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1. General Method.

All commercially available solvents and chemicals were purchased from Sigma-Aldrich, Fisher
Scientific, and Ambeed and used without further purification unless otherwise stated. Water was
deionized and micro-filtered through a Milli-Q water filtration system. Reactions were monitored
by analytical thin-layer chromatography (TLC) on silica gel 60-F2s4 plates, visualized by an
ultraviolet (254 nm) lamp. Microwave reactions were performed using a Biotage Initiator
microwave synthesizer. Mettler Toledo XRS105 microbalance with 0.01 mg accuracy was used to
measure sample weight, and Eppendorf Research plus micropipettes were used to transfer the
solutions. Nuclear magnetic resonance (NMR) spectra were recorded on the Varian Unity Inova
600 MHz spectrometer or Varian Unity Inova 400 MHz system. The chemical shift was presented
in ppm and referenced by residual non-deuterated solvent peaks (D20: 6 = 4.79 ppm, DMSO-ds:
S =2.50 ppm, CDCls: 6 = 7.26 ppm). High-resolution mass spectrometry (HRMS) was obtained
on Agilent LC-MS QTOF 6540 using an ESI source or Waters Synapt G2 mass spectrometer using
an ESI source. UV-Vis absorption spectra were collected by Thermo Scientific Evolution 201
UV/Vis Spectrometer. Flash Column chromatography was performed using a Biotage Selekt
system with silica gel (SilicaFlash P60 from SILICYCLE) as the stationary phase. Isothermal
titration was performed on the MicroCal iTCazo0 system, and samples were all filtered through a
0.45 um PTFE filter before use. ITC Data were analyzed on MicroCal iTCxoo analysis software.
Detailed experimental procedures are provided below in the appropriate sections of this supporting

information.
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2. Synthesis and Compound Characterization
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Scheme S1. Synthesis of TPPC?***3Cl using conventional high dilution approach (method I) and
dynamic approach (method II).
Method I
Et:N (2 mL, 14.4 mmol, 9.4 equiv.) and dry CH2Cl. (500 mL) were added to a 1 L round-bottom
flask. Freshly prepared pyridine-3,5-dicarbonyl dichloride 2 (500 mg, 2.4 mmol, 1.6 equiv.) was
dissolved in CH2ClL: (10 mL) and transferred to a 25 mL syringe. (2,4,6-Triethylbenzene-1,3,5-
triyl)trimethanamine 1 (382 mg, 1.5 mmol, 1.0 equiv.) was also dissolved in CH2Cl. (10 mL) and
transferred to another 25 mL syringe. Both solutions were added to the flask via a syringe pump
over 3 hours. The reaction mixture was then stirred overnight. The solvent was removed under
reduced pressure, and the residue was purified by flash column chromatography (eluent:
CH:Cl2/MeOH = 10:1 with 1% Et:N as an additive). After removing the solvent, the residue was
washed with water (5 mL x 3) to afford the amide cage 5 as a white solid (60 mg, 9% yield). 'H
NMR (400 MHz, DMSO-ds) 6 9.07 (d, J=2.0 Hz, 6H), 8.53 (t,J=4.7 Hz, 6H), 8.28 (s, 3H), 4.46
(d, J=5.0 Hz, 12H), 2.83 (q, J = 7.5 Hz, 12H), 1.11 (t, J = 7.4 Hz, 18H). 1*C NMR (101 MHz,
DMSO-ds) & 165.7, 151.6, 1453, 134.1, 132.6, 130.6, 38.6, 23.1, 17.1. HRMS(ESI) m/z:
[M+2H"]*" Caled for [Cs1HsoNoOg]** 446.7289; found: 446.7309.
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Method 11

Pyridine-3,5-dicarbaldehyde 3 (50 mg, 0.37 mmol) and (2,4,6-triethylbenzene-1,3,5-
triyl)trimethanamine 1 (61 mg, 0.25 mmol) were added to a microwave vial along with isopropanol
(5 mL) as the solvent. The vial was sealed, and the reaction mixture was stirred at 80 °C overnight.
After cooling to room temperature, the solvent was removed under reduced pressure. The resulting
white solid showed decent purity and was directly used in the next step without further
purification."H NMR (400 MHz, DMSO-d6) 6 8.96 (d, J= 2.0 Hz, 6H), 8.40 (s, 6H), 8.15 (s, 3H),
4.86 (s, 12H), 2.45 (m, 12H), 1.11 (t,J=7.5 Hz, 18H).

Amide cage 5: A microwave vial was charged with imine cage 4 (50 mg, 0.063 mmol), NaClO-
(136 mg, 1.5 mmol, 24 equiv.), KH2PO4 (68 mg, 0.5 mmol, 8 equiv.), a-pinene (0.48 mL, 3.0
mmol, 48 equiv.), and dry THF (2.5 mL) as the solvent. The vial was sealed, and the reaction
mixture was stirred at 100 “C overnight. After cooling to room temperature, the solvent was
removed under reduced pressure. The resulting crude product was purified by flash column
chromatography (eluent: CH2Cl./MeOH = 10:1 with 1% Et:N as an additive). The residue was
then washed with water (5 mL x 3) to afford the amide cage 5 as a white solid (34 mg, 61%). The
'"H NMR spectrum matches the product obtained through Method I.

