
Supplementary Information
PharmacoNet: deep learning guided pharmacophore modeling

for ultra-large-scale virtual screening

Seonghwan Seo1 and Woo Youn Kim123∗

1Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
2Graduate School of Data Science, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea

3HITS Inc, 28, Teheran-ro 4-gil, Gangnam-gu, Seoul 06234, Republic of Korea

{shwan0106, wooyoun∗}@kaist.ac.kr

July, 2024

Contents

1 Supplementary Figures and Tables 2
1.1 Fig. S1: Score distribution for hot spot detection. . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Fig. S2: Comparison with molecular docking. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Fig. S3: Additional metrics on DEKOIS2.0 screening benchmark. . . . . . . . . . . . . . . . . 4
1.4 Fig. S4: Protein sequence similarity between the training set and test sets. . . . . . . . . . . . . 5
1.5 Fig. S5: Chemical structural similarity between the training set and test sets. . . . . . . . . . . . 6
1.6 Table S1: Runtime benchmark with various docking methods . . . . . . . . . . . . . . . . . . . 6
1.7 Table S2: Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Additional Results 8
2.1 Comparison with structure-based binding conformation prediction methods . . . . . . . . . . . 8

3 Training details 8

4 Baseline of benchmark studies 8

5 Graph matching algorithm 9
5.1 Clustering algorithm for ligand pharmacophore arrangements . . . . . . . . . . . . . . . . . . . 9
5.2 Clustering algorithm for pharmacophore model . . . . . . . . . . . . . . . . . . . . . . . . . . 9

6 Software details 9

7 Virtual screening pipeline with PharmacoNet 10
7.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
7.2 Protein-based pharmacophore modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
7.3 Virtual screening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

8 Python interface of PharmacoNet 11
8.1 Pharmacophore modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
8.2 Ligand scoring for virtual screening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
8.3 Protein feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1

Supplementary Information (SI) for Chemical Science.
This journal is © The Royal Society of Chemistry 2024



1 Supplementary Figures and Tables

1.1 Fig. S1: Score distribution for hot spot detection.

Figure S1: Score distribution for hot spot detection. The sigmoid score distribution of tokens in the vali-
dation set. The blue histograms mean the score distribution of hot spots, and the orange ones mean the score
distribution of all tokens within cavities. The numbers in the parentheses indicate the number of tokens. The
red line denotes the threshold for hot spot prediction.
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1.2 Fig. S2: Comparison with molecular docking.

Figure S2: Comparison with molecular docking. A. The overall scheme of molecular docking. B. The overall
scheme of graph matching.
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1.3 Fig. S3: Additional metrics on DEKOIS2.0 screening benchmark.

Figure S3: DEKOIS2.0 benchmark study. Average screening powers for conventional docking softwares
(blue), docking-free DL scoring methods (light orange), DL-based docking method (deep orange), pharma-
cophore modeling-based methods (light green), and PharmacoNet (deep green).
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1.4 Fig. S4: Protein sequence similarity between the training set and test sets.

Figure S4: Sequence similarity between 19,400 proteins in the PDBbind v2020 training set and 81 proteins in
the DEKOIS2.0. The four proteins for the out-of-distribution case study (Fig. 2E) are highlighted in blue.
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1.5 Fig. S5: Chemical structural similarity between the training set and test sets.

Figure S5: Structural similarity between ligands in the PDBbind v2020 training set and LIT-PCBA ligands
used in the out-of-distribution case study (Fig. 2F). A. Distribution of the highest Tanimoto similarity to the
training set. B. Distribution of the average Tanimoto similarity to the training set.

1.6 Table S1: Runtime benchmark with various docking methods

Table S1: Runtime benchmark with various docking methods. Average runtime per the prediction of con-
ventional docking programs and several deep learning models. Since TANKBind is divided into two steps (1)
DL-based scoring and then (2) binding pose prediction, we reported the runtime for scoring-only2 (0.28 (s))
and for the whole process including binding pose prediction1 (0.28 (s) + 0.44 (s)) separately. We used a single
32-core Intel Xeon Gold 6326 CPU @ 2.90 GHz for conventional docking programs and PharmacoNet.

Methods Type Environment Avg. Runtime (s)
AutoDock Vina Atomistic pose prediction & Scoring 32-core CPU 14.823
Smina 32-core CPU 12.678
TANKBind1 Tesla A100 0.72
KarmaDock Tesla V100 0.017
EquiBind Atomistic pose prediction GTX 1060 0.04
DiffDock Tesla A100 10/40
TANKBind2 Scoring only Tesla A100 0.28
DeepBindGCN-RG RTX A4000 0.0075
PharmacoNet Coarse-grained pose prediction & Scoring 32-core CPU 0.00089
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1.7 Table S2: Hyperparameters

Table S2: Hyperparameters.

