## **Supplementary Information**

## Enhancing Hydrogen Evolution Reaction Activity Through Defects and Strain

## Engineering in Monolayer MoS<sub>2</sub>

Renjith Nadarajan, Sraboni Dey, Arijit Kayal, Joy Mitra, Manikoth M. Shaijumon\*

School of Physics, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Thiruvananthapuram, Kerala 695551, India.



**Fig. S1** (a) Schematic illustration of the CVD growth of  $MoS_2$  (b) Schematic crystal configuration of monolayer  $MoS_2$  (c) TEM and (d) HRTEM images of  $MoS_2$  inset of (c) shows the SAED pattern (e) Raman and (f) PL spectra of  $MoS_2$  monolayer, inset of S1e shows the optical image (g) Raman map image of  $A_{1g}$  mode (403 cm<sup>-1</sup>) and (h) PL map image (A exciton) at 1.82 eV of  $MoS_2$  monolayer (scale bar shows 5 µm)



Fig. S2 Optical images of (a, b)  $\rm S_{2\mu m}\text{-}MoS_{2}$  (c)  $\rm S_{1\mu m}\text{-}MoS_{2}$  (d)  $\rm S_{0.5\mu m}\text{-}MoS_{2}$ 



Fig. S3 (a, b) SEM image of  $S_{0.5\mu m}$ -MoS<sub>2</sub>



Fig. S4 Raman  $A_{_{1g}}$  intensity map image (scale bar 2  $\mu m)$ 



Fig. S5 (a-e) Optical images of  $MoS_2$  monolayer flakes under plasma treatment (scale bar 10  $\mu$ m)



**Fig. S6** (a) Schematic crystal configuration of vacancy  $MoS_2$ . SEM images of (b)  $MoS_2$  monolayer and (c)V- $MoS_{2,}$  respectively (d) AFM image of  $MoS_2$  monolayer under plasma treatment for 30 s ( $V_{30}$ - $MoS_2$ ) (e) Raman and (f) PL spectra of  $MoS_2$  monolayer under different time of plasma treatment inset of (e) showing the optical images of  $MoS_2$  and  $V_{30}$ - $MoS_2$ .



Fig. S7 XPS spectra (a) Mo 3d (b) S 2p of  $MoS_2$  and  $V_{30}$ - $MoS_2$ 



Fig. S8 (a) photograph of the microcell assembly (b-d) Optical images of various  $S_{0.5\mu m}MoS_2$  devices



Fig. S9 The overpotential and the Tafel slope for the different strained samples (S-MoS<sub>2</sub>)



Fig. S10 a) LSV and (b) Tafel curve of  $MoS_2$ ,  $V_{10}$ - $MoS_2$  and  $V_{20}$ - $MoS_2$ .



Fig. S11 Comparison bar plots of overpotential and the Tafel slope for the different SV-MoS<sub>2</sub> samples

 Table S1 Comparison of HER performance of engineered TMDs-based electrocatalysts.

| Modification<br>method  | Material                          | Before<br>modification      | After<br>modification      | References |
|-------------------------|-----------------------------------|-----------------------------|----------------------------|------------|
| Strained and<br>vacancy | MoS2                              | 382 mV                      | 53 mV                      | This work  |
|                         |                                   | $186 \text{ mV dec}^{-1}$   | $118 \text{ mV dec}^{-1}$  |            |
|                         | WS2@ C                            |                             | 117 mV                     | 1          |
|                         |                                   | $98 \text{ mV dec}^{-1}$    | $56 \text{ mV dec}^{-1}$   |            |
|                         | SV-MoS <sub>2</sub>               |                             | 170 mV                     | 2          |
|                         |                                   | $98 \text{ mV dec}^{-1}$    | $60 \text{ mV dec}^{-1}$   |            |
|                         | Vs-MoS <sub>2</sub> on 90 nm      | 498 mV                      | 234 mV                     | 3          |
|                         | NCS                               | $156.4 \text{ mV dec}^{-1}$ | $79.7 \text{ mV dec}^{-1}$ |            |
| Gating                  | ReS <sub>2</sub> /WS <sub>2</sub> | 210 mV                      | 49 mV                      | 4          |
|                         |                                   | $115 \text{ mV dec}^{-1}$   | $35 \text{ mV dec}^{-1}$   |            |
|                         | Treated VSe <sub>2</sub>          | 126 mV                      | 70 mV                      | 5          |