TPPC3***3Cl: A microwave vial was charged with amide cage 5 (10 mg, 0.011 mmol),
iodomethane (23.0 pL, 0.36 mmol, 33 equiv.), and MeCN (1 mL) as the solvent. The vial was
sealed, and the reaction mixture was stirred at 80 °C overnight. After cooling to room temperature,
the solvent was removed under reduced pressure. The residue was dissolved in DMF, and the
counter anion was exchanged by adding KPFs (40 mg, 0.22 mmol, 20 equiv.) to the solution. Water
was added to precipitate the cage as a white solid, which was isolated by centrifugation. The solid
was then redissolved in MeCN and treated with TBACI (61 mg, 0.22 mmol, 20 equiv.). The
resulting white solid was isolated by centrifugation and dried under vacuum to yield TPPC?**3Cl"
(8.9 mg, 76%). 'H NMR (400 MHz, D>0) § 9.51 (s, 3H), 9.41 (s, 6H), 4.61 (s, 12H), 4.49 (s, 9H),
2.59(q,J=7.0Hz, 12H), 1.11 (t,J=7.3 Hz, 18H). ?C NMR (101 MHz, D,0) 162.3, 147.8, 145.6,
139.7, 132.6, 129.6, 49.1, 39.0, 22.6, 15.0. HRMS(ESI) m/z: M** Caled for [CssHesNoOs]**
312.1707; found: 312.1696. Note: The basic principle of the ion exchange process used in our
protocol is that the pyridinium salt, when associated with PF¢~ anions, will precipitate from water
and become highly soluble in MeCN. Conversely, when the pyridinium salt is associated with Cl-

anions, it will precipitate out from MeCN and become highly soluble in water. By introducing a
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large excess of KPFg, the hydrophobic PFs anion selectively forms a hydrophobic ion pair with
the organic pyridinium salt, causing the molecule to precipitate as TPPC3"*3PF¢ from water. The
corresponding TPPC3"*3PFs~ in MeCN will then precipitate out as TPPC*"3CI- upon the
introduction of TBACI.

B B SN SphOS Pd G3/ KZCO3 / N>
’j@l |_J' Hp0/ Dioxane / 130 "C mw /4 h
N % yi
Br HO” CNOH 75% yield

6 7

Scheme S2. Synthesis of TPy>"*3CI".

1.CH3l/90°C /16 h
2. lon exchange

Y

80 % yield

Intermediate 8: K2COs (1.9 g, 14 mmol) was dissolved in a microwave vial prefilled with H.O (4
mL). To this solution, 1,3,5-tribromo-2,4,6-trimethylbenzene (1.0 g, 2.8 mmol) and pyridin-3-
ylboronic acid (1.3 g, 11.2 mmol) were added, followed by the addition of dioxane (12 mL). The
reaction mixture was purged with a flow of N> for 10 minutes and then sealed with a septum cap.
The reaction was heated under microwave irradiation at 130 °C for 4 hours. After cooling to room
temperature, the organic layer was separated and filtered through a 0.45 um PTFE syringe filter,
and the solvent was removed under vacuum. The remaining residues were washed with MeOH to
obtain the product (8) as a white solid (0.74 g, 75% yield). '"H NMR (400 MHz, CDCl3) 8 8.62 (d,
J=4.8 Hz, 3H), 8.51 (t, /= 11.6 Hz, 3H), 7.66 — 7.51 (m, 3H), 7.48 — 7.35 (m, 3H), 1.71 (s, 9H).
BCNMR (101 MHz, CDCls) 6 150.2, 148.4, 137.1, 136.9, 136.5, 134.8, 123.6, 19.8. HRMS(ESI)
m/z: M+H" Calcd for [C24H22N3]" 352.1809; found: 352.1816.

TPy**«3Cl: Intermediate 8 (100 mg, 0.28 mmol) was dissolved in MeCN (15 mL). Iodomethane
(160 pL, 2.5 mmol) was added to the reaction mixture, which was then heated to 90 °C for 16 h.
After cooling to room temperature, the solvent was removed under reduced pressure. The
remaining residue was dissolved in DMF, and the counter anion was exchanged by adding KPFs
(2.0 g, 11 mmol) to the solution. Water was added to precipitate TPy***3PFs as a white solid,
which was isolated by centrifugation. The isolated solid was redissolved in MeCN and treated with
TBACI (2.0 g, 7.2 mmol). The resulting white solid was precipitated by centrifugation and dried
under vacuum to yield TPy**+3CI- (113 mg, 80% yield)."H NMR (400 MHz, D>0) & 8.98 — 8.71
(m, 6H), 8.61 — 8.40 (m, 3H), 8.20 (t, J= 7.1 Hz, 3H), 4.46 (s, 9H), 1.75 (s, 9H). *C NMR (101
MHz, D,0) & 146.7, 145.1, 144.3, 140.5, 136.2, 132.9, 128.3, 48.3, 18.9. HRMS(ESI) m/z: M**
Caled for [C27H30N3]*" 132.0808; found: 132.08209.
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3. Mass Spectrometry
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Fig. S1. HRMS (ESI) spectra of the amide cage 5, showing m/z values representing [5+2H*]*".
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Fig. S2. HRMS (ESI) spectra of TPPC***3Cl- showing m/z values representing TPPC>*,
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Fig. S5. HRMS (ESI) spectra of a mixture of NaCl and TPPC3*3Cl- showing m/z values
representing CI'cTPPC*". No peak representing [2C1I"cTPPC>*" |* at 1006.4508 was observed.
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Fig. S6. HRMS (ESI) spectra of a mixture of NaBr and TPPC3"+3CI~ showing m/z values
representing Br c TPPC**. No peak representing [2Br- cTPPC?** |" at 1096.3477 was observed.
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Fig. S7. HRMS (ESI) spectra of a mixture of Nal and TPPC3"+3CI- showing m/z values
representing ' TPPC3*. No peak representing [2I"c TPPC** " at 1190.3220 was observed.
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Fig. S9. HRMS (ESI) spectra of a mixture of Na,C>04 and TPPC**3Cl- showing m/z values

