Supporting Information

Pd(II)-Catalyzed Enantioselective C-H Olefination and Photoregulation of Sterically-Hindered Diarylethenes

Guanlun Zhang ‡^a, Xu Wu ‡^b, Shiyu Mao ^b, Mengqi Li ^{a*}, Honglong Hu ^a, Bing-Feng Shi ^{b*}, Wei-Hong Zhu ^{a*}

^a Key Laboratory for Advanced Material, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, P. R. China

^b Department Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China

‡ These authors contributed equally to this work.

Table of Contents

1. General Information	3
2. Experiment Details and Characterization	4
2.1 Preparation of Substrates	4
2.2 General Procedure for the Enantioselective C-H Olefination	10
2.3 Synthetic Application	
3. Computational Data of BTTE and 1b	41
4. Crystallographic Data of 8	42
5. 2D Spectra and ¹³ C NMR Assignments of 9	44
6. Photochromic and Chiral Regulation Properties	
6.1 Absorption Changes of 10 and 11	
6.2 Fatigue Resistance Experiments	
6.3 Thermal Stability Tests	
6.4 Conversion Ratio of 9, 10 and 11 under UV Light Irradiation ($\lambda = 313 \text{ nm}$)	53
6.5 CD Spectra of 10 and 11	56
6.6 Experiments of Photocyclization and Photocycloreversion Quantum Yields	57
7. Measurements of the HTPs of 9, 10, 11	
8. NMR Spectra	60
9. HPLC Charts	171
10. References	

1. General Information

All the materials and solvents were purchased from commercial suppliers and used without additional purification. Pd(OAc)₂ was purchased from Laajoo (China). NMR spectra were recorded on a Bruke Avance operating for ¹H NMR at 400 MHz, ¹³C NMR at 101 MHz, ¹⁹F NMR at 376 MHz using TMS as internal standard. The peaks were internally referenced to CDCl₃ (7.26 ppm) or residual undeuterated solvent signal of CDCl₃ (77.16 ppm for ¹³C NMR). The following abbreviations (or combinations thereof) were used to explain multiplicities: s = singlet, d = doublet, t = triplet, m = multiplet, brs = broad singlet. Mass spectroscopy data of the products were collected on an HRMS-TOF instrument. The ee value was determined on Shimadzu HPLC using CHIRALPAK column with hexane and 2-propanol as eluent, Wavelength = 254 nm. UV-Vis spectra were recorded on Agilent Cary 60 (1 cm quartz cell) at 293K. CD spectra were recorded using Jasco J-819 spectropolarimeter (1 cm quartz cell) at 293K. The photochromic reaction was conducted by continuous irradiation of an Hg/Xe lamp (Hamamatsu, LC8 Lightningcure, 200W) equipped with a narrow band interference filter (Shenyang HB optical Technology) for $\lambda_{irr} = 313$ nm, a broad band interference filters (Anford) for $\lambda_{irr} > 490$ nm, or a monochromator (monoscan 2000, OceanOptics) for $\lambda_{irr} = 517 \pm 10$ nm. Quantum yields of photoisomerization were measure by the standard procedures using 1,2-bis(2-methyl-1-benzothiophene-3-yl)perfluorocyclopentene (BTF6) as the reference^{S1-S2}. BTTE was prepared according to previous reference¹³.

2. Experiment Details and Characterization

2.1 Preparation of Substrates

2.1.1 General procedure for the synthesis of olenfins:

$$R-OH + \underbrace{\bigcirc}_{CI} \underbrace{\xrightarrow{NEt_3}}_{DCM} \underbrace{\bigcirc}_{OR}$$

General Procedure A: In a round bottom flask, acryloyl chloride (1.2 equiv., 12 mmol) was added dropwise to a solution of corresponding alcohol (1.0 equiv., 10 mmol) and NEt₃ (1.5 equiv., 15 mmol) in DCM (40 mL) at 0 °C under argon atmosphere. After the addition was completed, the ice bath was removed, and the reaction mixture was stirred at room temperature overnight. Upon completion of the reaction, the reaction mixture was diluted with water and extracted with DCM. The combined organic layer was washed with saturated aqueous NaHCO₃. The organic layers were washed with brine, dried over anhydrous Na₂SO₄, concentrated in vacuo. The crude mixture was purified by silica gel column chromatography using petroleum ether: ethyl acetate as the eluent to afford the desired compound **2**.

Compound 2a, 2k, 2l, 2m, 2n, 2o, 2p, 2q, 2r, 2s, 2t, 2u, 2v, 2w, 2x, 2y are commercially available and were used directly without further purification.