|                    |                                    | $70 \text{ mV dec}^{-1}$  | $59 \text{ mV dec}^{-1}$  |    |
|--------------------|------------------------------------|---------------------------|---------------------------|----|
|                    | MoS <sub>2</sub>                   | 240 mV                    | 38 mV                     | 6  |
|                    |                                    | $200 \text{ mV dec}^{-1}$ | $110 \text{ mV dec}^{-1}$ |    |
| Interface          | MoS <sub>2</sub> /WTe <sub>2</sub> |                           | 140 mV                    | 7  |
|                    |                                    |                           | $40 \text{ mV dec}^{-1}$  |    |
| Defects/ Vacancies | 3CoMo-Vs                           | 317 mV                    | 75 mV                     | 8  |
|                    | $MoS_2$                            | $175 \text{ mV dec}^{-1}$ | $57 \text{ mV dec}^{-1}$  |    |
|                    | MoS <sub>2</sub>                   | 384 mV                    | 266 mV                    | 9  |
|                    |                                    | $139 \text{ mV dec}^{-1}$ | $90 \text{ mV dec}^{-1}$  |    |
|                    | FD-MoS <sub>2</sub>                | 358 mV                    | 164 mV                    | 10 |
|                    |                                    | $165 \text{ mV dec}^{-1}$ | $36 \text{ mV dec}^{-1}$  |    |
|                    | 1T'-MoTe <sub>2</sub>              | 280 mV                    | 140 mV                    | 11 |
|                    |                                    | $185 \text{ mV dec}^{-1}$ | $160 \text{ mV dec}^{-1}$ |    |
| Phase engineering  | 1T–MoS <sub>2</sub>                | _                         | 175 mV                    | 12 |
|                    |                                    | $180 \text{ mV dec}^{-1}$ | $100 \text{ mV dec}^{-1}$ |    |
|                    | 1T'-MoTe <sub>2</sub>              | 650 mV                    | 356 mV                    | 13 |
|                    |                                    | $184 \text{ mV dec}^{-1}$ | $127 \text{ mV dec}^{-1}$ |    |
|                    | 1T'-MoS <sub>2</sub>               | 286 mV                    | 205 mV                    | 14 |
|                    |                                    | $70 \text{ mV dec}^{-1}$  | $51 \text{ mV dec}^{-1}$  |    |
| Doping             | Co–MoS <sub>2</sub>                | 345 mV                    | 137 mV                    | 15 |
|                    |                                    | $143 \text{ mV dec}^{-1}$ | $59 \text{ mV dec}^{-1}$  |    |
|                    | Mn-doped MoS <sub>2</sub>          | 369 mV                    | 318 mV                    | 16 |
|                    |                                    | $105 \text{ mV dec}^{-1}$ | $82 \text{ mV dec}^{-1}$  |    |