representing HC,04 cTPPC?*, Note: the C204> is protonated as HC204~ since the solvent used

for HRMS contains formic acid.
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4. NMR Spectroscopy
Compound Characterization
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Fig. S12. "H NMR (400 MHz, DMSO-d6) spectrum of the imine cage 4.
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Fig. S13. "H NMR (400 MHz, DMSO-d6) spectrum of the amide cage 5.
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Fig. S14. 3C NMR (101 MHz, DMSO-d6) spectrum of the amide cage 5.
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Fig. S15. '"H NMR (400 MHz, D>0) spectrum of TPPC**<3Cl".
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Fig. S18. 3C NMR (101 MHz, CDCl;3) spectrum of intermediate 8.
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Fig. S19. 'H NMR (400 MHz, D>0) spectrum of TPy3**+3CI".
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Fig. S20. 3*C NMR (101 MHz, D,0) spectrum of TPy**«3CI".

TPPC373CI

20 0 -20 -40 -60 -80 -100 -120

—1'40 ' —1'60 ' —1'80 ' —2'00 ' —2'.
Chemical Shift (ppm)
Fig. S21. YF NMR (376 MHz, D;0) spectrum of KPFs (top) and TPPC***3CI- (bottom),
suggesting the absence of PF¢™ in the sample of TPPC3*<3Cl".

S15



KPFé |

TPPC3*+3CI-

.50 130 110 % 70 S50 30 10 -10 -30 -50 -70 -90 -110 -130 -150-170 -190 -210 -230 -2%
Chemical Shaft (ppm)

Fig. S22. 3'P NMR (162 MHz, D;0O) spectrum of KPFs (top) and TPPC**«3CIl- (bottom),
suggesting the absence of PF¢™ in the sample of TPPC3*3Cl".

Anion Binding Analysis by 'H NMR Titration.

"H NMR titrations in D>O were conducted at 298 K on a Varian Unity Inova 400 MHz system
equipped with a cryoprobe. Aliquots from a stock solution containing the corresponding sodium
salts (10-100 mM ) were added sequentially to an NMR tube containing a solution of the
TPPC3"+3CI~ (600 uL). The 'H NMR spectrum was acquired after each addition. Under these
conditions, the added solution volume constitutes less than 10% of the host solution volume during
titration. Consequently, changes in concentration have a minimal impact on the chemical shift of
the receptor. The 'H NMR titration spectra were analyzed by MestReNova software. The NMR
titration isotherms were fitted®!-52 to a 1:1 host-guest binding model using Thordarson’s equations

at http://app.supramolecular.org/bindfit/. The data were then plotted using OriginLab software.

The binding constants, K,, were presented with standard deviations from the fitting outcomes.
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Fig. S23. '"H NMR spectra (400 MHz, D0, 298 K) of TPPC***3Cl~ (0.42 mM) titrated with
NacCl.
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Fig. S24. (a) Titration isotherm created by monitoring changes in the chemical shift of proton B
for TPPC3*<3CI- (0.42 mM) caused by the addition of NaCl in D,O at 298 K. Red lines are the
curve fitting using a 1:1 host-guest binding model. (b) Calculated changes of mole fractions for

TPPC3" (blue trace) and Cl-c TPPC?* (red trace) over the guest-host molar ratio.
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Fig. S25. '"H NMR spectra (400 MHz, D0, 298 K) of TPPC***3Cl~ (0.42 mM) titrated with
NaBr.
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Fig. S26. (a) Titration isotherm created by monitoring changes in the chemical shift of proton B
for TPPC3*3C1- (0.42 mM) caused by the addition of NaBr in D,O at 298 K. Red lines are the
curve fitting using a 1:1 host-guest binding model. (b) Calculated changes of mole fractions for

