
Supplementary Information

Identify structures underlying out-of-equilibrium

reaction networks with random graph analysis

Éverton F. da Cunha,1,2# Yanna J. Kraakman,3# Dmitrii V. Kriukov,1,2 Thomas van

Poppel,1 Clara Stegehuis,3* Albert S. Y. Wong1,2*

1 Department of Molecules and Materials, Faculty of Science and Technology,
2 BRAINS (Center for Brain-inspired Nano Systems),
3 Department of Mathematical Operation Research, Faculty of Electrical Engineering, Mathematics

and Computer Science,

University of Twente, Drienerlolaan 5, 7522 NH Enschede, the Netherlands

authors contributed equally;

* Corresponding author: c.stegehuis@utwente.nl; albert.wong@utwente.nl

Supplementary Information (SI) for Chemical Science.
This journal is © The Royal Society of Chemistry 2025

mailto:c.stegehuis@utwente.nl
mailto:albert.wong@utwente.nl

S2

Content Page

CONTENT PAGE 2

S1. GENERAL 3

Methodology and Software 3

S2. DEVELOPMENT OF THE ALGORITHM CRN2NET 4

S2.1 Overview of the algorithm 4

S2.2 Build-up of the algorithm 4

S3. NETWORK MEASURES APPLIED ON THE ENZYMATIC OSCILLATOR 6

S3.1 Implementation of the network measures 6

S3.2 Development of the random graph null model 6

S3.2.1. Randomize reactions in a CRN 6

S3.2.2. Simulate randomized data 7

S3.3 Network measures applied on temporal behavior 8

S3.3.1. Simulating the temporal evolution of the trypsin oscillator based on the ODEs 8

S3.3.2. Simulating the temporal evolution of the species-species network G2 8

S3.3.3. Simulating the temporal evolution of the network properties of the trypsin oscillator 9

NON-TEXTUAL ELEMENTS 10

S3

S1. General

Methodology and Software

NetworkX (an open source Python package for complex networks) was used as the

computational data structure to develop the species-species networks and implement the network

measures used in this work. Functions were encoded in Python and MATLAB®. The Python file

CRN_network_tools.py contains most of the scripts: the CRN2NET algorithm, the measures, the

temporal evolution of the measures, and the visualization. The Python files in the null_model folder

contain the scripts used to create the null model. All Python scripts developed for this work contain

detailed information on the functions in the comments. The Python environment can be setup with

CRN_network_tools_env.yml. The MATLAB® files (*.m in enzymatic oscillator.zip) were used

separately to simulate the time series of the CRN. A README.txt is included as a user guide to

setup the computational environment and how to execute the scripts. A Jupyter Notebook file

(Complex Network analysis of oscillatory CRN.ipynb) is provided to allow for an interactive

interface for importing, generating and manipulating Python functions and data.

S4

S2. Development of the algorithm CRN2NET

S2.1 Overview of the algorithm

The CRN2NET is the algorithm used to encode a chemical reaction network into a graph-based

structure model, as explained in the main text. Fig. S2 illustrates the overall procedure (step A to

step F), but the algorithm starts from a list of chemical reactions that can be established by

identifying the input and output elements for each reaction in the enzymatic reaction network,

including the side reactions.

S2.2 Build-up of the algorithm

The outcome of the algorithm, the graph-based models G1 or G2 from main text Fig. 3 – named

species-species networks – are summarized as Table S1 and Table S2. As an example, trypsin (Tr)

autocatalysis comprises three elementary reactions. In Step D (Assign Species), classifies the

reactants and products as output (From) and input (To) species respectively:

Next, Step E (Identify Direct Edges) creates the edges simply by connecting the identified input

and output species with an arrow (From → To). Note that the arrow does not bear the meaning of

a reaction (with an associated rate constant) but only indicates that there is a directed relation

between the species. Therefore, multiple edges between two nodes are possible (known as edge

multiplicity) even within the same elementary reaction, representing distinct relationships among

the pair of species. Building on the same example from above, weights are defined according to

the assigned species multiplicity as follows:

R1 Tr + Tg Tr●Tg → Tr + Tr

ER1 Tr + Tg → Tr●Tg

ER2 Tr●Tg → Tr + Tg

ER3 Tr●Tg → Tr + Tr

From: Tr, Tg

To: Tr●Tg

From: Tr●Tg

To: Tr, Tg

From: Tr●Tg

To: Tr, Tr

Chemical Reaction Elementary Reactions Assign Species

S5

Directed edges e3, e5 and e6 are grouped together into one weighted edge, WE3, with a weight of

three, represented by the thickness of the edge. Fig. S3 depicts the species-species network

constructed from the chemical species, as nodes, and their weighted directed edges. Overall, the

outcome of the CRN2NET is a list of weighted direct edges (Table S1). The algorithm applied to

the same system under out-of-equilibrium conditions yields Table S2. The list of chemical

reactions for both system conditions (batch and flow) are included in the Extended Materials as

enzy_CRN_re_eqs_[batch/flow].txt.

S6

S3. Network measures applied on the enzymatic oscillator

S3.1 Implementation of the network measures

 The network measures are derived from NetworkX. Specifically, when calculating the cluster

coefficient, edge weights were not considered, and only feedback triangles were considered among

the potential candidates of directed triangles. The algorithm can be found in the Extended Materials

as CRN network-tools.py. Additionally, for betweenness centrality, weights were treated as

multiplicities rather than the length of the path, as is done in the original NetworkX implementation.

The three measures, introduced in the main text, were encoded in python and use the species-

species network (Table S1, and Table S2) to produce Table S3.

S3.2 Development of the random graph null model

S3.2.1. Randomize reactions in a CRN

To create randomized network versions from our CRN, three steps are required:

1. Change the network from a weighted network to a multi-edge network, by replacing every

edge of weight w by w copies of weight 1;

2. Uniformly randomize these edges by swapping pairs of edges;

3. Change the network back from a multi-edge network to a weighted network, by replacing all

w’ copies of an edge by one edge of weight w’.

The Steps 1 and 3 are needed to randomize the edge weights. The total sum of the edge weights

stays constant. The algorithm is given by the pseudocode below, where |E| is the size of the set of

edges E, and can be found in ConfigModel_EdgeSwapping_multidigraph.py. Note that the

algorithm never changes the degrees of the nodes. The acceptance probability that is used, makes

sure that there is no bias towards creating networks with edges with small weight. In particular, it

ensures that the probability of creating any network with these degrees is approximately equal.

S7

 let G be the network, with edges given by the set E

 for every edge e in E:

 let w = weight(e)

 replace e in E by w edges of weight 1

 repeat 50 * |E| times:

 pick two edges (a,b), (c,d) uniformly at random from E

 let (a,d), (c,b) be the shuffled edges

 let r be a random number between 0 and 1

 if r > 1/(multiplicity((a,b)) * multiplicity((c,d)):

 accept shuffle, so remove edges (a,b),(c,d) from E, add edges (a,d),(c,b) to E

 else:

 reject shuffle, so do not change anything.

 for every edge e in E:

 let w’ = multiplicity(e)

 replace all w’ copies of e in E by one edge with weight w’

 return G, E

S3.2.2. Simulate randomized data

Generating the data for the random null model requires two steps:

1. Create 10,000 random network samples and compute the cc and bc values for every node in

every random network;

2. For every node, show the null model data in a boxplot, together with the original data point.

The algorithm is given by the pseudocode below, and can be found in the Extended Materials as

Create_null_model_data.py.

S8

 let G be a network, with nodes given by the set V

 for every node v in V:

 create an empty array cc_v

 create an empty array bc_v

 repeat 10,000 times:

 create a random network G’ using the previous algorithm

 for every node v in V:

 compute the cc value of v in G’ and append the value to cc_v

 compute the bc value of v in G’ and append the value to bc_v

 for every node v in V:

 create a boxplot from the values in cc_v

 add the cc value of v in G to this boxplot as the original data value

 create a boxplot form the values in bc_v

 add the bc value of v in G to this boxplot as the original data value

S3.3 Network measures applied on temporal behavior

S3.3.1. Simulating the temporal evolution of the trypsin oscillator based on the ODEs

Three MATLAB® scripts were developed and used to simulate the time series. Specifically,

ode_trypsin_osc.m encodes the ODEs functions of the CRN system; masterscript_ode_param.m

solves the ODEs with the necessary conditions; and data_mining_master.m runs the simulation

and saves the produced timeseries. These scripts are adapted based on existing codes published

earlier9 and used to simulate the behavior of the oscillator, depicted as concentration over time.

