manuscript to +/- 5% based on the error of the integrating sphere.

General Cell Culturing Protocol

All cell culturing media and supplements were purchased from Gibco and all cell culturing plastics were purchased from Corning or Falcon, unless otherwise stated. Cells were cultured at 37°C in a humidified incubator with 5% CO₂. All experiments were conducted in a laminar flow cabinet under sterile conditions. DMSO used in cell-based experiments was purified by filtration through a 0.2 mm filter. To revive cells, a 1 mL cryotube of frozen cell stock (culture media + 10% DMSO) was gently thawed in a water bath and diluted with 12 mL of fresh media in a T-75 flask. After 24 hours, media was replaced with fresh media. Jurkat T-cell leukemia cells were cultured in RPMI 1640 media supplemented with 10% fetal bovine serum (FBS), 10K U/mL penicillin, 10K mg/mL streptomycin, and 2 mM L-glutamine. DLD-1 cells were cultured in RPMI 1640 media supplemented with 10% fetal bovine serum (FBS), 10K U/mL penicillin, and 10K mg/mL streptomycin. When cells reached a confluence level of 85-95% for adherent cells, or 2x10⁶ viable cells/mL for suspension cells, the cells were detached from the flask, 1-2 mL of media was added to quench the trypsin, and the cell suspension was transferred to a 10 mL falcon tube and centrifuged for 5 minutes at 8000 rpm. The supernatant was discarded, and the pellet of cells was resuspended in fresh media, diluted as required, and transferred to new T-25 culture flasks. Cell viability was assessed by counting cells with a hemacytometer after treatment with Trypan blue.

Cell Viability Assays

To assay cell viability, Jurkat cells were suspended in media lacking FBS (serum-free media) and seeded in 96 well plates ($1x10^4$ cells in 25 µL/well). Peptides **19** (negative control), **19a** (RCM, positive control), and **19b** (FIICk) were lyophilized and dissolved in serum-free media with 1% DMSO and further diluted to the appropriate concentrations. The plated cells were treated with 25 µL of the serial dilutions of the peptides of interest in triplicate and incubated at 37°C for 2 hours, at which point 50 µL of media containing 20% FBS was added to each well (serum replacement) (final well volume of 100 µL, 10% FBS). The cells were then incubated for 24 hours. To each well, 10 µL of MTS labeling reagent (Abcam) was added and the cells were incubated for 4 hours. The absorbance of the wells was measured at 490 nm using a Microplate Reader Multi-Mode FilterMax F5 and the IC₅₀ values were determined by nonlinear regression analysis with GraphPad Prism software.

Results and Discussion

Synthesis of 2-ketoarylketobenzaldehyde library

Synthesis of benzhydrazides 2:

Scheme S1: Benzohydrazides 2 synthesis and substrate scope

General procedure for the synthesis of benzohydrazides (2)²:

In a 100mL RBF, carboxylic acid **1** (1 eq.) was dissolved in THF (0.5M) and to this mixture was added 1,1'-carbonyldiimidazole (1.3 eq.). After stirring at room temperature for 3h, this imidazolyl solution was added dropwise to hydrazine hydrate (50% in water, v/v) (3 eq.) in THF and left to stir overnight at room temperature. After completion of the reaction, a bilayer was observed, and the top THF phase was decanted into a clean RBF and evaporated under reduced pressure to afford damp solids. This crude product was then recrystallized in EtOH:H₂O mixture to give pure benzohydrazides **2**. This general procedure was applied to all benzohydrazides **2a-2o**.

4-fluorobenzohydrazide (2a)

2a was prepared following the general procedure for the synthesis of benzohydrazides, using 4-fluorobenzoic acid (5.00g, 35.7mmol, 1 eq.) and 1,1'-carbonyldiimidazole (7.52g, 46.4mmol, 1.3 eq.) stirred in 45mL THF. This imidazoyl solution was then transferred into an addition funnel and added dropwise to a stirring mixture of 6.7mL hydrazine hydrate (50%, v/v) in 30mL THF. Purification by recrystallization in EtOH afforded **2a** as long needle-like white crystals (3.47g, 63%).

¹H NMR (300 MHz, DMSO) δ 9.79 (s, 1H), 7.95 – 7.82 (m, 2H), 7.35 – 7.21 (m, 2H), 4.47 (s, 2H).

4-chlorobenzohydrazide (2b)

H₂N, N

2b was prepared following the general procedure for the synthesis of benzohydrazides, using 4-chlorobenzoic acid (5.00g, 31.9mmol, 1 eq.) and 1,1'-carbonyldiimidazole (6.73g, 41.5mmol, 1.3 eq.) stirred in 40mL THF. This imidazoyl solution was then transferred into an addition funnel and added dropwise to a stirring mixture of 6mL hydrazine hydrate (50%, v/v) in 26mL THF. Purification by recrystallization in EtOH afforded **2b** as granular light yellow crystals (4.20g, 77%).

¹H NMR (300 MHz, DMSO) δ 9.85 (s, 1H), 7.90 – 7.75 (m, 2H), 7.58 – 7.45 (m, 2H), 4.50 (s, 2H).

4-bromobenzohydrazide (2c)

2c was prepared following the general procedure for the synthesis of benzohydrazides, using 4-bromobenzoic acid (5.00g, 24.9mmol, 1 eq.) and 1,1'-carbonyldiimidazole (5.24g, 32.3mmol, 1.3 eq.) stirred in 30mL THF. This imidazoyl solution was then transferred into an addition funnel and added dropwise to a stirring mixture of 4.7mL hydrazine hydrate (50%, v/v) in 21mL THF. Purification by recrystallization in EtOH afforded **2c** as small white crystals (3.75g, 70%).

¹H NMR (300 MHz, DMSO) δ 9.85 (s, 1H), 7.81 – 7.71 (m, 2H), 7.71 – 7.62 (m, 2H).

4-iodobenzohydrazide (2d)

2d was prepared following the general procedure for the synthesis of benzohydrazides, using 4-iodobenzoic acid (5.00g, 20.2mmol, 1 eq.) and 1,1'-carbonyldiimidazole (4.25g, 26.2mmol, 1.3 eq.) stirred in 25mL THF. This imidazoyl solution was then transferred into an addition funnel and added dropwise to a stirring mixture of 3.8mL hydrazine hydrate (50%, v/v) in 17mL THF. Purification by recrystallization in EtOH afforded 2d as short needle-like crystals (2.65g,

¹H NMR (300 MHz, DMSO) δ 9.83 (s, 1H), 7.90 – 7.71 (m, 2H), 7.68 – 7.48 (m, 2H), 4.49 (s, 2H).

4-methoxybenzohydrazide (2e)

2e was prepared following the general procedure for the synthesis of benzohydrazides, using 4-methoxybenzoic acid (5.00g, 23.9mmol, 1 eq.) and 1,1'-carbonyldiimidazole (6.93g, 42.7mmol, 1.3 eq.) stirred in 30mL THF. This imidazoyl solution was then transferred into an addition funnel and added dropwise to a stirring mixture of 6.3mL hydrazine hydrate (50%, v/v) in 30mL THF. Purification by recrystallization in EtOH afforded **2e** as flaky white crystals (4.37g, 80%).

¹H NMR (300 MHz, DMSO) δ 9.61 (s, 1H), 7.85 – 7.73 (m, 2H), 7.02 – 6.92 (m, 2H), 4.41 (s, 2H), 3.79 (s, 3H).

4-cyanobenzohydrazide (2f)

2f was prepared following the general procedure for the synthesis of benzohydrazides, using 4-cyanobenzoic acid (5.00g, 33.9mmol, 1 eq.) and 1,1'-carbonyldiimidazole (7.16g, 44.2mmol, 1.3 eq.) stirred in 42mL THF. This imidazoyl solution was then transferred into an addition funnel and added dropwise to a stirring mixture of 6.54mL hydrazine hydrate (50%, v/v) in 30mL THF. Purification by recrystallization in EtOH afforded **2f** as fluffy pale orange crystals (4.49g, 82%). **1 MMR** (300 MHz, DMSO) δ 10.04 (s, 1H), 8.06 – 7.74 (m, 4H), 4.58 (s, 2H).

4-nitrobenzoyhydrazide (2g)

2g was prepared following the general procedure for the synthesis of benzohydrazides, using 4-nitrobenzoic acid (5.00g, 29.9mmol, 1 eq.) and 1,1'-carbonyldiimidazole (6.31g, 38.9mmol, 1.3 eq.) stirred in 38mL THF. This imidazoyl solution was then transferred into an addition funnel and added dropwise to a stirring mixture of 5.7mL hydrazine hydrate (50%, v/v) in 26mL THF. Purification by recrystallization in EtOH afforded **2g** as yellow crystals (4.17g, 77%).

¹**H NMR** (300 MHz, DMSO) δ 10.12 (s, 1H), 8.34 - 8.25 (m, 2H), 8.10 - 7.99 (m, 2H), 4.63 (s, 2H).

4-ethynylbenzohydrazide (2h)

2h was prepared following the general procedure for the synthesis of benzohydrazides, using 4-ethynylbenzoic acid (5.00g, 34.2mmol, 1 eq.) and 1,1'-carbonyldiimidazole (7.21g, 44.54mmol, 1.3 eq.) stirred in 43mL THF. This imidazoyl solution was then transferred into an addition funnel and added dropwise to a stirring mixture of 6.6mL hydrazine hydrate (50%, v/v) in 30mL THF. Purification by recrystallization in EtOH:H₂O, followed by Et₂O rinse, afforded **2h** as white crystals (3.73g, 68%).

¹H NMR (300 MHz, DMSO) δ 9.86 (s, 1H), 7.89 – 7.76 (m, 2H), 7.59 – 7.50 (m, 2H), 4.52 (s, 2H), 4.35 (s, 1H).

4-azidobenzohydrazide (2i)

H₂N,Ŋ

2i was prepared following the general procedure for the synthesis of benzohydrazides, using 4-azidobenzoic acid (5.00g, 30.7mmol, 1 eq.) and 1,1'-carbonyldiimidazole (6.46g, 39.8mmol, 1.3 eq.) stirried in 38mL THF. This imidazoyl solution was then transferred into an addition funnel and added dropwosie to a stirring mixture of 6mL hydrazine hydrate (50%, v/v) in 27mL THF. Purification by recrystallization in EtOH and DMSO afforded **2i** as fluffy pale pink crystals (2.77g, 51%).

¹H NMR (300 MHz, DMSO) δ 9.78 (s, 1H), 8.05 – 7.71 (m, 2H), 7.44 – 6.96 (m, 2H), 4.47 (s, 2H).

3-fluorobenzohydrazide (2j)

2j was prepared following the general procedure for the synthesis of benzohydrazides, using 3-fluorobenzoic acid (5.00g, 35.7mmol, 1 eq.) and 1,1'-carbonyldiimidazole (7.52g, 46.4mmol, 1.3 eq.) stirred in 45mL THF. This imidazoyl solution was then transferred into an addition funnel and added dropwise to a stirring mixture of 6.7mL hydrazine hydrate (50%, v/v) in 30mL THF. Purification by recrystallization in EtOH afforded **2j** as short light-beige crystals (2.64g, 48%).

¹**H NMR** (300 MHz, DMSO) δ 9.87 (s, 1H), 7.72 – 7.56 (m, 2H), 7.51 (td, *J* = 8.0, 5.8 Hz, 1H), 7.36 (tdd, *J* = 8.4, 2.7, 1.0 Hz, 1H), 4.46 (s, 2H).

3-cyanobenzohydrazide (2k)

2k was prepared following the general procedure for the synthesis of benzohydrazides, using 3-cyanobenzoic acid (5.00g, 33.9mmol, 1 eq.) and 1,1'-carbonyldiimidazole (7.16g, 44.2mmol, 1.3 eq.) stirred in 42mL THF. This imidazoyl solution was then transferred into an addition funnel and added dropwise to a stirring mixture of 6.54mL hydrazine hydrate (50%, v/v) in 30mL THF. Purification by recrystallization in EtOH and DMSO afforded **2k** as yellow-orange crystals (4.16g, 76%).

¹**H NMR** (300 MHz, DMSO) δ 9.98 (s, 1H), 8.20 (dt, *J* = 1.7, 0.9 Hz, 1H), 8.16 – 8.09 (m, 1H), 7.99 (dt, *J* = 7.8, 1.4 Hz, 1H), 7.74 – 7.62 (m, 1H), 4.57 (d, *J* = 3.2 Hz, 2H).

Nicotinohydrazide (2I)

2I was prepared following the general procedure for the synthesis of benzohydrazide, using nicotinic acid (5.00g, 40.6mmol, 1 eq.) and 1,1'-carbonyldiimidazole (8.56g, 52.8mmol, 1.3 eq.) stirred in 50mL THF. This imidazoyl solution was then transferred into an addition funnel and added dropwise to a stirring mixture of 7.8mL hydrazine hydrate (50%, v/v) in 35mL THF. Purification by recrystallization in EtOH afforded **2I** as fluffy white needle-like crystals (4.95g, 89%).

¹**H NMR** (300 MHz, DMSO) δ 9.95 (s, 1H), 8.96 (dd, *J* = 2.3, 0.9 Hz, 1H), 8.69 (dd, *J* = 4.8, 1.7 Hz, 1H), 8.15 (dt, *J* = 8.0, 2.0 Hz, 1H), 7.49 (ddd, *J* = 8.0, 4.8, 0.9 Hz, 1H), 4.56 (s, 2H).

Furan-2-carbohydrazide (2m)

2m was prepared following the general procedure for the synthesis of benzohydrazide, using furan-2-carboxylic acid (2.00g, 17.8mmol, 1 eq.) and 1,1'-carbonyldiimidazole (3.76g, 23.2mmol, 1.3 eq.) stirred in 22mL THF. This imidazoyl solution was then transferred into an addition funnel and added dropwise to a stirring mixture of 3.5mL hydrazine hydrate (50%, v/v) in 16mL THF. Purification by recrystallization in EtOH:H₂O afforded **2m** as small white flaky crystals (0.86g, 44%).

¹**H NMR** (300 MHz, DMSO) δ 9.62 (s, 1H), 7.80 (dd, *J* = 1.8, 0.8 Hz, 1H), 7.07 (dd, *J* = 3.4, 0.9 Hz, 1H), 6.59 (dd, *J* = 3.4, 1.8 Hz, 1H), 4.41 (s, 2H).

Thiophene-2-carbohydrazide (2n)

2n was prepared following the general procedure for the synthesis of benzohydrazide, using thiophene-2-carboxylic acid (2.00g, 15.6mmol, 1 eq.) and 1,1'-carbonyldiimidazole (3.29g, 20.3mmol, 1.3 eq.) stirred in 20mL THF. This imidazoyl solution was then transferred into an addition funnel and added dropwise to a stirring mixture of 3mL hydrazine hydrate (50%, v/v) in 15mL THF. Purification by recrystallization in EtOH:H₂O afforded **2n** as shiny white granules (1.33g, 60%).

¹**H NMR** (300 MHz, DMSO) δ 9.74 (s, 1H), 7.72 (ddd, *J* = 9.3, 4.4, 1.1 Hz, 2H), 7.12 (dd, *J* = 5.0, 3.7 Hz, 1H), 4.44 (s, 2H).

1H-indole-3-carbohydrazide (2o)

2o was prepared following the general procedure for the synthesis of benzohydrazide, using 1H-indole-3-carboxylic acid (2.00g, 12.4mmol, 1 eq.) and 1,1'-carbonyldiimidazole (2.62g, 16.1mmol, 1.3 eq.) stirred in 16mL THF. The imidazoyl solution was then transferred into an addition funnel and added dropwise to a stirring mixture of 2.3mL hydrazine hydrate (50%, v/v) in 10mL THF. Purification by recrystallization in EtOH:H₂O afforded **2o** as yellow powder (0.73g, 67%).

¹**H NMR** (300 MHz, DMSO) δ 11.51 (s, 1H), 9.14 (s, 1H), 8.17 – 8.08 (m, 1H), 7.96 (d, *J* = 2.9 Hz, 1H), 7.42 (dt, *J* = 8.1, 0.9 Hz, 1H), 7.18 – 7.05 (m, 2H), 4.32 (s, 2H)

Synthesis of salicylaldehyde derivatives:

Scheme S2: Synthesis and scope of salicylaldehyde derivatives 4

General procedure for the synthesis of salicylaldehyde derivatives (4)³:

A two-neck 250-mL RBF, equipped with a condenser and a stir bar, was charged with $MgCl_2$ (1.5 eq.) and flame dried and purged with Ar. To this RBF was added the corresponding commercially available phenol derivatives **3** (1 eq.), Et₃N (distilled, CaH₂) (2.5 eq.) and THF (distilled, Na) to afford a 0.37M reaction. Solution was stirred at room temperature for 20 minutes, and to it was added p-formaldehyde (6.75 eq.). The reaction was heated to reflux and stirred overnight, after which it was cooled to 0°C the following day and acidified to pH 1 with 1M HCI. The resulting aqueous mixture was extracted successively with EtOAc, dried over MgSO₄, filtered, and evaporated under reduced pressure. The resulting crude product was purified in acetone:hexanes (1:9, v/v) to afford pure salicylaldehyde derivatives **4**.

3-fluoro-2-hydroxybenzaldehyde (4a)

4a was synthesized according to the general procedure of salicylaldehyde derivatives, using 2-fluorophenol (3.00g, 26.8mmol, 1 eq.), Et₃N (9.33mL, 67.0mmol, 2.5 eq.), MgCl₂ (3.83g, 40.2mmol, 1.5 eq.), and p-formaldehyde (5.43g, 181mmol, 6.75 eq.) in 75mL distilled THF. Purification via flash column chromatography in 1:9 acetone/hexanes afforded **4a** as white solids (1.2g, 32%).

¹H{¹⁹F} NMR (300 MHz, DMSO) δ 10.94 (s, 1H), 10.28 (s, 1H), 7.53 (dd, *J*= 3, 7.9 Hz, 1H), 7.49 (dd), *J*= 3, 7.9 Hz, 1H), 6.95 (t, *J* = 7.9 Hz, 1H) ppm

¹⁹F{¹H} NMR (282 MHz, DMSO) δ -135.53 ppm.

3-chloro-2-hydroxybenzaldehyde (4b)

4b was synthesized according to the general procedure of salicylaldehyde derivatives, using 2-chlorophenol (3.00g, 23.3mmol, 1 eq.), Et₃N (8.13mL, 58.3mmol, 2.5 eq.), MgCl₂ (3.33g, 35.0mmol, 1.5 eq.), and p-formaldehyde (4.72g, 157mmol, 6.75 eq.) in 63mL distilled THF. Purification via flash column chromatography in 1:9 acetone/hexanes afforded **4b** as white solids (2.00g, 55). ¹H NMR (300 MHz, DMSO) δ = 11.11 (s, 1H), 10.13 (s, 1H), 7.72 (ddd, *J* = 3, 3, 7.5 Hz, 2H), 7.05 (t, *J* = 7.5 Hz, 1H) ppm.

3-bromo-2-hydroxybenzaldehyde (4c)

4c was synthesized according to the general procedure for salicylaldehyde derivatives, using 2-bromophenol (3.00g, 17.3mmol, 1 eq.), Et₃N (6.04mL, 43.4mmol, 2.5 eq.), MgCl₂ (2.48g, 26.0mmol, 1.5 eq.) and p-formaldehyde (3.91g, 117mmol, 6.75 eq.) in 47mL distilled THF. Purification via flash column chromatography in 2:8 acetone/hexanes afforded **4c** as yellow solids (2.39g, 69%). ¹H NMR (300 MHz, DMSO) δ = 11.26 (s, 1H), 10.06 (s, 1H), 7.89 (dd, *J* = 3.0, 7.5 Hz, 1H), 7.77 (dd, *J* = 3.0, 7.5 Hz, 1H), 7.02 (t, *J* = 7.5 Hz, 1H) ppm

5-fluoro-2-hydroxybenzaldehyde (4d)

4d was synthesized according to the general procedure for salicylaldehyde derivatives, using 3-fluorophenol (3.00g, 26.8mmol, 1 eq.), Et₃N (9.33mL, 67.0mmol, 2.5 eq.), MgCl₂ (3.83g, 40.2mmol, 1.5 eq.), and p-formaldehyde (5.43g, 181mmol, 6.75 eq.) in 75mL distilled THF. Purification via flash column chromatography in 1:9 acetone/hexanes afforded **4d** as white solids (1.46g, 39%). ¹H NMR (300 MHz, DMSO) δ 10.74 (s, 1H), 10.25 (d, *J* = 2.8 Hz, 1H), 7.46 – 7.30 (m, 2H), 7.02 (dd, *J* = 8.9, 4.3 Hz, 1H). ¹⁹F{¹H} NMR (282 MHz, DMSO) δ -124.62 ppm.

4-fluoro-2-hydroxybenzaldehyde (4e)

4e was synthesized according to the general procedure for salicylaldehyde derivatives, using 4-fluorophenol (3.00g, 26.8mmol, 1 eq.), Et₃N (9.33mL, 67.0mmol, 2.5 eq.), MgCl₂ (3.83g, 40.2mmol, 1.5 eq.), and p-formaldehyde (5.43g, 181mmol, 6.75 eq.) in 75mL distilled THF. Purification via flash column chromatography in 1:9 acetone/hexanes afforded **4e** as white solids (0.90g, 39%).

¹H NMR (300 MHz, DMSO) δ 10.70 (s, 1H), 10.25 (s, 1H), 7.42(d, J = 4.0 Hz, 1H), 7.38 (dd, J = 4.0 Hz, 8.9 Hz, 1H), 7.03 (d, J = 8.9 Hz, 1H).
 ¹⁹F{¹H} NMR (282 MHz, DMSO) δ -124.62 ppm.

F{ H} NMR (202 MHZ, DIVISO) 0 -124.02 ppi

4-chloro-2-hydroxybenzaldehyde (4f)

4f was synthesized according to the general procedure of salicylaldehyde derivatives, using 3-chlorophenol (3.00g, 23.3mmol, 1 eq.), Et₃N (8.13mL, 58.3mmol, 2.5 eq.), MgCl₂ (3.33g, 35.0mmol, 1.5 eq.), and p-formaldehyde (4.72g, 157mmol, 6.75 eq.) in 63mL distilled THF. Purification via flash column chromatography in 1:9 acetone/hexanes afforded **4f** as pale yellow solids (1.68g, 46%). ¹**H NMR** (300 MHz, DMSO) δ = 11.15 (s. 1H), 10.23 (s, 1H), 7.66 (d, *J* = 9 Hz, 1H), 7.05 (d, *J* = 3 Hz, 1H), 7.01 (dd, *J* = 3 Hz, 9 Hz) ppm.

4-bromo-2-hydroxybenzaldehyde (4g)

4g was synthesized according to the general procedure for salicylaldehyde derivatives, using 3-bromophenol (3.00g, 17.3mmol, 1 eq.), Et₃N (6.04mL, 43.4mmol, 2.5 eq.), MgCl₂ (2.48g, 26.0mmol, 1.5 eq.) and p-formaldehyde (3.91g, 117mmol, 6.75 eq.) in 47mL distilled THF. Purification via flash column chromatography in 1:9 acetone/hexanes afforded **4g** as white solids (1.60g, 46%). **1H NMR** (300 MHz, DMSO) δ = 11.10 (s, 1H), 10.22 (s, 1H), 7.56 (d, *J* = 9 Hz, 1H), 7.19 (d, *J* = 3 Hz, 1H), 7.14 (dd, *J* = 3, 9 Hz, 1H)

¹**H NMR** (300 MHz, DMSO) δ = 11.10 (s, 1H), 10.22 (s, 1H), 7.56 (d, *J* = 9 Hz, 1H), 7.19 (d, *J* = 3 Hz, 1H), 7.14 (dd, *J* = ppm

General procedure for the synthesis of benzylidene hydrazides (5)⁴:

To a 100mL-RBF equipped with a stir bar was added the corresponding salicylaldehyde (1 eq.), benzohydrazide (1 eq.) and EtOH (0.2M reaction). The solution was brought to reflux and stirred overnight, after which it was passively cooled to room temperature. The reaction mixture was concentrated *in vacuo* and the resulting crude product was recrystallized in EtOH: H_2O mixture. Crystals were filtered and rinsed with diethyl ether to pure product **5**.

N'-(2-hydroxybenzylidene)benzohydrazide (5a)

5a was synthesized following the general procedure for benzylidene hydrazide using salicylaldehyde (4.5mmol, 1eq.) and benzhydrazide (4.5mmol, 1eq.), affording **5a** as small white crystals in 60% yield (0.65g). **1H NMR** (400 MHz, DMSO) δ 12.11 (s, 1H), 11.30 (s, 1H), 8.65 (s, 1H), 7.98 – 7.91 (m, 2H), 7.66 – 7.50 (m, 4H), 7.31 (ddd, *J* = 8.6, 7.2, 1.7 Hz, 1H), 6.98 – 6.89 (m, 2H).

N'-(4-chloro-2-hydroxybenzylidene)benzohydrazide (5b)

5b was synthesized following the general procedure for benzylidene hydrazide using 4-chloro-2-hydroxybenzaldehyde **4f** (1.0g, 6.38mmol, 1 eq.) and benzhydrazide (0.86g, 6.38mmol, 1 eq.), affording **5b** as pale yellow powder in 63% yield (1.10g). **1H NMR** (300 MHz, DMSO) δ 12.14 (s, 1H), 11.57 (s, 1H), 8.64 (s, 1H), 7.97 – 7.89 (m, 2H), 7.68 – 7.46 (m, 3H), 6.99 (d, *J* = 8.1 Hz, 2H).

N'-(4-bromo-2-hydroxybenzylidene)benzohydrazide (5c)

5c was synthesized following the general procedure for benzylidene hydrazide using 4-bromo-2-hydroxybenzaldehyde **4g** (1.0g, 4.97mmol, 1 eq.) and benzhydrazide (0.67g, 4.97mmol, 1 eq.), affording **5c** as yellow solids (1.03g, 65% yield). **1H NMR** (300 MHz, DMSO) δ 12.12 (s, 1H), 11.57 (s, 1H) 8.63 (s, 1H), 7.93 (d, *J* = 7.5 Hz, 2H), 7.57 (p, *J* = 7.1 Hz, 4H), 7.17 – 7.07 (m, 2H).

N'-(3-bromo-2-hydroxybenzylidene)benzohydrazide (5d)

5d was synthesized following the general procedure for benzylidene hydrazide using 3-bromo-2-hydroxybenzaldehyde **4c** (1.0g, 4.97mmol, 1 eq.) and benzhydrazide (0.67g, 4.97mmol, 1 eq.), affording **5d** as yellow crystals (0.92g, 58%) **1H NMR** (300 MHz, DMSO) δ 8.59 (s, 1H), 8.01 – 7.91 (m, 2H), 7.70 – 7.46 (m, 5H), 6.92 (t, *J* = 7.8 Hz, 1H).

N'-(3-chloro-2-hydroxybenzylidene)benzohydrazide (5e)

5e was synthesized following the general procedure for benzylidene hydrazide using 3-chloro-2-hydroxybenzaldehyde **4b** (1.0g, 6.39mmol, 1 eq.) and benzhydrazide (0.87g, 6.39mmol, 1 eq.), affording **5e** as white crystals (1.39g, 80%). **1H NMR** (300 MHz, DMSO) δ 8.62 (s, 1H), 8.01 – 7.91 (m, 2H), 7.68 – 7.53 (m, 3H), 7.49 (d, *J* = 7.8 Hz, 2H), 6.97 (t, *J* = 7.8 Hz, 1H).

N'-(3-fluoro-2-hydroxybenzylidene)benzohydrazide (5f)

5f was synthesized following the general procedure for benzylidene hydrazide using 3-fluoro-2-hydroxybenzaldehyde **4a** (0.64g, 4.59mmol, 1 eq.) and benzhydrazide (0.62g, 4.59mmol, 1 eq.), affording **5f** as white needle-like crystals (0.68g, 57%). **¹H NMR** (300 MHz, DMSO) δ 12.23 (s, 1H), 11.64 (s, 1H), 8.66 (s, 1H), 8.04 – 7.87 (m, 2H), 7.71 – 7.49 (m, 3H), 7.39 (d, *J* = 7.8 Hz, 1H), 7.29 (ddd, *J* = 11.2, 8.1, 1.5 Hz, 1H), 6.92 (td, *J* = 8.0, 4.8 Hz, 1H). **¹⁹F NMR** (282 MHz, DMSO) δ -136.97.

N'-(2-hydroxy-6-methoxybenzylidene)benzohydrazide (5g)

5g was synthesized following the general procedure for benzylidene hydrazide using 2-hydroxy-6-methoxybenzaldehyde (1.0g, 6.57mmol, 1 eq.) and benzhydrazide (0.89g, 6.57mmol, 1 eq.) affording **5g** as white crystals (0.79g, 45%). **1H NMR** (300 MHz, DMSO) δ 12.23 (s, 0H), 12.19 (s, 1H), 8.97 (s, 1H), 7.99 – 7.91 (m, 2H), 7.58 (ddd, *J* = 14.5, 7.8, 6.2 Hz, 3H), 7.28 (t, *J* = 8.3 Hz, 1H), 6.56 (dd, *J* = 8.3, 6.7 Hz, 2H), 3.86 (s, 3H).