TPPC3" (blue trace) and Br-c TPPC?* (red trace) over the guest-host molar ratio.
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Fig. S27. 'H NMR spectra (400 MHz, D>0, 298 K) of TPPC3"+3CI~ (0.42 mM) titrated with Nal.
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Fig. S28. (a) Titration isotherm created by monitoring changes in the chemical shift of proton B
for TPPC3*3Cl1 (0.42 mM) caused by the addition of Nal in D,O at 298 K. Red lines are the curve
fitting using a 1:1 host-guest binding model. (b) Calculated changes of mole fractions for TPPC**

blue trace) and I'c TPPC?" (red trace) over the guest-host molar ratio.
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Fig. S29. 'H NMR spectra (400 MHz, D>0, 298 K) of TPPC3*"+3CI" (3.0 mM) titrated with Nal.
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Fig. S30. Titration isotherm created by monitoring changes in the chemical shift of proton B for
TPPC3**3Cl- (3.0 mM) caused by the addition of Nal in D,O at 298 K. The shift of proton B
stopped after adding 1 equivalent of I, indicating a 1:1 binding stoichiometry between TPPC**
and I" in D20.
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Fig. S31. '"H NMR spectra (400 MHz, D0, 298 K) of TPPC***3Cl~ (0.42 mM) titrated with
NaOAc.
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Fig. S32. (a) Titration isotherm created by monitoring changes in the chemical shift of proton F
for TPPC**«3CI™ (0.42 mM) caused by the addition of NaOAc in D>O at 298 K. Red lines are the
curve fitting using a 1:1 host-guest binding model. (b) Calculated changes of mole fractions for

TPPC3" (blue trace) and AcOc TPPC?* (red trace) over the guest-host molar ratio.
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Fig. S33. '"H NMR spectra (400 MHz, D0, 298 K) of TPPC***3Cl~ (0.42 mM) titrated with
NaNO:s.
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Fig. S34. (a) Titration isotherm created by monitoring changes in the chemical shift of proton B
for TPPC3*+3CI™ (0.42 mM) caused by the addition of NaNOs in D,O at 298 K. Red lines are the
curve fitting using a 1:1 host-guest binding model. (b) Calculated changes of mole fractions for

TPPC3" (blue trace) and NO3;~ < TPPC?* (red trace) over the guest-host molar ratio.
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Fig. S35. '"H NMR spectra (400 MHz, D0, 298 K) of TPPC***3Cl~ (0.42 mM) titrated with

NaNO:as.
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Fig. S36. (a) Titration isotherm created by monitoring changes in the chemical shift of proton F for
TPPC3"+3CI" (0.42 mM) caused by the addition of NaNO; in D,O at 298 K. Red lines are the curve fitting
using a 1:1 host-guest binding model. (b) Calculated changes of mole fractions for TPPC?* (blue trace) and

NO; < TPPC*" (red trace) over the guest-host molar ratio.
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Fig. S37. 'H NMR spectra (400 MHz, D0, 298 K) of TPPC***3Cl~ (0.42 mM) titrated with
NaxSOq.
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Fig. S38. (a) Titration isotherm created by monitoring changes in the chemical shift of proton B
for TPPC3**+3CI™ (0.42 mM) caused by the addition of Na,SO4 in DO at 298 K. Red lines are the
curve fitting using a 1:1 host-guest binding model. (b) Calculated changes of mole fractions for

TPPC3" (blue trace) and SO4>~c TPPC3" (red trace) over the guest-host molar ratio.
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Fig. S40. (a) Titration isotherm created by monitoring changes in the chemical shift of proton B

for TPPC**«3Cl~ (0.11 mM) caused by the addition of Na>xC>O4 in D20 at 298 K. Red lines are the

curve fitting using a 1:1 host-guest binding model. (b) Calculated changes of mole fractions for

TPPC3" (blue trace) and C,04>c TPPC?* (red trace) over the guest-host molar ratio.
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Fig. S41. '"H NMR spectra (400 MHz, D0, 298 K) of TPPC***3CI~ (0.19 mM) titrated with
H>C>04.
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Fig. S42. (a) Titration isotherm created by monitoring changes in the chemical shift of proton F
for TPPC3**+3CI™ (0.12 mM) caused by the addition of H>2C204 in DO at 298 K. Red lines are the
curve fitting using a 1:1 host-guest binding model. (b) Calculated changes of mole fractions for

TPPC3* (blue trace) and HC204 < TPPC?" (red trace) over the guest-host molar ratio.
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Fig. S43. 'H NMR spectra (400 MHz, D,0, 298 K) of TPPC3***3Cl1~ (0.1 mM) titrated with KMnOs,

showing no change in chemical shift.
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Fig. S44. "H NMR spectra (400 MHz, D,0, 298 K) of TPy**+3CI" (4 mM) titrated with Na>C,Os,

showing no obvious change in chemical shift.
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Fig. S45. 'H NMR spectra (400 MHz, D>0O, 298 K) of a sample of TPPC>"+3CI" diluted from 1.80
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Me— NC%E—I o2 3:
\ N\Me
NH El

Me—| N/ -y + (SO
\ N\
NH EI

Equiv. of Na,SO, \ e © \ f-e°
3.78 WJ/\“W
3.56 N N
3.33 WMJJLWF
3.11 WW/J\%“’

2.89 WJLwﬂm
267 N
2.44 N
2.22 A\

2.00 . N

1.78 A 4

1.56 ,JL\ __NM\JJLW\A
3 NN
mm A N
0.89 A N
0.44 A ] MJLW
022 N i ‘_MA,jb_ﬁ

0.00 N~ S\
A B (o3 F

98 9.7 96 95 94 93 92 9.1 9.0 89 88 87 14 13 12 1.1 1.0 09
Chemical Shift (ppm)

Fig. S46. '"H NMR spectra (400 MHz, 90% H>0+10% D->0, 298 K) of TPPC**+3CI~ (0.09 mM)
titrated with Na;SOa.
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Fig. S47. (a) Titration isotherm created by monitoring changes in the chemical shift of proton B
and for TPPC**+3CI™ (0.09 mM) caused by the addition of Na>SOj4 in a mixture of 10% D>O and
90% H>O at 298 K. Red lines are the curve fitting using a 1:1 host-guest binding model. (b)
Calculated changes of mole fractions for TPPC?* (blue trace) and C,04>c TPPC3" (red trace) over

Me—| NC%' C,04% \ N\
NH El

\/Et

the guest-host molar ratio.