4-nitrophenyl acrylate 2b:

2b was prepared following **General Procedure A** and purified by flash in petroleum ether : ethyl acetate = 24 : 1 to give as white solid(1.73 g, 90% yield).

¹**H NMR (400 MHz, CDCl₃)** δ 8.29 (d, J = 9.0 Hz, 2 H), 7.34 (d, J = 9.1 Hz, 2 H), 6.67 (d, J = 17.3 Hz, 1 H), 6.34 (dd, J = 17.3, 10.5 Hz, 1 H), 6.11 (d, J = 10.5 Hz, 1 H). m.p. 63.7-64.3°C

¹³C NMR (101 MHz, CDCl₃) δ 163.5, 155.3, 145.4, 134.0, 127.1, 125.2, 122.4.

4-methoxyphenyl acrylate 2c:

2c was prepared following **General Procedure A** and purified by flash in petroleum ether : ethyl acetate = 100 : 1 to give as colorless liquid(1.62 g, 91% yield).

¹**H NMR (400 MHz, CDCl₃)** δ 7.05 (d, J = 9.0 Hz, 2 H), 6.90 (d, J = 9.0 Hz, 2 H), 6.59 (d, J = 17.1 Hz, 1 H), 6.31 (dd, J = 17.3, 10.4 Hz, 1 H), 5.99 (d, J = 10.2 Hz, 1 H), 3.80 (s, 3 H).

¹³C NMR (101 MHz, CDCl₃) δ 165.0, 157.3, 144.1, 132.4, 128.0, 122.3, 114.5, 55.6.

4-bromophenyl acrylate 2d:

2d was prepared following **General Procedure A** and purified by flash in petroleum ether : ethyl acetate = 100 : 1 to give as colorless liquid(1.54 g, 68% yield).

¹**H NMR (400 MHz, CDCl₃)** δ 7.50 (d, *J* = 8.8 Hz, 2 H), 7.03 (d, *J* = 8.8 Hz, 2 H), 6.61 (d, *J* = 17.3 Hz, 1 H), 6.30 (dd, *J* = 17.3, 10.4 Hz, 1 H), 6.03 (d, *J* = 10.5 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 164.2, 149.6, 133.0, 132.5, 127.6, 123.4, 119.0.

4-pentylphenyl acrylate 2e:

2e was prepared following **General Procedure A** and purified by flash in petroleum ether : ethyl acetate = 100 : 1 to give as colorless liquid(1.96 g, 90% yield).

¹**H NMR (400 MHz, CDCl₃)** δ 7.18 (d, J = 8.2 Hz, 2 H), 7.03 (d, J = 8.5 Hz, 2 H), 6.59 (d, J = 17.4 Hz, 1 H), 6.31 (dd, J = 17.3, 10.4 Hz, 1 H), 5.99 (d, J = 10.5 Hz, 1 H), 2.64 - 2.55 (m, 2 H), 1.58 - 1.65 (m, 2 H), 1.37 - 1.29 (m, 4 H), 0.89 (t, J = 6.8 Hz, 3 H).

¹³C NMR (101 MHz, CDCl₃) δ 164.8, 148.5, 140.6, 132.3, 129.3, 128.1, 121.1, 35.3, 31.5, 31.2, 22.5, 14.0.

4-cyanophenyl acrylate 2f:

2f was prepared following **General Procedure A** and purified by flash in petroleum ether : dichloromethane : ethyl acetate = 15 : 4 : 1 to give as white solid(0.91 g, 52% yield). m.p. 65.6-66.7°C.

¹**H NMR (400 MHz, CDCl₃)** δ 7.71 (d, *J* = 8.4 Hz, 2 H), 7.29 (d, *J* = 8.3 Hz, 2 H), 6.65 (d, *J* = 17.3 Hz, 1 H), 6.32 (dd, *J* = 17.3, 10.4 Hz, 1 H), 6.09 (d, *J* = 10.4 Hz, 1 H).

¹³C NMR (101 MHz, CDCl₃) δ 163.6, 153.9, 133.9, 133.7, 127.3, 122.8, 118.3, 109.9.

4-((tert-butyldimethylsilyl)oxy)phenyl acrylate 2g:

In an oven-dried 100 mL two-necked round-bottom flask, under Ar atmosphere, hydroquinone (1.10 g, 10 mmol) was dissolved in EtOAc (50 mL). Imidazole (1.70 g, 25 mmol) and TBDMSCl (1.66 g, 11.0mmol) were added to the solution and the resulting mixture was stirred for 4 h at 20 °C. The reaction was quenched by adding water and extracted with EtOAc for three times. The combined organic layers were washed brine, dried over Na_2SO_4 , and concentrated in vacuo to afford the crude product without further purification.