Simulations for main text Fig. 5a were performed with t=100 h and with the initial conditions:

V=250 µl, [Tg]0=200 µΜ, [Tr]0=2 µM, [Pro-I]0=1.5 mM, Ap=30 U/ml.

S3.3.2. Simulating the temporal evolution of the species-species network G2

The simulated time series were converted into binary values to identify the temporal evolution

of G2. We consider that an edge can only exist when the associated node is present. For each time

point, we calculated the second derivative of the species concentration to determine the threshold

value for the individual node. In particular, we say that the temporal threshold for when a species

S9

becomes present or absent is when this second derivative equals zero. This dynamic threshold is

able to adapt to changes on the species level, as a the absolute concentrations of the individual

species differ significantly (enzymes are in the micromolar range, while small molecules are in the

millimolar range). Then, we converted the original set of time series (with concentrations as units)

into a set of modified time series with binary values (with ‘1’ and ‘0’ assigned to the values above

and below the threshold, respectively). Subsequently, the binary time series determine when the

edges in G2 are present. Specifically, we only say that edges are present when they direct from a

node that is present (value 1), while edges that direct from a node with value 0 are deleted at that

time step. The Python function t_snap takes each time point of the binary time series, connects the

nodes that were assigned as 1 with an edges, as in Table S2, and produces a species-species

network for that specific system moment. Repeating this procedure for every time point during a

single oscillation yields a sequence of snapshots, which we animated with a Graphics Interchange

Format, gif, in Fig. S4.

S3.3.3. Simulating the temporal evolution of the network properties of the trypsin oscillator

We applied our implementation of clustering coefficient and betweenness centrality to examine

the temporal evolution of the network properties of the enzymatic oscillator. For each flow rate

value, cc5 and bc7 is measured for the full concentration time, 180 h. Repeating this procedure for

a flow rate in the range of 0-500 µL h-1, with an increment of 1 µL h-1, yields a sequence of time

series snapshots of the evolution of the Tr concentration and network measures, which are

represented as gif in Fig. S5. As can be expected, the desired dynamic behavior (sustained

oscillations) were only found between a restricted range of flow rates, from 5 µL h-1 to 65 µL h-1.

The temporal evolution of cc and bc follows the patterns of the oscillation, even when they are not

sustained.

S10

Non-Textual Elements

Fig. S1. A previously developed trypsin (Tr) network, depicted as a conceptual model (A) comprising feedback

loops. (B) The reaction scheme with the underlying reaction mechanisms used for developing the script ‘CRN2NET’.

S11

Fig. S2. Overview of the process involved in encoding the enzymatic reaction network into a species-species

network (or, more generally, a complex network). 'R#' denotes the chemical reactions (with '#' ranging from 1 to 10).

'ER#' denotes the elementary reactions (with '#' ranging from 1 to 16). 'De#' denotes the directed edges (with '#' ranging

from 1 to 28). 'We#' denotes the weighted edges (with '#' ranging from 0 to 19).

S12

Fig. S3. Example of a species-species network. The CRN2NET applied on reaction R1 (Table S1) yields the species-

species network representing the autocatalytic conversion of Tg into Tr. The weight of the edges is visualized by the

thickness of the arrow.

S13

Fig. S4. Temporal evolution of the species-species network G2 during a single oscillation. The fraction of a period

is indicated on the top of the graph. The animated image sequence is provided in the Extended Materials:

SupplementaryInformation_FigS3.gif.

S14

Fig. S5. Temporal evolution of the oscillator and the network measures as a function of flow. The dynamic

behavior, depicted as concentration of Tr over time, and the structural behavior, depicted as network measures cc5 and

bc7 over time. The flow rate (fr, in µL h-1)—reciprocal of space velocity—is indicated on the top of the graph. The

animated image sequence is provided in the Extended Materials: SupplementaryInformation_FigS4.gif.

