Supporting Information

For

A Homoleptic Ag^{III} Complex Stabilized by Succinimidate Ligands

Emil Mickey Hilligsøe Larsen,^a Theis Brock-Nannestad,^a Jørgen Skibsted,^b Anders Reinholdt,^{a,c,*} Jesper Bendix^{a,*}

> ^a Department of Chemistry University of Copenhagen Universitetsparken 5, DK-2100 Copenhagen (Denmark) Email: bendix@kiku.dk

- ^b Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO) Aarhus University Langelandsgade 140, DK-8000 Aarhus C (Denmark)
 - ^c Department of Chemistry, Lund University P. O. Box 124, 22100 Lund, Sweden Email: anders.reinholdt@chem.lu.se

1: Contents

1: Contents	S2
2: Materials and Experimental Methods	S4
3: Synthetic Procedures	S7
3.1: Synthesis of Cs[Ag(succ) ₄] \cdot 4 H ₂ O (2 ^{Cs})	S 7
3.2: Generation of Cs[Ag(succ) ₂] \cdot 4 H ₂ O (1 ^{Cs}) from 2 ^{Cs} in water	S 9
3.3: Synthesis of Rb[Ag(succ) ₄] \cdot 4 H ₂ O (2 ^{Rb})	S 9
3.4: Synthesis of $K[Ag(succ)_4] \cdot 4 H_2O(2^K)$	S10
3.5: Synthesis of $[(H_2O)Ag][Ag(succ)_4] \cdot 4 H_2O(2^{Ag})$	S10
3.6: Synthesis of [(H ₂ O)Na] ₂ [Pd(succ) ₄] (3 ^{Na})	S 11
4: IR Spectroscopy	S13
4.1: IR Spectral Data for $Cs[Ag(succ)_4] \cdot 4 H_2O(2^{Cs})$	S13
4.2: IR Spectral Data for $Rb[Ag(succ)_4] \cdot 4 H_2O(2^{Rb})$	S14
4.3: IR Spectral Data for K[Ag(succ) ₄] · 4 H ₂ O (2^{K})	S14
4.4: IR Spectral Data for $[(H_2O)Ag][Ag(succ)_4] \cdot 4 H_2O (2^{Ag})$	S15
4.5: IR Spectral Data for $[(H_2O)Na]_2[Pd(succ)_4]$ (3 ^{Na})	S15
5: NMR Spectroscopy on Samples in Solution	S16
5.1: NMR Spectral Data for Cs[Ag(succ) ₄] \cdot 4 H ₂ O (2 ^{Cs})	S16
5.2: NMR Spectral Data for [(H ₂ O)Na] ₂ [Pd(succ) ₄] (3 ^{Na})	S17
6: UV-vis Spectroscopy	S18
6.1: UV-vis Spectral Data for Cs[Ag(succ) ₄] · 4 H ₂ O (2^{Cs})	S18
6.2: UV-vis Spectral Data for $[(H_2O)Ag][Ag(succ)_4] \cdot 4 H_2O(2^{Ag})$	S18
6.3: UV-vis Spectral Data for 2^{Cs} and 2^{Ag} in H ₂ O (Overlay)	S19
6.4: UV-vis Spectral Data for 2^{Cs} and 2^{Ag} in solid KBr (Overlay)	S19
6.5: UV-vis Spectral Data for [(H ₂ O)Na] ₂ [Pd(succ) ₄] (3 ^{Na})	S20
6.6: UV-vis Spectral Data for Na(succ)	S20
7: Kinetic Studies of Decomposition of 2 ^{Cs} in Aqueous Solution	S21
8: Mass Spectrometry	S24
8.1: Mass Spectrometric Data for Cs[Ag(succ) ₄] \cdot 4 H ₂ O (2 ^{Cs})	S24
8.2: Mass Spectrometric Data for [(H ₂ O)Na] ₂ [Pd(succ) ₄] (3 ^{Na})	S28
9: Single Crystal X-ray Diffraction	S32

9.1 Crystallographic Tables	S32
9.2 Thermal Ellipsoid Plots	S35
Figure S28. Rb[Ag(succ) ₄] \cdot 4 H ₂ O (2 ^{Rb})	S35
Figure S29. K[Ag(succ) ₄] \cdot 4 H ₂ O (2 ^K)	S35
Figure S30. $[(H_2O)Na]_2[Pd(succ)_4] \cdot 2 H_2O (3^{Na})$	S36
Figure S31. Cs[Ag(succ) ₂] \cdot 4 H ₂ O (1 ^{Cs})	S36
10: Powder X-ray Diffraction	S37 S38
11: Magnetic Measurements	
12: Computational modeling	S39
13: References	S41

2: Materials and Experimental Methods

Starting materials, AgNO₃, Cs₂SO₄ (Fluka, >98%), Rb₂SO₄ (Merck, Suprapur[®]), D₂O (Sigma, 99.9% D), HClO₄ (FERAK, 70%), KOH pellets (Sigma-Aldrich, \geq 85%), NaOH granules (Chemsolute, min. 98.8%), NaOH pellets (Sigma-Aldrich, \geq 98%), Na₂[S₂O₈], K₂[S₂O₈] (Riedel-de Haën[®], extra pure), PdCl₂ (Fluka, purum), and succinimide (Hsucc, Sigma-Aldrich) were purchased from commercial suppliers and used as received. Na(succ) was generated by dissolving equimolar amounts of NaOH and Hsucc in water.