N'-(5-bromo-2-hydroxybenzylidene)benzohydrazide (5h)

5h was synthesized following the general procedure for benzylidene hydrazide using 5-bromo-2-hydroxybenzaldehyde (1.0g, 4.97mmol, 1 eq.) and benzhydrazide (0.67g, 4.87mmol, 1 eq.) affording **5h** as bright yellow crystals (1.21g, 76%) **1H NMR** (300 MHz, DMSO) δ 12.18 (s, 1H), 11.30 (s, 1H), 8.62 (s, 1H), 7.94 (d, *J* = 7.3 Hz, 2H), 7.80 (d, *J* = 2.5 Hz, 1H), 7.61 (d, *J* = 7.1 Hz, 1H), 7.54 (t, *J* = 7.3 Hz, 2H), 7.43 (dd, *J* = 8.8, 2.5 Hz, 1H), 6.91 (d, *J* = 8.8 Hz, 1H).

4-chloro-N'-(2-hydroxy-5-methoxybenzylidene)benzohydrazide (5i)

5i was synthesized following the general procedure for benzylidene hydrazide using 2-hydroxy-5-methoxybenzaldehyde (1.0g, 6.57mmol, 1 eq.) and 4-chlorobenzohydrazide **2b** (1.12g, 6.57mmol, 1 eq.) affording **5i** as pale yellow crystals (1.57g, 78%). **1H NMR** (300 MHz, DMSO) δ 11.56 (s, 1H), 10.66 (s, 1H), 8.55 (s, 1H), 8.32 (s, 1H), 7.95 (d, *J* = 8.5 Hz, 1H), 7.63 (d, *J* = 8.5 Hz, 1H), 7.44 (d, *J* = 8.5 Hz, 1H), 6.58 – 6.41 (m, 3H), 3.75 (s, 3H).

N'-(2-hydroxy-3-methoxybenzylidene)benzohydrazide (5j)

5j was synthesized following the general procedure for benzylidene hydrazide using 2-hydroxy-3-methoxybenzaldehyde (2.0g, 13.1mmol, 1 eq.) and benzhydrazide (1.79g, 13.1mmol, 1 eq.) affording **5j** as pale yellow crystals (2.8g, 80%).

¹**H NMR** (300 MHz, DMSO) δ 12.08 (s, 1H), 10.99 (s, 1H), 8.66 (s, 1H), 8.01 – 7.88 (m, 2H), 7.57 (ddd, *J* = 14.3, 7.9, 6.1 Hz, 3H), 7.15 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.04 (dd, *J* = 8.1, 1.5 Hz, 1H), 6.87 (t, *J* = 7.9 Hz, 1H), 3.82 (s, 3H).

N'-(2-hydroxy-2-methoxybenzylidine)benzohydrazide (5k)

5k was synthesized following the general procedure for benzylidene hydrazide using 2-hydroxy-4-methoxybenzaldehyde (1.0g. 6.57mmol, 1 eq.) and benzhydrazide (0.89g, 6.57mmol, 1 eq.) affording **5k** as pale yellow granular crystals (1.16g, 65%). **1H NMR** (300 MHz, DMSO) δ 12.00 (s, 1H), 11.64 (s, 1H), 8.55 (s, 1H), 7.93 (dt, *J* = 6.9, 1.5 Hz, 2H), 7.56 (ddd, *J* = 14.3, 7.9, 6.1 Hz, 3H), 7.43 (d, *J* = 8.4 Hz, 1H), 6.58 - 6.47 (m, 2H), 3.78 (s, 3H).

4-fluoro-N'-(2hydroxy-2-methoxybenzylidene)benzohydrazide (5l)

5I was synthesized following the general procedure for benzylidene hydrazide using 2-hydroxy-4-methoxybenzaldehyde (0.987g, 6.49mmol, 1 eq.) and 4-fluoro-benzhydrazide **2a** (1.0g, 6.49mmol, 1 eq.) affording **5I** as thin needle-like crystals (1.19g, 63%). **1H NMR** (300 MHz, DMSO) δ 12.01 (s, 1H), 11.59 (s, 1H), 8.54 (s, 1H), 8.06 – 7.94 (m, 2H), 7.49 – 7.30 (m, 3H), 6.58 – 6.43 (m, 2H), 3.78 (s, 3H).

¹⁹**F NMR** (282 MHz, DMSO) δ -108.64.

N'-(5-fluoro-2-hydroxybenzylidene)benzohydrazide (5m)

5m was synthesized following the general procedure for benzylidene hydrazide using 5-fluoro-2-hydroxybenzaldehyde **4d** (0.91g, 6.44mmol, 1 eq.) and benzhydrazide (0.88g, 6.44mmol, 1 eq.) affording **5m** as small white crystals (1.19g, 65%). **1H NMR** (300 MHz, DMSO) δ 12.12 (s, 1H), 11.06 (s, 1H), 8.64 (s, 1H), 7.98 – 7.89 (m, 2H), 7.57 (dt, J = 14.4, 7.0 Hz, 3H), 7.43 (dd, J = 9.4, 3.2 Hz, 1H), 7.15 (td, J = 8.6, 3.2 Hz, 1H), 6.94 (dd, J = 9.0, 4.7 Hz, 1H). **19F NMR** (282 MHz, DMSO) δ -125.11.

N'(5-chloro-2-hydroxybenzylidene)benzohydrazide (5n)

5n was synthesized following the general procedure for benzylidene hydrazide using 5-chloro-2-hydroxybenzaldehyde (1.10g, 7.02mmol, 1 eq.) and benzhydrazide (0.95g, 7.02mmol, 1 eq.), affording **5n** as white crystals (1.17g, 63%). **1H NMR** (300 MHz, DMSO) δ 12.10 (s, 1H), 11.36 (s, 1H), 8.63 (s, 1H), 7.99 – 7.90 (m, 2H), 7.67 (d, *J* = 2.7 Hz, 1H), 7.57 (dt, *J* = 14.7, 7.1 Hz, 3H), 7.32 (dd, *J* = 8.8, 2.7 Hz, 1H), 6.96 (d, *J* = 8.8 Hz, 1H).

N'-(5-chloro-2-hydroxybenzylidene)-3-fluorobenzohydrazide (50)

5o was synthesized following the general procedure for benzylidene hydrazide using 5-chloro-2-hydroxybenzaldehyde (1.02g, 6.51mmol, 1 eq.) and 3-fluorobenzhydrazide (1.0g, 6.51mmol, 1 eq.), affording **5o** as white solids (0.78g, 41%). **1H NMR** (300 MHz, DMSO) δ 12.22 (s, 1H), 11.19 (s, 1H), 8.63 (s, 1H), 7.84 – 7.69 (m, 2H), 7.69 (d, *J* = 2.7 Hz, 1H), 7.61 (td, *J* = 8.0, 5.8 Hz, 1H), 7.54 – 7.41 (m, 1H), 7.33 (dd, *J* = 8.8, 2.7 Hz, 1H), 6.96 (d, *J* = 8.8 Hz, 1H).

4-cyano-N'-(2-hydroxy-5-nitrobenzylidene)benzohydrazide (5p)

5p was synthesized following the general procedure for benzylidene hydrazide using 5-nitro-2-hydroxybenzaldehyde (1.04g, 6.2mmol, 1 eq.) and 4-cyanobenzhydrazide **2f** (1.0g, 6.2mmol, 1 eq.) affording **5p** as bright yellow powder (1.69g, 83%). **1H NMR** (300 MHz, DMSO) δ 8.74 (s, 1H), 8.60 (d, *J* = 2.9 Hz, 1H), 8.17 (dd, *J* = 9.1, 2.9 Hz, 1H), 8.06 (q, *J* = 8.5 Hz, 4H), 7.10 (d, *J* = 9.1 Hz, 1H).

N'-(2-hydroxybenzylidene)-4-nitrobenzohydrazide (5q)

5q was synthesized following the general procedure for benzylidene hydrazide using salicylaldehyde (1.26g, 11.26mmol, 1 eq.) and 4nitrobenzohydrazide **2g** (2.04g, 11.26mmol, 1 eq.). Crude material was triturated in Et_2O and filtered to obtain **5q** as yellow powder (2.00g, 93%).

¹**H NMR** (300 MHz, DMSO) δ 12.35 (s, 1H), 11.11 (s, 1H), 8.69 (s, 1H), 8.44 – 8.36 (m, 2H), 8.23 – 8.13 (m, 2H), 7.61 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.32 (ddd, *J* = 8.5, 7.3, 1.7 Hz, 1H), 6.93 (dd, *J* = 8.0, 7.0 Hz, 2H).

N'-(2-hydroxy-5-nitrobenzylidene)-4-iodobenzohydrazide (5r)

5r was synthesized following the general procedure for benzylidene hydrazide using 2-hydroxy-5-nitrobenzaldehyde (0.64g, 3.82mmol, 1 eq.) and 4-iodobenzohydrazide **2d** (1.0g, 3.82mmol, 1 eq.), affording **5r** as pale yellow powder in quantitative yield (1.50g). **1H NMR** (300 MHz, DMSO) δ 8.74 (s, 1H), 8.60 (d, *J* = 2.9 Hz, 1H), 8.18 (dd, *J* = 9.1, 2.9 Hz, 1H), 7.95 (d, *J* = 8.2 Hz, 2H), 7.74 (d, *J* = 8.2 Hz, 2H), 7.12 (d, *J* = 9.1 Hz, 1H).

N'-(2-hydroxy-5-nitrobenzylidene)benzohydrazide (5s)

5s was synthesized following the general procedure for benzylidene hydrazide using 2-hydroxy-5-nitrobenzaldehyde (1.04g, 6.21mmol, 1 eq.) and 3-cyanobenzohydrazide **2k** (1.0g, 6.21mmol, 1 eq.), affording **5s** as yellow precipitate in quantitative yield (2.10g). **1H NMR** (300 MHz, DMSO) δ 8.74 (s, 1H), 8.62 (d, *J* = 2.9 Hz, 1H), 8.38 (d, *J* = 2.1 Hz, 1H), 8.25 (d, *J* = 8.0 Hz, 1H), 8.18 (dd, *J* = 9.1, 2.9 Hz, 1H), 8.09 (d, *J* = 7.7 Hz, 1H), 7.77 (t, *J* = 7.8 Hz, 1H), 7.12 (d, *J* = 9.1 Hz, 1H)

4-(dimethylamino)-N'-(2-hydroxy-5-nitrobenzylidene)benzohydrazide (5t)

5t was synthesized following the general procedure for benzylidene hydrazide using 2-hydroxy-5-nitrobenzaldehyde (2.0g, 11.97mmol, 1 eq.) and 4-(dimethylamino)benzohydrazide (2.14g, 11.97mmol, 1 eq.), affording **5t** as bright yellow solids in quantitative yield. **1 H NMR** (300 MHz, DMSO) δ 12.02 (s, 1H), 8.68 (s, 1H), 8.55 (d, *J* = 2.9 Hz, 1H), 8.15 (dd, *J* = 9.1, 2.9 Hz, 1H), 7.89 – 7.81 (m, 2H), 7.10 (d, *J* = 9.1 Hz, 1H), 6.82 – 6.73 (m, 2H), 3.01 (s, 6H).

N'-(2-hydroxy-5-nitrobenzylidene)-4-methoxybenzohydrazide (5u)

5u was synthesized following the general procedure for benzylidene hydrazide using 2-hydroxy-5-nitrobenzaldehyde (2.0g, 6.34mmol, 1 eq.) and 4-methoxybenzohydrazide **2e** (1.05g, 6.34mmol, 1 eq.), affording **5u** as yellow solids (3.32g, 88%). **1H NMR** (300 MHz, DMSO) δ 12.17 (s, 1H), 8.72 (s, 1H), 8.58 (s, 1H), 8.17 (dd, *J* = 9.1, 2.9 Hz, 1H), 7.95 (d, *J* = 8.6 Hz, 2H), 7.14 – 7.05 (m, 3H), 3.85 (s, 3H).

N'-(2-hydroxybenzylidene)-4-methoxybenzohydrazide (5v)

5v was synthesized following the general procedure for benzylidene hydrazide using salicylaldehyde (3.0g, 24.6mmol, 1 eq.) and 4-methoxybenzohydraizide **2e** (4.08g, 24.6mmol, 1 eq.), affording **5v** as shiny granular crystals (5.04g, 76%). **1H NMR** (300 MHz, DMSO) δ 12.00 (s, 1H), 11.37 (s, 1H), 8.62 (s, 1H), 7.93 (d, *J* = 8.7 Hz, 2H), 7.57 – 7.48 (m, 1H), 7.30 (td, *J* = 7.7, 1.7 Hz, 1H), 7.13 – 7.03 (m, 2H), 6.93 (d, *J* = 7.9 Hz, 2H), 3.84 (s, 3H).

4-(dimethylamino)-N'-(2-hydroxybenzylidene)benzohydrazide (5w)

5w was synthesized following the general procedure for benzylidene hydrazide using salicylaldehyde (2.0g, 16.4mmol, 1 eq.) and 4-(dimethylamino)benzohydrazide (2.94g, 16.4mmol, 1 eq.), affording **5w** as yellow crystals (3.80g, 82%). **1H NMR** (300 MHz, DMSO) δ 11.82 (s, 1H), 11.53 (s, 1H), 8.58 (s, 1H), 7.83 (d, *J* = 8.9 Hz, 2H), 7.51 – 7.46 (m, 1H), 7.33 – 7.24 (m, 1H), 6.97 – 6.87 (m, 2H), 6.77 (d, *J* = 9.0 Hz, 2H), 3.01 (s, 6H).

4-bromo-N'-(2-hydroxybenzylidene)benzohydrazide (5x)

5x was synthesized following the general procedure for benzylidene hydrazide using salicylaldehyde (1.50g, 12.3mmol, 1 eq.) and 4bromobenzohydrazide 2c (2.64g, 12.3mmol, 1 eq.) without recrystallization. Beige-brown precipitate was filtered and dried, affording 5x (2.74g, 70%).

¹**H NMR** (300 MHz, DMSO) δ 12.16 (s, 1H), 11.20 (s, 1H), 8.64 (s, 1H), 7.89 (d, *J* = 8.5 Hz, 2H), 7.77 (d, *J* = 8.5 Hz, 2H), 7.60 – 7.53 (m, 1H), 7.31 (td, *J* = 7.8, 1.7 Hz, 1H), 6.94 (d, *J* = 7.8 Hz, 2H).

3-cyano-N'-(2-hydroxybenzylidene)benzohydrazide (5y)

5y was synthesized following the general procedure for benzylidene hydrazide using salicylaldehyde (0.69g, 6.21mmol, 1 eq.) and 3cyanobenzohydrazide **2k** (1.0g, 6.21mmol, 1 eq.) without recrystallization. Crude material was triturated in Et₂O, filtered, and dried under reduced pressure to afford **5y** as beige powder (1.19g, 72%).

¹**H NMR** (300 MHz, DMSO) δ 12.22 (s, 1H), 11.09 (s, 1H), 8.66 (s, 1H), 8.37 (t, *J* = 1.7 Hz, 1H), 8.24 (d, *J* = 7.9 Hz, 1H), 8.09 (d, *J* = 7.8 Hz, 1H), 7.77 (t, *J* = 7.8 Hz, 1H), 7.64 – 7.56 (m, 1H), 7.32 (td, *J* = 7.7, 1.7 Hz, 1H), 6.93 (t, *J* = 7.7 Hz, 2H).

4-fluoro-N'-(2-hydroxybenzylidene)benzohydrazide (5z)

5z was synthesized following the general procedure for benzylidene hydrazide using salicylaldehyde (1.60g, 14.3mmol, 1 eq.) and 4-fluorobenzohydrazide 2a (2.20g, 14.3mmol, 1 eq.), affording 5z as white crystals (3.31g, 90%)

¹**H NMR** (300 MHz, DMSO) δ 12.12 (s, 1H), 11.25 (s, 1H), 8.64 (s, 1H), 8.08 – 7.95 (m, 2H), 7.56 (dd, *J* = 7.7, 1.7 Hz, 1H), 7.45 – 7.24 (m, 3H), 6.93 (t, *J* = 8.0 Hz, 2H).

4-cyano-N'-(2-hydroxybenzylidene)benzohydrazide (5aa)

5aa was synthesized following the general procedure for benzylidene hydrazide using salicylaldehyde (0.69g, 6.21mmol, 1 eq.) and 4cyanobenzohydrazide **2f** (1.0g, 6.21mmol, 1 eq.) without recrystallization. Suspension was filtered and rinsed with Et_2O , affording **5aa** as pale yellow solids (1.29g, 78%).

¹**H NMR** (300 MHz, DMSO) δ 11.12 (s, 1H), 8.67 (s, 1H), 8.14 – 8.01 (m, 4H), 7.59 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.32 (ddd, *J* = 8.5, 7.3, 1.7 Hz, 1H), 6.93 (dd, *J* = 8.1, 7.0 Hz, 2H).

4-chloro-N'-(2-hydroxybenzylidene)benzohydrazide (5ab)

5ab was synthesized following the general procedure for benzylidene hydrazide using salicylaldehyde (1.50g, 12.3mmol, 1 eq.) and 4-chlorobenzohydrazide **2a** (2.10g, 12.3mmol, 1 eq.) without recrystallization. Pale yellow precipitate was filtered and dried, affording **5ab** (2.02g, 60%).

¹**H NMR** (300 MHz, DMSO) δ 12.08 (s, 1H), 11.27 (s, 1H), 8.65 (s, 1H), 7.97 (d, *J* = 8.1 Hz, 2H), 7.63 (d, *J* = 8.2 Hz, 2H), 7.56 (d, *J* = 7.8 Hz, 1H), 7.31 (t, *J* = 7.8 Hz, 1H), 6.94 (d, *J* = 8.4 Hz, 2H).

4-azido-N'-(2-hydroxybenzylidene)benzohydrazide (5ac)

5ac was synthesized following the general procedure for benzylidene hydrazide using salicylaldehyde (0.65g, 5.32mmol 1 eq.) and 4-azidobenzohydrazide **2i** (0.94g, 5.32mmol, 1 eq.), affording **5ac** as orange crystals (1.03g, 69%). **¹H NMR** (300 MHz, DMSO) δ 12.11 (s, 1H), 11.27 (s, 1H), 8.63 (s, 1H), 8.07 - 7.93 (m, 2H), 7.54 (d, *J* = 7.4 Hz, 1H), 7.41 - 7.19 (m, 1H), 7.41 - 7.19 (m, 2H), 7.54 (d, *J* = 7.4 Hz, 1H), 7.41 - 7.19 (m, 2H), 7.54 (d, J), 7.5

The NMR (300 MHz, DMSO) 6 12.11 (S, 1H), 11.27 (S, 1H), 8.63 (S, 1H), 8.07 – 7.93 (M, 2H), 7.54 (d, J = 7.4 Hz, 1H), 7.41 – 7.19 (M, 3H), 6.93 (d, J = 7.9 Hz, 2H).

4-ethynyl-N'-(2-hydroxybenzylidene)benzohydrazide (5ad)

5ad was synthesized following the general procedure for benzylidene hydrazide using salicylaldehyde (0.45g, 3.64mmol, 1 eq.) and 4ethynylbenzohydrazide **2h** (0.58g, 3.64mmol, 1 eq.) without further recrystallization. Crude material was triturated in Et₂O, filtered, and dried, affording **5ad** as yellow powder (0.68g, 71%).

¹**H NMR** (300 MHz, DMSO) δ 12.17 (s, 1H), 11.23 (s, 1H), 8.65 (s, 1H), 8.00 – 7.91 (m, 2H), 7.65 (d, *J* = 8.2 Hz, 2H), 7.56 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.31 (ddd, *J* = 8.6, 7.3, 1.7 Hz, 1H), 6.93 (t, *J* = 7.5 Hz, 2H), 4.44 (s, 1H).

3-fluoro-N'-(2-hydroxybenzylidene)benzohydrazide (5ae)

5ae was synthesized following the general procedure for benzylidene hydrazide using salicylaldehyde (1.19g, 9.74mmol, 1 eq.) and 3-fluorobenzohydrazide **2j** (1.50g, 9.74mmol, 1 eq.), affording **5ae** as white crystals (1.08g, 43%).

¹**H NMR** (300 MHz, DMSO) δ 12.13 (s, 1H), 11.19 (s, 1H), 8.65 (s, 1H), 7.80 (d, *J* = 7.8 Hz, 1H), 7.75 (s, 1H), 7.64 – 7.53 (m, 2H), 7.50 – 7.43 (m, 1H), 7.35 – 7.26 (m, 1H), 6.93 (t, *J* = 7.6 Hz, 2H).

¹⁹**F NMR** (282 MHz, DMSO) δ -112.40.

N'-(2-hydroxybenzylidene)nicotinohydrazide (5af)

5af was synthesized following the general procedure for benzylidene hydrazide using salicylaldehyde (1.23g, 11.0mmol, 1 eq.) and nicotinohydrazide **2l** (1.51g, 11.0mmol, 1 eq.), affording **5af** as yellow flaky crystals (1.72g, 66%). **¹H NMR** (400 MHz, DMSO) δ 12.24 (s, 1H), 11.14 (s, 1H), 9.09 (dd, *J* = 2.3, 0.9 Hz, 1H), 8.78 (dd, *J* = 4.8, 1.7 Hz, 1H), 8.65 (s, 1H), 8.28 (dt, *J* = 8.0, 2.0 Hz, 1H), 7.62 – 7.55 (m, 2H), 7.32 (ddd, *J* = 8.5, 7.3, 1.7 Hz, 1H), 6.98 – 6.89 (m, 2H).

N'-(2-hydroxybenzylidene)furan-2-carbohydrazide (5ag)

5ag was synthesized following the general procedure for benzylidene hydrazide using salicylaldehyde (1.33g, 10.89mmol, 1 eq.) and furan-2-carbohydrazide **2m** (1.37g, 10.89mmol, 1 eq.), affording **5ag** as small white crystals (0.98g, 39%). **¹H NMR** (300 MHz, DMSO) δ 12.11 (s, 1H), 11.14 (s, 1H), 8.64 (s, 1H), 7.97 (dd, *J* = 1.7, 0.8 Hz, 1H), 7.54 (d, *J* = 7.7 Hz, 1H), 7.35 – 7.24 (m, 2H), 6.91 (dd, *J* = 8.1, 6.7 Hz, 2H), 6.72 (dd, *J* = 3.5, 1.7 Hz, 1H).

N'-(2-hydroxybenzylidene)thiophene-2-carbohydrazide (5ah)

5ah was synthesized following the general procedure for benzylidene hydrazide using salicylaldehyde (0.92g, 7.53mmol, 1 eq.) and thiophene-2-carbohydrazide **2n** (1.07g, 7.53mmol, 1 eq.), affording **5ah** as pale yellow powder (1.41g, 76%), isolated with minor impurities.

¹**H NMR** (300 MHz, DMSO) δ 12.11 (s, 1H), 11.12 (s, 1H), 8.63 (s, 1H), 7.91 (dd, *J* = 9.9, 4.5 Hz, 3H), 7.24 (t, *J* = 4.6 Hz, 2H), 6.93 (d, *J* = 7.8 Hz, 3H).

N'-(2-hydroxybenzylidene)-1H-indole-3-carbohydrazide (5ai)

5ai was synthesized following the general procedure for benzylidene hydrazide using salicylaldehyde (1.09g, 8.90mmol, 1 eq.) and 1H-indole-3-carbohydrazide **2o** (1.56g, 8.90mmol, 1 eq.), affording **5ai** as white flaky crystals (1.66g, 67%).

¹H NMR (300 MHz, DMSO) δ 11.78 (s, 1H), 11.68 (s, 1H), 11.49 (s, 1H), 8.51 (s, 1H), 8.29 – 8.12 (m, 2H), 7.58 – 7.45 (m, 2H), 7.31 – 7.12 (m, 3H), 6.92 (t, *J* = 7.7 Hz, 2H).

Synthesis of 2-arylketobenzaldehydes

Scheme S4: Synthesis and scope of aryl-ketobenzaldehydes 6

General procedure for the synthesis of 2-ketobenzaldehyde (6)⁴:

To a 100mL-RBF equipped with a stir bar was added the corresponding starting material **5** (1 eq.) and THF (0.2M reaction) and solution was stirred rapidly at room temperature. To this stirring mixture was added $Pb(OAc)_4$ (1.1 eq.) in portions. This addition was accompanied by a colour change and mild bubbling. Vigorous stirring was maintained for 4 hours at room temperature and then filtered through a celite sandwich to remove solid by-products. The resulting filtrate was concentrated under reduced pressure to afford crude material, after which it was purified by trituration in Et₂O or flash column chromatography in EtOAc/Hexanes, unless stated otherwise.

2-benzoylbenzaldehyde (6a)

6a was synthesized according to the general procedure for 2-ketobenzaldehydes using X (0.65g, 2.70mmol, 1 eq.) and Pb(OAc)₄ (1.32g, 2.97mmol, 1.1 eq.). Crude material was then purified via flash column chromatography, eluted in 1:9 EtOAc/Hexanes (v/v), affording **6a** as pale yellow solids (0.37g, 67%).

¹H NMR (300 MHz, DMSO) δ 9.96 (s, 1H), 8.18 – 8.03 (m, 1H), 7.89 – 7.74 (m, 2H), 7.73 – 7.58 (m, 3H), 7.57 – 7.46 (m, 3H). ¹³C NMR (75 MHz, DMSO) δ 196.3, 192.2, 140.1, 136.5, 134.8, 133.9, 133.5, 132.0, 130.6, 129.3, 128.75, 128.3, 40.4, 40.1, 39.8, 39.7, 39.5, 39.2, 39.0, 38.7.

LRMS (ESI-MeOH, m/z):

Methyl hemiacetal ($[C_{15}H_{14}O_3]$ +Na)⁺ calc. 265.1, found 265.2

2-benzoyl-4-chlorobenzaldehyde (6b)

6b was synthesized according to the general procedure for 2-ketobenzaldehydes using X (1.10g, 4.00mmol, 1 eq.) and Pb(OAc)₄ (1.95g, 4.4mmol, 1.1 eq.). Crude material was then purified via flash column chromatography, eluted in 2:8 EtOAc/Hexanes (v/v), affording **6b** as yellow-brown powder (0.73g, 75%).

¹**H NMR** (300 MHz, DMSO) δ 9.91 (s, 1H), 8.13 (d, *J* = 8.3 Hz, 1H), 7.90 (dd, *J* = 8.3, 2.1 Hz, 1H), 7.72 – 7.63 (m, 4H), 7.52 (td, *J* = 7.0, 1.5 Hz, 2H).

¹³C NMR (75 MHz, DMSO) δ 194.7, 191.2, 141.7, 139.0, 136.0, 134.2, 133.7, 133.1, 130.4, 129.2, 128.8, 128.0.

LRMS (ESI-MeOH, m/z):

2-ketoarylbenzaldehyde ([C14H9CIO2]+H)⁺ calc. 244.0, found 244.3

2-benzoyl-4-bromobenzaldehyde (6c)

6c was synthesized according to the general procedure for 2-ketobenzaldehydes using X (1.00g, 3.1mmol, 1 eq.) and Pb(OAc)₄ (1.51g, 3.41mmol, 1.1 eq). Crude material was then purified via flash column chromatography, eluted in 2:8 EtOAc/Hexanes (v/v), affording **6c** as beige powder (0.67g, 75%)

¹**H NMR** (300 MHz, DMSO) δ 9.90 (s, 1H), 8.04 (d, J = 1.2 Hz, 2H), 7.79 (s, 1H), 7.72 – 7.62 (m, 3H), 7.53 (tt, J = 6.9, 1.0 Hz, 2H). ¹³**C NMR** (75 MHz, DMSO) δ 194.6, 191.4, 141.7, 136.1, 134.1, 133.7, 133.4, 130.7, 129.2, 128.8, 128.1.

LRMS (ESI-MeOH, m/z):

2-ketoarylbenzaldehyde $([C_{14}H_{19}BrO_2]+H)^+$ calc. 288.9, found 289.0

2-benzoyl-3-bromobenzaldehyde (6d)

6d was synthesized according to the general procedure for 2-ketobenzaldehydes using X (0.92g, 2.88mmol, 1 eq.) and Pb(OAc)₄ (1.40g, 3.17mmol, 1.1 eq.). Crude material was then purified via flash column chromatography, eluted in 3:7 EtOAc/Hexanes (v/v), affording **6d** as brown powder (0.52g, 62%).

¹**H NMR** (300 MHz, DMSO) δ 9.86 (s, 1H), 8.18 (dd, *J* = 7.6, 1.1 Hz, 1H), 8.09 (dd, *J* = 8.1, 1.1 Hz, 1H), 7.76 (t, *J* = 7.8 Hz, 1H), 7.66 (ddd, *J* = 7.2, 3.4, 2.0 Hz, 3H), 7.56 – 7.47 (m, 2H).

¹³C NMR (75 MHz, DMSO) δ 194.6, 191.5, 139.7, 138.1, 135.8, 135.5, 133.8, 133.3, 131.6, 129.0, 128.5, 119.9.

LRMS (ESI-MeOH, m/z): Methyl hemiacetal ([C₁₅H₁₃BrO₃]+Na)⁺, calc. 343.0, found 343.3

2-benzoyl-3-chlorobenzaldehyde (6e)

6e was synthesized according to the general procedure for 2-ketobenzaldehydes using X (1.00g, 3.64mmol, 1 eq.) and Pb(OAc)₄ (1.78g, 4.00mmol, 1.1 eq.). Crude material was then purified via flash column chromatography, eluted in 3:7 EtOAc/Hexanes (v/v), affording **6e** as yellow-beige powder (0.71g, 80%)

¹**H NMR** (300 MHz, DMSO) δ 9.91 (s, 1H), 8.16 (dd, *J* = 7.5, 1.2 Hz, 1H), 7.95 (dd, *J* = 8.1, 1.2 Hz, 1H), 7.85 (t, *J* = 7.8 Hz, 1H), 7.67 (ddd, *J* = 7.0, 3.2, 1.9 Hz, 3H), 7.63 – 7.46 (m, 2H).