In a round bottom flask, acryloyl chloride (948 μ L, 12 mmol) was added dropwise to a solution of the crude product and NEt₃ (2.1 mL, 15 mmol) in DCM (40 mL) at 0 °C under argon atmosphere. After the addition was completed, the ice bath was removed, and the reaction mixture was stirred at room temperature overnight. Upon completion of the reaction, the reaction mixture was diluted with water and extracted with DCM. The combined organic layer was washed with saturated aqueous NaHCO₃. The organic layers were washed with brine, dried over anhydrous Na₂SO₄, concentrated in vacuo. The crude mixture was purified by silica gel column chromatography using petroleum ether: ethyl acetate = 100 : 1 as the eluent to give **2g** as colorless liquid(1.09 g, 39%).

¹**H NMR (400 MHz, CDCl₃)** δ 6.99 (d, *J* = 8.9 Hz, 2 H), 6.83 (d, *J* = 8.9 Hz, 2 H), 6.58 (d, *J* = 17.3 Hz, 1 H), 6.30 (dd, *J* = 17.3, 10.5 Hz, 1 H), 5.98 (d, *J* = 10.4 Hz, 1 H), 0.98 (s, 9 H), 0.20 (s, 6 H).

¹³C NMR (101 MHz, CDCl₃) δ 164.9, 153.4, 144.6, 132.4, 128.1, 122.2, 120.6, 25.7, 18.2, -4.4.

3-chlorophenyl acrylate 2h:

2h was prepared following **General Procedure A** and purified by flash in petroleum ether : ethyl acetate = 100 : 1 to give as colorless liquid(1.70 g, 93% yield).

¹**H NMR (400 MHz, CDCl₃)** δ 7.24 (d, J = 8.1 Hz, 1 H), 7.20 - 7.13 (m, 1 H), 7.11 (s, 1 H), 6.98 (d, J = 8.1 Hz, 1 H), 6.54 (d, J = 17.3 Hz, 1 H), 6.23 (dd, J = 17.2, 10.3 Hz, 1 H), 5.96 (d, J = 10.5 Hz, 1 H).

¹³C NMR (101 MHz, CDCl₃) δ 163.1, 150.0, 133.7, 132.1, 129.1, 126.5, 125.2, 121.2, 118.9.

o-tolyl acrylate 2i:

2i was prepared following **General Procedure A** and purified by flash in petroleum ether : ethyl acetate = 100 : 1 to give as colorless liquid(1.08 g, 66% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.31 - 7.17 (m, 3 H), 7.09 (d, J = 7.9 Hz, 1 H), 6.67 (d, J = 17.3 Hz, 1 H), 6.39 (dd, J = 17.3, 10.4 Hz, 1 H), 6.06 (d, J = 10.5 Hz, 1 H), 2.23 (s, 3 H). ¹³C NMR (101 MHz, CDCl₃) δ 164.3, 149.2, 132.6, 131.2, 130.2, 127.8, 127.0, 126.1, 121.9, 16.2.

naphthalen-2-yl acrylate 2j:

2j was prepared following **General Procedure A** and purified by flash in petroleum ether : ethyl acetate = 50 : 1 to give as colorless liquid(1.78 g, 89% yield).

¹**H NMR (400 MHz, CDCl₃)** δ 7.89 - 7.77 (m, 3 H), 7.61 (d, *J* = 2.3 Hz, 1 H), 7.51 - 7.44 (m, 2 H), 7.31 - 7.22 (m, 1 H), 6.65 (d, *J* = 17.3 Hz, 1 H), 6.37 (dd, *J* = 17.3, 10.4 Hz, 1 H), 6.04 (d, *J* = 10.5 Hz, 1 H).

¹³C NMR (101 MHz, CDCl₃) δ 164.8, 148.3, 133.8, 132.7, 131.5, 129.5, 128.0, 127.8, 127.7, 126.6, 125.8, 121.1, 118.6.

<u>1,4-phenylene diacrylate 2z:</u>

In a round bottom flask, acryloyl chloride (1.9 mL, 24 mmol) was added dropwise to a solution of hydroquinone (1.10 g, 10 mmol) and NEt₃ (4.2 mL, 30 mmol) in DCM (40 mL) at 0 °C under argon atmosphere. After the addition was completed, the ice bath was removed, and the reaction mixture was stirred at room temperature overnight. Upon completion of the reaction, the reaction mixture was diluted with water and extracted with DCM. The combined organic layer was washed with saturated aqueous NaHCO₃. The organic layers were washed with brine, dried over anhydrous Na₂SO₄, concentrated in vacuo. The crude mixture was purified by silica gel column chromatography using petroleum ether: ethyl acetate = 100 : 1 as the eluent to give **2g** as white solid(1.92 g, 88%). m.p. 84.7-86.5°C.