IR spectra were recorded on solid samples using an Agilent Technologies Cary 630 FTIR instrument in total attenuated reflection mode (ATR).

NMR spectra of samples in solution were recorded using a 500 MHz Bruker instrument with a broad-band probe (¹H NMR) or a 500 MHz Bruker instrument with a cryoprobe ($^{13}C{^{1}H}$ NMR). For ¹H NMR spectra, residual solvent signals were used for calibration (D₂O: ¹H at 4.79 ppm). For ¹³C NMR spectra, a capillary containing MeOH in D₂O was used for calibration (MeOH: ¹³C at 49.50 ppm).¹

Solid-state ¹⁰⁹Ag MAS NMR spectra were acquired at 14.09 T (27.9 MHz for ¹⁰⁹Ag) on a Varian Direct-Drive spectrometer using a home-built 5 mm CP/MAS NMR probe. The single-pulse spectra employed a 45° pulse (6 μ s) for an rf field strength of $\gamma B_1/2\pi = 21$ kHz and relaxation delays of 180 – 600 s. ¹⁰⁹Ag chemical shifts are relative to a 1.0 M AgNO₃ solution at 21 °C. The actual sample temperatures were determined using ²⁰⁷Pb MAS NMR of Pb(NO₃)₂ as a NMR thermometer² from separate ²⁰⁷Pb NMR spectra acquired under the same experimental conditions. The simulations considered the firstorder chemical shift interaction and were conducted using the *STARS* software.³

UV-vis absorption spectra were recorded using a Perkin Elmer Lambda 2 spectrometer equipped with a 1 cm quartz cuvette. For kinetic studies, spectra were recorded at 2 or 5 minute intervals, depending on the decomposition rate. For solid-state UV-vis spectra, samples of 2^{Cs} (7.7 mg) and 2^{Ag} (7.6 mg) were ground with 4.00 g KBr in a mortar, and 80 mg of these mixtures were pressed into a pellet (diameter 1.0 cm) by applying a pressure of 15-20 tons.

Mass spectra were recorded using a Bruker Solarix XR ESI/MALDI FT-ICR MS instrument (ESI⁻).

Elemental analyses were carried out by the microanalytical services of the Department of Chemistry, University of Copenhagen using a FlashEA 1112 instrument.

X-ray crystallographic studies were carried out on single crystals, which were coated with mineral oil, mounted on nylon loops, and transferred to the nitrogen cold stream of the diffractometer. The single-crystal X-ray diffraction studies were performed on a Bruker D8 VENTURE diffractometer equipped with a Mo K_{α} high-brilliance I μ S radiation source ($\lambda = 0.71073$ Å), a multilayer X-ray mirror and a PHOTON 100 CMOS detector, and an Oxford Cryosystems low temperature device. The instrument was controlled with the APEX2/APEX3 software package using SAINT.⁴ Final cell constants were obtained from least squares fits of several thousand strong reflections. Intensity data were corrected for absorption using intensities of redundant reflections with the program SADABS.⁵ The structures were solved in Olex2 using the olex2.solve⁶ program (Charge Flipping) and refined using SHELXL.⁷ Non-hydrogen atoms were refined anisotropically; in disordered fragments, the least occupant parts were refined isotropically, if necessary. CH₂ hydrogens were placed at calculated positions and refined as riding atoms. H₂O hydrogens were located in the difference Fourier maps and refined positionally (except for the least occupant parts of disordered H₂O, which were placed at calculated positions and refined as riding atoms). Isotropic displacement parameters were set to $U_{iso} = 1.2 U_{eq}$ of the parent atom for both CH₂ and H₂O. Crystallographic details are listed in Tables S1–S3.

CCDC entries 2365916-2365920, and 2372376 contain the crystallographic data reported herein. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif.

Powder X-ray diffraction data were recorded at room temperature using a Bruker D8 ADVANCE powder diffractometer operating in a 2θ - θ configuration using Cu K_{α} radiation ($\lambda = 1.5418$ Å). Samples were ground and adhered onto double sided Kapton tape fastened on a poly(methyl methacrylate) sample holder. The powder patterns were simulated in Mercury with inclusion of preferred orientation effects (March-Dollase parameter = 0.5).

Magnetic measurements were recorded using a MPMS-XL SQUID magnetometer equipped with a 5 T dc magnet. The measurements were performed on a polycrystalline sample of Cs[Ag(succ)₄] \cdot 4 H₂O (**2**^{Cs}). The susceptibilities were corrected for diamagnetic contributions from the sample holder and the constituent atoms by means of Pascal's constants.