¹³C NMR (75 MHz, CD₂Cl₂) δ 194.6, 190.1, 139.8, 136.7, 136.2, 135.6, 134.3, 132.5, 131.2, 131.2, 129.3, 129.3.

LRMS (ESI-MeOH, m/z):

2-ketoarylbenzaldehyde ([C14H9ClO2]+H)+ calc. 245.0, found 245.1

2-benzoyl-3-fluoro-benzaldehyde (6f)

6f was synthesized according to the general procedure for 2-ketobenzaldehydes using X (0.62g, 2.40mmol, 1 eq.) and Pb(OAc)₄ (1.17g, 2.64mmol, 1.1 eq.). Crude material was then purified via flash column chromatography, eluted in 2:8 EtOAc/Hexanes (v/v), affording **6f** as pale-yellow solids (0.39g, 71%).

¹H NMR (300 MHz, CD₂Cl₂) δ 9.91 (s, 1H), 7.85 – 7.73 (m, 3H), 7.70 (t, *J* = 7.7 Hz, 1H), 7.66 – 7.59 (m, 1H), 7.53 – 7.43 (m, 3H). ¹⁹F NMR (282 MHz, CD₂Cl₂) δ -115.41.

¹³C NMR (75 MHz, CD₂Cl₂) δ 190.2, 190.1, 137.3, 136.9, 134.4, 132.0 (d, *J* = 8.1 Hz), 129.4, 129.2, 128.2 (d, *J* = 2.9 Hz), 122.3, 121.9. LRMS (ESI-MeOH, m/z):

Methyl hemiacetal ([C15H13FO3]+Na)⁺ calc. 283.1, found 283.3

2-benzoyl-6-methoxybenzaldehyde (6g)

6g was synthesized according to the general procedure for 2-ketobenzaldehydes using X (0.79g, 2.92mmol, 1 eq.) and Pb(OAc)₄ (1.43g, 3.22mmol, 1.1 eq.). Crude material was then purified via flash column chromatography, eluted in 3:7 EtOAc/Hexanes, affording **6g** as sand-coloured powder (0.62g, 89%).

¹**H NMR** (300 MHz, CD_2Cl_2) δ 10.38 (d, J = 0.8 Hz, 1H), 7.75 – 7.62 (m, 3H), 7.60 – 7.51 (m, 1H), 7.47 – 7.37 (m, 2H), 7.18 (d, J = 8.5 Hz, 1H), 6.90 (d, J = 7.5 Hz, 1H), 4.00 (s, 3H).

 $^{13}\textbf{C} \ \textbf{NMR} \ (75 \ \textbf{MHz}, \ \textbf{CD}_2 \textbf{Cl}_2) \ \delta \ 197.4, \ 189.2, \ 162.5, \ 142.7, \ 137.3, \ 136.0, \ 133.4, \ 129.3, \ 128.8, \ 123.5, \ 119.9, \ 113.2, \ 56.5.$

LRMS (ESI-MeOH, m/z):

2-ketoarylbenzaldehyde ($[C_{15}H_{12}O_3]$ +H)⁺ calc. 241.1, found 241.2

2-benzoyl-5-bromobenzaldehyde (6h)

6h was synthesized according to the general procedure for 2-ketobenzaldehydes using X (1.20g, 3.76mmol, 1 eq.) and Pb(OAc)₄ (1.83g, 4.14mmol, 1.1 eq.). Crude material was then purified via flash column chromatography, eluted in 3:7 EtOAc/Hexanes (v/v), affording **6h** as brown waxy solids (1.1g, quantitative).

¹**H NMR** (300 MHz, CD₂Cl₂) δ 9.95 (s, 1H), 8.15 (d, *J* = 2.0 Hz, 1H), 7.84 (dd, *J* = 8.1, 2.0 Hz, 1H), 7.81 – 7.74 (m, 2H), 7.68 – 7.61 (m, 1H), 7.56 – 7.45 (m, 2H), 7.42 (d, *J* = 8.1 Hz, 1H).

¹³**C NMR** (75 MHz, CD₂Cl₂) δ 195.6, 189.7, 140.2, 137.5, 137.1, 136.5, 134.2, 133.2, 131.1, 130.2, 129.1, 125.6, 54.6, 54.2, 53.8, 53.5, 53.1.

LRMS (ESI-MeOH, m/z): 2-ketoarylbenzaldehyde ([C₁₄H₉O₂]+H)⁺ calc. 288.9, found 290.0

2-(4-chlorobenzoyl)-5-methoxybenzaldehyde (6i)

6i was synthesized according to the general procedure for 2-ketobenzaldehydes using X (1.43g, 4.65mmol, 1 eq.) and Pb(OAc)₄ (2.27g, 5.11mmol, 1.1 eq.). Crude material was then purified via flash column chromatography, eluted in 1:1 EtOAc/Hexanes (v/v), affording **6i** as yellow solids (1.01g, 79%).

¹**H NMR** (300 MHz, CD₂Cl₂) δ 9.80 (s, 1H), 7.94 (d, *J* = 8.6 Hz, 1H), 7.75 – 7.64 (m, 2H), 7.47 – 7.37 (m, 2H), 7.16 (dd, *J* = 8.6, 2.5 Hz, 1H), 6.93 (d, *J* = 2.5 Hz, 1H), 3.90 (s, 4H).

 $^{13}\textbf{C}$ NMR (75 MHz, CD₂Cl₂) δ 195.5, 189.6, 164.3, 143.1, 140.1, 135.7, 134.4, 131.2, 129.3, 128.4, 128.2, 115.5, 114.4, 56.4, 54.6, 54.2, 53.8, 53.5, 53.1.

LRMS (ESI-MeOH, m/z):

Methyl hemiacetal ([C₁₆H₁₅ClO₄]+Na)⁺ calc. 329.1, found 329.4

2-benzoyl-3-methoxybenzaldehyde (6j)

6j was synthesized according to the general procedure for 2-ketobenzaldehydes using X (3.12g, 11.5mmol, 1 eq.) and Pb(OAc)₄ (5.63g, 12.7mmol, 1.1 eq.). Crude material was then triturated in Et2O and further purified via flash column chromatography, eluted in 3:7 EtOAc/Hexanes (v/v), affording **6j** as yellow waxy solids in quantitative yield.

¹**H NMR** (300 MHz, CD₂Cl₂) δ 9.87 (s, 1H), 7.82 – 7.73 (m, 2H), 7.70 – 7.53 (m, 3H), 7.45 (dd, *J* = 8.4, 7.0 Hz, 2H), 7.32 (dd, *J* = 8.2, 1.1 Hz, 1H), 3.76 (s, 3H).

¹³**C NMR** (75 MHz, CD₂Cl₂) δ 195.8, 191.1, 157.4, 137.8, 135.7, 133.7, 131.2, 130.2, 129.2, 129.0, 124.2, 117.5, 56.6, 54.6, 54.2, 53.8, 53.5, 53.1.

LRMS (ESI-MeOH, m/z):

2-ketoarylbenzaldehyde ($[C_{15}H_{12}O_3]$ +H)⁺ calc. 241.1, found 241.1

2-benzoyl-4-methoxybenzaldehyde (6k)

6k was prepared according to the general procedure for 2-ketobenzaldehydes using X (1.16g, 4.29mmol, 1 eq.) and Pb(OAc)₄ (2.09g, 4.72mmol, 1.1 eq.). Crude material was purified via flash column chromatography, eluted in 3:7 EtOAc/Hexanes (v/v), affording **6k** as pale yellow solids (0.56g, 51%).

¹**H NMR** (300 MHz, CD₂Cl₂) δ 9.82 (s, 1H), 7.96 (d, *J* = 8.6 Hz, 1H), 7.82 – 7.74 (m, 2H), 7.65 – 7.57 (m, 1H), 7.52 – 7.42 (m, 2H), 7.16 (dd, *J* = 8.6, 2.5 Hz, 1H), 6.95 (d, *J* = 2.5 Hz, 1H), 3.90 (s, 3H).

¹³C NMR (75 MHz, CD₂Cl₂) δ 196.6, 189.5, 164.2, 143.9, 137.3, 133.9, 133.8, 129.9, 129.1, 129.0, 128.8, 128.5, 115.5, 114.4, 56.3. LRMS (ESI-MeOH, m/z):

2-ketoarylbenzaldehyde ([C₁₅H₁₂O₃]+H)⁺ calc. 241.1, found 241.2

2-(4-fluorobenzoyl)-4-methoxybenzaldehyde (6l)

6I was prepared according to the general procedure for 2-ketobenzaldehydes using X (1.19g, 4.11mmol, 1 eq.) and Pb(OAc)₄ (2.00g, 4.52mmol, 1.1 eq.), affording crude material as a thick oil-like amber substance, which was then purified via flash column chromatography and eluted in 3:7 EtOAc/Hexanes (v/v) to yield **6I** as chunky yellow solids (0.64g, 60%).

¹H NMR (300 MHz, DMSO) δ 9.81 – 9.76 (m, 1H), 8.07 (d, J = 8.6 Hz, 1H), 7.78 – 7.68 (m, 2H), 7.38 – 7.27 (m, 3H), 7.06 (d, J = 2.5 Hz, 1H), 3.90 (s, 3H). ¹³C NMR (75 MHz, DMSO) δ 194.5, 190.4, 166.8, 163.5 (d, J = 12.7 Hz), 142.2, 135.4, 133.2 (d, J = 2.7 Hz), 132.0 (d, J = 9.8 Hz), 127.4, 115.8 (d, J = 22.1 Hz), 115.1, 113.8, 56.1. ¹⁹F NMR (282 MHz, DMSO) δ -105.90. LRMS (ESI-MeOH, m/z):

2-ketoarylbenzaldehyde ([C15H11FO3]+Na)⁺ calc. 281.1, found 281.3

2-benzoyl-5-fluorobenzaldehyde (6m)

6m was prepared according to the general procedure for 2-ketobenzaldehydes using X (1.19g, 4.61mmol, 1 eq.) and Pb(OAc)₄ (2.25g, 5.07mmol, 1.1 eq.). Crude material was purified via flash column chromatography, eluted in 2:8 EtOAc/Hexanes (v/v), affording **6m** as brown solids (0.87g, 83%).

¹**H NMR** (300 MHz, CD₂Cl₂) δ 10.00 (d, *J* = 2.2 Hz, 1H), 7.82 – 7.77 (m, 2H), 7.71 (dd, *J* = 8.7, 2.7 Hz, 1H), 7.68 – 7.62 (m, 1H), 7.58 (dd, *J* = 8.5, 5.1 Hz, 1H), 7.55 – 7.47 (m, 2H), 7.40 (td, *J* = 8.2, 2.7 Hz, 1H).

¹³**C NMR** (75 MHz, CD_2Cl_2) δ 195.4, 189.8 (d, J = 1.7 Hz), 165.9, 162.6, 138.8 (d, J = 6.7 Hz), 137.8, 137.4, 134.1, 132.3 (d, J = 8.3 Hz), 130.4, 129.1, 120.4 (d, J = 22.1 Hz), 116.5 (d, J = 22.9 Hz).

¹⁹**F NMR** (282 MHz, DMSO) δ -109.04.

LRMS (ESI-MeOH, m/z):

Methyl hemiacetal ([C₁₅H₁₃FO₃]+H)⁺ calc. 261.1, found 261.1

2-benzoyl-5-chlorobenzaldehyde (6n)

6n was prepared according to the general procedure for 2-ketobenzaldehydes using (1.17g, 4.26mmol, 1 eq.) and Pb(OAc)₄ (2.08g, 4.68mmol, 1.1 eq.). Crude material was purified via flash column chromatography, eluted in 3:7 EtOAc/Hexanes (v/v), affording **6n** yellow powder (0.84g, 81%).

¹**H NMR** (300 MHz, DMSO) δ 9.93 (s, 1H), 8.16 (d, *J* = 2.2 Hz, 1H), 7.90 (dd, *J* = 8.1, 2.2 Hz, 1H), 7.69 (tt, *J* = 8.7, 1.3 Hz, 3H), 7.62 – 7.48 (m, 3H).

 $^{13}\textbf{C}$ NMR (75 MHz, DMSO) δ 195.3, 191.2, 138.5, 136.6, 136.2, 135.3, 133.7, 133.5, 131.4, 130.3, 129.3, 128.8.

LRMS (ESI-MeOH, m/z):

2-arylketobenzaldehyde ([C15H13FO3]+H)⁺ calc. 245.0, found 245.1

5-chloro-2-(3-fluorobenzoyl)benzaldehyde (6o)

60 was prepared according to the general procedure for 2-ketobenzaldehydes using X (0.78g, 2.66mmol, 1 eq.) and Pb(OAc)₄ (1.30g, 2.93mmol, 1.1 eq.). Crude material was purified via flash column chromatography, eluted in 3:7 EtOAc/Hexanes (v/v), affording **60** as waxy brown-yellow solids (0.24g, 35%)

¹**H NMR** (300 MHz, CD₂Cl₂) δ 9.96 (s, 1H), 7.99 (d, *J* = 2.2 Hz, 1H), 7.70 (dd, *J* = 8.1, 2.2 Hz, 1H), 7.55 – 7.43 (m, 5H), 7.39 – 7.29 (m, 1H).

¹³**C NMR (**75 MHz, CD₂Cl₂) δ 194.4, 189.8, 164.8, 161.5, 139.2 (d, *J* = 6.4 Hz), 139.0, 137.4, 133.7, 131.4 – 129.9 (m), 126.2 (d, *J* = 3.0 Hz), 121.1 (d, *J* = 21.6 Hz), 116.5 (d, *J* = 22.5 Hz).

LRMS (ESI-MeOH, m/z):

Methyl hemiacetal ([C₁₅H₁₂CIFO₃]+H)⁺ calc. 295.0, found 295.3

4-(2-formly-4-nitrobenzoyl)benzonitrile (6p)

6p was prepared according to the general procedure for 2-ketobenzaldehydes using X (1.69g, 5.44mmol, 1 eq.) and Pb(OAc)₄ (2.66g, 5.99mmol, 1.1 eq.). Crude material was triturated in Et₂O and filtered, affording **6p** as fine pale-orange powder in quantitative yield (1.50g).

¹**H NMR** (300 MHz, CD₂Cl₂) δ 10.03 (d, *J* = 0.6 Hz, 1H), 8.83 (d, *J* = 2.3 Hz, 1H), 8.58 (dd, *J* = 8.3, 2.3 Hz, 1H), 7.87 – 7.75 (m, 4H), 7.70 (d, *J* = 8.3 Hz, 1H).

 $^{13}\textbf{C}$ NMR (75 MHz, $\textbf{CD}_2\textbf{Cl}_2)$ δ 194.0, 189.1, 149.6, 145.1, 139.2, 136.6, 133.1, 130.3, 130.1, 128.7, 126.8, 118.1, 117.6, 54.6, 54.2, 53.8, 53.5, 53.1.

LRMS (ESI-MeOH, m/z):

2-arylketobenzaldehyde ([C₁₅H₈N₂O₄]+H)⁺ calc. 281.1, found 282.2

2-(4-nitrobenzoyl)benzaldehyde (6q)

6q was prepared according to the general procedure for 2-ketobenzaldehydes using X (2.00g, 7.01mmol, 1 eq.) and $Pb(OAc)_4$ (3.42g, 7.71mmol, 1.1 eq.). Crude material was triturated in Et₂O and hexanes and filtered, affording **6q** as

pale pink solids (1.43g, 80%).

¹H NMR (300 MHz, CD_2CI_2) δ 9.98 – 9.94 (m, 1H), 8.32 – 8.20 (m, 2H), 8.07 – 7.98 (m, 1H), 7.94 – 7.87 (m, 2H), 7.84 – 7.74 (m, 2H), 7.54 – 7.46 (m, 1H).

¹³C NMR (75 MHz, CD₂Cl₂) δ 195.6, 191.3, 150.7, 142.0, 139.8, 135.6, 134.4, 132.5, 131.5, 130.7, 128.9, 124.1.

LRMS (ESI-MeOH, m/z):

2-arylketobenzaldehyde ([C₁₄H₉NO₄]+H)⁺ calc. 256.1, found 256.4

2-(4-iodobenzoyl)-5-nitrobenzaldehyde (6r)

6r was prepared according to the general procedure for 2-ketobenzaldehydes using X (1.50g, 3.65mmol, 1 eq.) and Pb(OAc)₄ (1.78g, 4.01mmol, 1.1 eq.). Crude material was triturated in Et_2O and filtered, affording **6r** as red-brown powder (1.00g, 72%).

¹**H NMR** (300 MHz, CD₂Cl₂) δ 10.02 (s, 1H), 8.80 (d, *J* = 2.3 Hz, 1H), 8.53 (dd, *J* = 8.3, 2.3 Hz, 1H), 7.92 – 7.84 (m, 2H), 7.69 (d, *J* = 8.3 Hz, 1H), 7.50 – 7.42 (m, 2H).

¹³C NMR (75 MHz, CD₂Cl₂) δ 194.3, 188.9, 149.3, 145.9, 138.6, 136.6, 135.6, 131.1, 130.3, 128.3, 126.0, 103.0, 54.6, 54.2, 53.8, 53.5, 53.1.

LRMS (ESI-MeOH, m/z):

2-arylketobenzaldehyde ([C14H8INO4]+Na)⁺ calc. 403.9, found 404.2

3-(2-formyl-4-nitrobenzoyl)benzonitrile (6s)

CN

6s was prepared according to the general procedure for 2-ketobenzaldehydes using X (2.10g, 6.77mmol, 1 eq.) and Pb(OAc)₄ (3.30g, 7.44mmol, 1.1 eq.). Crude material was triturated in Et_2O and filtered, affording **6s** as yellow powder (1.29g, 68%)

¹**H NMR** (300 MHz, DMSO) δ 10.06 (s, 1H), 8.98 (d, *J* = 2.3 Hz, 1H), 8.64 (dd, *J* = 8.3, 2.3 Hz, 1H), 8.15 (dt, *J* = 7.7, 1.4 Hz, 1H), 8.06 (dd, *J* = 7.8, 1.4 Hz, 2H), 7.86 (d, *J* = 8.3 Hz, 1H), 7.81 – 7.71 (m, 1H).

¹³C NMR (75 MHz, DMSO) δ 193.8, 191.4, 148.6, 143.8, 137.1, 136.5, 135.7, 133.1, 132.8, 130.3, 129.7, 128.7, 127.8, 117.9, 112.1. LRMS (ESI-MeOH, m/z):

2-arylketobenzaldehyde ([C15H8N2O4]+Na)⁺ calc. 303.1, found 303.1

2-(4-(dimethylamino)benzoyl)-5-nitrobenzaldehyde (6t)

6t was prepared according to the general procedure for 2-ketobenzaldehydes using X (3.21g, 9.78mmol, 1 eq.) and Pb(OAc)₄ (4.77g, 10.75mmol, 1.1 eq.). Crude material was triturated in Et₂O and filtered, affording **6t** as bright orange powder (2.19g, 75%) ¹**H NMR** (300 MHz, CD₂Cl₂) δ 10.02 (s, 1H), 8.79 (d, *J* = 2.3 Hz, 1H), 8.47 (dd, *J* = 8.3, 2.3 Hz, 1H), 7.69 (d, *J* = 8.3 Hz, 1H), 7.66 – 7.62 (m, 2H), 6.73 – 6.63 (m, 2H), 3.08 (s, 6H).

 $^{13}\textbf{C} \ \textbf{NMR} \ (75 \ \textbf{MHz}, \ \textbf{CD}_2 \textbf{Cl}_2) \ \delta \ 191.7, \ 189.0, \ 154.8, \ 148.9, \ 136.2, \ 132.8, \ 130.4, \ 127.8, \ 124.2, \ 124.0, \ 111.2, \ 54.6, \ 54.2, \ 53.8, \ 53.5, \ 53.1, \ 40.2.$

LRMS (ESI-MeOH, m/z):

2-arylketobenzaldehyde ([$C_{16}H_{14}N_2O_4$]+Na)⁺ calc. 321.1, found 321.2

2-(4-methoxybenzoyl)-5-nitrobenzaldehyde (6u)

6u was prepared according to the general procedure for 2-ketobenzaldehydes using X (3.32g, 10.53mmol, 1 eq.) and Pb(OAc)₄ (5.13g, 11.58mmol, 1.1 eq.). Crude material was triturated in Et₂O and hexanes and filtered, affording **6u** as bright yellow powder in quantitative yield (2.94g).

¹**H NMR** (300 MHz, CD₂Cl₂) δ 10.03 (s, 1H), 8.82 – 8.79 (m, 1H), 8.51 (dd, *J* = 8.3, 2.3 Hz, 1H), 7.78 – 7.72 (m, 2H), 7.70 (d, *J* = 8.3 Hz, 1H), 7.03 – 6.93 (m, 2H), 3.89 (s, 3H).

¹³**C NMR** (75 MHz, CD₂Cl₂) δ 193.2, 188.8, 165.2, 149.2, 147.5, 136.5, 132.7, 130.4, 129.5, 128.1, 125.0, 114.6, 56.1, 54.6, 54.2, 53.8, 53.5, 53.1.

LRMS (ESI-MeOH, m/z):

2-arylketobenzaldehyde ([C15H11NO5]+H)+ calc. 286.1, found 286.0

2-(4-methoxybenzoyl)benzaldehyde (6v)

6v was prepared according to the general procedure for 2-ketobenzaldehydes using X (3.38g, 12.52mmol, 1 eq.) and Pb(OAc)₄ (5.54g, 13.76mmol, 1.1 eq.). Crude material was purified via flash column chromatography, eluted in 3:7 EtOAc/Hexanes, affording **6v** as pale yellow chunky solids (2.28g, 76%).

¹**H NMR** (300 MHz, CD₂Cl₂) δ 9.99 (s, 1H), 8.04 – 7.96 (m, 1H), 7.79 – 7.73 (m, 2H), 7.72 – 7.66 (m, 2H), 7.53 – 7.45 (m, 1H), 6.99 – 6.90 (m, 2H), 3.87 (s, 3H).

¹³C NMR (75 MHz, CD₂Cl₂) δ 195.2, 191.1, 164.5, 142.2, 135.5, 133.7, 132.6, 130.6, 130.5, 130.4, 129.0, 114.2, 56.0.

LRMS (ESI-MeOH, m/z):

Methyl hemiacetal $([C_{16}H_{16}O_4]+H)^+$ calc. 273.1, found 273.1

2-(4-(dimethylamino)benzoyl)benzaldehyde (6w)

6w was prepared according to the general procedure for 2-ketobenzaldehydes using X (3.80g, 13.41mmol, 1 eq.) and Pb(OAc)₄ (6.54g, 14.75mmol, 1.1 eq.). Crude material was purified via column chromatography, eluted in 1:1 EtOAc/Hexanes (v/v), affording **6w** as bright yellow chunky solids (2.92g, 86%).

¹**H NMR** (300 MHz, CD₂Cl₂) δ 9.99 (s, 1H), 8.02 – 7.95 (m, 1H), 7.72 – 7.55 (m, 4H), 7.48 (dd, *J* = 6.9, 1.9 Hz, 1H), 6.71 – 6.61 (m, 2H), 3.06 (s, 6H).

¹³**C NMR** (75 MHz, CD₂Cl₂) δ 194.1, 191.2, 154.3, 143.6, 135.4, 133.6, 132.6, 130.1, 129.2, 128.9, 125.2, 111.0, 54.6, 54.2, 53.8, 53.5, 53.1, 40.2.

LRMS (ESI-MeOH, m/z): 2-arylketobenzaldehyde ([C₁₆H₁₅NO₂]+H)⁺ calc. 254.1, found 254.2

2-(4-bromobenzoyl)benzaldehyde (6x)

6x was prepared according to the general procedure for 2-ketobenzaldehydes using X (1.54g, 4.83mmol, 1 eq.) and Pb(OAc)₄ (2.35g, 5.31mmol, 1.1 eq.). Crude material was purified via flash column chromatography, eluted in 3:7 EtOAc/Hexanes, affording **6x** as dark brown solids (0.93g, 66%).

¹H NMR (300 MHz, CD2Cl2) δ 9.98 (s, 1H), 8.03 – 7.96 (m, 1H), 7.75 – 7.70 (m, 2H), 7.66 – 7.60 (m, 4H), 7.50 – 7.43 (m, 1H). ¹³C NMR (75 MHz, CD2Cl2) δ 195.9, 191.2, 140.8, 136.3, 135.6, 134.0, 132.3, 131.5, 131.1, 129.0, 129.0, 54.6, 54.2, 53.8, 53.5, 53.1. LRMS (ESI-MeOH, m/z):

Methyl hemiacetal $([C_{15}H_{13}BrO_3]+H)^+$ calc. 321.0, found 321.0

3-(2-formylbenzoyl)benzonitrile (6y)

6y was prepared according to the general procedure for 2-ketobenzaldehydes using X (1.19g, 4.48mmol, 1 eq.) and Pb(OAc)₄ (2.35g, 5.31mmol, 1.1 eq.). Crude material was purified via flash column chromatography, eluted in 1:1 EtOAc/Hexanes (v/v), affording **6y** as orange solids (0.82g, 77%).

¹**H NMR** (300 MHz, DMSO) δ 9.94 (s, 1H), 8.15 – 8.07 (m, 2H), 8.04 – 8.00 (m, 1H), 7.96 (dt, *J* = 8.0, 1.4 Hz, 1H), 7.84 (dd, *J* = 5.6, 3.2 Hz, 2H), 7.72 (t, *J* = 7.8 Hz, 1H), 7.55 (dd, *J* = 5.5, 3.2 Hz, 1H).

¹³C NMR (75 MHz, DMSO) δ 195.0, 192.5, 138.7, 137.3, 136.6, 134.8, 134.2, 133.4, 132.7, 132.5, 131.0, 130.2, 128.3, 118.0, 112.0, 40.3, 40.1, 39.8, 39.5, 39.2, 39.0, 38.7.

LRMS (ESI-MeOH, m/z):

Methyl hemiacetal ([C₁₆H₁₃NO₃]+Na)⁺ calc. 290.1, found 290.1

2-(4-fluorobenzoyl)benzaldehyde (6z)

6z was prepared according to the general procedure for 2-ketobenzaldehydes using X (1.92g, 7.44mmol, 1 eq.) and Pb(OAc)₄ (3.63g, 8.18mmol, 1.1 eq.). Crude material was purified via flash column chromatography, eluted in 100% DCM, affording **6z** as white flaky solids (1.22g, 72%).

¹**H NMR** (300 MHz, CD₂Cl₂) δ 9.99 (s, 1H), 8.05 – 7.97 (m, 1H), 7.85 – 7.77 (m, 2H), 7.77 – 7.67 (m, 2H), 7.53 – 7.44 (m, 1H), 7.21 – 7.10 (m, 2H).

¹³**C NMR** (75 MHz, CD_2Cl_2) δ 195.3, 191.1, 168.0, 164.7, 141.2, 135.6, 133.9, 132.8 (d, *J* = 9.6 Hz), 131.1 (d, *J* = 21.8 Hz), 128.9, 116.3, 116.0.

¹⁹F NMR (282 MHz, CD₂Cl₂) δ -105.13. LRMS (ESI-MeOH, m/z):

Methyl hemiacetal ($[C_{16}H_{13}NO_3]$ +H)⁺ calc. 261.1, found 261.0

4-(2-formylbenzoyl)benzonitrile (6aa)

6aa was prepared according to the general procedure for 2-ketobenzaldehydes using X (1.29g, 4.86mmol, 1 eq.) and Pb(OAc)₄ (2.37g, 5.35mmol, 1.1 eq.). Crude material was purified via flash column chromatography, eluted in 1:1 EtOAc/hexanes (v/v), affording **6aa** as light brown solids (0.75g, 66%).

¹**H NMR** (300 MHz, CD₂Cl₂) δ 9.97 (s, 1H), 8.06 – 7.97 (m, 1H), 7.87 – 7.80 (m, 2H), 7.80 – 7.72 (m, 5H), 7.47 (dd, J = 5.5, 3.3 Hz, 1H). ¹³**C NMR** (75 MHz, CD₂Cl₂) δ 195.8, 191.3, 140.4, 139.9, 135.7, 134.3, 132.9, 132.3, 131.4, 130.1, 128.9, 118.3, 116.9.

LRMS (ESI-MeOH, m/z):

Methyl hemiacetal ($[C_{16}H_{13}NO_3]$ +H)⁺ calc. 268.1, found 268.1

2-(4-chlorobenzoyl)benzaldehyde (6ab)

6ab was prepared according to the general procedure for 2-ketobenzaldehydes using X (2.02g, 7.34mmol, 1eq.) and Pb(OAc)₄ (3.58g, 8.07mmol, 1.1 eq.). Crude material was purified via flash column chromatography, eluted in 2:8 EtOAc/Hexanes, affording **6ab** as amber crystalline solids (0.97g, 54%).

¹H NMR (300 MHz, CD₂Cl₂) δ 9.98 (s, 1H), 8.05 – 7.96 (m, 1H), 7.72 (dt, *J* = 6.6, 2.3 Hz, 4H), 7.52 – 7.41 (m, 3H).

¹³**C NMR** (75 MHz, CD₂Cl₂) δ 195.7, 191.1, 140.8, 140.2, 135.9, 135.6, 134.0, 131.4, 131.4, 131.1, 129.3, 128.9, 54.6, 54.2, 53.8, 53.5, 53.1.

