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Temperature distribution of data

Figure S.1 shows the distribution of the binary activity coefficients over temperature in the

training set as well as in the validation and test set.
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Figure S.1: Temperature distribution of the experimental data points for binary activity
coefficients used in this work.

Figure S.2 shows the data point-wise MAE of the predicted logarithmic activity coeffi-

cients in boxplots on the UNIFAC horizon for HANNA and UNIFAC for different temperature

intervals. HANNA shows more accurate results in all temperature intervals.
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Figure S.2: Data point-wise MAE of the predicted logarithmic activity coefficients lnγi for
HANNA and UNIFAC on the UNIFAC horizon for different temperature intervals on the
test set.
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Ablation studies

This section discusses the results of three ablation experiments to understand the importance

of different parts of HANNA’s architecture. Figure S.3 shows the architecture of the ablation

models. For better comparison, if possible, the same number of nodes as in the final HANNA

model was used, as well as the same number of layers. The number of nodes was only

changed to accommodate the dimension due to a concatenation of features. In ablation model

1, the logarithmic activity coefficients lnγi are predicted directly without considering the

thermodynamic constraints. We had to adapt the architecture slightly further to ensure an

interaction modeling between the components. Therefore, the mixture embeddings fα(C1)

and fα(C2) are concatenated to Cmix,1 = [fα(C1),fα(C2)] and Cmix,2 = [fα(C2),fα(C1)].

Each of them is then processed through the property network fϕ to calculate lnγ1 and lnγ2,

respectively.

In ablation model 2, the logarithmic activity coefficients lnγi are again modeled directly

without the intermediate prediction of gE. However, we now use the mixture embedding

fα(Ci) to predict lnγi in the property network fϕ. In ablation model 3, the embeddings

Ei from ChemBERTa-2 are directly aggregated to Emix using the sum operation. The

standardized temperature T ∗ as well as the product of both mole fraction x1(1 − x1) are

concatenated to Emix to build Cmix, which is then processed by the “property prediction”

network fϕ to calculate gENN. g
E and the logarithmic activity coefficients are then derived in

the same way as in HANNA, cf. Section Development of HANNA in the manuscript. Note

that the activity coefficients are still modeled as equivariant properties in all ablation models

due to our deep-set architecture.
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Figure S.3: Architectures of the three ablation models.
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Figure S.4 (left) shows the training and validation SmoothL1Loss over the epochs for

HANNA and the three ablation models. Ablation model 1 shows nearly the same loss as

HANNA, whereas ablation model 2 shows a significant score deterioration. These results un-

derpin that interaction modeling is necessary, either through a concatenation of the features

of the components as in ablation model 1 or through a summation as in HANNA or ablation

model 3. Furthermore, the results show that the model flexibility is not overly restricted by

hard-constraining its predictions to the thermodynamically consistent solution space.

Figure S.4 (right) shows the mean squared deviation of the model predictions from the

Gibbs-Duhem equation, cf. Equation (2) in the manuscript, for the training and validation

set over the epochs for HANNA and the three ablation models. As expected, HANNA

and ablation model 3 show zero error over all epochs since Gibbs-Duhem consistency is

strictly enforced in their network architectures. In contrast, strict Gibbs-Duhem consistency

is not obtained with the ablations models 1 and 2. Specifically, the loss of ablation model 1

decreases during the first epochs; the model obviously “learns” something about the Gibbs-

Duhem equation during the training, but only until a certain threshold is reached. We can

assume that this is, among others, caused by inconsistencies in the experimental training

data.1 Hence, learning Gibbs-Duhem consistency solely based on experimental data seems

unfeasible. Ablation model 2 also learns something about Gibbs-Duhem consistency during

the first epochs, but then it shows instabilities.
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Figure S.4: Left: SmoothL1Loss for the training and validation set over the epochs for
HANNA and the three ablation models. Right: Mean squared deviation of model predictions
from the Gibbs-Duhem equation, cf. Equation (2) in the manuscript, for the training and
validation set over the epochs for the four models. The end of the training is determined
by the validation loss, cf. Section Data splitting, training, and evaluation of the model in
the manuscript for details. HANNA and ablation model 3 show zero deviation from the
Gibbs-Duhem equation throughout.