3: Synthetic Procedures

3.1: Synthesis of Cs[Ag(succ)₄] · 4 H₂O (2^{Cs})

Method 1. Succinimide (Hsucc, 1.1 g, 11 mmol) was suspended in 2 ml water and dissolved by slowly adding 4 pellets of KOH (370 mg, 6.6 mmol). AgNO₃ (191 mg, 1.12 mmol) was dissolved in this succinimide buffer, resulting in a clear colorless solution. Na₂[S₂O₈] (400 mg, 1.7 mmol) was added, and the solution was heated periodically over a gas flame over five minutes (gently, without boiling), attaining a yellow color ([Ag(succ)₄]⁻). Cs₂SO₄ (1.0 g, 2.8 mmol; i.e. 5.5 mmol Cs⁺) was added, and heating of the suspension (white precipitate) was maintained over five minutes. During heating, the precipitate attained a yellow color. Upon increasing the volume to 10 ml and heating, most of the precipitate dissolved, leaving small yellow crystals of Cs[Ag(succ)₄] · 4 H₂O (2^{Cs}) in the yellow solution. After 3 days, crystallization was complete (colorless mother liquor), and large yellow crystals of 2^{Cs} were isolated by filtration, washed with ice water (3 × 10 ml) and dried on the filter frit using a water aspirator. Yield of Cs[Ag(succ)₄] · 4 H₂O (2^{Cs}): 427 mg, 0.606 mmol, 53.9% based on AgNO₃.

Method 2. Succinimide (Hsucc, 1.1 g, 11 mmol) was suspended in 4 ml water and dissolved by slowly adding 3 pellets of NaOH (300 mg, 7.5 mmol). AgNO₃ (240 mg, 1.41 mmol) was dissolved in this succinimide buffer, rapidly producing a precipitate of long colorless needle crystals of Na[Ag(succ)₂]. Na₂[S₂O₈] (0.65 g, 2.7 mmol) was added, and the suspension was heated periodically over a gas flame for five minutes (gently, without boiling), resulting in a clear yellow solution ([Ag(succ)₄]⁻). The solution was diluted to 10 ml, and Cs₂SO₄ (0.92 g, 2.5 mmol; i.e. 5.1 mmol Cs⁺) was added, resulting in a less intense yellow color. Upon cooling, colorless needle crystals started depositing within 30-60 minutes. The suspension was again heated gently and diluted to 20 ml, slowly depositing small yellow crystals of Cs[Ag(succ)₄] · 4 H₂O (**2**^{Cs}) in the yellow solution. After 3 days, crystallization was complete (colorless mother liquor), and large yellow crystals of **2**^{Cs} were isolated by filtration, washed with ice water (3 × 10 ml) and dried on the filter frit using a water aspirator. Yield of Cs[Ag(succ)₄] · 4 H₂O (**2**^{Cs}): 539 mg, 0.764 mmol, 54.1% based on AgNO₃.

Comments on Methods 1 and 2: KOH and NaOH should be added slowly when generating the succinimide buffers to prevent hydrolysis of the imide (as evident from the

smell of ammonia). The crystallization of 2^{Cs} proceeds slowly; completion typically requires days. Initially, the oxidation with Na₂[S₂O₈] requires heating, but the solution must not boil; this results in rapid loss of the yellow color ([Ag(succ)₄]⁻), continued liberation of oxygen, and formation of a turbidity (initially colorless, brown or black over days). When isolating the mother liquor (**Methods 1** and **2**) by filtration and adding a 1 M aqueous solution of NaCl, a white precipitate of AgCl (s) forms within seconds, demonstrating the presence of unreacted Ag^I species.

Method 3. A three-chamber diffusion cell (connected *via* glass frits) was fitted with a silver electrode (cathode, left chamber) and a platinum electrode (anode, 8 cm² surface area, middle chamber). The left chamber was charged with AgNO₃ (200 mg, 1.2 mmol) dissolved in 10 ml water. The middle chamber was charged with AgNO₃ (200 mg, 1.2 mmol), succinimide (1.1 g, 11 mmol), and 4 KOH pellets (360 mg, 6.4 mmol) dissolved in 10 ml water. The right chamber was charged with 10 ml of water. Upon adjusting the potential between the left and middle chambers to +0.80 V, the solution around the platinum electrode immediately attained a yellow color ([Ag(succ)₄]⁻). Solid Cs₂SO₄ (0.50 g, 1.4 mmol; i.e. 2.8 mmol Cs⁺) was then dissolved in the middle chamber, and upon standing overnight, yellow crystals of Cs[Ag(succ)₄] · 4 H₂O (**2**^{Cs}) deposited on the Pt electrode. The electrode was rinsed with water, and air-dried overnight. The crystals of **2**^{Cs} were removed by scraping the electrode. Yield of Cs[Ag(succ)₄] · 4 H₂O (**2**^{Cs}): 10 mg, 0.014 mmol, 1.2% based on AgNO₃. Following the above procedure with a potential of 1.20 V results in a yield of 16 mg **2**^{Cs} (0.023 mmol, 1.9% based on AgNO₃).

Comments on Method 3: The electrochemical oxidation affording 2^{Cs} can readily be carried out in a two-chamber cell without a spectator compartment (the right chamber, filled with water). The oxidation process commences more rapidly at potentials exceeding ~1.0 V than is the case at 0.8 V. The low yield is a result of the limited surface area of the electrode (the cover of 2^{Cs} crystals eventually prevents oxidation).