LRMS (ESI-MeOH, m/z):

Methyl hemiacetal ([C15H13CIO3]+H)+ calc. 299.1, found 299.1

2-(4-azidobenzoyl)benzaldehyde (6ac)

6ac was prepared according to the general procedure for 2-ketobenzaldehydes using X (2.76g, 9.81mmol, 1 eq.) and Pb(OAc)₄ (4.78g, 10.79mmol, 1.1 eq.). Crude material was purified via flash column chromatography, eluted in 3:7 EtOAc/Hexanes, affording **6ac** as waxy bright yellow solids (1.30g, 53%).

¹**H NMR** (300 MHz, DMSO) δ 9.95 (s, 1H), 8.16 – 8.04 (m, 1H), 7.89 – 7.75 (m, 2H), 7.75 – 7.65 (m, 2H), 7.58 – 7.47 (m, 1H), 7.29 – 7.19 (m, 2H).

¹³**C NMR** (75 MHz, DMSO) δ 194.9, 192.2, 144.7, 140.0, 134.6, 134.0, 133.2, 132.1, 131.3, 130.6, 128.2, 119.4, 40.3, 40.1, 39.8, 39.5, 39.2, 39.0, 38.7.

LRMS (ESI-MeOH, m/z):

2-arylketobenzaldehyde ([C14H9N3O2]+H)⁺ calc. 252.1, found 252.2

2-(4-ethynylbenzoyl)benzaldehyde (6ad)

6ad was prepared according to the general procedure for 2-ketobenzaldehydes using X (0.68g, 2.67mmol, 1 eq.) and Pb(OAc)₄ (1.25g, 2.83mmol, 1.1 eq.). Crude material was purified via flash column chromatography, eluted in 3:7 EtOAc/Hexanes (v/v), affording **6ad** as pale yellow clumped solids (0.13g, 21%)

¹**H NMR** (300 MHz, CD₂Cl₂) δ 9.99 (s, 1H), 8.07 – 7.95 (m, 1H), 7.81 – 7.66 (m, 4H), 7.72 – 7.54 (m, 2H), 7.54 – 7.42 (m, 1H), 3.35 (s, 1H).

¹³**C NMR** (75 MHz, CD₂Cl₂) δ 196.0, 191.2, 141.0, 137.2, 135.7, 134.0, 132.6, 131.4, 131.1, 129.9, 129.0, 127.5, 82.9, 81.0, 54.6, 54.2, 53.8, 53.5, 53.1.

LRMS (ESI-MeOH, m/z):

2-arylketobenzaldehyde ($[C_{16}H_{10}O_2]+H$)⁺ calc. 235.1, found 235.3

2-(3-fluorobenzoyl)benzaldehyde (6ae)

6ae was prepared according to the general procedure for 2-ketobenzaldehydes using X (1.08g, 4.18mmol, 1 eq.) and Pb(OAc)₄ (2.04g, 4.60mmol, 1.1 eq.). Crude material was triturated in a mixture of Et₂O and hexanes, to afford **6ae** as orange solids (0.41g, 43%). ¹H NMR (300 MHz, DMSO) δ 9.96 (s, 1H), 8.12 (dd, J = 5.8, 3.1 Hz, 1H), 7.90 – 7.78 (m, 2H), 7.55 (h, J = 6.9 Hz, 3H), 7.49 – 7.38 (m, 2H). ¹³C NMR (75 MHz, DMSO) δ 195.2, 192.4, 163.7, 160.4, 139.3, 138.8, 138.7, 134.7, 134.1, 132.4, 131.1, 131.0, 130.8, 128.2, 125.7, 125.6, 120.6, 120.3, 115.2, 114.9, 40.4, 40.1, 39.8, 39.5, 39.2, 39.0, 38.7. ¹⁹F NMR (282 MHz, DMSO) δ -112.14.

LRMS (ESI-MeOH, m/z): Methyl hemiacetal ([C₁₅H₁₃FO₃]+Na)⁺ calc. 283.1, found 283.1 <u>2-nicotinoylbenzaldehyde (6af)</u>

6af was prepared according to the general procedure for 2-ketobenzaldehydes using X (1.73g, 7.15mmol, 1 eq.) and Pb(OAc)₄ (3.49g, 7.87mmol, 1.1 eq.). Crude material was purified via flash column chromatography in 2:98 Et₃N/DCM (v/v), affording **6af** as fine beige powder (1.35g, 90%).

¹**H NMR** (300 MHz, CD₂Cl₂) δ 10.00 (s, 1H), 8.84 (dd, *J* = 2.3, 0.9 Hz, 1H), 8.77 (dd, *J* = 4.8, 1.7 Hz, 1H), 8.16 – 8.10 (m, 1H), 8.05 – 7.98 (m, 1H), 7.80 – 7.72 (m, 2H), 7.54 – 7.48 (m, 1H), 7.45 (ddd, *J* = 8.0, 4.9, 0.9 Hz, 1H).

 $^{13}\textbf{C} \ \textbf{NMR} \ (75 \ \textbf{MHz}, \ \textbf{CD}_2 \textbf{Cl}_2) \ \delta \ 195.8, \ 191.3, \ 153.9, \ 151.2, \ 140.1, \ 136.8, \ 135.7, \ 134.2, \ 132.9, \ 132.0, \ 131.4, \ 129.0, \ 124.0.$

LRMS (ESI-MeOH, m/z):

Methyl hemiacetal ($[C_{15}H_{13}FO_3]$ +H)⁺ calc. 244.1, found 244.1

2-(furan-2-carbonyl)benzaldehyde (6ag)

6ag was prepared according to the general procedure for 2-ketobenzaldehydes using X (0.98g, 4.26mmol, 1 eq.) and Pb(OAc)₄ (2.08g, 4.68mmol, 1.1 eq.). Crude material was purified via flash column chromatography in 3:7 EtOAc/hexanes, affording **6ag** as light yellow solids (0.44, 51%).

¹**H NMR** (300 MHz, CD₂Cl₂) δ 10.05 (s, 1H), 8.03 – 7.97 (m, 1H), 7.74 – 7.63 (m, 4H), 7.07 (dd, *J* = 3.6, 0.8 Hz, 1H), 6.61 (dd, *J* = 3.6, 1.7 Hz, 1H).

¹³**C NMR** (75 MHz, CD₂Cl₂) δ 191.1, 183.1, 152.9, 148.3, 140.5, 136.0, 133.7, 131.5, 130.2, 129.3, 121.4, 113.0, 54.6, 54.2, 53.8, 53.5, 53.1.

LRMS (ESI-MeOH, m/z):

2-arylketobenzaldehyde ([C₁₂H₈O₃]+Na)⁺ calc. 223.0, found 223.0

2-(thiophene-2-carbonyl)benzadehyde (6ah)

6ah was prepared according to the general procedure for 2-ketobenzaldehydes using X (1.40g, 5.68mmol, 1 eq.) and and Pb(OAc)₄ (2.77g, 6.25mmol, 1.1 eq.). Crude material was purified via flash column chromatography in 3:7 EtOAc/hexanes, affording **6ah** as amber-brown solids (0.93, 76%).

¹**H NMR** (300 MHz, DMSO) δ 9.99 (s, 1H), 8.13 (dd, *J* = 4.9, 1.2 Hz, 1H), 8.09 – 8.05 (m, 1H), 7.86 – 7.78 (m, 2H), 7.71 – 7.64 (m, 1H), 7.40 (dd, *J* = 3.8, 1.2 Hz, 1H), 7.22 (dd, *J* = 4.9, 3.8 Hz, 1H).

¹³**C NMR** (75 MHz, DMSO) δ 191.8, 188.1, 143.5, 139.8, 136.3, 135.8, 134.6, 133.9, 131.3, 131.0, 128.9, 128.4, 40.4, 40.1, 39.8, 39.5, 39.2, 39.0, 38.7.

LRMS (ESI-MeOH, m/z):

2-arylketobenzaldehyde ([C12H8O2S]+H)⁺ calc. 217.0, found 217.1

2-(1H-indole-3-carbonyl)benzaldehyde (6ai)

6ai was prepared according to the general procedure for 2-ketobenzaldehydes using X (1.66g, 5.94mmol, 1 eq.) and Pb(OAc)₄ (2.90g, 6.54mmol, 1.1 eq.). Crude material was purified via flash column chromatography in 3:7 EtOAc/Hexanes, affording **6ai** as dark blue-green powder (0.52g, 35%).

¹**H NMR** (300 MHz, CD₂Cl₂) δ 10.12 (s, 1H), 9.03 (s, 1H), 8.35 (ddt, *J* = 6.2, 3.7, 0.8 Hz, 1H), 8.06 – 7.99 (m, 1H), 7.75 – 7.62 (m, 3H), 7.52 – 7.43 (m, 2H), 7.39 – 7.30 (m, 2H).

¹³C NMR (75 MHz, CD₂Cl₂) δ 191.4, 144.2, 137.0, 135.5, 135.3, 133.7, 130.5, 129.0, 129.0, 126.0, 124.6, 123.5, 122.5, 119.0, 112.1, 54.6, 54.2, 53.8, 53.5, 53.1.

LRMS (ESI-MeOH, m/z): 2-arylketobenzaldehyde ([C₁₆H₁₁NO₂]+H)⁺ calc. 250.1, found 250.3

Optimization of FIICk reaction of 2-arylketobenzaldehyde

We conducted preliminary FIICk reactions with 2-arylketobenzaldehyde **6aa** using N-Ac-Cys and L-Arg as model substrates to optimize the formation of the desired disubstituted isoindole. L-Arg was chosen as the amine source to aid solubility in aqueous media and for its minimal interference with the isoindole's UV absorbance profile. Experimental protocols for entries 1-5 (Table 1) proceed as follow:

To a 15-mL conical tube containing 5mL Na borate buffer (pH 9) was added **6aa** (15 μ mol, 1 eq., prepared as 50mM solution in DMSO), NAc-Cys (<u>X eq.</u>, prepared as 50mM solution), and L-Arg (15 μ mol, 1 eq., prepared as 50mM solution in H₂O). Then, solvent additive (2mL) was added into the conical tube and the reaction was vortexed for 30 seconds and left to sit at room temperature for 30 minutes. An aliquot of 900 μ L was obtained and this crude reaction mixture was then injected on preparative reverse-phase HPLC. Under optimized conditions, this reaction was repeated to accumulate enough material for NMR acquisition. Collected peak was not fluorescent as observed under 365nm hand-held UV lamp. Lyophilized product is bright yellow in colour.

B% Time (min) A% Flow (mL/min) Solvent A: 40mM NH₄OH/HCOOH (pH 8-9) Solvent B : MeCN 0.00 95 5 15 Column : Agilent, C18, 50x21.2mm 8.00 0 100 10.00 0 100

Table 1: Screening of conditions for the conversion of 6aa to isoindole 7aa

Entry	NAc-Cys-OH	L-Arg	Additive:Solvent	Conversion [%] to 7aa ^[b]
1 (Baseline) ^[a]	1 eq. (50mM in water)	1 eq.	Na borate buffer pH 9	0%
2	3 eq. (50mM in water)	1 eq.	Na borate buffer pH 9	0%
3	1 eq. (50mM in water)	1 eq.	<u>MeCN</u> :Na borate buffer pH 9 (<u>25</u> :75 v/v)	0%
4	1 eq. (50mM in H_2O 0.1% formic acid)	1 eq.	<u>DMSO</u> :Na borate buffer pH 9 (<u>25</u> :75 v/v)	39%
5	1 eq. (50mM in H ₂ O 0.1% formic acid)	1 eq.	<u>EtOH</u> :Na borate buffer pH 9 (<u>25</u> :75 v/v)	66%

^[a] Baseline run was obtained by injecting the crude reaction mixture immediately after all reagents were added, amounting to <2 minutes of reaction time. ^[b] % conversion was determined by HPLC peak integration of **7aa** relative to peaks observed in the baseline run (entry 1) observed at 335 nm.

NMR analysis and discussion for 7aa

NMR spectra of **7aa** were obtained at variable temperatures, initially cooled to -50°C to observe aliphatic proton signals that were otherwise not well-resolved at room temperature. However, we see the opposite effect on the aromatic region, where signals were increasingly resolved as sample was warmed to +25°C at 10°C increments. As a result, we use both sets of data to analyze the structure of **7aa**.

Figure S1: Overlay of ¹H NMR spectra of 7aa, decreasing temperature from top to bottom.

Using the -50°C data set to determine the isoindole linkage, we turn to the aliphatic region to identify the proton signals found in N-Ac-Cys and Arg. Here we were able to see four sets of methylene -CH2- signals (in red), which corresponds to the proposed structure of **7aa** and its accompanying H-integration in the 1D NMR.

Figure S2: HSQC of 7aa referenced to MeOD (3.31ppm) obtained at -50°C. In red; -CH2- protons. In blue; CH/CH3 protons.

Figure S3: ¹H NMR of 7aa taken at -50°C, showing the aliphatic proton region from 0-5.5ppm.

Then, key HMBC signals of $CH\alpha$ of Arg and CH2 of NAc-Cys was shown to correlate to the same aromatic carbon of the isoindole (111.15ppm) confirming the proposed linkage between Cys-thiol and N-terminus of L-Arg.

Figure S4: Key HMBC signals showing the isoindole scaffold forming between Cys-Thiol and N-terminal of Arg.

Then, aliphatic protons of Arg were assigned via analysis of COSY spectrum obtained at -50°C.

Figure S5: Key COSY signals showing the aliphatic J³ correlations of Cys-Thiol and N-terminal of Arg.

Then, aromatic region analysis was done on +25°C data set given the improved signal resolution. The same sample was slowly warmed up to room temperature from -50°C.

Figure S6: Overlay of ¹H NMR spectra of **7aa**, focusing on the aromatic region, showing increased signal resolution as a function of increasing temperature, going from bottom-top.

Figure S7: Integration of 1H NMR spectrum obtained at 25°C showing 8 aromatic protons.

 Table S2: ¹H NMR assignment for compound 7aa. Carbon chemical shifts assignment was determined from HSQC and HMBC. Signals were assigned from two different data sets that originates from the same sample taken at different temperatures as indicated.

Residue	Proton	Shift (ppm)	Coupling constant (J, Hz), Integration	Carbon	Shift (ppm)
Cys				COOH C=O (Ac)	172.2 ^[a] 173.4 ^[a]
	HCα	4.36 ^[a]	dd, <i>J</i> = 10.7, 3.4 Hz, 1H	Cα	52.8 ^[a]
	НСβ	2.84 ^[a] 3.25 ^[a]	q, <i>J</i> = 12.7 Hz, 1H dd, <i>J</i> = 13.7, 3.3 Hz, 1H	Сβ	39.4 ^[a]
	CH3	2.12 ^[a]	s, 3H	CH3	22.1 ^[a]
Arg				C=O C=NH	173.0 ^[a] 156.8 ^[b]
	HCα	5.41 ^[a]	dd, <i>J</i> = 11.1, 4.6 Hz, 1H	Cα	60.4 ^[a]
	НСβ	2.24 ^[a] 2.50 ^[a]	dq, <i>J</i> = 15.1, 7.0 Hz, 1H q, <i>J</i> = 10.6 Hz, 1H	Сβ	30.6 ^[a]
	ΗСγ	0.44 ^[a] 0.83 ^[a]	m, 1H m, 1H	Cɣ	25.4 ^[a]
	HCδ	2.79-2.99 ^[a]	m, 2H (overlapping with impurities)	Cδ	41.0 ^[a]
Isoindole	-	-	-	C1	111.1 ^[a]
	-	-	-	C2	130.4 ^[a]
	H3	7.67 ^[a] 7.73 ^[b]	m, 1H (overlapping with H10/10') dt, <i>J</i> = 8.6, 1.0 Hz, 1H	C3	119.8 ^[a] 118.9 ^[b]
	H4	7.12 ^[a] 7.12 ^[b]	m, 1H (overlapping with H5) ddd, <i>J</i> = 8.6, 6.5, 0.9 Hz, 1H	C4	125.0 ^[a] 123.1 ^[b]
	H5	7.08 ^[a] 7.03 ^[b]	m, 1H (overlapping with H4) ddd, <i>J</i> = 8.5, 6.5, 1.0 Hz, 1H	C5	124.1 ^[a] 122.8 ^[b]
	H6	7.55 ^[a] 7.41 ^[b]	d, <i>J</i> = 8.6 Hz, 1H s, 1H	C6	120.1 ^[a] 118.7 ^[b]
	-	-	-	C7	123.9 ^[a]
	-	-	-	C8	129.1 ^[a]
	-	-	-	C9	119.5 ^[a] 117.9 ^[b]
	H10/10'	7.69 ^[b]	d, <i>J</i> = 8.0 Hz, 2H	C10/10'	130.6 ^[b]
		7.83,7.69 ^[a]	d, <i>J</i> = 7.7 Hz, 1H, m, 1H (overlapping with H3). Split into two proton signals at -50°C.		131.8 ^[a] 131.5 ^[a]
	H11/11'	7.96 ^[a] 7.9a ^[b]	m, 1H d, <i>J</i> = 8.1 Hz, 2H	C11/11'	134.0 ^[a] 132.5 ^[b]
	-	-	-	C12	111.2 ^[a] 111.1 ^[b]
	-	-	-	C(N)	136.9 ^[a] 126.4 ^[b]
^[a] T = -50°C					

^[b]T = +25°C

Acquisition SW Version	6200 series TOF/6500 series Q-TOF 10.1 (48.0)	QTOF Driver Version	10.01.00
QTOF Firmware	25.808	Tune Mass Range Max	3200

Collision Energy

Full NMR data set:

¹H NMR (+25°C)

¹H NMR (-50°C)

Chemical shifts and multiplicity at -50°C:

¹**H NMR (400 MHz, MeOD)** δ 8.00 – 7.94 (m, 2H), 7.83 (d, J = 7.7 Hz, 1H), 7.68 (dd, J = 8.7, 5.0 Hz, 2H), 7.56 (d, J = 8.6 Hz, 1H), 7.16 – 6.99 (m, 2H), 5.41 (dd, J = 11.1, 4.6 Hz, 1H), 4.36 (dd, J = 10.7, 3.4 Hz, 1H), 3.22 (dd, J = 13.7, 3.3 Hz, 1H), 2.88 (q, J = 12.7 Hz, 1H), 2.79 (q, J = 6.9 Hz, 1H), 2.50 (q, J = 10.6 Hz, 1H), 2.24 (dq, J = 15.1, 7.0 Hz, 1H), 2.12 (s, 3H), 0.83 (dd, J = 11.6, 6.6 Hz, 1H), 0.44 (s, 1H).

Figure S8A: COSY spectrum obtained at +25°C

Figure S8B: COSY spectrum obtained at -50°C

Figure S9A: HSQC spectrum obtained at +25°C

Figure S9B: HSQC spectrum obtained at -50°C

Figure S10A: HMBC spectrum obtained at +25°C

Figure S10B: HMBC spectrum obtained at -50°C

General protocol for the synthesis and photophysical determination of disubstituted isoindoles 7a-7ai

Under optimized conditions, we synthesized disubstituted isoindoles **7a-7ai** for the determination of their unique set of photophysical properties. Similarly, NAc-Cys-OH and L-Arg were used as model substrates. Reaction time was also extended from 30 minutes to 1-2 hours to maximize the percent conversion of **6** to **7**.

To a 50mL RBF containing 10mL Na borate buffer (pH 9) was added **6** (50 μ mol, 1 eq., prepared as 50mM solution in DMSO), NAc-Cys (50 μ mol, 1 eq, prepared as 50mM solution in H₂O 0.1% formic acid), and L-Arg (50 μ mol, 1 eq., prepared as 50mM solution in H₂O). Then, EtOH (4mL) was added into the RBF and the reaction was stirred for 1 hour at room temperature. This crude reaction mixture was purified by preparative reverse-phase HPLC (see each data set for specific purification method).

Purified fractions were observed under hand-held UV lamp (365nm), and if fluorescent, were pooled and lyophilized and directly measured for quantum yields using a spectrofluorometer equipped with an integrating sphere (+/- 5%). After successful QY determination, all fractions containing the product was pooled and lyophilized to afford **7** as fluffy powder. To ensure that the isolated product was free of salts, they were crudely analysed by ¹H NMR (in MeOD). If salts were present, the compound was subjected to desalting treatment by C18 SepPak and lyophilized again. The solid product was weighed and dissolved in H₂O:MeCN (1:1, v/v) to afford a stock solution of known concentration, and 5 standard solutions (3mL each) of appropriate absorbance were prepared. These solutions were used for calibration where its extinction coefficient was determined at the respective wavelength of maximum absorbance. Non-fluorescent products were not measured for extinction coefficient and labeled NA in this text and the manuscript.

(S)-2-(1-(((R)-2-acetamido-2-carboxyethyl)thio)-3-phenyl-2H-isoindol-2-yl)-5-guanidinopentanoic acid (7a)

7a was prepared according to the general protocol for the synthesis of disubstituted isoindole, starting from **6a** (50µmol, 1mL of 50mM solution in DMSO). Lyophilization of purified fractions afforded **7a** as fluffy white powder (20µmol, 10.2mg, 40%).

Solvent A \downarrow \sqcup \bigcirc (0.1% formin and)	Time (min)	A%	В%	Flow (mL/min)
Solvent A : H ₂ O (0.1% IOIIIIC acid)	0.00	95	15	15
Column : Agilent C18 50x 21 2mm	10.00	0	100	

Figure S11A: Crude injection of FIICk reaction with 6a to afford 7a. Shown here the LC traces at 290, 230, and 360nm and the corresponding UV excitation profile and LRMS data.

Figure S11B: Left: Standard concentration and the corresponding absorbance detected at 356nm. Right: Calibration plot of 7a

Concentration (M)	Abs (λ=352nm)			
2.74E-05	0.23441			
5.47E-05	0.46984			
8.21E-05	0.76863			
1.09E-04	0.99427			
1.37E-04	1.2161			
Extinction Coefficient: 9100 cm ⁻¹ M ⁻¹				
Quantum Yield: 9%				

(S)-2-(1-(((R)-2-acetamido-2-carboxyethyl)thio)-5-chloro-3-phenyl-2H-isoindol-2-yl)-5-guanidinopentanoic acid (7b)

7b was prepared according to the general protocol for the synthesis of disubstituted isoindole, starting from **6b** (50µmol, 1mL of 50mM solution in DMSO). Lyophilization of purified fractions afforded **7b** as fluffy pale yellow powder (23.5µmol, 12.8mg, 47%).

Solvent A : H₂O (0.1% formic acid) Solvent B : MeCN (0.1% formic acid) Column : Agilent, C18, 50x, 21.2mm

Time (min)	A%	В%	Flow (mL/min)
0	80	20	15
6.00	0	100	

Figure S12A: Crude injection of FIICk reaction with 6b to afford 7b. Shown here the LC traces at 360, 290, and 230nm and the corresponding UV excitation profile and LRMS data.

Figure S12B: Left: Standard concentration and the corresponding absorbance detected at 362nm. Right: Calibration plot of 7b

Concentration (M)	Abs (λ=362nm)
7.86E-06	0.07667
1.52E-05	0.178546
2.21E-05	0.24468
2.87E-05	0.31924
3.48E-05	0.36687
Extinction Coefficient:	10700 cm ⁻¹ M ⁻¹
Quantum Yield: 13%	

(S)-2-(1-(((R)-2-acetamido-2-carboxyethyl)thio)-5-bromo-3-phenyl-2H-isoindol-2-yl)-5-guanidinopentanoic acid (7c)

7c was prepared according to the general protocol for the synthesis of disubstituted isoindole, starting from **6c** (50µmol, 1mL of 50mM solution in DMSO). After 1 hour sitting at room temperature, reaction was acidified to pH 3 with formic acid and purified with 0.1% formic acid system. Lyophilization of purified fractions afforded **7c** as fluffy pale orange powder (12.5µmol, 7.4mg, 25%).

Solvent A : H₂O (0.1% formic acid) Solvent B : MeCN (0.1% formic acid) Column : Agilent, C18, 50x21.2mm

Time (min)	A%	В%	Flow (mL/min)
0	80	20	20
6	0	100	

Figure S13: Crude injection of FIICk reaction with 6c to afford 7c. Shown here the LC trace at 360, 290, and 230nm and the corresponding UV excitation profile and LRMS data.

Collected peak is weakly fluorescent. Quantum yield: < 5%

(S)-2-(1-(((R)-2-acetamido-2-carboxyethyl)thio)-4-bromo-3-phenyl-2H-isoindol-2-yl)-5-guanidinopentanoic acid (7d)

7d was prepared according to the general protocol for the synthesis of disubstituted isoindole, starting from **6d** (50µmol, 1mL of 50mM solution in DMSO). After 1 hour sitting at room temperature, reaction was acidified to pH 3 with formic acid and purified with 0.1% formic acid system. Lyophilization of purified fractions afforded **7d** as pale orange powder (10.5µmol, 6.2mg, 21%).

Solvent A : H ₂ O (0.1% formic acid)	Time (min)	A%	В%	Flow (mL/min)
Solvent B: MeCN (0.1% formic acid)	0	80	20	20
Column : Agilent, C18, 50x21.2mm	6	0	100	

Figure S14: Crude injection of FIICk reaction with 6d to afford 7d. Shown here the LC trace at 360nm and the corresponding UV excitation profile and LRMS data.

Collected peak is weakly fluorescent. Quantum yield: < 5%

(S)-2-(1-(((R)-2-acetamido-2-carboxyethyl)thio)-4-chloro-3-phenyl-2H-isoindol-2-yl)-5-guanidinopentanoic acid (7e)

7e was prepared according to the general protocol for the synthesis of disubstituted isoindole, starting from **6e** (50µmol, 1mL of 50mM solution in DMSO). After 1 hour sitting at room temperature, reaction was acidified to pH 3 with formic acid and purified with 0.1% formic acid system. Lyophilization of purified fractions afforded 7e as white powder (10.4µmol, 5.7mg, 21%).

	Time (min)	A%	В%	Flow (mL/min)
Solvent A : $H_2O(0.1\% \text{ formic acid})$	0	80	20	20
Solvent B : MeCN (0.1% formic acid)	6	0	100	
Column : Aglient, C18, 50X21.2mm				

Figure S15: Crude injection of FIICk reaction with 6e to afford 7e. Shown here the LC trace at 360, 290, and 230nm and the corresponding UV excitation profile and LRMS data.

Collected peak is weakly fluorescent. Quantum yield: < 5%

(S)-2-(1-(((R)-2-acetamido-2-carboxyethyl)thio)-4-fluoro-3-phenyl-2H-isoindol-2-yl)-5-guanidinopentanoic acid (7f)

² Chemical Formula: C₂₅H₂₈FN₅O₅S Exact Mass: 529.180

7f was prepared according to the general protocol for the synthesis of disubstituted isoindole, starting from **6f** (50µmol, 1mL of 50mM solution in DMSO). After 1 hour sitting at room temperature, reaction was acidified to pH 3 with formic acid and purified with 0.1% formic acid system. Lyophilization of purified fractions afforded **7f** as fluffy white powder (27.3µmol, 14mg, 55%).

Solvent A : H₂O (0.1% formic acid) Solvent B : MeCN (0.1% formic acid) Column : Agilent, C18, 50x21.2mm

Time (min)	A%	В%	Flow (mL/min)
0	80	20	20
6	0	100	

Figure S16A: Crude injection of FIICk reaction with 6f to afford 7f. Shown here the LC trace at 360, 290, and 230nm and the corresponding UV excitation profile and LRMS data.

Figure S16B: Left: Standard concentration and the corresponding absorbance detected at 346nm. Right: Calibration plot of 7f

Concentration (M)	Abs (λ=346nm)			
8.53E-06	0.0933			
1.65E-05	0.17989			
2.40E-05	0.26722			
3.11E-05	0.36235			
3.78E-05	0.42819			
Extinction Coefficient: 11600 cm ⁻¹ M ⁻¹				
Quantum Yield: 8%				

(S)-2-(3-(((R)-2-acetamido-2-carboxyethyl)thio)-4-methoxy-1-phenyl-2H-isoindol-2-yl)-5-guanidinopentanoic acid (7g)

Chemical Formula: C₂₆H₃₁N₅O₆S Exact Mass: 541.200

7g was prepared according to the general protocol for the synthesis of disubstituted isoindole, starting from **6g** (50µmol, 1mL of 50mM solution in DMSO). Lyophilization of purified fractions afforded **7g** as white powder (23.6µmol, 12.8mg, 47%).

Solvent A : H ₂ O (0.1% formic acid)	Time (min)	A%	В%	Flow (mL/min)
Solvent B: MeCN (0.1% formic acid)	0	80	20	20
Column : Agilent, C18, 50x21.2mm	6	0	100	

Figure S17A: Crude injection of FIICk reaction with 6g to afford 7g. Shown here the LC trace at 360, 290, and 230nm and the corresponding UV excitation profile and LRMS data.

Figure S17B: Left: Standard concentration and the corresponding absorbance detected at 354nm. Right: Calibration plot of 7f

Concentration (M)	Abs (λ=354nm)			
3.94E-05	0.60187			
7.88E-05	1.08006			
1.18E-04	1.54306			
1.58E-04	2.07467			
1.97E-04	2.48535			
Extinction Coefficient: 12000 cm ⁻¹ M ⁻¹				
Quantum Yield: 9%				

S)-2-(3-(((R)-2-acetamido-2-carboxyethyl)thio)-5-bromo-1-phenyl-2H-isoindol-2-yl)-5-guanidinopentanoic acid (7h)

7h was prepared according to the general protocol for the synthesis of disubstituted isoindole, starting from **6h** (50µmol, 1mL of 50mM solution in DMSO). After 2 hours sitting at room temperature, reaction was acidified to pH 3 with formic acid and purified with 0.1% formic acid system. Lyophilization of purified fractions afforded **7h** as white powder (20µmol, 12mg, 40%).