Hyperparameter Value
Batch Size 8
Learning Rate 1e-4
Optimizer AdamW
Weight Decay 0.05
Eps 1e-8
Betas (0.9, 0.999)
LR Schedular LinearLR (start: 1e-3, total iters: 1,000)

+ StepLR (steps: 50,000, gamma: 0.2)
Data Augmentation Random Translation (3.0 Å), Random Rotation
Model Hidden Dimensions SwinV2-T
Model Size 31M
Input Voxelization Kernel Gaussian
Output Voxelization Kernel Binaray
Voxelization Resolution 0.5 Å
Voxelization Dimension (64×64×64)

7



2 Additional Results

2.1 Comparison with structure-based binding conformation prediction methods

In this section, we compared the average runtimes of PharmacoNet against those of the docking programs on
both the PDBbind core set [1] and the refined set when the initial conformers of each ligand were provided.
Moreover, we also compared the speed of several non-structure-based DL models and DL-based molecular
docking methods [2–6] on PDBbind time split test set proposed by [2]. For all benchmark tests, we consid-
ered 8 conformers for each ligand for a fair comparison with AutoDock Vina and Smina, which perform pose
searches with a default exhaustiveness of 8. It should be noted that the unique NCI-aware scoring strategy of
PharmacoNet makes it faster than DL-based binding conformation prediction methods and non-structure-based
PLI prediction models running on GPUs (Supplementary Table S1†). While these DL models can be accelerated
with efficient parallel computations on GPUs, PharmacoNet’s absolute computational cost is very small. As a
result, PharmacoNet was 19x faster than KarmaDock [5], the fastest model with binding pose prediction, and 8x
faster than DeepBindGCN-RG [6], the fastest model without binding pose prediction, even though both models
were evaluated on GPUs, whereas PharmacoNet was performed on a CPU.

3 Training details

The prediction of binary masks for each pharmacophore point is carried out using a 3D-CNN which is computa-
tionally expensive. As a result, we train the model by sampling up to 6 pharmacophore points for each complex
in each training iteration. Furthermore, the number of protein hotspots (instances) is considerably smaller com-
pared to the total number of FGs (tokens) present in a given binding site. Consequently, we sample up to 200
tokens for each complex, with priority given to protein hotspots, tokens within cavities, and remaining tokens
to reduce the data imbalance. The hyperparameters are explained in Table SS2. The model training took about
48 hours on 4 NVIDIA RTX 3090 24GB GPUs.

4 Baseline of benchmark studies

Gold, LeDock, Glide SP. Since those commercial docking programs require licenses, we reused the numbers
reported in Zhang et al. [5]

TransformerCPI, KarmaDock. We reused the numbers reported in Zhang et al. [5].

TANKBind, EquiBind, DiffDock. We reused the numbers reported in Corso et al. [4]. For the screening
power of TANKBind, we reused the numbers reported in Zhang et al. [5].

DeepBindGCN-RG. Since DeepBindGCN-RG is implemented in an older version of torch geometric, we
manually modified the names of parameters associated with some layers included in the saved model file.

AutoDock Vina. The data preparation process for molecular docking has a significant impact on performance.
However, previous studies did not report detailed benchmark settings, which has led us to report the preparation
and docking parameters for a reproducible benchmark comparison.

For proteins, We first removed hetero atoms in protein pdb files, then converted them to a pdbqt format
with AutoDockTools [7]. For ligands, mol2 or pdb files were converted to pdbqt files with Open Babel [8] and
AutoDockTools. We used processed ligand and protein pdbqt files for AutoDock Vina with an exhaustiveness
of 8. The search box size is (30, 30, 30), and its center is the center of the reference ligand.

Smina. We removed hetero atoms in protein pdb files. We used ligand sdf files and processed protein pdb
files for Smina. Smina was then run with protein pdb files and ligand sdf files under the auto-box setting using
the reference ligands and default exhaustiveness of 8. The size and center of the search box are determined with
the auto-box setting of the reference ligand.
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5 Graph matching algorithm

5.1 Clustering algorithm for ligand pharmacophore arrangements

We perform clustering for ligand pharmacophores in the same functional groups according to the following
criteria:

• The cations, anions, H-bond acceptors, and H-bond donors in the same functional group are grouped.

• The aromatic ring and hydrophobic carbons in the same functional group are grouped.

• The hydrophobic carbons in the same carbon chain are grouped.

5.2 Clustering algorithm for pharmacophore model

We perform clustering for pharmacophore points accodring to the following process:

• The Cation-type points and Anion-type points in 1.5 Å are grouped, respectively. For each cation/anion-
type point, near H-bond donor/acceptor-type points within 3.0 Å are grouped together.

• The Aromatic-type points in 1.5 Å are grouped. For each aromatic-type point, near HydrophobicCarbon-
type points within 3.0 Å are grouped together.

• The H-bond donor/acceptor-type points in 3.0 Å are grouped.

• The Hydrophobic-type points in 3.0 Å are grouped.

6 Software details

ETKDG conformer generation. We used the ETKDG [9] version 3 (small ring) implemented in RDKit [10].