Characterization data for 2^{Cs}: IR (solid ATR, $\tilde{\nu}$ /cm⁻¹): 1654, 1703 (C=O). ¹H NMR, 500 MHz, D₂O, δ (ppm): 2.78 (s, 16H). ¹³C NMR, 126 MHz, D₂O, δ (ppm): 187.37, 31.33. UV-vis, H₂O, λ_{max} [nm, ε (M⁻¹ cm⁻¹)]: 222 (19400, inflection point), 302 (8100), 361 (4300, inflection point). ESI-MS, H₂O, [isotope cluster] calculated / found: [Ag(succ)₄]⁻ 499.00; 501.00 / 499.02; 501.02, [Cs{Ag(succ)₄}₂]⁻ 1132.91 / 1132.96, [Cs₂{Ag(succ)₄}₃]⁻ 1764.82; 1766.82 / 1764.91; 1766.91. Elemental analysis, calculated for C₁₆H₁₆AgCsN₄O₈ · 4 H₂O: C: 27.25%, H: 3.43%, N: 7.95%; found: C: 27.03%; H: 3.48%, N: 7.97%.

3.2: Generation of Cs[Ag(succ)₂] · 4 H₂O (1^{Cs}) from 2^{Cs} in water

Cs[Ag(succ)₄] · 4 H₂O (2^{Cs} , 10 mg, 14 µmol) was dissolved in 2 ml water (yellow solution) and left standing for several days (closed), resulting in a colorless solution. The solution was allowed to evaporate overnight, leaving crystals of Cs[Ag(succ)₂] · 4 H₂O (identified by X-ray crystallography). The residue was extracted with acetonitrile overnight, and by concentrating the acetonitrile extracts, crystalline Hsucc was isolated and identified by its ¹H NMR spectrum (CDCl₃) and X-ray crystallography [unit cell data conform with a published succinimide structure:⁸ *Pbca*, *a* = 7.3379(4) Å, *b* = 9.5437(6) Å, *c* = 12.8196(8) Å, *V* = 897.8 Å³ at 120(2) K].

3.3: Synthesis of Rb[Ag(succ)₄] · 4 H₂O (2^{Rb})

Succinimide (Hsucc, 1.02 g, 10.3 mmol) was suspended in 10 ml water and dissolved by slowly adding 3 pellets of NaOH (293.5 mg, 7.34 mmol). AgNO₃ (233.3 mg, 1.37 mmol) was dissolved in this succinimide buffer, yielding a clear, colorless solution. Na₂[S₂O₈] (0.62 g, 2.6 mmol) was added, resulting in precipitation of colorless needle crystals of Na[Ag(succ)₂]. The suspension was heated periodically using a heat gun (gently, without boiling), resulting in a clear yellow solution. Rb₂SO₄ (1.03 g, 3.85 mmol) was added, and heating was continued to dissolve the salt. Upon cooling, colorless needle crystals started depositing within 30-60 minutes. The suspension was again heated gently and diluted to 20 ml, slowly depositing small yellow crystals of Rb[Ag(succ)₄] · 4 H₂O (2^{Rb}) in the yellow solution. After 5 days, crystallization was complete (colorless mother liquor), and large yellow crystals of 2^{Rb} were isolated by filtration, washed with water (3 × 10 ml) and dried on the filter frit using a water aspirator. Yield of Rb[Ag(succ)₄] · 4 H₂O (2^{Rb}): 407.1 mg, 0.619 mmol, 45.1% based on AgNO₃.

Characterization data for 2^{Rb}: IR (solid ATR, $\tilde{\nu}$ /cm⁻¹): 1654, 1705 (C=O). **Elemental analysis**, calculated for C₁₆H₁₆AgN₄O₈Rb · 4 H₂O: C: 29.22%, H: 3.68%, N: 8.52%; found: C: 29.56%; H: 3.59%, N: 8.30%.

3.4: Synthesis of K[Ag(succ)₄] \cdot 4 H₂O (2^K)

Succinimide (Hsucc, 1.14 g, 11.5 mmol) was suspended in 5 ml water and dissolved by slowly adding 5 pellets of KOH (516 mg, 9.20 mmol). AgNO₃ (376.4 mg, 2.22 mmol) was dissolved in this succinimide buffer, yielding a clear, colorless solution. K₂[S₂O₈] (741 mg, 2.74 mmol) was added, and the solution was heated periodically using a heat gun (gently, without boiling), resulting in a clear yellow solution. Upon cooling, colorless needle crystals started depositing within 30-60 minutes. The suspension was again heated gently and diluted to 10 ml, slowly depositing small yellow crystals of K[Ag(succ)₄] · 4 H₂O (**2**^K) in the yellow solution. After 5 days, the solution remained yellow (due to the considerable solubility of **2**^K); however, yellow crystals of a by-product. The yellow crystals of **2**^K were removed from the colorless crystals using a pipette, collected on a filter frit, washed quickly with water (3 × 2 ml), and dried in a dynamic vacuum using a water aspirator. A few remaining colorless crystals were removed using a spatula. Yield of K[Ag(succ)₄] · 4 H₂O (**2**^K): 150.4 mg, 0.246 mmol, 11.1% based on AgNO₃.

Comments: The low yield of 2^{K} reflects its relatively high solubility in water. Apart from the colorless by-product, the formation of 2^{K} is frequently accompanied by a dark material (soluble in succinimide buffer), even when the reaction mixture is excluded from sunlight.

Characterization data for 2^K: IR (solid ATR, $\tilde{\nu}/cm^{-1}$): 1654, 1753 (C=O). **Elemental analysis**, calculated for C₁₆H₁₆AgKN₄O₈ · 4 H₂O: C: 31.43%, H: 3.96%, N: 9.16%; found: C: 31.48%; H: 3.59%, N: 8.89%.