S15

Table S1. Summary of the nodes and edges associated with the Species-species network under equilibrium conditions, G1.

CM abbreviates conceptual model. *Weighted edges that comprise processes for the negative feedback and side reactions as defined in the original model.

Process description From To Weights
Tr Tr·Tg De1 Tr → Tr·Tg We1 Tr → Tr·Tg 1
Tg Tr·Tg De2 Tg → Tr·Tg We2 Tg → Tr·Tg 1

Tr·Tg Tr De3 Tr·Tg → Tr We3 Tr·Tg → Tr 3
Tr·Tg Tg De4 Tr·Tg → Tg We4 Tr·Tg → Tg 1
Tr·Tg Tr De5 Tr·Tg → Tr We5 Tr → Tr·Pro-I 1
Tr·Tg Tr De6 Tr·Tg → Tr We6 Pro-I → Tr·Pro-I 1

Tr Tr·Pro-I De7 Tr → Tr·Pro-I We7 Tr·Pro-I → Tr 2
Pro-I Tr·Pro-I De8 Pro-I → Tr·Pro-I We8 Tr·Pro-I → Pro-I 1

Tr·Pro-I Tr De9 Tr·Pro-I → Tr We9 Tr·Pro-I → Int-I 1
Tr·Pro-I Pro-I De10 Tr·Pro-I → Pro-I We10 Ap → Ap·Int-I 1
Tr·Pro-I Tr De11 Tr·Pro-I → Tr We11 Int-I → Ap·Int-I 1
Tr·Pro-I Int-I De12 Tr·Pro-I → Int-I We12 Ap·Int-I → Ap 2

Ap Ap·Int-I De13 Ap → Ap·Int-I We13 Ap·Int-I → Int-I 1
Int-I Ap·Int-I De14 Int-I → Ap·Int-I We14 Ap·Int-I → I 1

Ap·Int-I Ap De15 Ap·Int-I → Ap We15 Tr → P * 3
Ap·Int-I Int-I De16 Ap·Int-I → Int-I We16 I → P * 2
Ap·Int-I Ap De17 Ap·Int-I → Ap We17 Int-I → P 2
Ap·Int-I I De18 Ap·Int-I → I We18 Pro-I → P 2

Tr P De19 Tr → P We19 Tg → Tr 1
I P De20 I → P

Tr P De21 Tr → P
Int-I P De22 Int-I → P
Tr P De23 Tr → P 10

Pro-I P De24 Pro-I → P 28 (19)
Hydrolysis of active inhibitor R7 I → P ER13 I → P I P De25 I → P
Hydrolysis of intermediate inhibitor R8 Int-I → P ER14 Int-I → P Int-I P De26 Int-I → P
Hydrolysis of pro inhibitor R9 Pro-I → P ER15 Pro-I → P Pro-I P De27 Pro-I → P
Trypsinogen auto-activation R10 Tg → Tr ER16 Tg → Tr Tg Tr De28 Tg → Tr

F: Define Weighted Edges
Reaction Mechanisms EdgesA: CM B: Specify Reaction Mechanisms C: Split into Elementary

Steps
D: Assign Species E: Identify Directed

Edges

Tr + Tg → Tr·Tg

ER2 Tr·Tg → Tr + Tg

ER3 Tr·Tg → Tr + Tr

PO
SI

TI
VE

FE

ED
BA

CK

Trypsin autocatalysis R1 Tr + Tg ↔ Tr·Tg → Tr + Tr

ER1

Tr + Pro-I → Tr·Pro-I

ER5 Tr·Pro-I → Tr + Pro-I

ER6 Tr·Pro-I → Tr + Int-I

NE
G

AT
IV

E
FE

ED
BA

CK Pro-inhibitor activation R2 Tr + Pro-I ↔ Tr·Pro-I → Tr + Int-I

ER4

Delayed inhibitor activation R3 Ap + Int-I ↔ Ap·Int-I → Ap + I

ER7 Ap + Int-I → Ap·Int-I

ER8 Ap·Int-I → Ap + Int-I

ER9 Ap·Int-I → Ap + I

SI
DE

 R
EA

CT
IO

NS Trypsin inhibition by intermediate inhibitor R5 Tr + Int-I → P ER11

Trypsin inhibition by active inhibitor R4 Tr + I → P ER10 Tr + I → P

Tr + Int-I → P Species-Species Network

Trypsin inhibition by pro inhibitor R6 Tr + Pro-I → P ER12 Tr + Pro-I → P
Nodes
Edges (Weighted edges)

S16

Table S2. Summary of the nodes and edges associated with the Species-species network under out-of-equilibrium conditions, G2.