F

Me— NC\E \ N\ + 10042
NH Et

Equiv. of Na,C,0, o

\/EI

101 99 97 95 93 91 89 87 85 141312 1.1 1.0 090
Chemical Shift (ppm)

Fig. S48. "H NMR spectra (400 MHz, 90% H>0+10% D0, 298 K) of TPPC3**«3CI~ (0.22 mM)
titrated with Na,C>Oa.

S29



(@) (b)

9.901

9.85- 101
9.80 0.8
= 9.754 5
- 9651 + Observed u;'; 0.4 —e—C,0,” c TPPC
© 9601 Fitted S
9.55] Kaz =(9.3+3.6)x 10° M 0.24
R? = 0.999
9.50 0.04
9.45 T T T T T )
0.0 0.5 1.0 1.5 0 1 2
[G], / [H], [G], / H],

Fig. S49. (a) Titration isotherm created by monitoring changes in the chemical shift of proton B
for TPPC***3Cl~ (0.22 mM) caused by the addition of Na,C>04 in a mixture of 10% D-O and 90%
H>O at 298 K. Red lines are the curve fitting using a 1:1 host-guest binding model. (b) Calculated
changes of mole fractions for TPPC>* (blue trace) and C,04>c TPPC?* (red trace) over the guest-

host molar ratio.

S. Isothermal Titration Calorimetry
Isothermal titration was performed on the MicroCal iTCazo0 system at 23 °C. The experiments were

conducted in the 200 pL. working volume of the sample cell. The capacity of the injection syringe
was 40 pL. The stirring speed was set at 750 rpm. Host and guest solutions were prepared in H>O.
A host solution was placed in the titration cell, and the guests were loaded into the titration syringe.
In each case, 20-25 injections were performed. The heat of dilution was measured by titrating the
guest into a blank solution. The heat of dilution was subtracted before analyzing with MicroCal

1TC200 software using a 1:1 host-guest binding model and plotted by Origin Lab software.
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Fig. S50. ITC titration profile of TPPC***3Cl1~ (0.10 mM) with Na>C>04in H>O.
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Fig. S51. ITC titration profile of TPPC?***3Cl1~ (0.50 mM) with Na>SOs in H2O.
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Fig. S52. ITC titration profile of TPPC***3Cl1~ (0.35 mM) with NaNOj3 in H>O.
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6. Catalysis Study by UV-Vis Spectroscopy
The reaction between H,C>04 and KMnO4 was investigated by UV-Vis absorption spectroscopy.

A glass cuvette was initially filled with a solution of KMnO4 (0.2 mM, 3mL). The change of the
characteristic absorption band of KMnO4 between 400 nm and 700 nm was monitored over 95
minutes after adding H>C>O4. Under the same conditions, catalytic amounts (0.2% —10% loading)
of TPPC***3Cl- were added to the reaction mixture, and the change of the absorption band of
KMnO4 between 400 nm and 700 nm was monitored over 95 minutes. For all experiments, the

spectrum was collected every five minutes.
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Fig. S54. Change of UV-Vis absorption spectra of a mixture of KMnO4 (0.2 mM) and H2C204(1.0

mM) in H>O over 95 min.
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Fig. S55. Change of UV-Vis absorption spectra of a mixture of KMnOj4 (0.2 mM), H2C204 (1.0

mM), and TPPC**<3CI~ (20 uM, 10%) in H>O over 95 min.
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Fig. S56. Change of UV-Vis absorption spectra of a mixture of KMnOj4 (0.2 mM), H2C204 (1.0
mM), and TPPC**«3CI~ (10 pM, 5%) in H>O over 95 min.
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Fig. S57. Change of UV-Vis absorption spectra of a mixture of KMnOj4 (0.2 mM), H2C204 (1.0

mM), and TPPC3***3CI~ (2 uM, 1%) in H,O over 95 min.
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Fig. S58. Change of UV-Vis absorption spectra of a mixture of KMnOj4 (0.2 mM), H2C204 (1.0
mM), and TPPC**«3CI~ (0.4 uM, 0.2%) in H>O over 95 min.
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Fig. S59. Change of UV-Vis absorption spectra of a mixture of KMnOj4 (0.2 mM), H2C204 (1.0
mM), and TPPC***3CI~ (0.04 uM, 0.02%) in H,O over 95 min.