3.5: Synthesis of [(H₂O)Ag][Ag(succ)₄] · 4 H₂O (2^{Ag})

Succinimide (Hsucc, 1.09 g, 11.0 mmol) was suspended in 10 ml water, and 4 sodium hydroxide pellets (373 mg, 9.33 mmol) were added, resulting in dissolution of the solids. AgNO₃ (774 mg, 4.56 mmol) was added; initially the silver nitrate dissolved, followed by crystallization of colorless needle crystals of Na[Ag(succ)₂], which were redissolved by heating the reaction flask with a heat gun. Na₂[S₂O₈] (1.2 g, 5.0 mmol) was added, immediately resulting in a yellow color of the solution. The solution was kept warm with the heat gun, turning the reaction mixture into a clear orange solution and then left to slowly cool to room temperature. Over the course of five minutes, the solution turned

dark red, and dark yellow-orange crystals deposited alongside colorless crystals, while the solution bubbled vigorously. The colorless crystals were identified as Ag₂SO₄ based on their unit cell (X-ray diffraction), and could be removed by washing with succinimide buffer (prepared from 1.0 g Hsucc and 380 mg NaOH in 10 ml H₂O). When washing the mixture of dark orange crystals and colorless crystals (Ag₂SO₄) with 2 ml of the succinimide buffer, the colorless crystals dissolved leaving a pure sample of dark orange crystals of $[(H_2O)Ag][Ag(succ)_4] \cdot 4 H_2O (2^{Ag})$, which were collected on a filter frit, washed with water (3 × 2 ml), and dried in a dynamic vacuum. Yield of $[(H_2O)Ag][Ag(succ)_4] \cdot 4 H_2O (2^{Ag})$: 1071 mg, 1.53 mmol, 67.3% based on AgNO₃.

Comment: In this synthesis, sodium salts (NaOH, Na₂[S₂O₈]) are more suitable than potassium salts because the latter tend to favor formation of K[Ag(succ)₄] \cdot 4 H₂O (**2**^K).

Characterization data for 2^{Ag}: IR (solid ATR, $\tilde{\nu}/cm^{-1}$): 1648, 1753 (C=O). **UV-vis**, H₂O, λ_{max} [nm, ε (M⁻¹ cm⁻¹)]: 224 (22000, inflection point), 303 (11900), 362 (6400, inflection point). **Elemental analysis**, calculated for C₁₆H₁₈Ag₂N₄O₉ · 4 H₂O: C: 27.53%, H: 3.75%, N: 8.03%; found: C: 27.35%; H: 3.74%, N: 8.06%.

3.6: Synthesis of [(H₂O)Na]₂[Pd(succ)₄] (3^{Na})

Succinimide (Hsucc, 0.80 g, 8.1 mmol) was suspended in 1 ml water, and sodium hydroxide granules (0.16 g, 4.0 mmol) were added in portions with 1 ml water, resulting in the dissolution of the solids. PdCl₂ (104 mg, 587 μ mol) was added, and the solution was diluted to 4 ml and heated to reflux temperature until all PdCl₂ had dissolved and the volume had decreased to ca. 2 ml (ca. 10 minutes). During this process, white crystals of [(H₂O)Na]₂[Pd(succ)₄] · 2 H₂O (**3**^{Na}) started separating. The reaction mixture was stored at 5 °C for one hour, and the crystals were separated by filtration, rinsed quickly with ice water, and dried at 100 °C for one hour, resulting in loss of 2 H₂O molecules from the product. Yield of [(H₂O)Na]₂[Pd(succ)₄] (**3**^{Na}): 261 mg, 449 µmol, 76.6% based on PdCl₂.

Characterization data for 3^{Na}**: IR** (solid ATR, $\tilde{\nu}$ /cm⁻¹): 1630, 1712 (C=O). ¹H NMR, 500 MHz, D₂O, δ (ppm): 2.50 (s, 16H). ¹³C NMR, 126 MHz, D₂O, δ (ppm): 194.24, 31.00. **UV-vis**, H₂O, λ_{max} [nm, ε (M⁻¹ cm⁻¹)]: 216 (49100), 289 (290), 336 (120, inflection point). **ESI-MS**, H₂O, [isotope cluster] calculated / found: [Pd(succ)₃]⁻ 399.98; 401.98 /

399.99; 401.99, [Pd(succ)₃(H₂O)]⁻ 417.99; 419.99 / 418.00; 420.00, [Na{Pd(succ)₄}]⁻ 520.99; 522.99 / 521.01;523.01. **Elemental analysis**, calculated for C₁₆H₂₀N₄Na₂O₁₀Pd: C: 33.09%, H: 3.47%, N: 9.65%; found: C: 33.40%, H: 3.55%, N: 9.54%.

4: IR Spectroscopy

4.1: IR Spectral Data for Cs[Ag(succ)₄] · 4 H₂O (2^{Cs})

Figure S1. IR spectrum of crystalline 2^{Cs} .

4.2: IR Spectral Data for Rb[Ag(succ)4] · 4 H₂O (2^{Rb})

4.3: IR Spectral Data for K[Ag(succ)4] · 4 H₂O (2^K)

Figure S3. IR spectrum of crystalline 2^K.

