Supplementary Information (SI) for Chemical Science. This journal is © The Royal Society of Chemistry 2024

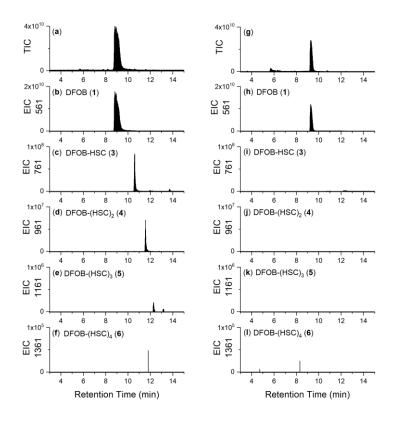
Electronic Supplementary Information

An elastic siderophore synthetase and rubbery substrates assemble

multimeric linear and macrocyclic hydroxamic acid metal chelators

Kate P. Nolan,^a Callum A. Rosser,^a James L. Wood,^a Josep Font,^a Athavan Sresutharsan,^a Joseph Wang,^a

Todd E. Markham,^a Renae M. Ryan^a and Rachel Codd*^a


The University of Sydney, School of Medical Sciences, New South Wales 2006, Australia

Corresponding author

E-mail: rachel.codd@sydney.edu.au

Table of Contents

Item	Page
Fig S1. LC-MS traces from (a–f) commercial 1 , or (g–l) HPLC-purified 1 , as detected by total ion current (TIC) (a, g), or shown as an extracted ion chromatogram (EIC) with values set to report the $[M+H]^+$ adducts of (b, h) 1 , (c, i) 3 , (d, j) 4 , (e, k) 5 , or (f, l) 6	S2
Fig. S2. Theoretical MS/MS fragmentation patterns of 1, 3–6	S2
Fig. S3. EIC traces from chelators with excess Ga(III) or Zr(IV) with EIC values set to report Ga(III) (a-d) or Zr(IV) (e-h) complexes with 1 or 8–10 , with isotope patterns (upper: experiment; lower: calculated) from the major or asterisked peak in the inset, and the relevant species as a cartoon.	S 3
Fig. S4. Sequence alignment (UniProt Blast) ¹ between DesD from <i>Streptomyces griseoflavus</i> DSM 40698 ² (PDB: 7TGK_A) and <i>Salinispora tropica</i> CNB-440 (NCBI Reference Sequence: WP_012013773.1) showing the two conserved residues (<i>S. griseoflavus</i> DSM 40698 numbering: R303, D497) that interact with the	
substrate	S 3
References	S 3

Fig S1. LC-MS traces from (a–f) commercial **1**, or (g–l) HPLC-purified **1**, as detected by total ion current (TIC) (a, g), or shown as an extracted ion chromatogram (EIC) with values set to report the $[M+H]^+$ adducts of (b, h) **1**, (c, i) **3**, (d, j) **4**, (e, k) **5**, or (f, l) **6**.

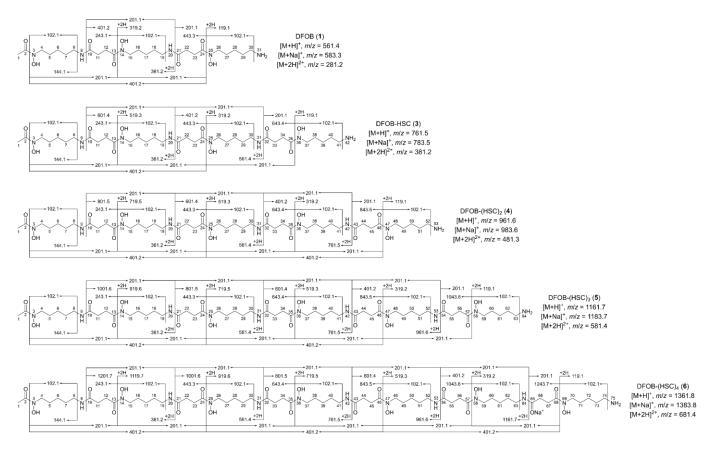
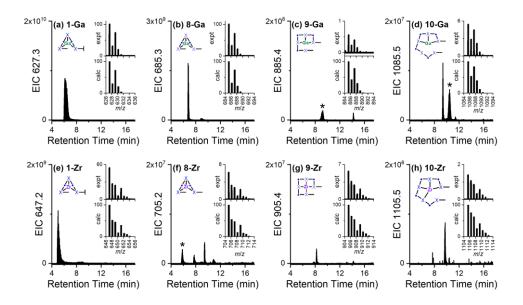



Fig. S2. Theoretical MS/MS fragmentation patterns of 1, 3–6.

Fig. S3. EIC traces from chelators with excess Ga(III) or Zr(IV) with EIC values set to report Ga(III) (ad) or Zr(IV) (e-h) complexes with **1 or 8–10**, with isotope patterns (upper: experiment; lower: calculated) from the major or asterisked peak in the inset, and the relevant species as a cartoon.