181
16;
14;
12;
1.0

0.8 1

Absorbance

0.6
0.4

0.2

0.0

-0.2 T T T T T 1
200 400 600 800
Wavelength (nm)

Fig. S60. Change of UV-Vis absorption spectra of a mixture of KMnOj4 (0.2 mM), H2C204 (1.0
mM), TPPC3*+3CI" (20 uM, 10%) and Na>SO4 (10 mM) in H,O over 95 min.
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Figure S61. Change of UV-Vis absorption spectra of a mixture of KMnO4 (0.2 mM), H2C204 (1.0
mM), and TPy***3CI~ (20 uM, 10%) in H,O over 95 min.
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Fig. S62. The changes in absorbance at 525 nm for a KMnOj4 solution (0.2 mM) over 95 minutes,
demonstrating the effects of TPy**«3Cl~ (20uM, 10%) and TPPC***3Cl- on the reaction rate

acceleration of HoC>O4 (1 mM) oxidation.
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Fig. S63. The changes in absorbance at 525 nm for a KMnO4 solution (0.2 mM) over 95 minutes,
demonstrating the effects of Na>xSO4 (10 mM) on the reaction rate post addition of H>C2O4 (1 mM)
and TPPC**«3CI- (0.02 mM).
Calculation of catalytic turnover number (TON)
The turnover number (TON) is calculated based on the following formula:

TON — moles of reactant consumed with the help of TPPC3*

moles of catalyst
Under 1% catalyst loading of TPPC**3Cl, 88% of KMnO4 was reduced by HC20O4~ within 60
min. In the absence of the catalyst, only 18% of KMnOas was reduced by HC>O4". Therefore, the
moles of reactant consumed with the help of TPPC?***3Cl" can be calculated as:
(moles of reactant consumed in the presence of TPPC***3Cl") — (moles of reactant consumed in
the absence of TPPC**+3CI")
= (0.2 mM*0.88-0.2 mM*0.18)*3 mL
The mole of the catalyst = (0.2 mM*0.01)*3 mL

Using the equation above, the TON can be calculated as:

(0.2mM x0.88 — 0.2mM * 0.18) * 3 mL

TON =
(0.2 mM = 0.01) 3 mL
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7. X-Ray Crystallography Data and Analysis
X-ray data and analysis for imine cage 4 (CCDC number: 2334098)

Single crystals of imine cage 4 were obtained by slow diffusion of MeOH to a solution of the cage
molecule in CH>Clo. X-ray diffraction data were measured on Bruker D8 Venture Photon II
diffractometer equipped with a Cu Koo INCOATEC ImuS micro-focus source (A = 1.54178 A).
Indexing was performed using APEX4% (Difference Vectors method). Data integration and
reduction were performed using SaintPlus 5¢. Absorption correction was performed by the multi-
scan method implemented in SADABS %°. The space group was determined using XPREP
implemented in APEX3. The structure was solved using SHELXT 5 \¢ and refined using SHELXL-
2019/157 (full-matrix least-squares on F2) through OLEX2 interface program 58, The ellipsoid plot
was made with Platon %°. Disordered solvent molecules were refined with restraints. Some of the
disordered atoms were refined as O atoms (tentatively HoO or CH3OH). Data and refinement

conditions are shown in Table S1.
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Table S1 Crystal data and structure refinement for imine cage 4.

Identification code 2094

Empirical formula Cs3.64H68.34Cl2.02N9O3 43
Moiety formula Cs1 Hs7 No, 1.012(CH2Cly), 1.627(CH30H), 1.403(H20), 0.404(O)soly
Formula weight 965.77
Temperature/K 100.00

Crystal system monoclinic

Space group P2i/n

a/A 14.9701(3)

b/A 24.0962(6)

c/A 15.7004(4)

a/° 90

/e 116.0400(10)

y/° 90

Volume/A3 5088.6(2)

V4 4

Pealeg/cm? 1.261

wmm-! 1.579

F(000) 2060.0

Crystal size/mm? 0.25 x 0.18 x 0.07
Radiation CuKoa (A =1.54178)
20 range for data 6.804 to 159.084
collection/

Index ranges -18<h<19,-30<k<30,-19<1<18
Reflections collected 120441
Independent reflections 10976 [Rint = 0.0354, Rsigma = 0.0160]

]S)ata/ restraints/parameter 10976/80/713

Goodness-of-fiton F>  1.036
ﬁlﬁal Rindexes [I>=20 p, _ 0.0480, wRo = 0.1308
Final R indexes [all data] R; = 0.0506, wR> = 0.1331

IIia_l;"gest diff. peak/hole / e 0.67/-0.37
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Fig. S64. The ellipsoid plot of the imine cage 4. Anisotropic displacement parameters were
drawn at a 50% probability level.

Fig. S65. Front and side views of the imine cage 4, showing the different orientations of the three

pyridine bridges. Solvent molecules were omitted for the sake of clarity.
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X-ray data and analysis for TPPC3*«3CI- (CCDC number: 2334101)

Single crystals of TPPC**«3CIl- were obtained by slow diffusion of iPr,O into a solution of
TPPC**3Cl" in DMSO. X-ray diffraction data were measured on Bruker D8 Venture Photon II
diffractometer equipped with a Cu Ko INCOATEC ImuS micro-focus source (A = 1.54178 A).
Indexing was performed using APEX4 5% (Difference Vectors method). Data integration and
reduction were performed using SaintPlus 5*. Absorption correction was performed by the multi-
scan method implemented in SADABS %°. The space group was determined using XPREP
implemented in APEX3. The structure was solved using SHELXT 5¢ and refined using SHELXL-
2019/157 (full-matrix least-squares on F2) through OLEX?2 interface program 8. The ellipsoid plot
was made with Platon 5°. Due to disorder the locations of some CI anions are tentative. Disordered
solvent molecules were refined with restraints. Some of the disordered atoms were refined as O
atoms (tentatively H>O but also DMSO/DMF/ACN were possible). Data and refinement

conditions are shown in Table S2.