Solvent A : H₂O (0.1% formic acid) Solvent B : MeCN (0.1% formic acid) Column : Agilent, C18, 50x21.2mm

Time (min)	A%	В%	Flow (mL/min)
0	80	20	20
6	0	100	

Figure S18: Crude injection of FIICk reaction with 6h to afford 7h. Shown here the LC trace at 360, 290, and 230nm and the corresponding UV excitation profile and LRMS data.

Collected peak is weakly fluorescent. Quantum yield: < 5%

(S)-2-(3-(((R)-2-acetamido-2-carboxyethyl)thio)-1-(4-chlorophenyl)-5-methoxy-2H-isoindol-2-yl)-5-guanidinopentanoic acid (7i) $\stackrel{OH}{\longrightarrow} \stackrel{OH}{\longrightarrow} \stackrel{OH}{\longrightarrow} \stackrel{HAc}{\longrightarrow} \stackrel{OH}{\longrightarrow} \stackrel{HP_2}{\longrightarrow} \stackrel{Chemical Formula: C_{26}H_{30}CIN_5O_65}{Exact Mass: 575.161}$

7i was prepared according to the general protocol for the synthesis of disubstituted isoindole, starting from **6i** (50µmol, 1mL of 50mM solution in DMSO). After 2 hours sitting at room temperature, reaction was acidified to pH 3 with formic acid and purified with 0.1% formic acid system. Lyophilization of purified fractions afforded **7i** as fluffy white powder (23.1µmol, 13mg, 46%).

Solvent A : H₂O (0.1% formic acid) Solvent B : MeCN (0.1% formic acid) Column : Agilent, C18, 50x21.2mm

Time (min)	Α%	В%	Flow (mL/min)
0	80	20	20
6	0	100	

Figure S19A: Crude injection of FIICk reaction with 6i to afford 7i. Shown here the LC trace at 360, 290, and 230nm and the corresponding UV excitation profile and LRMS data.

Figure S19B: Left: Standard concentration and the corresponding absorbance detected at 358nm. Right: Calibration plot of 7i

Concentration (M)	Abs (λ=358nm)			
4.48E-06	0.03796			
8.68E-06	0.10176			
1.26E-05	0.14544			
1.63E-05	0.18347			
1.98E-05	0.22382			
Extinction Coefficient: 11900 cm ⁻¹ M ⁻¹				
Quantum Yield: 10%				

(S)-2-(1-(((R)-2-acetamido-2-carboxyethyl)thio)-4-methoxy-3-phenyl-2H-isoindol-2-yl)-5-guanidinopentanoic acid (7j)

7j was prepared according to the general protocol for the synthesis of disubstituted isoindole, starting from **6j** (50µmol, 1mL of 50mM solution in DMSO). After 1 hour sitting at room temperature, reaction was acidified to pH 3 with formic acid and purified with 0.1% formic acid system. Lyophilization of purified fractions afforded **7j** as fluffy white powder (19µmol, 11mg, 38%).

Solvent A : H ₂ O (0.1% formic acid)	Time (min)	A%	В%	Flow (mL/min)
Solvent B: MeCN (0.1% formic acid)	0	80	20	20
Column : Agilent, C18, 50x21.2mm	6	0	100	

Figure S20A: Crude injection of FIICk reaction with 6j to afford 7j. Shown here the LC trace at 360, 290, and 230nm and the corresponding

Figure S20B: Left: Standard concentration and the corresponding absorbance detected at 348nm. Right: Calibration plot of 7j

Concentration (M)	Abs (λ=348nm)			
8.41E-06	0.07059			
1.63E-05	0.15616			
2.37E-05	0.24535			
3.07E-05	0.30021			
3.73E-05	0.38571			
Extinction Coefficient: 10700 cm ⁻¹ M ⁻¹				
Quantum Yield: 7%				

(S)-2-(1-(((R)-2-acetamido-2-carboxyethyl)thio)-5-methoxy-3-phenyl-2H-isoindol-2-yl)-5-guanidinopentanoic acid (7k)

7k was prepared according to the general protocol for the synthesis of disubstituted isoindole, starting from **6k** (50µmol, 1mL of 50mM solution in DMSO). Lyophilization of purified fractions afforded **7k** as fluffy white powder, subject to desalting treatment with C18 SepPak (2.0g) (14.2µmol, 7.7mg, 28%).

Solvent A : 40mM NH₄OH/HCOOH (pH 8-9) **Solvent B** : MeCN **Column** : Agilent, C18, 250x21.2mm

Time (min)	A%	В%	Flow (mL/min)
0	85	15	40
4.30	50	50	
5.00	0	100	
7.00	0	100	

Figure S21A: Crude injection of FIICk reaction with 6k to afford 7k. Shown here the LC trace at 360, 260, and 230nm and the corresponding UV excitation profile and LRMS data.

Figure S21B: Left: Standard concentration and the corresponding absorbance detected at 356m. Right: Calibration plot of 7k

Concentration (M)	Abs (λ=356nm)			
6.12E-06	0.05535			
8.90E-06	0.07879			
1.15E-05	0.10363			
1.40E-05	0.12689			
1.63E-05	0.15127			
Extinction Coefficient: 9400cm ⁻¹ M ⁻¹				
Quantum Yield: 16%				

(S)-2-(1-(((R)-2-acetamido-2-carboxyethyl)thio)-3-(4-fluorophenyl)-5-methoxy-2H-isoindol-2-yl)-5 guanidino pentanoic acid (7l)

7I was prepared according to the general protocol for the synthesis of disubstituted isoindole, starting from **6I** (50µmol, 1mL of 50mM solution in DMSO). Lyophilization of purified fractions afforded **7I** as fluffy white powder (16.7µmol, 9.4mg, 34%)

Solvent A : H₂O (0.1% formic acid) Solvent B : MeCN (0.1% formic acid) Column : Agilent, C18, 50x21.2mm

Time (min)	A%	В%	Flow (mL/min)
0	80	20	20
6	0	100	

Figure S22A: Crude injection of FIICk reaction with 6k to afford 7k. Shown here the LC trace at 360, 260, and 230nm and the corresponding UV excitation profile and LRMS data.

Figure S22B: Left: Standard concentration and the corresponding absorbance detected at 354m. Right: Calibration plot of 7I

(S)-2-(3-(((R)-2-acetamido-2-carboxyethyl)thio)-5-fluoro-1-phenyl-2H-isoindol-2-yl)-5-guanidinopentanoic acid (7m)

7m was prepared according to the general protocol for the synthesis of disubstituted isoindole, starting from **6m** (50µmol, 1mL of 50mM solution in DMSO). Lyophilization of purified fractions afforded **7m** as fluffy white powder (22µmol, 12mg, 44%).

Solvent A	: H ₂ O (0.1% formic acid)
Solvent B	: MeCN (0.1% formic acid)
Column	: Agilent, C18, 50x21.2mm

Time (min)	A%	В%	Flow (mL/min)
0	80	20	20
6	0	100	

Figure S23A: Crude injection of FIICk reaction with 6m to afford 7m. Shown here the LC trace at 360, 290, and 230nm and the corresponding UV excitation profile and LRMS data.

Figure S23B: Left: Standard concentration and the corresponding absorbance detected at 356m. Right: Calibration plot of 7m

Concentration (M)	Abs (λ=356nm)			
3.23E-06	0.03734			
6.25E-06	0.06731			
9.10E-06	0.10028			
1.18E-05	0.13507			
1.47E-05	0.16106			
Extinction Coefficient: 11100cm ⁻¹ M ⁻¹				
Quantum Yield: 45%				

(S)-2-(3-(((R)-2-acetamido-2-carboxyethyl)thio)-5-chloro-1-phenyl-2H-isoindol-2-yl)-5-guanidinopentanoic acid (7n)

ula: C25H28CIN5O5S Exact Mass: 545.150 CI

7n was prepared according to the general protocol for the synthesis of disubstituted isoindole, starting from **6n** (50µmol, 1mL of 50mM solution in DMSO). After 1 hour sitting at room temperature, reaction was acidified to pH 3 with formic acid and purified with 0.1% formic acid system. Lyophilization of purified fractions afforded **7n** as white powder (28.3µmol, 15mg, 57%).

Solvent A : H₂O (0.1% formic acid) Solvent B : MeCN (0.1% formic acid) Column : Agilent, C18, 50x21.2mm

Time (min)	A%	B%	Flow (mL/min)
0	80	20	20
6	0	100	

Figure S24A: Crude injection of FIICk reaction with 6n to afford 7n. Shown here the LC trace at 360, 290, and 230nm and the corresponding UV excitation profile and LRMS dat

Figure S24B: Left: Standard concentration and the corresponding absorbance detected at 362m. Right: Calibration plot of 7n

		0.6-	
Concentration (M)	Abs (λ=362nm)	0.0	Y = 10894*X - 0.01215
1.82E-05	0.19398	0.4-	0.9954
2.65E-05	0.27299		1000
3.43E-05	0.34732	Ab	
4.16E-05	0.44736	0.2-	•
4.93E-05	0.52842		
Extinction Coefficient: 10900 cm ⁻¹ M ⁻¹		0.0	
Quantum Yield: 10%			$2 \times 10^{\circ}$ $4 \times 10^{\circ}$ $6 \times 10^{\circ}$ Concentration (M)

(S)-2-(3-(((R)-2-acetamido-2-carboxyethyl)thio)-5-chloro-1-(3-fluorophenyl)-2H-isoindol-2-yl)-5-guanidino pentanoic acid (7o)

7o was prepared according to the general protocol for the synthesis of disubstituted isoindole, starting from **6o** (50µmol, 1mL of 50mM solution in DMSO). After 1 hour sitting at room temperature, reaction was acidified to pH 3 with formic acid and purified with 0.1% formic acid system. Lyophilization of purified fractions afforded **7o** as white powder (26.4µmol, 15mg, 53%).

	Time (min)	A%	В%	Flow (mL/min)
Solvent A : $H_2O(0.1\% \text{ formic acid})$	0	80	20	20
Solvent B : MeCN (0.1% formic acid)	6	0	100	
Column : Agilent, C18, 50x21.2mm				

Figure S25A: Crude injection of FIICk reaction with 60 to afford 70. Shown here the LC trace at 360nm and the corresponding UV excitation profile and LRMS data.

Figure S25B: Left: Standard concentration and the corresponding absorbance detected at 360m. Right: Calibration plot of 70

Concentration (M)	Abs (λ=360nm)		
6.12E-06	0.0557		
1.19E-05	0.11532		
1.72E-05	0.19447		
2.23E-05	0.24179		
2.71E-05	0.30493		
Extinction Coefficient: 11900 cm ⁻¹ M ⁻¹			
Quantum Yield: 28%			

7p was prepared according to the general protocol for the synthesis of disubstituted isoindole, starting from **6p** (50µmol, 1mL of 50mM solution in DMSO). This reaction started to precipitate upon acidification, as such, it was purified under basic conditions. Lyophilization of purified fractions afforded **7p** as deep red powder subject to desalting treatment with C18 SepPak (2.0g) (13.1µmol, 7.6mg, 26%).

Solvent A : 40mM NH₄OH/HCOOH (pH 8-9) **Solvent B** : MeCN **Column** : Agilent, C18, 250x21.2mm

Time (min)	A%	В%	Flow (mL/min)
0	85	15	40
4.30	50	50	
5.00	0	100	
7.00	0	100	

Figure S26: Crude injection of FIICk reaction with 6o to afford 7o. Shown here the LC trace at 360nm and the corresponding UV excitation profile and LRMS data.

Collected peak is not fluorescent. Quantum yield: 0%

(S)-2-(1-(((R)-2-acetamido-2-carboxyethyl)thio)-3-(4-nitrophenyl)-2H-isoindol-2-yl)-5-guanidinopentanoic acid (7q)

7q was prepared according to the general protocol for the synthesis of disubstituted isoindole, starting from **6q** (50μmol, 1mL of 50mM solution in DMSO). This reaction started to precipitate upon acidification, as such, it was purified under basic conditions. Lyophilization of purified fractions afforded **7q** as deep orange powder subject to desalting treatment with C18 SepPak (2.0g) (12μmol, 6.7mg, 24%)

 Solvent A
 : 40mM NH₄OH/HCOOH (pH 8-9)

 Solvent B
 : MeCN

 Column
 : Agilent, C18, 250x21.2mm

Time (min)	A%	В%	Flow (mL/min)
0	85	15	40
4.30	50	50	
5.00	0	100	
7.00	0	100	

Figure S27: Crude injection of FIICk reaction with 60 to afford 70. Shown here the LC trace at 360nm and the corresponding UV excitation profile and LRMS data. On the right, a picture of purified 70 dissolved in 1:1 H₂O/MeCN. **Right;** Picture of purified compound 70 following lyophilization, dissolved in 1:1 MeCN/H₂O.

Collected peak is not fluorescent. Quantum yield: 0%

(S)-2-(3-(((R)-2-acetamido-2-carboxyethyl)thio)-1-(4-iodophenyl)-5-nitro-2H-isoindol-2-yl)-5-guanidinopentanoic acid (7r)

7r was prepared according to the general protocol for the synthesis of disubstituted isoindole, starting from **6r** (50µmol, 1mL of 50mM solution in DMSO). This reaction started to precipitate upon acidification, as such, it was purified under basic conditions. Lyophilization of purified fractions afforded **7r** as orange-brown powder subject to desalting treatment with C18 SepPak (2.0g) (11.1µmol, 7.6mg, 22%)

 Solvent A
 : 40mM NH4OH/HCOOH (pH 8-9)

 Solvent B
 : MeCN

 Column
 : Agilent, C18, 250x21.2mm

Time (min)	A%	В%	Flow (mL/min)
0	85	15	40
4.30	50	50	
5.00	0	100	
7.00	0	100	

Figure S28: Crude injection of FIICk reaction with 6r to afford 7r. Shown here the LC trace at 360nm and the corresponding UV excitation profile and LRMS data.

Collected peak is not fluorescent. Quantum yield: 0%

(S)-2-(3-(((R)-2-acetamido-2-carboxyethyl)thio)-1-(3-cyanophenyl)-5-nitro-2H-isoindol-2-yl)-5-guanidinopentanoic acid (7s)

7s was prepared according to the general protocol for the synthesis of disubstituted isoindole, starting from **6s** (50µmol, 1mL of 50mM solution in DMSO). This reaction started to precipitate upon acidification, as such, it was purified under basic conditions. Lyophilization of purified fractions afforded **7s** as dark pink powder subject to desalting treatment with C18 SepPak (2.0g) (14.6µmol, 8.5mg, 29%)

Solvent A : 40mM NH₄OH/HCOOH (pH 8-9) Solvent B : MeCN Column : Agilent, C18, 250x21.2mm

Time (min)	A%	В%	Flow (mL/min)
0	85	15	40
4.30	50	50	
5.00	0	100	
7.00	0	100	

Figure S29: Crude injection of FIICk reaction with 6s to afford 7s. Shown here the LC trace at 360nm and the corresponding UV excitation profile and LRMS data

Collected peak is not fluorescent. Quantum yield: 0%

(S)-2-(3-(((R)-2-acetamido-2-carboxyethyl)thio)-1-(4-(dimethylamino)phenyl)-5-nitro-2H-isoindol-2-yl)-5-guanidinopentanoic acid (7t)

7t was prepared according to the general protocol for the synthesis of disubstituted isoindole, starting from 6t (50µmol, 1mL of 50mM solution in DMSO). This reaction started to precipitate upon acidification, as such, it was purified under basic conditions. Lyophilization of purified fractions afforded 7t as red-brown powder subject to desalting treatment with C18 SepPak (2.0g) (13.3µmol, 8mg, 27%).

 Solvent A
 : 40mM NH4OH/HCOOH (pH 8-9)

 Solvent B
 : MeCN

 Column
 : Agilent, C18, 250x21.2mm

Time (min)	A%	В%	Flow (mL/min)
0	85	15	40
4.30	50	50	
5.00	0	100	
7.00	0	100	

Figure S30: Crude injection of FIICk reaction with 6t to afford 7t. Shown here the LC trace at 360nm and the corresponding UV excitation profile and LRMS data.

Collected peak is not fluorescent. Quantum yield: 0%

(S)-2-(3-(((R)-2-acetamido-2-carboxyethyl)thio)-1-(4-methoxyphenyl)-5-nitro-2H-isoindol-2-yl)-5-guanidinopentanoic acid (7u)

7u was prepared according to the general protocol for the synthesis of disubstituted isoindole, starting from **6u** (50µmol, 1mL of 50mM solution in DMSO). Lyophilization of purified fractions afforded **7u** as orange powder subject to desalting treatment with C18 SepPak (2.0g) (10.5µmol, 6.2mg, 21%).

Solvent A : 40mM NH₄OH/HCOOH (pH 8-9) Solvent B : MeCN Column : Agilent, C18, 50x21.2mm

Time (min)	A%	В%	Flow (mL/min)
0	95	5	15
6	50	100	

Figure S31: Crude injection of FIICk reaction with 6u to afford 7u. Shown here the LC trace at 290, 230, 360nm and the corresponding UV excitation profile and LRMS data.

Collected peak is not fluorescent. Quantum yield: 0%

(S)-2-(1-(((R)-2-acetamido-2-carboxyethyl)thio)-3-(4-methoxyphenyl)-2H-isoindol-2-yl)-5-guanidinopentanoic acid (7v)

7v was prepared according to the general protocol for the synthesis of disubstituted isoindole, starting from 6v (50µmol, 1mL of 50mM solution in DMSO). Lyophilization of purified fractions afforded 7v as white powder (15.2µmol, 8.3mg, 30%)

Solvent A	: H ₂ O (0.1% formic acid)
Solvent B	: MeCN (0.1% formic acid)
Column	: Agilent, C18, 50x21.2mm

Time (min)	A%	В%	Flow (mL/min)
0	90	10	20
7	0	100	

Figure S32A: Crude injection of FIICk reaction with 6v to afford 7v. Shown here the LC trace at 360nm and the corresponding UV excitation profile and LRMS data. Right; purified and lyophilized compound 7v dissolved in 1:1 MeCN:H₂O.

Figure S32B: Left: Standard concentration and the corresponding absorbance detected at 358m. Right: Calibration plot of 7v

Concentration (M)	Abs (λ=358nm)		
6.07E-06	0.06414		
1.18E-05	0.12151		
1.71E-05	0.19263		
2.22E-05	0.26471		
2.69E-05	0.35795		
Extinction Coefficient: 14000 cm ⁻¹ M ⁻¹			
Quantum Yield: 46%			

(S)-2-(1-(((R)-2-acetamido-2-carboxyethyl)thio)-3-(4-(dimethylamino)phenyl)-2H-isoindol-2-yl)-5-guanidinopentanoic acid (7w)

7w was prepared according to the general protocol for the synthesis of disubstituted isoindole, starting from **6w** (50µmol, 1mL of 50mM solution in DMSO). Reaction was left to sit at room temperature for 1 hour. Lyophilization of purified fractions afforded **7w** as pale yellow powder (7.5µmol, 4.2mg, 15%). This reaction was repeated to obtain enough material for calibration curve and characterization.

Solvent A : H₂O (0.1% formic acid) Solvent B : MeCN (0.1% formic acid)

Column : Agilent, C18, 50x21.2mm

Time (min)	A%	В%	Flow (mL/min)
0	90	10	20
10	0	100	

Figure S33A: Crude injection of FIICk reaction with 6w to afford 7w. Shown here the LC trace at 360. 290nm, 230nm and the corresponding UV excitation profile and LRMS data. Right; purified and lyophilized 7w dissolved in 1:1 MeCN/H₂O.

Figure S33B: Left: Standard concentration and the corresponding absorbance detected at 362m. Right: Calibration plot of 7w.

Concentration (M)	Abs (λ=362nm)			
2.33E-06	0.02983			
4.51E-06	0.05622			
6.56E-06	0.09071			
8.48E-06	0.11615			
1.03E-05	0.14205			
Extinction Coefficient: 14300 cm ⁻¹ M ⁻¹				
Quantum Yield: 46%				

(S)-2-(1-(((R)-2-acetamido-2-carboxyethyl)thio)-3-(4-bromophenyl)-2H-isoindol-2-yl)-5-guanidinopentanoic acid (7x)

7x was prepared according to the general protocol for the synthesis of disubstituted isoindole, starting from 6x (50µmol, 1mL of 50mM solution in DMSO). Lyophilization of purified fractions afforded 7x as pale orange powder (17.4µmol, 10.3mg, 35%).

Solvent A : H₂O (0.1% formic acid) Solvent B : MeCN (0.1% formic acid)

Column : Agilent, C18, 50x21.2mm

Time (min)	A%	В%	Flow (mL/min)
0	80	20	20
10	0	100	

Figure S34A: Crude injection of FIICk reaction with 6x to afford 7x. Shown here the LC trace at 360, 290nm, 230nm and the corresponding UV excitation profile and LRMS data.

Figure S34B: Left: Standard concentration and the corresponding absorbance detected at 362m. Right: Calibration plot of 7x

Concentration (M)	Abs (λ=360nm)	
2.82E-05	0.24651	
5.13E-05	0.51468	
7.69E-05	0.809	Abs
1.03E-04	1.03917	
1.28E-04	1.35426	
Extinction Coefficient: 10900 cm ⁻¹ M ⁻¹		
Quantum Yield: 8%		

(S)-2-(1-(((R)-2-acetamido-2-carboxyethyl)thio)-3-(3-cyanophenyl)-2H-isoindol-2-yl)-5-guanidinopentanoic acid (7y)

7y was prepared according to the general protocol for the synthesis of disubstituted isoindole, starting from **6y** (50µmol, 1mL of 50mM solution in DMSO). After 1 hour sitting at room temperature, reaction was acidified to pH 3 with formic acid and purified with 0.1% formic acid system. (19µmol, 10.3mg, 38%).

Solvent A: H ₂ O (0.1% formic acid)	Time (min)	A%	В%	Flow (mL/min)
Solvent B : MeCN (0.1% formic acid)	0	80	20	20
Column : Agilent, C18, 50x21.2mm	6	0	100	

Figure S35: Crude injection of FIICk reaction with 6y to afford 7y. Shown here the LC trace at 360, 290nm, 230nm and the corresponding UV excitation profile and LRMS data.

Collected peak is not fluorescent. Quantum yield: 0%

(S)-2-(1-(((R)-2-acetamido-2-carboxyethyl)thio)-3-(4-fluorophenyl)-2H-isoindol-2-yl)-5-guanidinopentanoic acid (7z)

7z was prepared according to the general protocol for the synthesis of disubstituted isoindole, starting from 6z (50µmol, 1mL of 50mM solution in DMSO). After 1 hour sitting at room temperature, reaction was acidified to pH 3 with formic acid and purified with 0.1% formic acid system. (21µmol, 11mg, 42%).

Solvent A : H₂O (0.1% formic acid) Solvent B : MeCN (0.1% formic acid) Column : Agilent, C18, 50x21.2mm

Time (min)	A%	В%	Flow (mL/min)
0	80	20	20
6	0	100	

Figure S36: Crude injection of FIICk reaction with 6z to afford 7z. Shown here the LC trace at 360, 290nm, 230nm and the corresponding UV excitation profile and LRMS data.

Figure S36B: Left: Standard concentration and the corresponding absorbance detected at 350m. Right: Calibration plot of 7z.

	573.970 44.37%	
	597.030 28.42%	$\begin{array}{c c} 0.4 \\ \hline \\ 1000$
Concentration (M)	אָשָׁאָ (אָדֶ350nm)	$\begin{bmatrix} 100,840 \\ 214\% \\ 2.14\% \\ 0.3 \end{bmatrix} \xrightarrow{1171,460} 0.9853^{12320} \\ 0.9853^{123\%} \\ 5.22\% \end{bmatrix} \xrightarrow{10699,370} 5.22\%$
6.33E-06	0.0567	
1.23E-05	0.1472	<u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>
1.79E-05	0.2164	
2.31E-05	0.2755	0.1-
2.81E-05	0.3114	
Extinction Coefficient: 1	1800 cm ⁻¹ M ⁻¹	0.0
Quantum Yield: 14%		$0.0 - 1 \times 10^{-5} 2 \times 10^{-5} 3 \times 10^{-5}$
		Concentration (M)

(S)-2-(1-(((R)-2-acetamido-2-carboxyethyl)thio)-3-(4-chlorophenyl)-2H-isoindol-2-yl)-5-guanidinopentanoic acid (7ab)

7x was prepared according to the general protocol for the synthesis of disubstituted isoindole, starting from 6x (50µmol, 1mL of 50mM solution in DMSO). After 1 hour sitting at room temperature, reaction was acidified to pH 3 with formic acid and purified with 0.1% formic acid system (19.5µmol, 10.6mg, 39%).

Solvent A : H₂O (0.1% formic acid) Solvent B : MeCN (0.1% formic acid)

Column : Agilent, C18, 50x21.2mm

Time (min)	A%	В%	Flow (mL/min)
0	80	20	20
6	0	100	

Figure S38A: Crude injection of FIICk reaction with 6ab to afford 7ab. Shown here the LC trace at 360, 290nm, 230nm and the corresponding UV excitation profile and LRMS data.

Figure S38B: Left: Standard concentration and the corresponding absorbance detected at 350m. Right: Calibration plot of 7ab.

Concentration (M)	Abs (λ=360nm)		
5.84E-06	0.05704		
8.49E-06	0.0857		
1.10E-05	0.10934		
1.33E-05	0.13011		
1.56E-05	0.15679		
Extinction Coefficient: 10000 cm ⁻¹ M ⁻¹			
Quantum Yield: 8%			

(S)-2-(1-(((R)-2-acetamido-2-carboxyethyl)thio)-3-(4-azidophenyl)-2H-isoindol-2-yl)-5-guanidinopentanoic acid (7ac)

7ac was prepared according to the general protocol for the synthesis of disubstituted isoindole, starting from **6ac** (50µmol, 1mL of 50mM solution in DMSO). Lyophilization of purified fractions afforded **7ac** as white powder. (14µmol, 7.7mg, 28%).

Solvent A	: H ₂ O (0.1% formic acid)
Solvent B	: MeCN (0.1% formic acid)
Column	: Agilent, C18, 50x21.2mm

Time (min)	A%	В%	Flow (mL/min)
0	80	20	20
6	0	100	

Figure S39: Crude injection of FIICk reaction with 6ac to afford 7ac. Shown here the LC trace at 360, 290nm, 230nm and the corresponding UV excitation profile and LRMS data.

Collected peak is weakly fluorescent. Quantum yield: < 5%

(S) - 2 - (1 - (((R) - 2 - acetamido - 2 - carboxyethyl) thio) - 3 - (4 - ethynylphenyl) - 2H - isoindol - 2 - yl) - 5 - guanidinopentanoic acid (7 ad) - 2 - yl) - 5 - guanidinopentanoic acid (7 ad) - 2 - yl) - 5 - guanidinopentanoic acid (7 ad) - 2 - yl) - 5 - guanidinopentanoic acid (7 ad) - 2 - yl) - 5 - guanidinopentanoic acid (7 ad) - 2 - yl) - 5 - guanidinopentanoic acid (7 ad) - 2 - yl) - 5 - guanidinopentanoic acid (7 ad) - 2 - yl) - 5 - guanidinopentanoic acid (7 ad) - 2 - yl) - 5 - guanidinopentanoic acid (7 ad) - 2 - yl) - 5 - guanidinopentanoic acid (7 ad) - 2 - yl) - 5 - guanidinopentanoic acid (7 ad) - 2 - yl) - 5 - guanidinopentanoic acid (7 ad) - 2 - yl) - 5 - guanidinopentanoic acid (7 ad) - 2 - yl) - 5 - guanidinopentanoic acid (7 ad) - 2 - yl) - 5 - guanidinopentanoic acid (7 ad) - 2 - yl) - 5 - guanidinopentanoic acid (7 ad) - 2 - yl) - 5 - guanidinopentanoic acid (7 ad) - 2 - yl) - 5 - guanidinopentanoic acid (7 ad) - 2 - yl) - 5 - guanidinopentanoic acid (7 ad) - 2 - yl) - 2 - yl) - 5 - guanidinopentanoic acid (7 ad) - 2 - yl) - 5 - guanidinopentanoic acid (7 ad) - 2 - yl) - 5 - guanidinopentanoic acid (7 ad) - 2 - yl) - 3 -

7ae was prepared according to the general protocol for the synthesis of disubstituted isoindole, starting from **6ae** (50µmol, 1mL of 50mM solution in DMSO). After 1 hour sitting at room temperature, reaction was acidified to pH 3 with formic acid and purified with 0.1% formic acid system (23µmol, 12.2mg, 46%).

Solvent A	: H ₂ O (0.1% formic acid)
Solvent B	: MeCN (0.1% formic acid)
Column	: Agilent, C18, 50x21.2mm

Time (min)	A%	В%	Flow (mL/min)
0	90	10	20
10	0	100	

Figure S40: Crude injection of FIICk reaction with 6ad to afford 7ad. Shown here the LC trace at 360, 290nm, 230nm and the corresponding UV excitation profile and LRMS data.

Collected peak is weakly fluorescent. Quantum yield: < 5%

(S)-2-(1-(((R)-2-acetamido-2-carboxyethyl)thio)-3-(3-fluorophenyl)-2H-isoindol-2-yl)-5-guanidinopentanoic acid (7ae)

7ae was prepared according to the general protocol for the synthesis of disubstituted isoindole, starting from **6ae** (50µmol, 1mL of 50mM solution in DMSO). After 1 hour sitting at room temperature, reaction was acidified to pH 3 with formic acid and purified with 0.1% formic acid system (15.5µmol, 8.2mg, 31%).