WP_012013773.1 pdb 7TGK A	MGS	SHH	ннн	HS	SG	LVP	RG	s H M	T P S L	G D A T D A	V T V A	H L H L	TPA SPE			A N A N	R L L R L L	V R	RKA	L A L A	E F E F	A H I A H I	E R L E R L	FT	P E P E	P L P A	PADG	E P Q D	G R Y T G R Y V	49 69
WP_012013773.1 pdb 7TGK A	V R S V R S	D D G D D G	T V E L T S	Y R Y R	F T /	A R L A V R	L A I R A I	L D H L D H	WQ WQ		PDS GS		R H C R T F	GES	GQ	L P L P	V D A		F C F F	L E I E	L R L R	G A H T	LGL	S C	R V E I	LP	V V V V V V	LE	EITA EISS	118 138
WP_012013773.1 pdb 7TGK A	T L A T L S	G S A G T C	Y K L Y K L	A R T K	GGI	P A A V T A	E K A G	L V A L L E	A D G G	FQT FQA	VE	S A I S G I	M T E	G H	PC	FV		N G R N G R	R L G	FS FG	S D V D	EYI	HR	ΎΑ F ΎΑ F	EA	A A A H	PV	R L R L	I W L A V W L A	187 207
WP_012013773.1 pdb 7TGK A	A H R A H R	D H S S R A	T F S A F T	AG	A E I A G	L D Y I D Y	DTI	L I R F V R	T E Q E		Q T E T	R A V E	R F A R F C	A A T D G V	L A L R	G L G R	GLC GLC		DH	H L L L	I P I P	V H I V H I	PW(PW(2WV 2WV	IH K	LS	V T V T	FA	G E V A A E V A	256 276
WP_012013773.1 pdb 7TGK A	R R H R Q N	L V C L V C	LGE	G P S D	DDE	YRA YLA		S I R S I R	T F T F	F N L F N A	TE	P S I P E I	R H Y K H Y	Y V K Y V K	ТА	LS	VLN	N M G	F M	R G R G	LS.		Y M A Y M E	AAT	P A P A			LAI	N L I D R L I D	325 345
WP_012013773.1 pdb 7TGK A	GDE NDP	V F R V L K	STO	LT		RER	AA	V G Y V G Y	R H R H	RQ LE	É A	A T I A T I	D R) D R)	(SP (SP	YR YR	K M K M	L A A L A A	A L N A L N	VRE VRE	S P S P	A Q V P	G L I A L I		RF		TN	IA S IA A	LL	HVDP HVDH	394 414
WP_012013773.1 pdb 7TGK A	E G R E G R	SHT SVA	A A L G E L	A A	ASC	G L T G L A	PA	A W L A W L	R R R H	Y L C Y L F	A Y A Y	L V Y T	P L L P L L	HA	FY FY	A H A Y		A F N A F N	IPH IPH	G E G E	N V N T		V L H V L H			E F	V I A V	F KI Y KI	DI A E DI A E	463 483
WP_012013773.1 pdb 7TGK A	E I V E I V	V M S V M D		P L V L	P P I	A V E E V R	RI	RAD	V P V P			L S L S	F 1 F 1	r d v r d v	I D F D	C F C F	L R H F R F	H L N F L A	AG	L V L A	E A T E	G V (E V		E T D D	FW		V A V A	ESA	A A G <mark>Y</mark> T R E <mark>Y</mark>	532 552
WP_012013773.1 pdb 7TGK A	L D R Q E A	V P H H P E		RA	R R R Q	Y D L Y D L	FA FA	P E F P E F	AL	S C S C	L N F L N F	R L Q R L Q	LR	DN		N V D N V D	LA	D P D P	A G S A	A L (A L (2 L \ 2 L \	/ G 1 / G 1			LA	P Y G L	R P	GT		596 612

Fig. S4. Sequence alignment (UniProt Blast)¹ between DesD from *Streptomyces griseoflavus* DSM 40698² (PDB: 7TGK_A) and *Salinispora tropica* CNB-440 (NCBI Reference Sequence: WP_012013773.1) showing the two conserved residues (*S. griseoflavus* DSM 40698 numbering: R303, D497) that interact with the substrate.

References

1. The UniProt Consortium. UniProt: the Universal Protein Knowledgebase in 2023. Nucl Acids Res. 2023;51(D1):D523–D31. <u>https://doi.org/10.1093/nar/gkac1052</u>.

2. Yang J, Banas VS, Patel KD, Rivera GSM, Mydy LS, Gulick AM, Wencewicz TA. An acyl-adenylate mimic reveals the structural basis for substrate recognition by the iterative siderophore synthetase DesD. J Biol Chem. 2022;298(8):102166. 10.1016/j.jbc.2022.102166.