Figure S4. IR spectrum of crystalline 2^{Ag}.

4.5: IR Spectral Data for [(H₂O)Na]₂[Pd(succ)₄] (3^{Na})

Figure S5. IR spectrum of crystalline 3^{Na}.

5: NMR Spectroscopy on Samples in Solution

5.1: NMR Spectral Data for Cs[Ag(succ)₄] · 4 H₂O (2^{Cs})

5.2: NMR Spectral Data for [(H2O)Na]2[Pd(succ)4] (3^{Na})

Figure S8. ¹H NMR spectrum of 3^{Na} in D₂O.

Figure S9. ${}^{13}C{}^{1}H$ NMR spectrum of 3^{Na} in D₂O.

6: UV-vis Spectroscopy

6.1: UV-vis Spectral Data for Cs[Ag(succ)4] · 4 H₂O (2^{Cs})

Figure S10. UV-vis spectrum of $4.7 \cdot 10^{-6}$ M 2^{Cs} in H₂O.

Figure S11. UV-vis spectrum of $8.3 \cdot 10^{-5}$ M 2^{Ag} in H₂O.

6.3: UV-vis Spectral Data for 2^{Cs} and 2^{Ag} in H₂O (Overlay)

Figure S12. Overlay of UV-vis spectra of 2^{Cs} and 2^{Ag} in H₂O.

6.4: UV-vis Spectral Data for 2^{Cs} and 2^{Ag} in solid KBr (Overlay)

Figure S13. Overlay of UV-vis spectra of 2^{Cs} and 2^{Ag} in solid KBr.

6.5: UV-vis Spectral Data for [(H2O)Na]2[Pd(succ)4] (3^{Na})

Figure S14. UV-vis spectrum of $1.8 \cdot 10^{-5}$ M 3^{Na} in H₂O; inset: $3.5 \cdot 10^{-3}$ M.

6.6: UV-vis Spectral Data for Na(succ)

Figure S15. UV-vis spectrum of $2.5 \cdot 10^{-4}$ M Na(succ) in H₂O.

7: Kinetic Studies of Decomposition of 2^{Cs} in Aqueous Solution

Decomposition of 2^{Cs} in neutral solution was monitored by dissolving 2^{Cs} (3.3 mg, 4.7 µmol) in water (38.5 ml, 120 µM) and transferring the solution to a quartz cuvette background corrected with the solvent. 150 s after dissolution, 50 consecutive UV-vis spectra were recorded at 300 s intervals.

Decomposition of 2^{C_s} **in basic solution** was monitored by dissolving 2^{C_s} (2.2 mg, 3.1 µmol) in aqueous NaOH (pH = 12.73, 17.2 ml, 180 µM) and transferring the solution to a quartz cuvette background corrected with the solvent. 120 s after dissolution, 20 consecutive UV-vis spectra were recorded at 120 s intervals.

Decomposition of 2^{Cs} in acidic solution was monitored by dissolving 2^{Cs} (5.0 mg, 7.1 μ mol) in aqueous HClO₄ (pH = 3.01, 29.3 ml, 240 μ M) and transferring the solution to a quartz cuvette background corrected with the solvent. 120 s after dissolution, 6 consecutive UV-vis spectra were recorded at 120 s intervals.

Figure S16. UV-vis spectra showing the decomposition of 2^{Cs} in neutral solution (demineralized water, pH = 6.50). Inset: time-dependence of ln(*A*) at $\lambda_{max} = 302$ nm, $t_{1/2} = 68$ minutes.

Figure S17. Linear fits (all points, first 5 points, last 5 points) to ln(A) *versus* time for the decomposition of 2^{Cs} in neutral solution (demineralized water, pH = 6.50). Inset: Plot of A^{-1} *versus* time, showing how the decomposition deviates from second order kinetics.

Figure S18. UV-vis spectra showing the decomposition of 2^{Cs} in basic solution (aq. NaOH, pH = 12.73). Inset: time-dependence of ln(*A*) at $\lambda_{\text{max}} = 302$ nm, $t_{\frac{1}{2}} = 12$ minutes.

Figure S19. UV-vis spectra showing the decomposition of 2^{Cs} in acidic solution (aq. HClO₄, pH = 3.01). Inset: time-dependence of ln(*A*) at $\lambda_{\text{max}} = 302$ nm, $t_{\frac{1}{2}} = 180$ s.

8: Mass Spectrometry

8.1: Mass Spectrometric Data for Cs[Ag(succ)4] · 4 H₂O (2^{Cs})

Figure S21. Negative mode ESI-MS spectrum of 2^{Cs} , [Ag(succ)₄]⁻, calculated: m/z = 499.00 (100.0%), 501.00 (96.3%), 500.00 (19.2%), 502.00 (18.3%), 503.01 (3.2%).

Figure S22. Negative mode ESI-MS spectrum of 2^{Cs} , $[Cs{Ag(succ)_4}_2]^-$, calculated: m/z = 1132.91 (100.0%), 1134.91 (54.1%), 1130.91 (50.9%), 1133.91 (37.5%), 1131.91 (19.6%), 1135.91 (19.0%), 1136.91 (5.0%).