Fig. S66. The ellipsoid plot of TPPC3**«3Cl". Anisotropic displacement parameters were drawn at
a 50% probability level.
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Table S2 Crystal data and structure refinement for TPPC3*+3CI".

Identification code
Empirical formula
Moiety formula
Formula weight
Temperature/K
Crystal system
Space group

a/A

b/A

c/A

a/°

pr°

v/°

Volume/A3

V4

pcalcg/ cm’

wmm-!

F(000)

Crystal size/mm?
Radiation

117 4 3
Cs73H75.91C13N9O12.41S1.65
Cs4HesNoOg, 3(Cl), 1.651(C2H6SO), 4.764(0)soly
1248.66

107.00

triclinic

P-1

14.9459(6)

15.2203(7)

18.4006(8)

67.614(3)

81.558(3)

68.560(3)

3602.4(3)

2

1.151

2.079

1319.0

0.04 x 0.03 x 0.02

CuKo (A =1.54178)

20 range for data collection/°5.194 to 99.5

Index ranges

Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F?
Final R indexes [[>=2c (I)]
Final R indexes [all data]

14<h<14,-15<k<15,-18<1<18
49602

7315 [Rint = 0.1471, Rejgma = 0.1103]
7315/1269/815

1.295

Ri = 0.1361, wR, = 0.3432

Ri = 0.1968, wR, = 0.3934

Largest diff. peak/hole / e A 0.64/-0.36
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Fig. S67. (a) Front and (b) top view of TPPC>** encapsulated with two CI-, one H>O, and one
DMSO guests. (¢) Front and (d) top view of dimeric TPPC?* in the crystal lattice.

X-ray data and analysis for TPPC3*3I- (CCDC number: 2334102)

Single crystals of TPPC3*e3I- were obtained by slow diffusion of Et;O into a solution of
TPPC**+3PFs and tetracthyl ammonium iodide in MeCN. X-ray diffraction data were measured
on Bruker D8 Venture Photon II diffractometer equipped with a Cu Ka INCOATEC ImuS micro-
focus source (A = 1.54178 A). Indexing was performed using APEX4 53 (Difference Vectors
method). Data integration and reduction were performed using SaintPlus 3¢. Absorption correction
was performed by the multi-scan method implemented in SADABS 5°. The space group was
determined using XPREP implemented in APEX3. The structure was solved using SHELXT 5°
and refined using SHELXL-2019/1 57 (full-matrix least-squares on F2) through OLEX2 interface
program 58, The ellipsoid plot was made with Platon®°. Disordered solvent molecules were refined
with restraints. Some of the disordered atoms were refined as O atoms (tentatively H>O). Data and

refinement conditions are shown in Table S3.
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Table S3 Crystal data and structure refinement for TPPC3"+31~

Identification code
Empirical formula
Moiety formula
Formula weight
Temperature/K
Crystal system
Space group

a/A

b/A

c/A

a/°

pr°

v/°

Volume/A3

V4
pcalcg/ cm’
wmm-!

F(000)

Crystal size/mm?
Radiation

VL_CX_2098PF6_TEAI 1 _ACN Ef20
Cé5.04Hss.3313N14.5204 38

CssHesNsOs, 3(1), 5.519(C2HsN), 1.39(H20), 0.994(0)sots
1585.36

100.00

monoclinic

P21/n

14.8832(2)

32.8405(5)

15.3240(2)

90

102.8042(7)

90

7303.69(18)

4

1.442

10.573

3213.0

0.09 x 0.04 x 0.02

CuKo (A = 1.54178)

20 range for data collection/°5.382 to 158.522

Index ranges

Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F?
Final R indexes [[>=2c (I)]
Final R indexes [all data]

16<h<18,-40<k<41,-19<1<19
156372

15540 [Rint = 0.0518, Ryigma = 0.0296]
15540/197/963

1.039

R = 0.0355, wR, = 0.1003

Ri = 0.0367, wRy = 0.1012

Largest diff. peak/hole / e A3 1.76/-1.27
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Fig. S68. The ellipsoid plot of TPPC3**3I". Anisotropic displacement parameters were drawn at a
50% probability level.

Fig. S69. Front (a) and side-on (b) view of TPPC3**¢3I". (c) ADD-DDA hydrogen bonding arrays
observed between TPPC3"+31" in the crystal lattice.
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X-ray data and analysis for TPPC3**3CF3;COO~ (CCDC number: 2334103)

Single crystals of TPPC**+3CF3COO~ were obtained by slow diffusion of iPr,O into a solution of
TPPC3***3Cl" and TFA in MeCN. X-ray diffraction data were measured on Bruker D8 Venture
Photon III diffractometer equipped with a Cu Ka INCOATEC ImuS micro-focus source (A =
1.54178 A). Indexing was performed using APEX4 53 (Difference Vectors method). Data
integration and reduction were performed using SaintPlus 54, Absorption correction was performed
by the multi-scan method implemented in SADABS 5°. The space group was determined using
XPREP implemented in APEX3. The structure was solved using SHELXT ¢ and refined using
SHELXL-2019/1 57 (full-matrix least-squares on F2) through OLEX?2 interface program 8. The
contribution of heavily disordered content in structural voids was treated as diffuse using a solvent
mask procedure implemented in the Olex2 program 58, The ellipsoid plot was made with Platon ®°.