CM abbreviates conceptual model. *Weighted edges that comprise processes for the negative feedback and side reactions as defined in the original model.

Process description From To Weights
Tr Tr·Tg De1 Tr → Tr·Tg We1 Tr → Tr·Tg 1
Tg Tr·Tg De2 Tg → Tr·Tg We2 Tg → Tr·Tg 1

Tr·Tg Tr De3 Tr·Tg → Tr We3 Tr·Tg → Tr 3
Tr·Tg Tg De4 Tr·Tg → Tg We4 Tr·Tg → Tg 1
Tr·Tg Tr De5 Tr·Tg → Tr We5 Tr → Tr·Pro-I 1
Tr·Tg Tr De6 Tr·Tg → Tr We6 Pro-I → Tr·Pro-I 1

Tr Tr·Pro-I De7 Tr → Tr·Pro-I We7 Tr·Pro-I → Tr 2
Pro-I Tr·Pro-I De8 Pro-I → Tr·Pro-I We8 Tr·Pro-I → Pro-I 1

Tr·Pro-I Tr De9 Tr·Pro-I → Tr We9 Tr·Pro-I → Int-I 1
Tr·Pro-I Pro-I De10 Tr·Pro-I → Pro-I We10 Ap → Ap·Int-I 1
Tr·Pro-I Tr De11 Tr·Pro-I → Tr We11 Int-I → Ap·Int-I 1
Tr·Pro-I Int-I De12 Tr·Pro-I → Int-I We12 Ap·Int-I → Ap 2

Ap Ap·Int-I De13 Ap → Ap·Int-I We13 Ap·Int-I → Int-I 1
Int-I Ap·Int-I De14 Int-I → Ap·Int-I We14 Ap·Int-I → I 1

Ap·Int-I Ap De15 Ap·Int-I → Ap We15 Tr → P * 3
Ap·Int-I Int-I De16 Ap·Int-I → Int-I We16 I → P * 2
Ap·Int-I Ap De17 Ap·Int-I → Ap We17 Int-I → P 2
Ap·Int-I I De18 Ap·Int-I → I We18 Pro-I → P 2

Tr P De19 Tr → P We19 Tg → Tr 1
I P De20 I → P We20 S → Tg 1

Tr P De21 Tr → P We21 S → Pro-I 1
Int-I P De22 Int-I → P We22 S → Ap 1
Tr P De23 Tr → P We23 Tg → W 1

Pro-I P De24 Pro-I → P We24 Tr → W 1
Hydrolysis of active inhibitor R7 I → P ER13 I → P I P De25 I → P We25 Tr·Tg → W 1
Hydrolysis of intermediate inhibitor R8 Int-I → P ER14 Int-I → P Int-I P De26 Int-I → P We26 Pro-I → W 1
Hydrolysis of pro inhibitor R9 Pro-I → P ER15 Pro-I → P Pro-I P De27 Pro-I → P We27 Tr·Pro-I → W 1
Trypsinogen auto-activation R10 Tg → Tr ER16 Tg → Tr Tg Tr De28 Tg → Tr We28 Int-I → W 1
In(Tg) R11 S → Tg ER17 S → Tg S Tg De29 S → Tg We29 Ap → W 1

In(Pro-I) R12 S → Pro-I ER18 S → Pro-I S Pro-I De30 S → Pro-I We30 Ap·Int-I → W 1

