Interplay between A-site and oxygen-vacancy ordering, and mixed electron/oxide-ion conductivity in n = 1 Ruddlesden–Popper perovskite $Sr_2Nd_2Zn_2O_7$

Danhe Li,^{a,#} Guangxiang Lu,^{a,#} Zien Cheng,^a Maxim Avdeev,^{*b,c} Jungu Xu,^d Zhengyang Zhou,^c Rihong Cong,^a Tao Yang,^{*a} Pengfei Jiang^{*a}

^aCollege of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.

^bAustralian Nuclear Science and Technology Organisation, Lucas Height, NSW 2234, Australia.

^cSchool of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.

^dCollege of Materials Science and Engineering, Guilin University of Technology,

Guilin, Guangxi 541004, China.

^eShanghai Institution of Ceramics, Chinese of Academy of Science, Shanghai 201899, China.

[#]These authors contributed equally to the manuscript.

*Corresponding authors: max@ansto.gov.au; taoyang@cqu.edu.cn; pengfeijiang@cqu.edu.cn.

Fig. S1 TEM maps and elemental mapping images for Sr₂Nd₂Zn₂O₇.

Fig. S2 High-resolution XPS spectra for Sr 3d (a), Nd 3d (b), and Zn 2p (c)

Fig. S3 The PXRD pattern for $Sr_2Nd_2Zn_2O_7$. A simulated PXRD pattern of *I*4/*mmm*-Sr₂TiO₄ is given in the pattern for comparison.

Fig. S4 Crystal structure of oxygen-vacancy ordered $Sr_2MnO_{3.5}$.

Fig. S5 (a) Rietveld refinement plots of high-resolution NPD data for $Sr_2La_2Zn_2O_7$. (b) Crystal structure of $Sr_2La_2Zn_2O_7$ viewed along the [110] direction.

Fig. S6 Plots of frequency as a function of frequency. The corresponding impedance data were recorded at 550 °C under dry air conditions.

Fig. S7 Complex impedance spectra of Sr₂La₂Zn₂O₇ recorded at 550 °C under O₂ atmospheres.

Fig. S8 Rietveld refinement plot of PXRD data for Sr_{2.1}Nd_{1.9}Zn₂O_{6.95}.

bond	length (Å)	bond	length (Å)	bond	length (Å)
Sr1-05	2.418(7)	Nd1-O4	2.392(6)	Zn1–O1 × 2	1.922(6)
Sr1–O2 × 2	2.6422(7)	Nd1-O1	2.403(6)	Zn1–O2	1.96(2)
Sr1–O4 × 2	2.820(5)	Nd1-O3	2.432(5)	$Zn1-O4 \times 2$	2.258(6)
Sr1–O5 \times 2	2.861(6)	Nd1–O4 \times 2	2.498(4)	<zn1-o></zn1-o>	2.064(9)
Sr1–O3	3.022(7)	Nd1–O5 \times 2	2.500(5)	BVS(Zn1)	1.99
Sr1-O1	3.039(9)	<nd1-o></nd1-o>	2.461(5)	Zn2–O2	1.86(2)
<sr1-0></sr1-0>	2.792(5)	BVS(Nd1)	2.59	$Zn2-O3 \times 2$	1.908(5)
BVS(Sr1)	1.59			$Zn2-O5 \times 2$	2.334(7)
				<zn2-o></zn2-o>	2.070(9)
				BVS(Zn2)	2.05

Table S1. Selected Interatomic bond lengths in $Sr_2Nd_2Zn_2O_7$.

Table S2. Atomic Coordinates, occupancies, Isotropic Thermal Displacement Factors of $Sr_2La_2Zn_2O_7$ Obtained from Rietveld Refinement against NPD Data.

atom	site	x	у	Z	Occ.	$B_{\rm iso}$. (Å ²)
Sr/La	4 <i>e</i>	0	0	0.3538(1)	0.5/0.5	0.69(5)
Zn1	2 <i>a</i>	0	0	0	1	1.05(8)
01	4 <i>c</i>	0	0.5	0	0.75	2.6(1)
O2	4 <i>e</i>	0	0	0.1733(2)	1	1.61(6)

Table S3. Selected Interatomic bond lengths in $Sr_2La_2Zn_2O_7$.

bond	length (Å)	bond	length (Å)
Sr/La–O2	2.445(4)	$Zn-O1 \times 4$	1.8741(2)
Sr/La–O2 × 4	2.6755(6)	$Zn-O2 \times 4$	2.347(3)
Sr/La–O1 × 4	2.727(1)		