Protein-ligand interaction profiler. To detect non-covalent bonds from the structure of a protein-ligand com-
plex in PDBBind v2020, we used the Protein-Ligand Interaction Profiler (PLIP) [11] and Open Babel [8]. For
flexible and fast data processing during the model training, we reimplemented it while keeping the original PLIP
rules except for the water bridge and the metal bridge.

PIGNet2. For fine-screening evaluation methods, we used PIGNet2 [12], the state-of-the-art scoring DL
model. For PIGNet2, we used 10 Smina docking poses. The estimated binding affinity is an ensemble of
predictions from 4 pre-trained models.

MolVoxel. We developed MolVoxel, a Python library with minimal dependencies to enable on-the-fly vox-
elization in various environments including cheminformatics and deep learning applications. Currently, it sup-
ports NumPy, Numba, and PyTorch (with CUDA support). Users can convert from the point clouds to voxel
images with two kernels: Gaussian and binary. The MolVoxel is accessible at PyPI.
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7 Virtual screening pipeline with PharmacoNet

In this section, we provide simple tutorials to use PharmacoNet. PharmacoNet is open-source and available at
https://github.com/SeonghwanSeo/PharmacoNet.

7.1 Installation

1 # Clone the package from github
2 git clone https :// github.com/SeonghwanSeo/PharmacoNet.git
3

4 # Create conda environments
5 conda create -f environment.yml
6 conda activate pmnet
7 pip install torch
8 pip install .

7.2 Protein-based pharmacophore modeling

1 # Use RCSB PDB Id
2 python modeling.py --pdb 3ug2 --cuda
3

4 INFO:root:Load PharmacoNet finish
5 INFO:root:Load result /3ug2/3ug2.pdb
6 INFO:root:A total of 2 ligand(s) are detected!
7 Ligand 1
8 - ID : IRE (Chain: B [auth A])
9 - Center : -0.184, 49.350 , 20.022

10 - Name : GEFITINIB
11

12 Ligand 2
13 - ID : MES (Chain: C [auth A])
14 - Center : 16.580 , 45.572 , 24.179
15 - Name : 2-(N-MORPHOLINO)-ETHANESULFONIC ACID
16

17 INFO:root:Select the ligand number(s) (ex. 2 ; 1,2 ; manual ; all ; exit)
18 ligand number :1 # Enter the ligand number for binding site detection
19 Ligand 1
20 - ID : IRE (Chain: B [auth A])
21 - Center : -0.184, 49.350 , 20.022
22 - Name : GEFITINIB
23 INFO:root:Save Pharmacophore Model to result /3ug2/3 ug2_B_IRE_model.pm
24 INFO:root:Save Pymol Visualization Session to result /3ug2/3 ug2_B_IRE_model_pymol.pse
25

26 # Use custom protein file and reference ligand file
27 python modeling.py --protein <PROTEIN_PATH >
28 --ref_ligand <LIGAND_PATH > --prefix <PREFIX >
29

30 # Use custom protein file and xyz coordinates.
31 python modeling.py --protein <PROTEIN_PATH > --center <X> <Y> <Z>
32 --prefix <PREFIX >

7.3 Virtual screening

1 # Unzip example library file
2 tar -xf examples/library.tar
3

4 # Run virtual screening
5 python screening.py -p ./ result /3ug2/3 ug2_B_IRE_model.pm
6 --library ./ library --out ./ output.csv --cpus 4
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8 Python interface of PharmacoNet

For application in various machine learning and cheminformatics applications, PharmacoNet provides the sim-
ple Python API. PharmacoNet provides three functionalities: 1) automated protein-based pharmacophore mod-
eling 2) pharmacophore-based virtual screening 3) pre-trained protein representation extraction.

8.1 Pharmacophore modeling

1 from pmnet.module import PharmacoNet
2

3 # Load PharmacoNet
4 pmnet = PharmacoNet(<device >) #(’cuda’ or ’cpu ’)
5

6 # Pharmacophore Modeling with reference -ligand information
7 model = pmnet.run(<protein_path >, <ref_ligand_path >)
8 # pharmacophore Modeling with center
9 model = pmnet.run(<protein_path >, center=<center >)

10 # save pharmacophore model (.pm/.json formats)
11 model.save(<save_path >)

8.2 Ligand scoring for virtual screening

1 from pmnet import PharmacophoreModel
2

3 # Load Pharmacophore Model
4 model = PharmacophoreModel(<pharmacophore_model_path >)
5

6 # Ligand Scoring
7 model.scoring_file(<ligand_sdf_file >)

8.3 Protein feature extraction

1 from pmnet.module import PharmacoNet
2

3 # Load PharmacoNet
4 pmnet = PharmacoNet(<device >, 0.5)
5

6 # From reference -ligand information
7 out = module.feature_extraction(<protein_path >, <ref_ligand_path >)
8 # From center
9 out = module.feature_extraction(<protein_path >, center=<center >)

10

11 multi_scale_feature_maps , hotspot_infos = out
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