In(Ap) R13 S → Ap ER19 S → Ap S Ap De31 S → Ap We31 I → W 1

Out(Tg) R14 Tg → W ER20 Tg → W Tg W De32 Tg → W We32 P → W 1
Out(Tr) R15 Tr → W ER21 Tr → W Tr W De33 Tr → W
Out(Tr·Tg) R16 Tr·Tg → W ER22 Tr·Tg → W Tr·Tg W De34 Tr·Tg → W
Out(Pro-I) R17 Pro-I → W ER23 Pro-I → W Pro-I W De35 Pro-I → W
Out(Tr·Pro-I) R18 Tr·Pro-I → W ER24 Tr·Pro-I → W Tr·Pro-I W De36 Tr·Pro-I → W 12
Out(Int-I) R19 Int-I → W ER25 Int-I → W Int-I W De37 Int-I → W 43 (32)
Out(Ap) R20 Ap → W ER26 Ap → W Ap W De38 Ap → W
Out(Ap·Int-I) R21 Ap·Int-I → W ER27 Ap·Int-I → W Ap·Int-I W De39 Ap·Int-I → W
Out(I) R22 I → W ER28 I → W I W De40 I → W
Out(P) R23 P → W ER29 P → W P W De41 P → W

F: Define Weighted Edges
Reaction Mechanisms EdgesA: CM B: Specify Reaction Mechanisms C: Split into Elementary

Steps
D: Assign Species E:Identify Directed

Edges

Tr + Tg → Tr·Tg

ER2 Tr·Tg → Tr + Tg

ER3 Tr·Tg → Tr + Tr

PO
SI

TI
VE

FE

ED
BA

CK

Trypsin autocatalysis R1 Tr + Tg ↔ Tr·Tg → Tr + Tr

ER1

Tr + Pro-I → Tr·Pro-I

ER5 Tr·Pro-I → Tr + Pro-I

ER6 Tr·Pro-I → Tr + Int-I

NE
G

AT
IV

E
FE

ED
BA

CK Pro-inhibitor activation R2 Tr + Pro-I ↔ Tr·Pro-I → Tr + Int-I

ER4

Delayed inhibitor activation R3 Ap + Int-I ↔ Ap·Int-I → Ap + I

ER7 Ap + Int-I → Ap·Int-I

ER8 Ap·Int-I → Ap + Int-I

ER9 Ap·Int-I → Ap + I

Trypsin inhibition by active inhibitor R4 Tr + I → P ER10 Tr + I → P

IN
FL

O
W

O
UT

FL
O

W

Tr + Int-I → P

Species-Species Network

Trypsin inhibition by pro inhibitor R6 Tr + Pro-I → P ER12 Tr + Pro-I → P

Nodes
Edges (Weighted edges)

SI
DE

 R
EA

CT
IO

NS Trypsin inhibition by intermediate inhibitor R5 Tr + Int-I → P ER11

S17

Table S3: Network measured applied on the species-species networks G1 and G2.

Node Degree cc bc

Species G1 G2 G1 G2 G1 G2

1 Tg 3 5 1 0.2 0 0.0365

2 Ap 3 5 0 0 0 0.0429

3 Pro-I 4 6 0 0 0.0044 0.0474

4 Tr 11 12 0.1429 0.1 0.4133 0.2906

5 Int-I 5 6 0 0 0.3447 0.2455

6 I 3 4 0 0 0.0204 0.0147

7 Tr.Tg 6 7 0.5 0.25 0.0667 0.2906

8 Tr.Pro-I 6 7 0 0 0.4889 0.3516

9 Ap.Int-I 6 7 0 0 0.3191 0.25

10 P 9 10 0 0 0 0

11 S - 3 - 0 - 0

12 W - 10 - 0 - 0

	Content Page
	S1. General
	Methodology and Software

	S2. Development of the algorithm CRN2NET
	S2.1 Overview of the algorithm
	S2.2 Build-up of the algorithm

	S3. Network measures applied on the enzymatic oscillator
	S3.1 Implementation of the network measures
	S3.2 Development of the random graph null model
	S3.2.1. Randomize reactions in a CRN
	S3.2.2. Simulate randomized data

	S3.3 Network measures applied on temporal behavior
	S3.3.1. Simulating the temporal evolution of the trypsin oscillator based on the ODEs
	S3.3.2. Simulating the temporal evolution of the species-species network G2
	S3.3.3. Simulating the temporal evolution of the network properties of the trypsin oscillator

	Non-Textual Elements