Figure S.5 shows the system-specific MAE of HANNA and the three ablation models on

the test data. Overall, HANNA shows the best performance together with ablation model

1, which, however, does not give physically consistent predictions.
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Figure S.5: System-specific MAE of the predicted logarithmic activity coefficients lnγi from
the test set with HANNA and the three ablation models. The upper whisker of ablation
model 2 ends at an system-specific MAE of 1.24.

Extrapolation to unknown components

Figure S.6 compares HANNA and UNIFAC for predicting the systems from the test set where

one component is entirely unknown to HANNA. Furthermore, the results from HANNA for

all systems with one unknown component from the complete test set (complete horizon)

are shown. As discussed in the manuscript, there could, in principle, be another class of

test systems in which both components are unknown to HANNA. However, since this was

the case for precisely a single system within the UNIFAC horizon, the respective results are

omitted here. Note that we can distinguish these cases only for HANNA since the training

set of UNIFAC has not been disclosed.

The boxplots demonstrate that HANNA is significantly more reliable in extrapolating to

systems containing unknown components than UNIFAC. For both models, the scores shown

here are significantly worse than those shown in Figure 2 of the manuscript, which also

covers the test data points where only the system was unknown to HANNA. This observation

might be explained considering two facts: first, systems containing water are heavily over-
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represented in the data sets shown in Figure S.6 (e.g., 70% of the systems of the UNIFAC

horizon contain water), and systems with water are known to be rather tricky to describe.

Second, data for activity coefficients at infinite dilution are heavily over-represented in the

data sets shown in Figure S.6 (e.g., for 80% of the systems of the UNIFAC horizon, only

data for activity coefficients at infinite dilution are available), which are, again, more difficult

to predict than data at finite concentrations, among others, due to the high experimental

uncertainty of activity coefficients at infinite dilution.
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Figure S.6: System-specific MAE of the predicted logarithmic activity coefficients lnγi from
HANNA and UNIFAC for the case that one component is unknown in the system. Left:
results for the 40 out of 1658 systems from the test set that can also be predicted with
UNIFAC (UNIFAC horizon). Right: results for the 56 out of 3502 systems from the complete
test set (complete horizon).
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Hyperparameter optimization

Table S.1 shows the varied hyperparameters in developing HANNA and the SmoothL1Loss

achieved on the validation data. Model 7 was used throughout the manuscript.

Table S.1: Varied hyperparameters in the development of HANNA and their influence on
the validation loss. λ is the weight decay in the ADAMW optimizer.

Model No. λ Number of nodes Initial learning rate SmoothL1Loss

1 0.01 128 0.001 0.0574
2 0.01 128 0.0005 0.0639
3 0.001 128 0.001 0.0576
4 0.001 128 0.0005 0.0641
5 0.0001 128 0.001 0.0576
6 0.0001 128 0.0005 0.0641
7 0.01 96 0.001 0.0567
8 0.01 96 0.0005 0.0579
9 0.001 96 0.001 0.0579
10 0.001 96 0.0005 0.0573
11 0.0001 96 0.001 0.0569
12 0.0001 96 0.0005 0.0570
13 0.01 64 0.001 0.0615
14 0.01 64 0.0005 0.0710
15 0.001 64 0.001 0.0584
16 0.001 64 0.0005 0.0705
17 0.0001 64 0.001 0.0588
18 0.0001 64 0.0005 0.0705

Results for different seeds

This section compares results for different splittings of the systems from the complete dataset

into training, validation, and test sets. Figure S.7 shows boxplots for the system-specific

MAE on the different test sets, indicated by different specified seeds, on the UNIFAC horizon.

High robustness of HANNA is observed.
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Figure S.7: System-specific MAE of HANNA (left) and UNIFAC (right) on the UNIFAC
horizon for different test sets, defined by specifying different seeds in the data split. Seed 10
was used throughout the manuscript.

Improved tokenization of ChemBERTa-2

The first step of ChemBERTa-2 is a tokenization of the SMILES used as input. For ex-

ample, the SMILES “CCO” representing ethanol is split into “C”, “C”, and “O”. However

in our study, we found that the tokenization of some SMILES were incorrect, e.g., “CCCl”

is incorrectly split into “C”, “C”, “C”, i.e., wrongly substituting the “Cl” by a “C”. We

have therefore used our own tokenizer to correctly split the SMILES. Our tokenizer processes

SMILES strings by splitting them into distinct tokens, specifically capturing atom represen-

tations enclosed in square brackets (e.g., [Xe]) and two-letter elements like “Br” and “Cl”.

The detailed code is provided in our Github.2
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