Figure S23. Negative mode ESI-MS spectrum of 2^{C_s} , $[C_{s_2}{Ag(succ)_4}_3]^-$, calculated: m/z = 1766.82 (100.0%), 1764.82 (93.8%), 1765.82 (52.2%), 1767.82 (52.0%), 1768.82 (43.5%), 1762.82 (31.3%).

8.2: Mass Spectrometric Data for [(H2O)Na]2[Pd(succ)4] (3^{Na})

Figure S25. Negative mode ESI-MS spectrum of **3**^{Na}, [Pd(succ)₃]⁻, calculated: *m*/*z* = 399.98 (100.0%), 401.98 (88.0%), 398.98 (77.8%), 403.98 (40.0%), 397.98 (36.2%), 400.98 (14.5%), 402.98 (12.6%), 404.98 (5.7%), 395.98 (3.3%).

Figure S26. Negative mode ESI-MS spectrum of 3^{Na}, [Pd(succ)₃(H₂O)]⁻, calculated:
m/z = 417.99 (100.0%), 419.99 (88.1%), 416.99 (77.7%), 421.99 (40.1%), 415.99 (36.2%), 418.99 (14.7%), 420.99 (12.7%), 422.99 (5.7%), 413.99 (3.3%).

Figure S27. Negative mode ESI-MS spectrum of 3^{Na}, [Na{Pd(succ)₄}]⁻, calculated: m/z
= 520.99 (100.0%), 522.99 (85.9%), 519.99 (76.5%), 524.99 (39.5%), 518.99 (34.9%), 521.99 (19.0%), 523.99 (16.3%), 525.99 (7.4%), 516.99 (3.2%), 527.00 (1.3%).

9: Single Crystal X-ray Diffraction

9.1 Crystallographic Tables

Complex	2 ^{Cs}	2 ^{Rb}
CCDC entry	2365919	2365920
Empirical formula	$C_{16}H_{24}AgCsN_4O_{12}$	$C_{16}H_{24}AgN_4O_{12}Rb$
Formula weight	705.17	657.73
T / K	122(2)	100(2)
Crystal system	tetragonal	tetragonal
Space group	I4/m	I4/m
<i>a</i> / Å	11.3504(5)	11.3963(9)
b / Å	11.3504(5)	11.3963(9)
<i>c</i> / Å	8.7443(4)	8.5069(6)
α / °	90	90
eta / °	90	90
γ / °	90	90
V / Å ³	1126.54(11)	1104.84(19)
Z	2	2
$ ho_{ m calc}$ / g cm $^{-3}$	2.079	1.977
μ / mm ⁻¹	2.558	3.173
2 heta range / °	5.076 - 56.554	5.054 - 60.96
Reflections collected	6759	10557
Independent reflections	748 [$R_{\rm int} = 0.0203$]	896 [$R_{\rm int} = 0.0571$]
Data / restraints / parameters	748 / 0 / 47	896 / 0 / 48
Goodness-of-fit on F^2	1.133	1.125
Final <i>R</i> indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0218, wR_2 = 0.0511$	$R_1 = 0.0214, wR_2 = 0.0438$
Final R indexes [all data]	$R_1 = 0.0230, wR_2 = 0.0518$	$R_1 = 0.0305, wR_2 = 0.0459$
Largest diff. peak/hole / e Å $^{-3}$	2.40 / -0.96	0.45 / -0.81

Table S1. Crystallographic data for 2^{Cs} and 2^{Rb} .

Complex	2 ^K	2 ^{Ag}
CCDC entry	2365917	2365916
Empirical formula	$C_{16}H_{24}AgKN_4O_{12}$	$C_{16}H_{26}Ag_2N_4O_{13}\\$
Formula weight	611.35	698.15
T / K	100(2)	293.15
Crystal system	tetragonal	tetragonal
Space group	I4/m	I4/m
<i>a</i> / Å	11.554(2)	11.321(3)
b / Å	11.554(2)	11.321(3)
<i>c</i> / Å	8.420(3)	9.154(3)
α/°	90	90
eta / °	90	90
γ / °	90	90
V / Å ³	1124.1(8)	1173.2(8)
Z	2	2
$ ho_{ m calc}$ / g cm ⁻³	1.806	1.976
μ / mm ⁻¹	1.153	1.742
2 heta range / °	4.986 - 62.01	5.088 - 59.09
Reflections collected	11071	3315
Independent reflections	961 [$R_{int} = 0.0291$]	876 [$R_{int} = 0.0228$]
Data / restraints / parameters	961 / 0 / 48	876 / 2 / 54
Goodness-of-fit on F^2	1.209	1.149
Final <i>R</i> indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0143, wR_2 = 0.0395$	$R_1 = 0.0293, wR_2 = 0.0811$
Final R indexes [all data]	$R_1 = 0.0143, wR_2 = 0.0395$	$R_1 = 0.0299, wR_2 = 0.0817$
Largest diff. peak/hole / e Å $^{-3}$	0.31 / -0.47	0.44 / -1.55

Table S2. Crystallographic data for 2^{K} and 2^{Ag} .