Solvent A : H₂O (0.1% formic acid) Solvent B : MeCN (0.1% formic acid) Column : Agilent, C18, 50x21.2mm

Time (min)	A%	B%	Flow (mL/min)
0	80	20	20
6	0	100	

Figure S41A: Crude injection of FIICk reaction with 6ae to afford 7ae. Shown here the LC trace at 360, 290nm, 230nm and the corresponding UV excitation profile and LRMS data.

Figure S41B: Left: Standard concentration and the corresponding absorbance detected at 358m. Right: Calibration plot of 7ae.

(S)-2-(1-(((R)-2-acetamido-2-carboxyethyl)thio)-3-(pyridin-3-yl)-2H-isoindol-2-yl)-5-guanidinopentanoic acid (7af)

7af was prepared according to the general protocol for the synthesis of disubstituted isoindole, starting from **6af** (50µmol, 1mL of 50mM solution in DMSO). Lyophilization of purified fractions afforded **7af** as white powder subject to desalting treatment with C18 SepPak (2.0g) (5.5µmol, 2.8mg, 11%).

Solvent A : 40mM NH₄OH/HCOOH (pH 8-9) **Solvent B** : MeCN **Column** : Agilent, C18, 250x21.2mm

Time (min)	A%	В%	Flow (mL/min)
0	85	15	40
4.30	50	50	
5.00	0	100	
7.00	0	100	

Figure S42: Crude injection of FIICk reaction with 6ae to afford 7ae. Shown here the LC trace at 360, 290nm, 230nm and the corresponding UV excitation profile and LRMS data.

Collected peak is not fluorescent. Quantum yield: 0%

(S)-2-(1-(((R)-2-acetamido-2-carboxyethyl)thio)-3-(furan-2-yl)-2H-isoindol-2-yl)-5-guanidinopentanoic acid (7ag)

Chemical Formula: C₂₃H₂₇N₅O₆S 2 Exact Mass: 501.168

7ag was prepared according to the general protocol for the synthesis of disubstituted isoindole, starting from **6ag** (50µmol, 1mL of 50mM solution in DMSO). Lyophilization of purified fractions afforded **7ag** as white powder subject to desalting treatment with C18 SepPak (2.0g) (9.5µmmol, 4.7mg, 19%).

 Solvent A:
 40mM NH4OH/HCOOH (pH 8-9)

 Solvent B:
 MeCN

 Column
 :
 Agilent, C18, 250x21.2mm

Time (min)	A%	В%	Flow (mL/min)
0	85	15	40
4.30	50	50	
5.00	0	100	
7.00	0	100	

Figure S43A: Crude injection of FIICk reaction with 6ag to afford 7ag. Shown here the LC trace at 360, 290nm, 230nm and the corresponding UV excitation profile and LRMS data.

Figure S43B: Left: Standard concentration and the corresponding absorbance detected at 358m. Right: Calibration plot of 7ag.

(S)-2-(1-(((R)-2-acetamido-2-carboxyethyl)thio)-3-(thiophen-2-yl)-2H-isoindol-2-yl)-5-guanidinopentanoic acid (7ah)

Chemical Formula: C₂₃H₂₇N₅O₅S₂ Exact Mass: 517.145

7ah was prepared according to the general protocol for the synthesis of disubstituted isoindole, starting from **6ah** (50µmol, 1mL of 50mM solution in DMSO). Lyophilization of purified fractions afforded **7ah** as white powder subject to desalting treatment with C18 SepPak (2.0g) (11µmol, 5.7mg, 22%)

Solvent A : 40mM NH₄OH/HCOOH (pH 8-9) **Solvent B** : MeCN **Column** : Agilent, C18, 250x21.2mm

Time (min)	A%	В%	Flow (mL/min)
0	85	15	40
4.30	50	50	
5.00	0	100	
7.00	0	100	

Figure S44A: Crude injection of FIICk reaction with 6ah to afford 7ah. Shown here the LC trace at 360, 290nm, 230nm and the corresponding UV excitation profile and LRMS data.

Figure S44B: Left: Standard concentration and the corresponding absorbance detected at 358m. Right: Calibration plot of 7ah.

(S)-2-(1-(((R)-2-acetamido-2-carboxyethyl)thio)-3-(1H-indol-3-yl)-2H-isoindol-2-yl)-5-guanidinopentanoic acid (7ai)

Chemical Formula: C₂₇H₃₀N₆O₅S Exact Mass: 550.1998

7ai was prepared according to the general protocol for the synthesis of disubstituted isoindole, starting from 6ai (50µmol, 1mL of 50mM solution in DMSO). Lyophilization of purified fractions afforded 7ai as murky yellow powder (21µmol, 11.6mg, 42%).

Solvent A: H₂O (0.1% formic acid) Solvent B : MeCN (0.1% formic acid)

Column : Agilent, C18, 50x21.2mm

Time (min)	A%	В%	Flow (mL/min)
0	80	20	20
6	0	100	

Figure S45A: Crude injection of FIICk reaction with 6ai to afford 7ai. Shown here the LC trace at 360, 290nm, 230nm and the corresponding UV excitation profile and LRMS data.

Figure S45B: Left: Standard concentration and the corresponding absorbance detected at 358m. Right: Calibration plot of 7ai.

Concentration (M)	Abs (λ=358nm)
3.40E-06	0.03301
6.58E-06	0.07215
9.58E-06	0.10096
1.24E-05	0.13433
1.51E-05	0.16362
Extinction Coefficien	t: 11000 cm ⁻¹ M ⁻¹
Quantum Yield: 18%	

Quantum Yield Data

Compound	
λ excitation (nm)	
λ emission (nm)	
QY	

7a 356 460 9%

Compound	7b
λ excitation (nm)	362
λ emission (nm)	470
QY	13%

Compound	7c
λ excitation (nm)	362
λ emission (nm)	-
QY	0%

Compound	7d
λ excitation (nm)	352
λ emission (nm)	-
QY	0%
Compound	7e
Compound	
λ excitation (nm)	351

-

<2%

 λ emission (nm)

QY

Multi Scans (5	1) : Multiple Scans			QY = 1.	23%			N266.54 sample N266.44 blank w N266.44 blank w	Co Co Co Later High colds are block colds Quantum Yield Calco	lation	
Counts	10 ⁴ 10 ³ 10 ²	canationnamicts		Matter and	ar an	the weather the second s	understandigt		Qua Scatter Erristion Q	Besuits ntum Yield Re or Hauls Scores (07) tange: 339.50 to 36 Range: 379.60 to 46 Y = 1.239 Pret	suits 0.00 nm 00.00 nm %0 Casy R
	350	400	450	500 Waveleng	550 gth/nm	600	650	700			-
				Waveleng	gth/nm						

Compound	7f
λ excitation (nm)	346
λ emission (nm)	437
QY	8%

Compound	7g
λ excitation (nm)	352
λ emission (nm)	420
QY	9%

Compound	7h
λ excitation (nm)	36
λ emission (nm)	-
QY	<2

62	
2 %	Counts

Compound	7i
λ excitation (nm)	358
λ emission (nm)	462
QY	10%

Compound	7j
λ excitation (nm)	348
λ emission (nm)	429
QY	6%

Compound	7k
λ excitation (nm)	358
λ emission (nm)	469
QY	16%

Compound	71
λ excitation (nm)	354
λ emission (nm)	468
QY	24%

Compound	7m
λ excitation (nm)	356
λ emission (nm)	423
QY	45%

Compound	7n
λ excitation (nm)	360
λ emission (nm)	464
QY	10%

Compound
λ excitation (nm)
λ emission (nm)
QY

7o

360 463

28%

Compound	7р
λ excitation (nm)	362, 454
λ emission (nm)	-
QY	0%
Compound	7q
λ excitation (nm)	452
λ emission (nm)	-
QY	0%
Compound	7r
λ excitation (nm)	308, 464
λ emission (nm)	-
QY	0%
Compound	7s
λ excitation (nm)	306, 450
λ emission (nm)	-
QY	0%
Compound	7t
λ excitation (nm)	308, 478
λ emission (nm)	-
QY	0%
Compound	7u
λ excitation (nm)	304, 472
λ emission (nm)	-
QY	0%

Compound	7v
λ excitation (nm)	360
λ emission (nm)	464
QY	46%

Compound	7w
λ excitation (nm)	364
λ emission (nm)	494
QY	46%

7x
358
450
8%

Compound	7у
λ excitation (nm)	360
λ emission (nm)	-
QY	0%

7z
350
450
14

Compound	7aa
λ excitation (nm)	388
λ emission (nm)	-
QY	0%

7ab
360
452
8%

A Multi Scans : Multi

Compound	7ac
λ excitation (nm)	355
λ emission (nm)	-
QY	< 2%

				QY = 7.9	97%					
	Λ							ND06-97 ND06-97 ND06-97	Sample water-MeCN ex358 Iblank water-MeCN ex358 Iblank water-MeCN ex358 Scaled	
	10°								Quantum Yield Calculation	
									Results	
ts	10 ⁴								Quantum Yield R for Multi Scans (Q Scatter Range: 348.00 to	t esuits (f)' 368.00 nm
Coun	10 ³	and the second second		inge					QY = 7.97	¹ %
	10 ²	and the second second	and the large	Anton Alle April M	mar y fants ga	Anger Marine	an water the	MARK		
	10 ¹								< Eack Print	Copy Result
	350	400	450	500 Waveleng	550 th/nm	600	650	700		Close

. . .

83

Compound	7ad
λ excitation (nm)	366
λ emission (nm)	-
QY	2%

					QY =	1.51%					
	105										ND08-118 sample 368nm ND08-118 blank 368nm ND08-118 blank 368nm Scaled
Counts	10 ⁴ 10 ³ 10 ² 10 ¹ 10 ⁹ 350	400	450	500	550 Wavele	600 ngth/nm	650	700	750	800	Brailin Brailin Output Vield Results for Min Second (VT) State Na Second (VT) Description (

Compound	7ae
λ excitation (nm)	358
λ emission (nm)	456
QY	14%

Compound	7af
λ excitation (nm)	360
λ emission (nm)	-
QY	0%

Compound	7ag
λ excitation (nm)	362
λ emission (nm)	470
QY	15%

Compound	7ah
λ excitation (nm)	358
λ emission (nm)	470
QY	9%

Compound	7ai
λ excitation (nm)	360
λ emission (nm)	462
QY	18%

Intermolecular Chemoselectivity Studies

Reaction of 6w with excess L-Trp-OH

6w was prepared as a 50mM solution in DMSO, and a 1mL aliquot (50µmol, 1 eq.) was dispensed into a stirring mixture of L-Trp-OH (51mg, 250µmol, 5 eq.) in 9mL Na Borate buffer:EtOH (80:20, v/v), resulting in a clear yellow solution. This mixture was stirred at room temperature for 5 hours, after which a 200µL aliquot was injected directly for HPLC analysis and purification (Entry 1). Two blank runs for each reaction component were prepared in parallel and analyzed by HPLC, where L-Trp-OH (5 eq.) was dissolved in 1mL DMSO, and Na Borate buffer:EtOH (80:20, v/v) resulting in Entry 2, and **6w** (1 eq.) was dissolved in Na Borate buffer:EtOH (80:20, v/v) resulting in Entry 3.

	Time (min)	A%	B%	Flow (mL/min)
Solvent A : 40mM NH ₄ OH/HCOOH (pH 8-9)	0	85	15	15
Solvent B : MeCN	12	0	100	
Column : Agilent, C18, 50x21.2mm				

Figure S46: UV trace and corresponding MS from HPLC analysis of the crude reaction mixture (entry 3), and blank runs of L-Trp (entry 2) and 6w (entry 1). Chromatogram observed at 230nm. Peak at the solvent front is DMSO as observed at 230nm

Reaction of 6w with mercaptopropionic acid followed by excess L-Trp-OH

6w was prepared as a 50mM solution in DMSO, and a 1mL aliquot (50µmol, 1 eq.) was dispensed into a stirring mixture of mercaptopropionic acid (5.6µL, 65µmol, 1.3 eq.) in 9mL Na Borate buffer:EtOH (80:20, v/v), resulting in a clear yellow solution. Observed with a hand-held UV lamp (365nm), this mixture was not fluorescent. To this solution was added L-Trp-OH (20mg, 100µmol, 2.0 eq.) as solids, and upon stirring at room temperature for 1 minute, fluorescence started to appear and gradually became brighter. After 10 minutes stirring at room temperature, a 200µL aliquot was injected and analyzed by HPLC (Entry 3). Two blank runs for each reaction component were prepared in parallel and analyzed by HPLC, where **6w** (1 eq.) was dissolved in Na Borate buffer:EtOH (80:20, v/v) resulting in Entry 2, and L-Trp-OH (2 eq.) was dissolved in 1mL DMSO, and Na Borate buffer:EtOH (80:20, v/v) resulting in Entry 1.

Figure S47: UV trace and corresponding HRMS from HPLC analysis of the crude reaction mixture (entry 3). Blank runs of 6w (entry 2) and L-Trp (entry 1). Chromatogram observed at 230nm. Peak at the solvent front is DMSO as observed at 230nm. Insert: UV excitation profile of 8.

Reaction of 6w with excess L-Trp-OH followed by mercaptopropionic acid

6w was prepared as a 50mM solution in DMSO, and a 1mL aliquot (50µmol, 1 eq.) was dispensed into a stirring mixture of L-Trp-OH (20mg, 100µmol, 2.0 eq.) in 9mL Na Borate buffer:EtOH (80:20, v/v), resulting in a clear yellow solution. This mixture was stirred at room temperature for 1 hour, after which a 200µL aliquot of this solution was directly injected and analyzed by HPLC (Entry 3). Then, mercaptopropionic acid (5.6µL, 65µmol, 1.3 eq.) was subsequently added, where fluorescence was observed via hand-held UV lamp (365nm) after stirring for 2 minutes. Another 200µL aliquot was again injected and analyzed by HPLC after reacting for 10 minutes (Entry 4). Finally, solution was left to stir for an additional hour and full conversion to **8** was observed (Entry 5).

Figure S48: UV trace and corresponding LRMS from HPLC analysis of the crude reaction mixture (entry 5). Blank runs of L-Trp (entry 2) and 6w (entry 1). Chromatogram observed at 230nm. Peak at the solvent front is DMSO as observed at 230nm Insert: UV excitation profile of 8.

Synthesis of linear peptides 11-21

General Procedure for Solid Phase Peptide Synthesis:

Linear peptides were synthesized on Gyros Protein Technologies, PurePepTM Chorus on Fmoc-Rink-Amide MBHA resin (Loading: 0.35mmol/g). Fmoc-AA-OH solutions were prepared as 0.3M solutions in 0.3M Oxyma/DMF and stored as stock solution to be used in multiple syntheses. All amino acid couplings were carried out with Fmoc-AA-OH (7.5 equiv.), Oxyma (7.5 equiv.), and DIC (15 eq.) in DMF, under N₂ flow at 50°C for 5 minutes, while agitated at 350 RPM. Following this linear peptide assembly, N-terminus acetylation was done with a mixture of Ac₂O:collidine:EtOAc (1:2:2, v/v/v), mixed under N₂ flow at room temperature for 20 minutes. Global deprotection and resin cleavage was done in TFA:TIPS:H₂O (95:2.5:2.5, v/v/v) at room temperature for 3 hours, while resin is mixed under N₂ flow and gently agitated at 150 RPM. Crude peptide was then obtained by triturating the TFA mixture, achieved by adding this solution dropwise into cold diethyl ether. Precipitate was centrifuged and washed successively with fresh diethyl ether, repeated three times, then dissolved in 1:1 H2O/MeCN, and lyophilized. Dry crude peptide was then purified via preparative HPLC using optimized methods detailed in each dataset. Unless otherwise stated, all peptides were purified with H₂O and MeCN 0.1% TFA as the mobile phases. Purified material was then lyophilized and quantified via UV spectroscopy, where linear peptides **11-20** were quantified at 280nm ε = 7100 cm⁻¹ M⁻¹ and FIICk peptides were quantified at 365nm (ε = 14300 cm⁻¹ M⁻¹).

Synthesis of 11 (Ac-HLCLWRKLQDK-NH2)

Linear peptide **11** was synthesized according to the general procedure for solid phase peptide synthesis, using 114mg Rink Amide MBHA resin (40µmol scale synthesis). The resulting crude material was purified via preparative HPLC using the given parameters to afford pure **11** (22µmol, 55%), to be used for subsequent FIICk reaction.

Figure S49A: Crude HPLC trace observed at 290nm and the corresponding UV excitation profile.

Figure S49B: LC trace of purified compound 11. Observed at 230nm.

Synthesis of 12 (Ac-HLKLWRCLCDS-NH₂)

Linear peptide **12** was synthesized according to the general procedure for solid phase peptide synthesis, using 114mg Rink Amide MBHA resin (40µmol scale synthesis). The resulting crude material was purified via preparative HPLC using the given parameters to afford pure **12** (20µmol, 50%), to be used for subsequent FIICk reaction.

50

200 250 300 350 400 450 Wavelength (nm)

Figure S50A: Crude HPLC trace observed at 290nm and the corresponding UV excitation profile.

500

0

Acquisition SW Version	6200 series TOF/6500 series Q-TOF 10.1 (48.0)	QTOF Driver Version	10.01.00
QTOF Firmware Version	25.808	Tune Mass Range Max.	3200

Figure S50B: LC trace of purified compound 12. Observed at 230nm

Formula Calculator Element Limits

Elen	nent ^{ris or} 'Min	ľ	Мах	
c	Calculated	$([C_{62}H_9]$	9N19O15	S ₂]+H) ⁺ = 1414.7088
C	Found	([C ₆₂ H ₉	9N19O15	S_2]+H) ⁺ = 1414.7084
Н		90	105	
0		12	20	
Ν		15	25	
S		1	3	

Formula Calculator Results

Formula	Mass	Tgt Mass	Diff (ppm)	Ion Species	Score
C62 H99 N19 O15 S2	1413.7014	1413.7009	0.29	C62 H100 N19 O15 S2	99.34
C70 H95 N17 O13 S	1413.7009	1413.7016	-0.51	. C70 H96 N17 O13 S	98.88
C64 H101 N16 O16 S2	1413.7013	1413.7023	-0.72	2 C64 H102 N16 O16 S2	98.84
C68 H93 N20 O12 S	1413.7010	1413.7003	0.51	. C68 H94 N20 O12 S	98.81

Synthesis of 13 (Ac-ENPKCILDKWVQRVM-NH₂)

Linear peptide **13** was synthesized according to the general procedure for solid phase peptide synthesis, using 114mg Rink Amide MBHA resin (40µmol scale synthesis). The resulting crude material was purified via preparative HPLC using the given parameters to afford pure **13** (13µmol, 32%), to be used for subsequent FIICk reaction.

Solvent A : H₂O 0.1% TFA

Solvent B : MeCN 0.1% TFA

Figure S51A: Crude HPLC trace observed at 290nm and the corresponding UV excitation profile.

Version	Q-TOF 10.1 (48.0)		
QTOF Firmware Version	25.808	Tune Mass Range Max.	3200

Figure S51B: LC trace of purified compound 13. Observed at 230nm.

Formula Calculator Element Limits

Elementor 13	min Max	
C Calculated	([C ₈₄ H ₁₃₈ N ₂₄ O ₂₂ S ₂]+H) ⁻	* = 1899.9937
Found H	([C ₈₄ H ₁₃₈ N ₂₄ O ₂₂ S ₂]+H) ⁻ 120 150	* = 1899.9929
0	1 60	
N	1 30	
S	1 3	

Formula Calculator Results

Formula	Mass	Tgt Mass	Diff (ppm)	Ion Species	Score
C92 H144 N11 O29 S	1898.9856	1898.9852	0.1	9 C92 H145 N11 O29 S	99.32
C91 H138 N18 O24 S	1898.9857	1898.9852	0.2	7 C91 H139 N18 O24 S	99.31
C93 H150 N4 O34 S	1898.9854	1898.9852	0.1	0 C93 H151 N4 O34 S	99.28
C91 H128 N29 O15 S	1898.9859	1898.9865	-0.3	1 C91 H129 N29 O15 S	99.24
C90 H132 N25 O19 S	1898.9859	1898.9852	0.3	5 C90 H133 N25 O19 S	99.24

Synthesis of 14 (Ac-ENPECILDKWVQRVC-NH₂)

Linear peptide **14** was synthesized according to the general procedure for solid phase peptide synthesis, using 114mg Rink Amide MBHA resin (40µmol scale synthesis). The resulting crude material was purified via preparative HPLC using the given parameters to afford pure **14** (11µmol, 27%), to be used for subsequent FIICk reaction.

Chemical Formula: C₈₁H₁₂₉N₂₃O₂₄S₂ Exact Mass: 1871.9022

Solvent A : H₂O 0.1% TFA

Figure S52A: Crude HPLC trace observed at 290nm and the corresponding UV excitation profile.

Reinjections of purified material:				
	Time (min)	A%	В%	Flow (mL/min)
Solvent A : H ₂ O 0.1% TFA	0	80	20	2
Solvent B : MeCN 0.1% TFA	20	0	100	
Column : Agilent, Eclipse XDB-C18, 250x9.4mm, 5µm				

Figure S52B: LC trace of purified compound 14. Observed at 230nm.

Found

 $\begin{array}{l} ([C_{81}H_{129}N_{23}O_{24}S_2]+2H)/2 = 936.9589 \\ ([C_{81}H_{129}N_{23}O_{24}S_2]+2H)/2 = 936.9586 \end{array}$

Synthesis of 15 (Ac-LSQEQLKHRERSLKTLRCIQRMLW-NH₂)

Linear peptide **15** was synthesized according to the general procedure for solid phase peptide synthesis, using 114mg Rink Amide MBHA resin (40µmol scale synthesis). The resulting crude material was purified via preparative HPLC using the given parameters to afford pure **14** (7µmol, 18%), to be used for subsequent FIICk reaction.

Figure S53A: Crude HPLC trace observed at 290nm and the corresponding UV excitation profile

Acquisition SW Version	6200 series TOF/6500 series Q-TOF 10.1 (48.0)	QTOF Driver Version	10.01.00
QTOF Firmware Version	25.808	Tune Mass Range Max.	3200

Figure S53B: LC trace of purified 15. Observed at 230nm.

Formula Calculator Element Limits

Element	Min (ICtore	Max	Sol+3H)/3 - 1031 0066
C Found	([С1341 ([С1341	229 1450 350	S_2]+3H)/3 = 1031.9076
Н	220	240	
0	30	40	
Ν	40	50	
S	1	2	

Formula Calculator Results

Formula	Mass	Tgt Mass	Diff (ppm)	Ion Species	Score
C137 H227 N46 O32 S2	3092.7004	3092.6991	C).41 C137 H230 N46 O32 S2	99.12
C139 H229 N43 O33 S2	3092.7003	3092.7004	-0).05 C139 H232 N43 O33 S2	99.07
C136 H231 N42 O36 S2	3092.7003	3092.6978	C).82 C136 H234 N42 O36 S2	98.89
C135 H225 N49 O31 S2	3092.7005	3092.6978	C).88 C135 H228 N49 O31 S2	98.75

Synthesis of 16 (Ac-LSQEQLKHRERSLKTLRCIQRMLW-NH₂)

Linear peptide **16** was synthesized according to the general procedure for solid phase peptide synthesis, using 114mg Rink Amide MBHA resin (40 μ mol scale synthesis). The resulting crude material was purified via preparative HPLC using the given parameters to afford pure **16** (5.4 μ mol, 13%), to be used for subsequent FIICk reaction.

LRMS of **16** Calculated

Found

([C₁₃₉H₂₃₄N₄₄O₄₁S₂]+3H)/3 = 1080.9 ([C₁₃₉H₂₃₄N₄₄O₄₁S₂]+3H)/3 = 1081.6

Figure S54B: LC trace of purified 16. Observed at 230nm.

Synthesis of 17 (Ac-TIEEQAkTCLDkKNHEAEDLFYQKSLACWN-NH₂)

Linear peptide **17** was synthesized according to the general procedure for solid phase peptide synthesis, using 114mg Rink Amide MBHA resin (40µmol scale synthesis). The resulting crude material was purified via preparative HPLC using the given parameters to afford pure **17** (8.5µmol, 21%), to be used for subsequent FIICk reaction.

Figure S55A: Crude HPLC trace observed at 290nm and the corresponding UV excitation profile

Co	omme	nt								
Sa	mple	Group			Info.					
St	ream	Name		LC 1	Acquisition Time (Local)	3/19 07:0	9/2024 12:53:)0)	20 PM	(UTC-	
Ac Ve	quisit ersion	tion SW		6200 series TOF/6500 series Q-TOF 10.1 (48.0)	QTOF Driver Version	10.0	01.00			
Q	TOF F	irmware	e	25.808	Tune Mass Range	320	0			
Reinvi	ection	s of pur	ified m	aterial:	Max.					
							Time (min)	A%	B%	Flow (mL/min)
Solve	nt A:	H ₂ O 0.1	% TFA				0	80	20	2
Solve	nt B:	MeCN (D.1% TF	A			20	0	100	
Colg	pecti	agilent,	Eclipse	XDB-C18, 250x9.4mm, 5µm						
	Fra	gmentor 80	Voltage	e Collision Energy 0	Ionjzation Mode					
orbance (mAU)	100-									
Abso	50-			5.23 1%	A			16	6.58 3%	

Figure S55B: LC trace of purified 17. Observed at 230nm.

Synthesis of 18 (Ac-CWIAKELRKIGDCF-NH₂)

Linear peptide **18** was synthesized according to the general procedure for solid phase peptide synthesis, using 114mg Rink Amide MBHA resin (40µmol scale synthesis). The resulting crude material was purified via preparative HPLC using the given parameters to afford pure **18** (14µmol, 35%), to be used for subsequent FIICk reaction.

Chemical Formula: $C_{78}H_{123}N_{21}O_{19}S_2$ Exact Mass: 1721.8746

Figure S56A: Crude HPLC trace observed at 290nm and the corresponding UV excitation profile.

JF FIIIIWale	23.000
sion	

ectra

Figure S56B: LC trace of purified 18. Observed at 230nm.

mula	Calc	ulato	r Ro	culto

1

4

mula	Mass	Tgt Mass	Diff (ppm)	Ion Species	Score
H117 N28 O14 S2	1721.8752	1721.8745		0.35 C77 H118 N28 O14 S2	99
H123 N21 O19 S2	1721.8750	1721.8746		0.26 C78 H124 N21 O19 S2	99
H113 N32 O10 S2	1721.8752	1721.8759		-0.39 C78 H114 N32 O10 S2	99
H111 N35 O9 S2	1721.8753	1721.8745		0.45 C76 H112 N35 O9 S2	99

Synthesis of 20 Negative Control (Ac-IWIAQELRRIGDEFNAYYARR-NH₂)

Linear peptide **20** was synthesized according to the general procedure for solid phase peptide synthesis, using 224mg Rink Amide MBHA resin (80µmol scale synthesis). The resulting crude material was purified via preparative HPLC using the given parameters to afford pure **20** (63mg, 23.5µmol, 30%), which served as the negative control for Jurkat cell viability assay.

Figure S57A: Crude HPLC trace of 19 observed at 290nm and the corresponding UV excitation profile.

Acquisition SW Version	6200 series TOF/6500 series O-TOF 10.1 (48.0)	QIOF Driver Version	10.01.00
QTOF Firmware Version	25.808	Tune Mass Range Max.	3200

Reinjections of purified material:

Spectra			Time (min)	A%	В%	Flow (mL/min)
-			0	90	10	2
FragamentorAvoltage 1% TF	A Collision Energy	Ionization Mode	15	40	60	
Solver B: MeCN 0.1%	TFA 0	ESI	20	0	100	
Column : Agilent, Eclip	se XDB-C18, 250x9.4mm, 5µm		25	90	10	
2500- 2000- 1500- 500- 0- 1 2000- 1000- 0- 1 2000- 1000- 0- 1 2000- 1000- 1 2000- 1000- 1 2000- 1 2000- 1000- 1 2000- 1 200- 1 200- 10		1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.26 17.48 2% 16 17 18 1	1 ¹ 1 9 20		1 1 1 1 22 23 24

Figure S57B: LC trace of purified 20 (Negative Control). Observed at 230nm

Formula Calculator Element Limits

Elemen	T IKINS (MAN	Negative	Max ^(trol)	
С	Calculated Found	110 ^{([C}	; ₁₂₂ H ₁₈₅ N ₃₇ O ₃₂ S]+2H)/2 = 1314.207 ; ₁₂₂ H ₁₈₅ N ₃₇ O ₃₂ S]+2H)/2 = 1314.207	1 0
Н		160	190	
0		25	35	
Ν		30	40	

Formula Calculator Results

Formula	Mass	Tgt Mass	Diff (ppm)	Ion Species	Score
C125 H183 N38 O29	2680.4009	2680.4013	-0.1	5 C125 H185 N38 O29	99.00
C124 H187 N34 O33	2680.4008	2680.4000	0.32	2 C124 H189 N34 O33	98.60
C122 H185 N37 O32	2680.4009	2680.3986	0.8	5 C122 H187 N37 O32	97.49

Synthesis of 20' (Ac-IWIAQELRKIGDCFNAYYARR-NH2)

Linear peptide **20'** (FIICk precursor) was synthesized according to the general procedure for solid phase peptide synthesis, using 224mg Rink Amide MBHA resin (80µmol scale synthesis). The resulting crude material was purified via preparative HPLC using the given parameters to afford pure **20'** (15.2µmol, 19%), which was then subsequently treated with **6w** to obtain a FIICk-stapled helix.