Data and refinement conditions are shown in Table S4.

Fig. S70. The ellipsoid plot of TPPC3**«3CF3COO". Anisotropic displacement parameters were
drawn at a 50% probability level.
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Table S4. Crystal data and structure refinement for TPPC3*+3CF3COO".

Identification code
Empirical formula
Moiety formula
Formula weight
Temperature/K
Crystal system
Space group

a/A

b/A

c/A

[e]

o/
pr°

v/°
Volume/A3
V4
Pealeg/cm?

wmm-!

F(000)

Radiation

20 range for data collection/°
Index ranges

Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F?

Final R indexes [[>=2c (I)]
Final R indexes [all data]
Largest diff. peak/hole / e A~

127 7

Cea2H67F1531N9017.7

Cs4 Hes No Os, 3(C2F30,), 2.1CoHF502, 1.5(H20)
1538.84

100.00

triclinic

P-1

13.0460(10)

25.708(2)

27.482(2)

113.091(5)

99.699(5)

92.773(5)

8290.6(11)

4

1.233

0.983

3179.0

CuKoa (A =1.54178)

6.156 to 71.464
-90<h<9,-19<k<19,-20<1<20
54411

7551 [Rint = 0.1251, Rgigma = 0.0891]
7551/3397/2051

1.367

Ri1=0.1091, wR> = 0.3060
Ri1=0.1366, wR> = 0.3349
0.69/-0.37
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Fig. S71. (a) Front and top (b) view of TPPC***3CF3COO". (c) ADD-DDA hydrogen bonding
arrays observed between TPPC**«3CF3COOQO™ in the crystal lattice.

8. Computational Analysis

Structural optimization

The xyz coordinates for the calculations were either extracted from the X-ray single crystal data or
directly created using GaussView 6 program. All optimizations were performed with density
functional theory (DFT) in the Orca program 5! (version 5.0.3) using the Becke ’88 exchange and
Lee-Yang-Parr correlation (BLYP) functional 5!!, the Ahlrich’s double zeta Def2-SVP basis sets

S12 with geometrical counterpoise (gCP) scheme 5!3

, and Grimme’s third-generation dispersion
correction 5'* with Beck Johnson damping (D3BJ). To speed up the DFT optimizations, the
Coulomb integral 5'° and numerical chain-of-sphere integration !¢ for the HF exchanges
(RIJCOSX) method were applied with the Def2/J auxiliary basis (AuxJ)5!7. All optimizations were
performed in a water continuum with the Conductor-like Polarizable Continuum Model (CPCM)
in Orca. Frequency calculations of the resulting optimized structures reveal no imaginary

frequency, suggesting the optimized structures were in local energy minima.
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Visualization of Noncovalent Interactions

Independent Gradient Model (IGM) analysis 5'® is an approach to identify and visualize
intermolecular interactions. Strong polar attractions and weak van der Waals contacts are
visualized as an iso-surface with blue and green colors, respectively. DFT optimized structures
were used as input files. The binding surface was calculated by Multiwfn 3.6 program 5'° through

function 20 (visual study of weak interaction) and visualized by Chimera software 520,

attraction

L)
-

-
repulsion

Fig. S72. Front (a), side-on (b), top (c), and bottom (d) view of CLcTPPC*" from IGM analysis showing a
noncovalent interaction isosurface of g™ = 0.003 a.u; color coding in the electron density range of —

0.05<sign (A2)p <+0.05 a.u.
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Fig. S73. Front (a), side-on (b), top (c), and bottom (d) view of Br cTPPC** from IGM analysis showing a
noncovalent interaction isosurface of g™ = 0.003 a.u; color coding in the electron density range of —

0.05<sign (A2)p <+0.05 a.u.

Fig. S74. Front (a), side-on (b), top (c), and bottom (d) view of T TPPC** from IGM analysis showing a
noncovalent interaction isosurface of g™ = 0.003 a.u; color coding in the electron density range of —

0.05<sign (A2)p <+0.05 a.u.
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Fig. S75. Front (a), side-on (b), top (¢), and bottom (d) view of NO; cTPPC** from IGM analysis showing
anoncovalent interaction isosurface of 5g"* = 0.003 a.u; color coding in the electron density range of —
0.05<sign (A2)p <+0.05 a.u.

attraction [lF 95 M repulsion

Fig. S76. Front (a), side-on (b), top (c), and bottom (d) view of SO4>~ cTPPC?* from IGM analysis
showing a noncovalent interaction isosurface of g™ = 0.003 a.u; color coding in the electron density range
of —0.05<sign (A2)p <+0.05 a.u.
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attraction i 0 M repulsion -
Fig. S77. Front (a), side-on (b), top (c), and bottom (d) view of C:04> cTPPC?*" from IGM analysis

showing a noncovalent interaction isosurface of g™ = 0.003 a.u; color coding in the electron density range

of —0.05<sign (A2)p <+0.05 a.u.
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