Complex	3 ^{Na}	$Cs[Ag(succ)_2] \cdot 4 H_2O(1^{Cs})$
CCDC entry	2365918	2372376
Empirical formula	$C_{16}H_{24}N_4Na_2O_{12}Pd$	$C_8H_{16}AgCsN_2O_8$
Formula weight	616.77	509.01
T / K	122(2)	120(2)
Crystal system	triclinic	triclinic
Space group	<i>P</i> –1	<i>P</i> –1
<i>a</i> / Å	8.2595(5)	9.7035(6)
b / Å	9.1546(6)	13.0999(8)
c / Å	9.1795(6)	13.5608(9)
α/°	64.956(2)	68.125(2)
eta / °	67.171(2)	73.051(2)
γ / °	87.677(2)	76.873(2)
V / Å 3	573.18(6)	1516.49(17)
Ζ	1	4
$ ho_{ m calc}$ / ${ m g}~{ m cm}^{-3}$	1.787	2.229
μ / mm ⁻¹	0.918	3.730
2 heta range / °	4.966 - 58.26	4.892 - 59.15
Reflections collected	23185	51926
Independent reflections	$3084 \ [R_{\rm int} = 0.0354]$	8488 [$R_{\rm int} = 0.0416$]
Data / restraints / parameters	3084 / 0 / 189	8488 / 1 / 412
Goodness-of-fit on F^2	1.093	1.026
Final <i>R</i> indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0180, wR_2 = 0.0446$	$R_1 = 0.0218, wR_2 = 0.0419$
Final R indexes [all data]	$R_1 = 0.0184, wR_2 = 0.0448$	$R_1 = 0.0346, wR_2 = 0.0451$
Largest diff. peak/hole / e Å $^{-3}$	0.46 / -0.91	0.71 / -0.88

Table S3. Crystallographic data for 3^{Na} and $Cs[Ag(succ)_2] \cdot 4 H_2O(1^{Cs})$.

9.2 Thermal Ellipsoid Plots

Figure S28. Thermal ellipsoid plot showing section of polymeric 2^{Rb} at 50% probability. H atoms (except on H₂O) are omitted.

Figure S29. Thermal ellipsoid plot showing section of polymeric 2^{K} at 50% probability. H atoms (except on H₂O) are omitted.

Figure S30. Thermal ellipsoid plot showing 3^{Na} at 50% probability. H atoms (except on H₂O), lattice water, and disorder in coordinated H₂O (O5) are omitted.

Figure S31. Thermal ellipsoid plot showing section of polymeric $Cs[Ag(succ)_2] \cdot 4$ H₂O (1^{Cs}) at 50% probability.

10: Powder X-ray Diffraction

Figure S32. Powder X-ray diffraction pattern of 2^{Cs} (room temperature); the simulation is based on the structure from single crystal X-ray diffraction at 122(2) K. Intensities are in arbitrary units.

Figure S33. Powder X-ray diffraction pattern of **2**^{Ag} (room temperature); the simulation is based on the structure from single crystal X-ray diffraction at 122(2) K. Intensities are in arbitrary units.

11: Magnetic Measurements

Figure S34. DC SQUID magnetometric measurements of 2^{Cs} .

12: Computational modeling

Density Functional Theory (DFT) calculations were performed with version 5.0.3 of the ORCA software package.⁹ Single point energies were calculated using the B3LYP functional, the def2-TZVPP basis,¹⁰ and employing crystallographic coordinates without any modelling of lattice effects. Transition energies and intensities were calculated by TDDFT isolating the 30 lowest roots using the same basis sets and functional as the single point calculations. Integration grid accuracy was ORCA standard defgrid2 yielding 246176 grid points.

Figure S35. Sigma interaction orbitals for 2^{Rb} . Top: LUMO orbital with ca. 35% Ag character. Bottom: filled sigma bonding orbital with ca. 12% Ag character (HOMO -5.5 eV).

Figure S36. TDDFT calculated transition density change for the most intense electric dipole transition of 2^{Rb} (346 nm). Blue: density increase; Red: electron density depletion. Excitation is into MO #120 (LUMO) with appreciable Ag character from mostly ligand-based MOs.

13: References

- G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw and K. I. Goldberg, *Organometallics*, 2010, 29, 2176-2179.
- 2. A. Bielecki and D. P. Burum, J. Magn. Reson. Ser. A, 1995, 116, 215-220.
- J. Skibsted, N. C. Nielsen, H. Bildsøe and H. J. Jakobsen, *Chem. Phys. Lett.*, 1992, 188, 405-412.
- 4. Bruker; Bruker AXS, Inc. SAINT, Version 7.68A; Bruker AXS: Madison, WI, 2009.
- 5. G. Sheldrick, SADABS, Version 2008/2; University of Göttingen: Germany, 2003.
- (a) O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339-341; (b) L. J. Bourhis, O. V. Dolomanov, R. J. Gildea, J. A. K. Howard and H. Puschmann, Acta Crystallogr., Sect. A, 2015, 71, 59-75.
- 7. G. Sheldrick, *Acta Crystallogr.*, *Sect. A*, 2008, **64**, 112-122.
- (a) R. Mason, *Acta Cryst.*, 1961, **14**, 720-724; (b) M. Yu, X. Huang and F. Gao, *Acta Crystallogr.*, *Sect. E*, 2012, **68**, o2738.
- a) F. Neese, The ORCA Program System. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 73–78. b) F. Neese, ; F. Wennmohs, ; U. Becker, C. Riplinger, J. Chem. Phys. 2020, 152, 224108.
- 10. F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297.