Figure S58A: Crude HPLC trace observed at 290nm and the corresponding UV excitation profile.

mentor Voltage Collision Energy Ionization Mode

5

10

11 12 13 14 Retention time (min)

8 9

Figure S58B: LC trace of purified 20'. Observed at 230nm

2

1000

17 18 19 20 21

22 23 24

15 16

Calculator Element Limits

MinCalculated	Max ([C ₁₂₀ H ₁₈₃ N ₃₅ O ₃₀ S]+2H)/2 = 1314.1873
Found		$[C_{120}H_{183}N_{35}O_{30}S]+2H)/2 = 1314.1863$
110	135	5
170	200)
25	35	
30	40	
1	3	

Calculator Results

	Mass	Tgt Mass	Diff (ppm)	Ion Species
3 N35 O30 S	2626.3583	2626.3591		-0.29 C120 H185 N35 O30 S
7 N31 O34 S	2626.3582	2626.3577		0.19 C119 H189 N31 O34 S
1 N38 O29 S	2626.3584	2626.3577		0.25 C118 H183 N38 O29 S
9 N39 O26 S	2626.3584	2626.3604		-0.78 C121 H181 N39 O26 S

Synthesis of 20a (Ac-IWIAQELRR8IGDS5FNAYYARR-NH₂)

Linear peptide **20a** was synthesized according to the general procedure for solid phase peptide synthesis, using 224mg Rink Amide MBHA resin (80µmol scale synthesis). Following completion of SPPS, to the reaction vessel containing the resin-bound peptide was added Grubbs Gen. II catalyst (16mg) and 5mL DCE. This mixture was agitated at 350RPM, under N₂ flow, at 50°C, for 2 hours. Completion of RCM reaction was then determined via test-cleavage of the peptide, and the Grubbs RCM reaction was repeated two more times. Once the unstapled starting material was fully consumed, the resin-bound peptide was subjected to Fmoc cleavage (20% piperidine/DMF), acetylated (Ac₂O:Collidine:EtOAc), and cleaved from the resin (TFA:TIS:H₂O) following standard protocol. Trituration and HPLC purification of crude material resulted in the isolation of **20a** as white powder (10.8mg, 4µmol, 5%). This peptide served as the positive control for Jurkat cell viability assay.

Figure S59A: Prep-HPLC purification of crude 20a, peaks were collected as time slices due to challenging purification. Peaks highlighted in grey were found to have the desired mass. Observed at 290nm.

sion			Q-TOF 1	0.1 (48.0)						
F Firmv sion	vare		25.808			Tune Max.	Mass Range	e 320	0		
ctra	<u>Reinjecti</u>	ions of	purified mat	<u>erial:</u>				Time (min)	Α%	В%	Flow (mL/min)
Fragme	etore Xo	altage	3 0.1% TFA	Collisior	າ Energy	Ιο	nization Mod	le ₀	60	50	2
	Column	: Me Agi:	lent, Eclipse X	DB-C18, 25	J 0x9.4mm, 5µm		E31	20	0	100	
		-									
		250-			7.4	42 %					
		200-									
	ice (mAU)	150-			7.27 34 <u>%</u>						
	Absorban	100-									

Figure S59B: LC trace of purified compound 20a. Observed at 230nm.

mula Calculator Element Limits ment Calculator MaxH194N34O30]+2

Found Found 1

 $MaxH_{194}N_{34}O_{30}]+2H)/2 = 1344.7428$ 110 $([C_{128}H_{194}N_{34}O_{30}]+2H)/2 = 1344.7418$

mula Calculator Results

nula	Mass	Tgt Mass	Diff (ppm)	Ion Species	Sco
3 H194 N34 O30	2687.4699	2687.47	-0	.04 C128 H196 N34 O3	30
9 H200 N27 O35	2687.4698	2687.47	-0	.10 C129 H202 N27 O	35
) H196 N31 O31	2687.4698	2687.471 ⁴	-0	.57 C130 H198 N31 O	31

Synthesis of 21 (Ac-RRPQKILDCHVRRVWR-NH2)

Linear peptide **21** (FIICk peptide precursor) was synthesized according to the general procedure for solid phase peptide synthesis, using 224mg Rink Amide MBHA resin (80µmol scale synthesis). The resulting crude material was purified via preparative HPLC using the given parameters to afford pure **21** (24.3µmol, 30%), which was then subsequently treated with **6w** to obtain a FIICk-stapled helix.

Figure S60A: Crude HPLC trace observed at 290nm and the corresponding UV excitation profile and LRMS of the major peak (t=2.63min).

QTOF Firmware	25.808
Version	

Spectra

Reinjections of purified mate	rial:					
Fragmentor Voltage	Collision Energy	Ionization Mode	Time (min)	A%	B%	Flow (mL/min)
SolvegtjA : H ₂ O 0.1% TFA	0	ESI	0	90	10	2
Solvent B: MeCN 0.1% TFA			15	40	60	
Column : Agilent, Eclipse XI	0B-C18, 250x9.4mm, 5µm		20	0	100	
			25	90	10	
				19 20	21	

Figure S60B: LC trace of purified 21. Observed at 230nm

Formula Calculator Element Limits

Element _{Calculate} Min		([0		0 ₂₁ S]+2H)/2 = 1173.1616
С	Found	100 ^{[C1}	05H162H39C	D ₂₁ S]+2H)/2 = 1173.1616
Н		160	190	
0		18	25	
Ν		35	42	
S		1	1	

Formula Calculator Results

Formula	Mass	Tgt Mass	Diff (ppm)	Ion Species	Score
C107 H171 N36 O22 S	2344.3085	2344.3089		-0.17 C107 H173 N36 O22 S	98.86
C108 H167 N40 O18 S	2344.3086	2344.3103		-0.71 C108 H169 N40 O18 S	98.55

Synthesis of 21a (FITC-Ahx-RRPQS₅ILDS₅HVRRVWR-NH₂)

Linear peptide **21a** was synthesized according to the general procedure for solid phase peptide synthesis, using 114mg Rink Amide MBHA resin (40µmol scale synthesis). Following completion of SPPS, to the reaction vessel containing the resin-bound peptide was added Grubbs Gen. II catalyst (7.8mg) and 3mL DCE. This mixture was agitated at 350RPM, under N₂ flow, at 50°C, for 2 hours. Completion of RCM reaction was then determined via test-cleavage of the peptide, and the Grubbs RCM reaction was repeated two more times. Once the unstapled starting material was fully consumed, the resin-bound peptide was subjected to Fmoc cleavage (20% piperidine/DMF), allowing the terminal Ahx residue to be coupled to FITC Isomer I (80mg) with DIPEA (70µL) in DMF (3mL). Reaction vessel was agitated at 150 RPM, under N₂ flow, at room temperature, for 12 hours. The FITC-labeled peptide was cleaved from the resin (TFA:TIS:H₂O, 95:2.5:2.5) following standard protocol. Trituration in Et₂Oand HPLC purification of crude material resulted in the isolation of **21a** as bright yellow powder (30mg, 10.6µmol, 26%). This peptide served as the positive control for DLD1 cell permeability assay.

350 400 Wavelength (nm) 500 550

60

450

Figure S61A: Crude HPLC trace observed at 290nm and the corresponding UV excitation profile

200 250 300

Reinjections of purified material:

			min)	A%	В%	Flow (mL/min)
Solvent A : H ₂ O 0.1% TFA Solvent B : MeCN 0.1% TFA		0.1% TFA 0		70	40	2
		N 0.1% TFA 20		0	100	
Column	: Agile	nt, Eclipse XDB-C18, 250x9.4mm, 5µm				
	1					
	500-	8.31				
	1	94%				
	400-					
(I)	1					
m) ec	300-					
sorba	200-					
At		8 18				
	100-	6%				
	-				\sim	
	0-					
			14	15 1	6 17	18 19

FIICk stapling of α -helices 11-21

Synthesis and characterization of 11a and 11b:

Purified **11** were partitioned into 15mL-falcon tubes in 2µmol portions (1 eq.) and lyophilized to afford dry white powder. **11** (2µmol) was dissolved in Na borate buffer pH 9 (1mL), EtOH (200µL), and to this mixture was added **6w** (50mM solution in DMSO, 40µL, 1 eq.). Reaction was left to sit at room temperature undisturbed and fluorescence was qualitatively monitored by hand-held UV lamp (365nm). After 2 hours, reaction was then quenched and acidified to pH 3 with formic acid, to afford a clear yellow solution to be purified by preparative HPLC. Purified peptides were lyophilized and then quantified by UV absorbance, measured at the wavelength of maximum absorbance for the resulting isoindole (365nm), where ε = 14300 cm⁻¹ M⁻¹, affording **11a** (421nmol, 21% isolated) and **11b** (82nmol, 4% isolated).

Data Filename	13574.d		Sample Name	e M	ND07-1	43_t1		
Sample Type	Sample		Position	F	2-A7			
Instrument Name	Instrument 1		User Name					
Acgimethod of purific	ed material: HRESI_+_Accuarcy	y_ms_column.m	Acquired Tim	e 7	/24/20	23 10:23:	04 AM (UTC-07:00)
IRM Calibration Stat	masshunter recalib	pration	DA Methedn)	A%L	.Н в н 8 .r	ⁿ Flow (ml	L/min)	
Contract : H2O 0.1%	TFA		0	80	20	2		
Solvent B : MeCN 0.1	% TFA		20	0	100			
SamplenGroupilent, Ed	clipse XDB-C18, 250x9.4mm, 5µn	n Info. Lock mass	121.05087 9	22.00	9798			
Stream Näme	LC 1	Acquisition Time (Local) 9.76 100%	7/24/2023 10:2 07:00)	23:04 /	AM (UT	C-		
Acquisition SW Version	6200 series TOF/6500 series Q-TOF 10.1 (48.0)	QTOF Driver Version	10.01.00					
QTOF Firmware Version	25.808	Tune Mass Range Max.	3200					
Spectra	2 3 4 5 6 7	8 9 10 11 12	13 14 15	5 16	17	18 19	-	

Fragmentor Voltage Collision Energy Figure S63A: LC grace of purified compound 11a. Observed at 230nm

Ionization Mode ESI

Figure S63B: LC trace of purified compound 11b. Observed at 230nm.

Farmsla Galculator Element Limits

Elemented	Mirc ₈₃ H ₁₂₀ N	128 15S]+	H) ⁺ = 1697.9102
CFound	([C ₈₃ I 80₂ ₀N	l₂₂ @႐ ₅S]+	H) ⁺ = 1697.9103
Н	115	125	
0	10	20	
Ν	18	25	
S	1	3	

Formula Calculator Results

Formula	Mass	Tgt Mass	Diff (ppm)	Ion Species	Score
C85 H122 N19 O16 S	1696.9033	1696.9038		-0.26 C85 H123 N19 O16 S	99.45
C83 H120 N22 O15 S	1696.9034	1696.9024		0.58 C83 H121 N22 O15 S	98.87
C86 H118 N23 O12 S	1696.9034	1696.9051	111	-1.01 C86 H119 N23 O12 S	98.46
C82 H124 N18 O19 S	1696.9033	1696.9011	111	1.32 C82 H125 N18 O19 S	97.45

Formula/Sadculator Element Limits

ElementculatedMin	([C83 Max N22	O ₁₅ S]+H)⁺ = 1	697.9102	
C Found	(₿0 83H120 90 22	O₁₅S]+H)⁺ = 1	697.9100	
Н	115 125			
0	10 20			
N Figure S63C: Circu	ular1&chrois275of	11, 11a, 11b, as	50µM solutions in	TFE/H ₂ O (20:80)
S 4404	1 3			
4×10+ -				
Formula Calculato	Results			
Formula $2 \times 10^{+-}$	TN M	ass	Tgt Mass	Diff (ppm)
C83 H120 22 O15 S		1696.9029	1696.9024	
C85 H122 🕅 19 O10 🕄	3	1696:9028	1696:9038	
C82 H124 118 O19 S		1696.9029	- 1696.9011	
C81 H118 8252014 5		1 696.903	1696.901 <u>1</u>	11
Ш				_ 11a
≥ _{-4×10} 4-	+		_	
			-	— 11b
-6×10 ⁴ -	<u> </u>	I		
	200	220	240	260
		Wavele	ength (nm)	

Ion Spec 0.36°C83°H121	ies MRE (222nm) ∖୍ସିକୁତୁପିଲି ^S dmol⁻¹)	Sc %	ore Ielicity
-0.5#1 C85 H123	N125006 S	33	99.46
1.0 51€ 82 H125	N292009 S	70	98.42
1.1 4°C 81 H119	N252014 S	30	98.31

Synthesis and characterization of 12a and 12b

Purified **12** were partitioned into 15mL-falcon tubes in 2µmol portions (1 eq.) and lyophilized to afford dry white powder. **12** (2µmol) was dissolved in EtOH (200µL), followed by Na borate buffer pH 9 (1mL), and to this mixture was added **6w** (50mM solution in DMSO, 80µL, 2 eq.). Reaction was left to sit at room temperature undisturbed and fluorescence was qualitatively monitored by hand-held UV lamp (365nm). After 1 hour, reaction was then quenched and acidified to pH 3 with formic acid, to afford a clear pale yellow solution to be purified by preparative HPLC. Purified peptides were lyophilized and then quantified by UV absorbance, measured at the wavelength of maximum absorbance for the resulting isoindole (365nm) where $\varepsilon = 14300 \text{ cm}^{-1} \text{ M}^{-1}$, affording **12a** (350nmol, 18% isolated) and **12b** (107nmol, 5% isolated). This synthesis was repeated to obtain enough material for NMR characterization of **12a**.

Solvent A : H₂O 0.1% TFA **Solvent B** : MeCN 0.1% TFmA **Column** : Agilent, C18, 5 μm, 50x21.2mm.

Time (min)	A%	В%	Flow (mL/min)
0	90	10	20
14	40	60	
17	0	100	

Figure Score LC trace of purified compound 12a. Observed at 230nm.

ESI

Figure S65B: LC trace of purified compound 12b. Observed at 230nm.

Formula Calculator Element Limits

LICIII	HRMS of 12a		IUA		
С	Calculated	([70] ₈ H	110 80 01	₅S₂]+H) ⁺ = 1631.79	979
Н	Found	1100 ∗H	110 №0 01	₅ S ₂]+H) ⁺ = 1631.79	969
0		10	20		
Ν		10	30		
S		1	3		

Formula Calculator Results

Formula	Mass	Tgt Mass	Diff (ppm)	Ion Species	Score
C76 H108 N23 O14 S2	1630.7891	1630.7888		0.23 C76 H109 N23 O14 S2	99.09
C77 H104 N27 O10 S2	1630.7892	1630.7901	114	-0.55 C77 H105 N27 O10 S2	98.97
C77 H114 N16 O19 S2	1630.7890	1630.7888		0.13 C77 H115 N16 O19 S2	98.57

Formula Calculator Element Limits

Eleme	nt Min Sol 126	([C ₇₈	110N200	¹⁵ S₂]+H) ⁺ = 1631.7979
С	Found	7[0 78H	H118020O	$_{15}S_2$]+H) ⁺ = 1631.7975
Н		100	130	
0		10	20	
Ν	Figure S65C: Cir	cularodich	rois 30 0f 1	2, 12a, 12b, as 50µM solutions in TFE/H ₂ O (20:80)
S		1	3	

Formula Calculator⁴Results

Confirming positional selectivity of 12b

Orthogonal protecting group strategy:

Linear peptide **12c** was synthesized according to the general procedure for solid phase peptide synthesis, using 200mg Rink Amide MBHA resin (80µmol scale synthesis). The resulting crude material was purified via preparative HPLC using the given parameters to afford pure **12c** (16µmol, 20%), to be used for subsequent FIICk reaction.

Solvent A : H₂O 0.1% TFA Solvent B : MeCN 0.1% TFA Column : Agilent, C18, 50x21.2mm

Time (min)	A%	В%	Flow (mL/min)
0	80	20	15
10	0	100	

Figure S65D: Crude HPLC trace observed at 280nm and the corresponding UV excitation profile and HRMS of the isolated peak (t=3.17min)

Purified **12c** were partitioned into 15mL-falcon tubes in 8µmol portions (1 eq.) and lyophilized to afford dry white powder. **12c** (8µmol) was dissolved in Na borate buffer pH 9 (4mL), EtOH (1000µL), and to this mixture was added **6w** (50mM solution in DMSO, 176µL, 1.1 eq.). Reaction was left to sit at room temperature undisturbed and fluorescence was qualitatively monitored by hand-held UV lamp (365nm). After 30 minutes, an aliquot (1µmol) of the reaction was quenched and acidified to pH 3 with formic acid and analysed by HPLC to determine reaction completion, affording intermediate **12c'** with a singly protected Cys. This same reaction mixture was then treated with TCEP-HCl (5 eq.) and left to sit in the same falcon tube for 2 hours at room temperature. Following this disulfide reduction, reaction was acidified with formic acid and purified by prep-HPLC to afford pure **12d** with the method outlined below.

Solvent A : H₂O 0.1% TFA Solvent B : MeCN 0.1% TFA Column : Agilent, C18, 50x21.2mm

Time (min)	A%	В%	Flow (mL/min)
0	90	10	15
14	40	60	
17	0	100	

Figure S65E: Overlaid prep-HPLC traces of reaction mixture of peptide 12, 12c with 6w following one-pot disulfide reduction with TCEP treatment. 12c' was isolated and analyzed my LRMS (shown).

Figure S65F: Overlaid analytical HPLC traces observed at 230nm, confirming the identity of 12a and 12d.

Crude MS/MS analysis:

Figure S65G: MS/MS fragmentation spectrum of isolated peptides 12a (major isomer) and 12b (minor isomer) acquired using HPLC-QTOF with tandem mass spectrometer. Collision-induced dissociation (CID) high resolution MS data acquired with 100 eV collision energy, using positive-mode electrospray ionization (ESI+).

NMR analysis and discussion of isolated major isomer 12a:

Positional selectivity of the stapling reaction between peptide **12** and **6w** was further corroborated by an orthogonal protecting group strategy (p. **S118**), crude MS/MS fragmentation analysis, (p. **S120**), and NMR analysis of the isolated major isomer **12a** as follow.

The key peptide skeleton that confirmed the positional selectivity of the FIICk staple was carefully mapped starting from the distinctive 1H-indole proton signal of Trp5. Using this as the starting point, we are able to observe a sequence of 1H and 13C correlations that lead to -CH2- protons of Cys7 (i,i+4 linkage with Lys3) exhibiting correlation in HMBC to one single aromatic carbon on the isoindole scaffold. In the minor isomer, Cys7 would not show correlation to any aromatic carbons.

Aromatic NH on Trp5 shows correlation in COSY to C2 of the indole ring {7.18, 123.24}. From this signal, shown in the red square below, we trace a chain of correlations on HMBC to three aromatic carbons (109.80, 127.42, and 136.03). One of these signals belong to C3 of the indole ring and it further correlates to -CH2- protons on Trp5 (3.25ppm, 2.79ppm.)

Figure S65H: A subset of HMBC and HSQC spectra showing a sequence of signals that elucidates the Trp5 starting point.

These -CH2- signals (3.22pm and 2.79ppm) take us further down the peptidic backbone via correlation on HMBC between its corresponding ¹³C signal (28.7ppm, observed in HSQC) and CH α of Trp5 (4.63ppm). This CH α subsequently shows linkage to two ¹³C=O signals at 163.63ppm and 171.ppm. Through process of elimination, we determine that the ¹³C signal at 171.48ppm corresponds to the carbonyl of Trp5, thus allowing us to proceed further down the peptide backbone towards Arg6.

Figure S65I: A subset of HMBC and HSQC spectra showing a sequence of signals that links Trp5 to Arg6

This carbonyl signal (171.48ppm) shows additional correlation in HMBC with the adjacent Arg6 (CH α - 4.27ppm), which we then trace further to its own ¹³C=O (169.63ppm). This allows us to finally reach CH α of Cys7, where we found correlation in HMBC between 169.63ppm and **4.37ppm**.

Figure S65J: A subset of HMBC spectrum showing signals that link the CHa of Arg6 (4.27ppm) to CHa of Cys7 (4.37ppm).

Arriving at CH α of Cys7 (4.37ppm), we observed correlations in COSY and HMBC (shown here) to the key -CH2- signals that would link this amino acid residue to the isoindole linkage. 4.37ppm shows HMBC to ¹³C at 26.2ppm, where in the corresponding HSQC confirms the presence of -CH2- protons (2.68 ppm, 2.76ppm). These -CH2- of Cys7 additionally shows HMBC to ¹³C 54.68ppm, tracing back to its own CH α at 4.37ppm.

Figure S65K: A subset of HMBC and HSQC spectra elucidating the 1H and 13C nuclei found in Cys7

After successfully mapping the signals in Cys7, we were able to find the key -CH2- HMBC signal that links this residue to the aromatic structure. More importantly, there is only one HMBC signal between 2.76ppm (Cys7, -CH2-) and the aromatic region. Furthermore, the carbon signal at 107.14ppm doesn't show a corresponding signal in HSQC, indicating its quaternary nature. The isoindole structure is also confirmed, where the carbon at 107.14ppm shows a single HMBC signal to 7.58ppm. This proton allows us to elaborate the rest of the isoindole structure, showing HMBC with three aromatic carbons: 120.8, 120.8 (overlapping), and 123.1ppm.

Figure S65L: A subset of HMBC and HSQC spectra showing the sequence of signals that links Cys7 (-CH2-, 2.76ppm) to the aromatic region found in isoindole.

¹**H** NMR (600 MHz, DMSO) δ 10.84 (d, J = 2.4 Hz, 1H), 8.92 (d, J = 1.3 Hz, 1H), 8.39 (d, J = 7.4 Hz, 1H), 8.36 (d, J = 5.6 Hz, 1H), 8.34 (d, J = 7.5 Hz, 1H), 8.25 (d, J = 8.5 Hz, 1H), 8.19 (d, J = 7.8 Hz, 1H), 8.11 (d, J = 8.3 Hz, 1H), 8.05 (d, J = 7.8 Hz, 1H), 7.86 (d, J = 7.9 Hz, 2H), 7.73 (d, J = 7.8 Hz, 1H), 7.59 (dd, J = 15.4, 8.2 Hz, 2H), 7.46 (t, J = 5.6 Hz, 1H), 7.36 – 7.27 (m, 5H), 7.22 – 7.13 (m, 3H), 7.06 (t, J = 7.5 Hz, 1H), 7.00 (q, J = 7.5 Hz, 2H), 6.95 (d, J = 8.7 Hz, 1H), 6.88 (dd, J = 8.5, 6.4 Hz, 1H), 6.78 (d, J = 8.5 Hz, 2H), 6.65 (s, 1H), 4.63 (td, J = 9.1, 3.8 Hz, 1H), 4.60 – 4.53 (m, 2H), 4.52 (s, 1H), 4.36 (td, J = 7.5, 5.3 Hz, 1H), 4.30 (q, J = 7.5 Hz, 2H), 4.26 (dt, J = 8.7, 4.2 Hz, 1H), 4.19 (q, J = 7.1 Hz, 2H), 4.14 (dt, J = 7.8, 5.1 Hz, 1H), 4.10 (ddt, J = 11.5, 7.8, 4.3 Hz, 2H), 3.61 (dd, J = 10.9, 5.4 Hz, 1H), 3.54 (dd, J = 10.8, 4.9 Hz, 1H), 3.27 – 3.18 (m, 2H), 3.12 (q, J = 6.8 Hz, 2H), 3.00 (dd, J = 15.3, 5.2 Hz, 1H), 2.88 (d, J = 14.7 Hz, 6H), 2.82 – 2.64 (m, 5H), 2.57 – 2.50 (m, 1H), 1.41 (t, J = 7.3 Hz, 1H), 1.39 – 1.33 (m, 1H), 1.35 – 1.25 (m, 2H), 1.25 (dd, J = 11.4, 4.5 Hz, 3H), 1.19 – 1.15 (m, 1H), 0.90 – 0.73 (m, 15H), 0.68 (d, J = 6.4 Hz, 3H).

Synthesis and characterization of 13a and 13b

Purified **13** were partitioned into 15mL-falcon tubes in 2µmol portions (1 eq.) and lyophilized to afford dry white powder. **13** (2µmol) was dissolved in Na borate buffer pH 9 (1mL), EtOH (200µL), and to this mixture was added **6w** (50mM solution in DMSO, 40µL, 1 eq.). Reaction was left to sit at room temperature undisturbed and fluorescence was qualitatively monitored by hand-held UV lamp (365nm). After 1 hour, reaction was then quenched and acidified to pH 3 with formic acid, to afford a clear solution to be purified by preparative HPLC. Purified peptides were lyophilized and then quantified by UV absorbance, measured at the wavelength of maximum absorbance for the resulting isoindole (365nm) with ε = 14300 cm⁻¹ M⁻¹, affording **13a** (385nmol, 19% isolated) and **13b** (30nmol, 1% isolated). This reaction was repeated to obtain enough material for characterization.

<u>13b</u>

Che

nical Formula: C₁₀₀H₁₄₉N₂₅O₂₂S₂ Exact Mass: 2116.0750

Time (min)	A%	В%	Flow (mL/min)
0	85	15	20
10	0	100	

Figure S66: Prep-HPLC traces of crude reaction mixture of peptide 13 with 6w.

Data Filename	13634.d		Sample Name	ND07-145	_1	
Sample Type	Sample		Position	P2-A1		
Instrument Name	Instrument 1		User Name			
Acg Method	HRESI_+_Accuarcy	_ms_column.m	Acquired Time	7/27/2023	3 11:17:00 AM (UT	FC-07:00)
IRM Calibration Status	material: masshunter recalibr	ation	DA Method	LH HR.m	Flow (ml /min)]
Coscient A : H2O 0.1% TF	Ā		0	80 30	2	
Solvent B : MeCN 0.1% Sample Group gilent, Eclip	TFA se XDB-C18, 250x9.4mm, 5u	mInfo. Lock mass	121. 05087 922 .	009798 ¹⁰⁰]
Stream Name	C 1	Acquisition Time	7/27/2023 11:17:	00 AM (UTC-		
400-		(L၀ိုင်ခို့မှ)	07:00)			
Acquisition SW 6 Version 300- Q	200 series TOF/6500 series -TOF 10.1 (48.0)	QTOF Driver Version	10.01.00			
QTOF Firmware 2 Version 200-	5.808	Tune Mass Range Max. 8.58 6% 8.92 1%	3200			
Spectra Fragmentor Voltage	3 4 5 6 7 Collision Energy	Reperior time (min) Ionization Mode	1 1 1 1 1 1 12 13 14 15	16 17	18 19	

Figure S67A: 80 trace of purified compound 13a. Observed at 230nm.

Formula Calculator Element Limits

EI	ement of 13aM	in l	Max	
С	Calculated	([C1994H1	49 N259 2	₂₂ S ₂]+H) ⁺ = 2117.0829
Н	Found	([C ₁₀₀ H ₁ 140	49N25O2 155	₂₂ S ₂]+H) ⁺ = 2117.0823
0		16	25	
Ν		16	30	
S		2	3	

Formula Calculator Results Formula	Mass	Tgt Mass	Diff (ppm)	Ion Species	Score
C98 H147 N28 O21 S2	2116.0746	2116.0737		0.43 C98 H148 N28 O21 S2	98.69
		1	••		

Synthesis and characterization of 14a and 14b

Purified **14** were partitioned into 15mL-falcon tubes in 2µmol portions (1 eq.) and lyophilized to afford dry white powder. **14** (2µmol) was dissolved in Na borate buffer pH 9 (1mL), EtOH (200µL), and to this mixture was added **6w** (50mM solution in DMSO, 80µL, 2 eq.). Reaction was left to sit at room temperature undisturbed and fluorescence was qualitatively monitored by hand-held UV lamp (365nm). After 1 hour, reaction was then quenched and acidified to pH 3 with formic acid, to afford a clear solution to be purified by preparative HPLC. Purified peptides were lyophilized and then quantified by UV absorbance, measured at the wavelength of maximum absorbance for the resulting isoindole (365nm) with ε = 14300 cm⁻¹ M⁻¹, affording **14a** (412nmol, 21% isolated) and **14b** (51nmol, 3% isolated).

Figure S68: Prep-HPLC traces of reaction mixture of peptide 14 with 6w

Figure S68B: LC trace of purified compound 14b. Observed at 230nm.