## Reference

- 1 W. Han, Z. Liu, Y. Pan, G. Guo, J. Zou, Y. Xia, Z. Peng, W. Li and A. Dong, *Adv. Mater.*, 2020, **32**, 1–9.
- 2 H. Li, C. Tsai, A. L. Koh, L. Cai, A. W. Contryman, A. H. Fragapane, J. Zhao, H. S. Han, H. C. Manoharan, F. Abild-Pedersen, J. K. Nørskov and X. Zheng, *Nat. Mater.*, 2016, **15**, 48–53.
- 3 X. Liu, Z. Li, H. Jiang, X. Wang, P. Xia, Z. Duan, Y. Ren, H. Xiang, H. Li, J. Zeng, Y. Zhou and S. Liu, *Small*, 2024, **20**, 2307293.
- 4 X. Zhu, C. Wang, T. Wang, H. Lan, Y. Ding, H. Shi, L. Liu, H. Shi, L. Wang, H. Wang, Y. Ding, Y. Fu, M. Zeng and L. Fu, *Adv. Mater.*, 2022, **34**, 2202479.
- 5 M. Yan, X. Pan, P. Wang, F. Chen, L. He, G. Jiang, J. Wang, J. Z. Liu, X. Xu, X. Liao, J. Yang and L. Mai, *Nano Lett.*, 2017, **17**, 4109–4115.
- 6 J. Wang, M. Yan, K. Zhao, X. Liao, P. Wang, X. Pan, W. Yang and L. Mai, *Adv. Mater.*, 2017, **29**, 1604464.
- 7 Y. Zhou, J. V. Pondick, J. L. Silva, J. M. Woods, D. J. Hynek, G. Matthews, X. Shen, Q. Feng, W. Liu, Z. Lu, Z. Liang, B. Brena, Z. Cai, M. Wu, L. Jiao, S. Hu, H. Wang, C. M. Araujo and J. J. Cha, *Small*, 2019, **15**, 1–11.
- 8 Y. Zhou, J. Zhang, E. Song, J. Lin, J. Zhou, K. Suenaga, W. Zhou, Z. Liu, J. Liu, J. Lou and H. J. Fan, *Nat. Commun.*, 2020, **11**, 2253.
- 9 C. Zhu, M. Yu, J. Zhou, Y. He, Q. Zeng, Y. Deng, S. Guo, M. Xu, J. Shi, W. Zhou, L. Sun, L. Wang, Z. Hu, Z. Zhang, W. Guo and Z. Liu, *Nat. Commun.*, 2020, **11**, 772.
- 10 J. Xu, G. Shao, X. Tang, F. Lv, H. Xiang, C. Jing, S. Liu, S. Dai, Y. Li, J. Luo and Z. Zhou, *Nat. Commun.*, 2022, **13**, 2193.
- 11 H. You, Z. Zhuo, X. Lu, Y. Liu, Y. Guo, W. Wang, H. Yang, X. Wu, H. Li and T. Zhai, *CCS Chem.*, 2019, **1**, 396–406.
- Y. Yu, G. H. Nam, Q. He, X. J. Wu, K. Zhang, Z. Yang, J. Chen, Q. Ma, M. Zhao, Z. Liu, F. R. Ran, X. Wang, H. Li, X. Huang, B. Li, Q. Xiong, Q. Zhang, Z. Liu, L. Gu, Y. Du, W. Huang and H. Zhang, *Nat. Chem.*, 2018, 10, 638–643.
- 13 J. Seok, J.-H. Lee, S. Cho, B. Ji, H. W. Kim, M. Kwon, D. Kim, Y.-M. Kim, S. H. Oh, S. W. Kim, Y. H. Lee, Y.-W. Son and H. Yang, *2D Mater.*, 2017, **4**, 025061.
- 14 L. Liu, J. Wu, L. Wu, M. Ye, X. Liu, Q. Wang, S. Hou, P. Lu, L. Sun, J. Zheng, L. Xing, L. Gu, X. Jiang, L. Xie and L. Jiao, *Nat. Mater.*, 2018, **17**, 1108–1114.
- H. Duan, C. Wang, G. Li, H. Tan, W. Hu, L. Cai, W. Liu, N. Li, Q. Ji, Y. Wang, Y. Lu, W. Yan, F. Hu, W. Zhang,
   Z. Sun, Z. Qi, L. Song and S. Wei, *Angew. Chemie Int. Ed.*, 2021, **60**, 7251–7258.
- 16 Z. Cai, T. Shen, Q. Zhu, S. Feng, Q. Yu, J. Liu, L. Tang, Y. Zhao, J. Wang, B. Liu and H. Cheng, *Small*, 2020, **16**, 1–9.