🕬 អាមារ 🕯 🕹 🕹 🕹 🕹 🕹

Element	Min 97H140N		+H) ⁺ = 2089.9992
Found C	([C ₉₇ H ₁₄₀ N 90	124Ô24S2] 100	+H) ⁺ = 2089.9993
Н	135	145	
0	20	30	
Ν	20	30	
S	1	3	

Formula Calculator Results

Formula	Mass	Tgt Mass	Diff (ppm)	Ion Species	Score
C98 H136 N28 O20 S2	2088.993	2088.9927		0.12 C98 H137 N28 O20 S2	96.78
C99 H142 N21 O25 S2	2088.9928	2088.9927		0.05 C99 H143 N21 O25 S2	96.62
C97 H140 N24 O24 S2	2088.9929	2088.9914		0.73 C97 H141 N24 O24 S2	96.47
C100 H138 N25 O21 S2	2088.9929	2088 ₁ 39 <u>7</u> 1		-0.56 C100 H139 N25 O21 S2	95.87

Formula Calculator Element Limits Min Max HRMS of 14b $([C_{97}H_140N_{24}O_{24}B_2]+H)^+ = 2089.9992 \\ ([C_{97}H_140N_{24}O_{25}B_2]+H)^+ = 2090.0001$ Calculated Fourthd

 $\begin{array}{ccc} N & 20 & 28 \\ \textbf{Figgre S68C:} \ \text{Circular dichroisgn of 14}_2 14a, 14b, as 50 \mu\text{M solutions in TFE/H}_2\text{O} \ (20:80) \end{array}$

Synthesis and characterization of 15a and 15b

Purified **15** were partitioned into 15mL-falcon tubes in 2µmol portions (1 eq.) and lyophilized to afford dry white powder. **15** (2µmol) was dissolved in Na borate buffer pH 9 (1mL), EtOH (200µL), and to this mixture was added **6w** (50mM solution in DMSO, 80µL, 2 eq.). Reaction was left to sit at room temperature undisturbed and fluorescence was qualitatively monitored by hand-held UV lamp (365nm). After 2 hours, solution became cloudy and the reaction was then quenched and acidified to pH 3 with formic acid, to then afford a clear solution to be purified by preparative HPLC. Purified peptides were lyophilized and then quantified by UV absorbance, measured at the wavelength of maximum absorbance for the resulting isoindole (365nm) with $\varepsilon = 14300 \text{ cm}^{-1} \text{ M}^{-1}$, affording **15a** (175nmol, 9% isolated) and **15b** (30nmol, 2% isolated). This reaction was repeated with several 2µmol portions of **15** to accumulate enough material for characterization. Low isolated yield largely caused by the nature of the peptide being strongly retained in our chosen column.

Chemical Formula: C₁₅₀H₂₄₀N₄₆O₃₅S₂ Exact Mass: 3309.7856

Figure S69: Prep-HPLC traces of reaction mixture of peptide 15 with 6w. 15c/15c' was determined by HRMS to be the product of over-reaction with 6w, and regioisomers for this is not resolved.

Chemical Formula: C₁₆₆H₂₅₃N₄₇O₃₆S₂ Exact Mass: 3544.8853

Time (min)

0

20

В%

30

100

2

Α%

90

0

Flow (mL/min)

Reinjections of purified material:

Solvent A : H₂O 0.1% TFA **Solvent B** : MeCN 0.1% TFA **Column** : Agilent, Eclipse XDB-C18, 250x9.4mm, 5µm

Figure 70B: LC trace of purified compound 15b. Observed at 230m

Formula

Mass

Score

Ion Species

Compound	MRE (222nm) (deg cm² dmol ⁻¹)	% Helicity	
15	-10900	29	
15a	-27700	74	
15b	-21500	58	

Synthesis and characterization of 16a and 16b

Purified **16** were partitioned into 15mL-falcon tubes in 2µmol portions (1 eq.) and lyophilized to afford dry white powder. **16** (2µmol) was dissolved in Na borate buffer pH 9 (1mL), EtOH (200µL), and to this mixture was added **6w** (50mM solution in DMSO, 120µL, 3 eq.). Reaction was left to sit at room temperature undisturbed and fluorescence was qualitatively monitored by hand-held UV lamp (365nm). After 2 hours, reaction was then quenched and acidified to pH 3 with formic acid, to afford a clear solution to be purified by preparative HPLC. Purified peptides were lyophilized and then quantified by UV absorbance, measured at the wavelength of maximum absorbance for the resulting isoindole (365nm) with $\varepsilon = 14300 \text{ cm}^{-1} \text{ M}^{-1}$, affording **16a** (212nmol, 11% isolated) and **16b** (14nmol, <1% isolated). This reaction was repeated to obtain enough material for characterization.

Solvent A : H ₂ O 0.1% TFA	Time (min)	A%	В%	Flow (mL/min)
	0	80	20	25
Column : Agilent C18 50x21 2mm	10	40	60	
	12	0	100	

Figure S71: Prep-HPLC traces of reaction mixture of peptide 16 with 6w

Reinjections of purified material:

Figure S72A: LC trace of purified compound 16a. Observed at 230nm.

2 2

Fragmentor Voltage Collision Energy Ionization Mode

HRMS of 16a

S

Synthesis and characterization of 17a and 17b

Purified 17 were partitioned into 15mL-falcon tubes in 2µmol portions (1 eq.) and lyophilized to afford dry white powder. 17 (2µmol) was dissolved in Na borate buffer pH 9 (1mL), EtOH (200µL), and to this mixture was added 6w (50mM solution in DMSO, 120µL, 3 eq.). Reaction was left to sit at room temperature undisturbed and fluorescence was equalitatively monitored by hand-held UV lamp (365nm). After 2 hours, reaction was then quenched and acidified to pH 3 with formic acid, to afford a clear solution to be purified by preparative HPLC. Purified peptides were lyophilized and then quantified by UV absorbance, measured at the wavelength of maximum absorbance for the resulting isoindole (365nm) with ε = 14300 cm⁻¹ M⁻¹, affording 17a (378nmol, 19% isolated) and 17b (25nmol, 1% isolated). This reaction was repeated to obtain enough material for characterization.

Figure S73: Prep-HPLC traces of reaction mixture of peptide 17 with 6w

Reinjections of purified material:

Figure S74B: LC trace of purified compound 17b. Observed at 230nm.

HRMS of 17a

Calculated Found ([C₁₉₅H₂₇₆N₄₄O₅₁S₂]+3H)/3 = 1372.3344 ([C₁₉₅H₂₇₆N₄₄O₅₁S₂]+3H)/3 = 1372.3347

Synthesis and characterization of 18a and 18b

Purified **18** were partitioned into 15mL-falcon tubes in 2µmol portions (1 eq.) and lyophilized to afford dry white powder. **18** (2µmol) was dissolved in Na borate buffer pH 9 (1mL), EtOH (200µL), and to this mixture was added **6w** (50mM solution in DMSO, 120µL, 3 eq.). Reaction was left to sit at room temperature undisturbed and fluorescence was qualitatively monitored by hand-held UV lamp (365nm). After 2 hours, reaction was then quenched and acidified to pH 3 with formic acid, to afford a clear solution to be purified by preparative HPLC. Purified peptides were lyophilized and then quantified by UV absorbance, measured at the wavelength of maximum absorbance for the resulting isoindole (365nm) with $\varepsilon = 14300 \text{ cm}^{-1} \text{ M}^{-1}$, affording **18a** (290nmol, 15% isolated) and **18b** (18nmol, <1% isolated). This reaction was repeated to obtain enough material for characterization.

Figure S75: Prep-HPLC traces of reaction mixture of peptide 18 with 6w
Reinjections of purified material:

Figure S76A: LC trace of purified compound 18a. Observed at 230nm.

HRMS of **18a** Calculated Found

 $([C_{110}H_{145}N_{23}O_{19}S_2]+H)^+ = 2157.0607$ $([C_{110}H_{145}N_{23}O_{19}S_2]+H)^+ = 2157.0598$

Proving positional selectivity using orthogonal protecting group strategy:

Linear peptide **19** was synthesized according to the general procedure for solid phase peptide synthesis, using 114mg Rink Amide MBHA resin (40µmol scale synthesis). The resulting crude material was purified via preparative HPLC using the given parameters to afford pure **19** (13µmol, 33%), to be used for subsequent FIICk reaction.

Figure S77: Crude HPLC trace observed at 230nm and the corresponding UV excitation profile and LRMS of the major peak (t=2.81min).

Purified **19** were partitioned into 15mL-falcon tubes in 2µmol portions (1 eq.) and lyophilized to afford dry white powder. **19** (2µmol) was dissolved in Na borate buffer pH 9 (1mL), EtOH (200µL), and to this mixture was added **6w** (50mM solution in DMSO, 80µL, 2 eq.). Reaction was left to sit at room temperature undisturbed and fluorescence was qualitatively monitored by hand-held UV lamp (365nm). After 30 minutes, an aliquot (200nmol) of the reaction was quenched and acidified to pH 3 with formic acid and analysed by HPLC to determine peak conversion. The remaining peptide in FIICk reaction mixture was then treated with N₂H₄ hydrate (200µL, 50%, v/v) and left to sit in the same falcon tube for 30 minutes at room temperature. Following this Dde-cleavage, reaction was acidified with formic acid and turned into a bright clear yellow solution. Purification by prep-HPLC afforded pure **19b**.

Solvent A : H₂O 0.1% TFA Solvent B : MeCN 0.1% TFA Column : Agilent, C18, 50x21.2mm

Time (min)	A%	В%	Flow (mL/min)
0	80	20	20
6	0	100	

0,5 1.0 1,5 2.0 2,5 3,0 3,5 4,0 4,5 5,0 5,5 6,0 6,5 7,0 7,5 8,0 8,5 9,0 9,5 Retention time (min)

 $\label{eq:Figure S78A: Overlaid prep-HPLC traces of reaction mixture of peptide 13, 19 with 6w and following the one-pot Dde cleavage with N_2H_4 treatment.$

Figure S78B: Overlaid prep-HPLC traces observed at 230nm

Calculated $([C_{100}H_{149}N_{25}O_{22}S_2]+H) = 2117.0829$ Found $([C_{100}H_{149}N_{25}O_{22}S_2]+H) = 2117.0819$

Synthesis and characterization of 20b

Purified **20**' were partitioned into 15mL-falcon tubes in 2µmol portions (1 eq.) and lyophilized to afford dry white powder. **20**' (2µmol) was dissolved in Na borate buffer pH 9 (1mL), EtOH (200µL), and to this mixture was added **6w** (50mM solution in DMSO, 80µL, 2 eq.). Reaction was left to sit at room temperature undisturbed and fluorescence was qualitatively monitored by hand-held UV lamp (365nm). After 2 hours, reaction was then quenched and acidified to pH 3 with formic acid, to afford a clear solution to be purified by preparative HPLC. Purified peptides were lyophilized and then quantified by UV absorbance, measured at the wavelength of maximum absorbance for the resulting isoindole (365nm) with ε = 14300 cm⁻¹ M⁻¹, affording **20b** as pale yellow powder (227nmol, 11% isolated). This peptide was tested against **20a** for Jurkat cell viability.

20b

Chemical Formula: C₁₃₆H₁₉₄N₃₆O₃₀S Exact Mass: 2843.4482

Figure S79: Prep-HPLC traces of reaction mixture of peptide 20' with 6w

riax.

pectra

Fragmentor Voltage	Collision Energy	Ionization Mode				
Reinfection of purified ma	terial: 0	ESI				
			Time (min)	A%	В%	Flow (mL/min)
Solvent A: H ₂ O 0.1% TFA			0	80	20	1
Solvent B: MeCN 0.1% TF	Ā		20	0	100	
Column : Agilent Eclipse	XDB-C18 250x9.4 mm		30	80	20	
	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	12 13 14 15 16 17 18 19 Retention time (min)	20 21 22 23	, i , 3 24	1 1 25 26	27 28 29

Figure S80A: LC trace of purified compound 20b. Observed at 230nm

S

Synthesis and characterization of 21b

Purified **21** were partitioned into 15mL-falcon tubes in 2µmol portions (1 eq.) and lyophilized to afford dry white powder. **21** (2µmol) was dissolved in Na borate buffer pH 9 (1mL), EtOH (200µL), and to this mixture was added **6w** (50mM solution in DMSO, 80µL, 2 eq.). Reaction was left to sit at room temperature undisturbed and fluorescence was qualitatively monitored by hand-held UV lamp (365nm). After 2 hours, reaction was then quenched and acidified to pH 3 with formic acid, to afford a clear solution to be purified by preparative HPLC. Purified peptides were lyophilized and then quantified by UV absorbance, measured at the wavelength of maximum absorbance for the resulting isoindole (365nm) with ε = 14300 cm⁻¹ M⁻¹, affording **21b** as pale-yellow powder (311nmol, 15% isolated). This peptide was tested against **21a** for DLD1 cell permeability studies.

Chemical Formula: C₁₂₁H₁₈₀N₄₀O₂₁S Exact Mass: 2561.3967

Sample Type	Samp	le	Position	P1-D1						
Instrument Name	Instru	iment 1	User Name							
Acq Method	HRES	I_+_FIA_ACN.m	Acquired Tin	ne 3/19/2	a 3/19/2024 11:57:45 AM (UTC-07:00)					
IRM Calibration Status Masshunter Recalib		nunter Recalibratio	n DA Method	LH HR.m						
Comment										
Sample Group		Inf	o.							
Stream Name	LC 1	Acc	uisition Time	3/19/2024	11:57:45 AM (UT	TC-				
Reinjection of purifie	d material:	(La	ocal)	07:00)						
Acquisition SW	6200 series TOF	/6500 series OT	OF Driver Version	10.01.00	Time (min)	A%	В%	Flow (mL/min)		
SolversibA : H2O 0.1%	TFQ-TOF 10.1 (48	.0)			0	80	25	15		
Solvent BrindeCN 0.1	% JE 808	Tu	ne Mass Range	3200	6	50	50			
Coversion : Agilent, C	18, 50x21.2mm	Ма	x.	5200	7	0	100			
// logg/payoill_miniagt_00	1 D/Injustion 1 DAD1P Siz=220.4	Pof=700.100 Chromotogram								
400-	1.D/ Injection 1 DAD IB, 3ig=230,4	Kel=700,100 Chiomatogram								
Spectra		2.53								
300-	collici	96%	Ionization Mode							

Figure S82: LC trace of purified compound 21b, reinjected after storage of lyophilized product over 3 months at -20°C.

Biological Assays

General Cell Culturing Protocol

All cell culturing media and supplements were purchased from Gibco and all cell culturing plastics were purchased from Corning or Falcon, unless otherwise stated. Cells were cultured at 37°C in a humidified incubator with 5% CO₂. All experiments were conducted in a laminar flow cabinet under sterile conditions. DMSO used in cell-based experiments was purified by filtration through a 0.2 mm filter. To revive cells, a 1 mL cryotube of frozen cell stock (culture media + 10% DMSO) was gently thawed in a water bath and diluted with 12 mL of fresh media in a T-75 flask. After 24 hours, media was replaced with fresh media. Jurkat T-cell leukemia cells were cultured in RPMI 1640 media supplemented with 10% fetal bovine serum (FBS), 10K U/mL penicillin, 10K mg/mL streptomycin, and 2 mM L-glutamine. DLD-1 cells were cultured in RPMI 1640 media supplemented with 10% fetal bovine serum (FBS), 10K U/mL penicillin, and 10K mg/mL streptomycin. When cells reached a confluence level of 85-95% for adherent cells, or 2x10⁶ viable cells/mL for suspension cells, the cells were detached from the flask, 1-2 mL of media was added to quench the trypsin, and the cell suspension was transferred to a 10 mL falcon tube and centrifuged for 5 minutes at 8000 rpm. The supernatant was discarded, and the pellet of cells was resuspended in fresh media, diluted as required, and transferred to new T-75 culture flasks. Cell viability was assessed by counting cells with a hemacytometer after treatment with Trypan blue.

Cell Viability Assays

To assay cell viability, Jurkat cells were suspended in media lacking FBS (serum-free media) and seeded in 96 well plates ($1x10^4$ cells in 25 µL/well). Peptides **20** (negative control), **20a** (RCM, positive control), and **20b** (FIICk) were lyophilized and dissolved in serum-free media with 1% DMSO and further diluted to the appropriate concentrations. The plated cells were treated with 25 µL of the serial dilutions of the peptides of interest in triplicate and incubated at 37°C for 2 hours, at which point 50 µL of media containing 20% FBS was added to each well (serum replacement) (final well volume of 100 µL, 10% FBS). The cells were then incubated for 24 hours. To each well, 10 µL of MTS labeling reagent (Abcam) was added and the cells were incubated for 4 hours. The absorbance of the wells was measured at 490 nm using a Microplate Reader Multi-Mode FilterMax F5 and the IC₅₀ values were determined by nonlinear regression analysis with GraphPad Prism software.

Figure S83 Viability of Jurkat cells upon treatment with 20, 20a, and 20b for 24 hours.

Confocal Microscopy Imaging

To observe cell internalization, DLD-1 cells were seeded in 8-well chamber slides (Lab-Tek) ($1x10^5$ cells in 400 µL/well) and incubated overnight. Media was removed and wells were washed twice with 1x PBS. Fluorescent peptides **21a** (FITC, RCM positive control) and **21b** (FIICk) were lyophilized and dissolved in serum-free media with 0.5% DMSO, and cells were incubated with 400 µL of 7.5 µM (**21a**) or 5 µM (**20b**) for 1 hour. The peptide solutions were then removed, the wells were washed twice with PBS, and the cells were fixed with 4% (w/v) paraformaldehyde in PBS for 15 minutes at room temperature. The cells were then stained with 1 µM TO-PRO-3 in PBS for 30 minutes at room temperature, washed twice with PBS, and 1.5 coverslips were mounted with 1:9 PBS:glycerol mounting media. Confocal fluorescence microscopy was performed with a Leica SP5 X Laser Scanning Confocal Microscope (inverted), objectives HP PL APO 10x/0.40 CS, 20x/0.7 IMM CS, and 63x/1.4-0.6 oil CS. TO-PRO-3 was excited at 663 nm, FITC at 488 nm, and FIICk peptides at 405 nm. All images were recorded with the same parameters and instrument settings.

Figure S84 Analysis of cell permeability of 21a (7.5µM, 1 hour) and 21b (5µM, 1 hour) on DLD1 cells by confocal fluorescence microscopy. In red, TO-PRO-3 nuclear stain. In green, FITC (21a). In teal blue, isoindole FIICk peptide (21b).

Comparative modeling of FIICk-stapled helix with RCM-stapled helix

Molecular modeling was done on Molecular Operating Environment (MOE)

Figure S85 Modelling of RCM-stapled BIMBH3 mimic (19a, in orange), based on the crystal structure of MCL-1:BIMBH3 complex⁵ (PDB ID: 2NL9) overlaid with a model of FIICk-stapled BIMBH3 mimic (19b, in green). 19b was docked onto the receptor using 19a as the template.

Figure S86 Structure of RCM-stapled Axin mimic (20a, in orange) in complex with beta-catenin (PDB ID: 4DJS)⁶ overlaid with a model of FIICk-stapled Axin mimic (20b, in teal). 20b was docked onto the receptor using 20a as the template.

Exploring reactions on isoindole derivatives – Proof of concept of isoindole undergoing CuAAC reaction

Stapling aldehyde **6ac** (azido) was prepared as a 50mM solution in DMSO. An 60µL aliquot of this solution (3µmol, 1 eq.) was dispensed into a stirring mixture of monocycle **S1** (Ac-WCSGEK-NH₂) (3µmol, 1 eq.) in 2mL Na Borate buffer:EtOH (80:20, v/v). This mixture was stirred at room temperature for 30 minutes, quenched with formic acid to pH 3, and purified by HPLC with the parameters outlined below, to afford monocycle **S2** (1.47µmmol, 49%) as white lyophilized powder.

A 15mL conical tube was then charged with: 7.4μ L solution of CuSO₄ 5H₂O in PBS buffer pH 7.4 (2 eq., 400mM), 14.7 μ L solution of TBTA in DMSO (2 eq., 200mM), and 22 μ L solution of sodium ascorbate in PBS buffer pH 7.4 (3 eq., 800mM). To this mixture was added 22 μ L solution of propargyl amine in DMSO (3 eq., 800mM) and lyophilized **S2** (1.47 μ mol, 1 eq.) dissolved in 600 μ L tBuOH:H₂O (1:1, v/v). This reaction cocktail was then stirred by bubbling under Argon at room temperature overnight, and then purified by HPLC with the parameters outlined below to afford monocycle **S3**

Solvent A : H₂O 0.1% TFA Solvent B : MeCN 0.1% TFA Column : Agilent, C18, 50x21.2mm

Time (min)	A%	В%	Flow (mL/min)
0	90	10	15
10	0	100	

Figure S87: HPLC purification of S2 and S3 observed at 230nm and corresponding UV excitation profiles.

11.86. 100%

4

Stapling aldehyde **6ad** (alkynyl) was prepared as a 50mM solution in DMSO. An 120µL aliquot of this solution (6µmol, 1 eq.) was dispensed into a stirring mixture of monocycle **S1** (Ac-WCSGEK-NH₂) (6µmol, 1 eq.) in 4mL Na Borate buffer:EtOH (80:20, v/v). This mixture was stirred at room temperature for 30 minutes, quenched with formic acid to pH 3, and purified by HPLC with the parameters outlined below, to afford monocycle **S4** (3.13µmmol, 52%) as white lyophilized powder.

A 15mL conical tube was then charged with: 165μ L solution of CuSO₄ 5H₂O in PBS buffer pH 7.4 (2 eq., 400mM), 32µL solution of TBTA in DMSO (2 eq., 200mM), and 12µL solution of sodium ascorbate in PBS buffer pH 7.4 (3 eq., 800mM). To this mixture was added 12µL solution of 3-azido-1-propanamine in DMSO (3 eq., 800mM) and lyophilized **S2** (1.47µmol, 1 eq.) dissolved in 600µL tBuOH:H₂O (1:1, v/v). This reaction cocktail was then stirred by bubbling under Argon at room temperature overnight, and then purified by HPLC with the parameters outlined below to afford monocycle **S5**

Figure S89: HPLC purification of S4 and S5 observed at 230nm and corresponding UV excitation profiles.

References

- (1) Yang, J. T.; Wu, C.-S. C.; Martinez, H. M. [11] Calculation of protein conformation from circular dichroism. In *Methods in Enzymology*, Vol. 130; Academic Press, 1986; pp 208-269.
- (2) Li, Z.; Bai, X.; Deng, Q.; Zhang, G.; Zhou, L.; Liu, Y.; Wang, J.; Wang, Y. Preliminary SAR and biological evaluation of antitubercular triazolothiadiazine derivatives against drug-susceptible and drug-resistant Mtb strains. *Bioorg Med Chem* **2017**, *25* (1), 213-220. DOI: 10.1016/j.bmc.2016.10.027 From NLM Medline.

(3) Hansen, T. V.; Skattebøl, L. ortho-Formylation of Phenols; Preparation of 3-Bromosalicylaldehyde. In Organic Syntheses, pp 64-68.

- (4) Phan, D. H.; Kim, B.; Dong, V. M. Phthalides by rhodium-catalyzed ketone hydroacylation. Journal of the American Chemical Society 2009, 131 (43), 15608-15609.
- (5) Czabotar, P. E.; Lee, E. F.; van Delft, M. F.; Day, C. L.; Smith, B. J.; Huang, D. C. S.; Fairlie, W. D.; Hinds, M. G.; Colman, P. M. Structural insights into the degradation of Mcl-1 induced by BH3 domains. *Proceedings of the National Academy of Sciences* 2007, 104 (15), 6217-6222. DOI: doi:10.1073/pnas.0701297104.
- (6) Dietrich, L.; Rathmer, B.; Ewan, K.; Bange, T.; Heinrichs, S.; Dale, T. C.; Schade, D.; Grossmann, T. N. Cell Permeable Stapled Peptide Inhibitor of Wnt Signaling that Targets beta-Catenin Protein-Protein Interactions. *Cell Chem Biol* **2017**, *24* (8), 958-968 e955. DOI: 10.1016/j.chembiol.2017.06.013

Author Contributions

Design, syntheses, experimental execution, UV spectroscopy, circular dichroism, and peptide characterization was conducted by Naysilla L. Dayanara who supervised undergraduate researcher Pascale Roome who contributed to the synthesis of 2-arylketobenzaldehyde compounds. Cell culturing, MTS assay, and confocal microscopy were performed by Juliette Froelich. Naysilla L. Dayanara worked on data curation, formal analysis, and full NMR spectroscopic assignments of isoindole-stapled peptides and amino acids. Writing of manuscript was a collaborative effort between Naysilla L. Dayanara and Dr. David M. Perrin. Funding acquisition was accomplished by Dr. David M. Perrin.

NMR Spectra

NMR Spectra of hydrazide derivatives (2):

4-fluorobenzohydrazide (2a)

4-chlorobenzohydrazide (2b)

4-bromobenzohydrazide (2c)

4-iodobenzohydrazide (2d)

4-methoxybenzohydrazide (2e)

4-cyanobenzohydrazide (2f)

4-nitrobenzoyhydrazide (2g)

4-ethynylbenzohydrazide (2h)

4-azidobenzohydrazide (2i)

3-fluorobenzohydrazide (2j)

3-cyanobenzohydrazide (2k)

Nicotinohydrazide (21)

Furan-2-carbohydrazide (2m)

Thiophene-2-carbohydrazide (2n)

1H-indole-3-carbohydrazide (2o)

NMR Spectra of salicylaldehyde derivatives (4):

3-fluoro-2-hydroxybenzaldehyde (4a)

3-chloro-2-hydroxybenzaldehyde (4b)

3-bromo-2-hydroxybenzaldehyde (4c)

5-fluoro-2-hydroxybenzaldehyde (4d)

4-fluoro-2-hydroxybenzaldehyde (4e)

4-chloro-2-hydroxybenzaldehyde (4f)

4-bromo-2-hydroxybenzaldehyde (4g)

NMR Spectra of benzylidene benzohydrazides:

N'-(2-hydroxybenzylidene)benzohydrazide (5a)

<u>N'-(4-chloro-2-hydroxybenzylidene)benzohydrazide (5b)</u>

N'-(4-bromo-2-hydroxybenzylidene)benzohydrazide (5c)

N'-(3-bromo-2-hydroxybenzylidene)benzohydrazide (5d)

N'-(3-chloro-2-hydroxybenzylidene)benzohydrazide (5e)

N'-(3-fluoro-2-hydroxybenzylidene)benzohydrazide (5f)

N'-(5-bromo-2-hydroxybenzylidene)benzohydrazide (5h)

N'-(2-hydroxy-3-methoxybenzylidene)benzohydrazide (5j)

N'-(2-hydroxy-2-methoxybenzylidine)benzohydrazide (5k)

4-fluoro-N'-(2hydroxy-2-methoxybenzylidene)benzohydrazide (5l)

N'-(5-fluoro-2-hydroxybenzylidene)benzohydrazide (5m)

N'(5-chloro-2-hydroxybenzylidene)benzohydrazide (5n)

4-cyano-N'-(2-hydroxy-5-nitrobenzylidene)benzohydrazide (5p)

N'-(2-hydroxy-5-nitrobenzylidene)-4-iodobenzohydrazide (5r)

N'-(2-hydroxy-5-nitrobenzylidene)benzohydrazide (5s)

4-(dimethylamino)-N'-(2-hydroxy-5-nitrobenzylidene)benzohydrazide (5t)

N'-(2-hydroxy-5-nitrobenzylidene)-4-methoxybenzohydrazide (5u)

N'-(2-hydroxybenzylidene)-4-methoxybenzohydrazide (5v)

4-bromo-N'-(2-hydroxybenzylidene)benzohydrazide (5x)

4-fluoro-N'-(2-hydroxybenzylidene)benzohydrazide (5z)

4-chloro-N'-(2-hydroxybenzylidene)benzohydrazide (5ab)

4-ethynyl-N'-(2-hydroxybenzylidene)benzohydrazide (5ad)

N'-(2-hydroxybenzylidene)nicotinohydrazide (5af)

N'-(2-hydroxybenzylidene)thiophene-2-carbohydrazide (5ah)

N'-(2-hydroxybenzylidene)-1H-indole-3-carbohydrazide (5ai)

NMR Spectra of 2-ketobenzaldehyde derivatives (6):

2-benzoylbenzaldehyde (6a)

2-benzoyl-4-chlorobenzaldehyde (6b)

2-benzoyl-4-bromobenzaldehyde (6c)

2-benzoyl-3-bromobenzaldehyde (6d)

2-benzoyl-3-chlorobenzaldehyde (6e)

2-benzoyl-3-fluoro-benzaldehyde (6f)

2-benzoyl-6-methoxybenzaldehyde (6g)

2-benzoyl-5-bromobenzaldehyde (6h)

2-(4-chlorobenzoyl)-5-methoxybenzaldehyde (6i)

2-benzoyl-3-methoxybenzaldehyde (6j)

2-benzoyl-4-methoxybenzaldehyde (6k)

2-benzoyl-5-fluorobenzaldehyde (6m)

2-benzoyl-5-chlorobenzaldehyde (6n)

5-chloro-2-(3-fluorobenzoyl)benzaldehyde (6o)

4-(2-formly-4-nitrobenzoyl)benzonitrile (6p)

2-(4-nitrobenzoyl)benzaldehyde (6q)

2-(4-iodobenzoyl)-5-nitrobenzaldehyde (6r)

3-(2-formyl-4-nitrobenzoyl)benzonitrile (6s)

2-(4-(dimethylamino)benzoyl)-5-nitrobenzaldehyde (6t)

2-(4-methoxybenzoyl)benzaldehyde (6v)

2-(4-(dimethylamino)benzoyl)benzaldehyde (6w)

2-(4-bromobenzoyl)benzaldehyde (6x)

3-(2-formylbenzoyl)benzonitrile (6y)

2-(4-fluorobenzoyl)benzaldehyde (6z)

4-(2-formylbenzoyl)benzonitrile (6aa)

2-(4-chlorobenzoyl)benzaldehyde (6ab)

2-(4-azidobenzoyl)benzaldehyde (6ac)

2-(4-ethynylbenzoyl)benzaldehyde (6ad)

2-(3-fluorobenzoyl)benzaldehyde (6ae)

2-nicotinoylbenzaldehyde (6af)

2-(furan-2-carbonyl)benzaldehyde (6ag)

2-(thiophene-2-carbonyl)benzadehyde (6ah)

2-(1H-indole-3-carbonyl)benzaldehyde (6ai)