¹**H NMR (400 MHz, CDCl₃)** δ 7.16 (s, 4H), 6.61 (d, *J* = 17.4 Hz, 2 H), 6.32 (dd, *J* = 17.3, 10.4 Hz, 2 H), 6.02 (d, *J* = 10.4 Hz, 2 H).

¹³C NMR (101 MHz, CDCl₃) δ 164.4, 148.1, 132.9, 127.8, 122.5.

(8R,98,138,148)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-3-yl acrylate 2aa:

2aa was prepared following **General Procedure A** and purified by flash in petroleum ether : ethyl acetate = 50 : 1 to give as colorless liquid(2.9 g, 88% yield).

¹**H NMR (400 MHz, CDCl₃)** δ 7.30 (d, *J* = 8.5 Hz, 1 H), 6.93 - 6.84 (m, 2 H), 6.59 (d, *J* = 17.3 Hz, 1 H), 6.31 (dd, *J* = 17.3, 10.4 Hz, 1 H), 6.00 (d, *J* = 10.1 Hz, 1 H), 2.95 - 2.88 (m, 2 H), 2.51 (dd, *J* = 18.8, 8.6 Hz, 1 H), 2.44 - 2.39 (m, 1 H), 2.29 (td, *J* = 11.0, 4.1 Hz, 1 H), 2.21 - 1.91 (m, 4 H), 1.70 - 1.38 (m, 6 H), 0.91 (s, 3 H).

¹³C NMR (101 MHz, CDCl₃) δ 220.9, 164.9, 148.5, 138.1, 137.5, 132.5, 128.1, 126.5, 121.6, 118.8, 50.5, 48.0, 44.2, 38.0, 35.9, 31.6, 29.5, 26.4, 25.8, 21.7, 13.9.

(88,98,10R,13R,148,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl acrylate 2ab:

2ab was prepared following **General Procedure A** and purified by flash in petroleum ether : ethyl acetate = 50 : 1 to give as white solid (3.79 g, 86% yield). m.p. 122.5-124.1°C.

¹**H NMR (400 MHz, CDCl₃)** δ 6.42 (d, *J* = 17.4 Hz, 1 H), 6.14 (dd, *J* = 17.3, 10.4 Hz, 1 H), 5.83 (d, *J* = 10.4 Hz, 1 H), 5.42 (d, *J* = 5.0 Hz, 1 H), 4.73 (tq, *J* = 11.5, 4.4 Hz, 1 H), 2.40 (d, *J* = 8.0 Hz, 2 H), 2.09 - 1.80 (m, 5 H), 1.74 - 0.98 (m, 24 H), 0.95 (d, *J* = 6.5 Hz, 3 H), 0.90 (d, *J* = 6.6 Hz, 6 H), 0.71 (s, 3 H).

¹³C NMR (101 MHz, CDCl₃) δ 165.7, 139.6, 130.3, 129.1, 122.8, 74.2, 56.7, 56.2, 50.1, 42.3, 39.8, 39.6, 38.2, 37.0, 36.7, 36.2, 35.9, 32.0, 31.9, 28.3, 28.1, 27.8, 24.3, 23.9, 22.9, 22.6, 21.1, 19.4, 18.8, 11.9.

2.2 General Procedure for the Enantioselective C-H Olefination.

Note: Because of the coexistence of parallel conformer and anti-parallel conformer of sterically hindered diarylethenes, the integrals of some H-atoms may not be integers in ¹H NMR spectra. But the sum of the integrals of H atoms is integers for the parallel and anti-parallel conformer at the same position.

A 10 mL Schlenk tube was added 1 (41.4 mg, 0.10 mmol), 2 (0.15 mmol), L2 (14.4 mg, 20 mmol%), AgOAc (33.4 mg, 0.20 mmol), Pd(OAc)₂ (2.2 mg, 10 mol%) and CHCl₃/o-DCB/ n Bu₂O (0.67 mL/0.67 mL/0.67 mL). The reaction mixture was stirred at 55 °C (aluminum heat transfer block) for 60 h in the dark. After cooling to room temperature, the mixture was diluted with dichloromethane, filtrated through celite. After concentration, the resulting residue was purified by preparative TLC using Hexane/EtOAc/DCM or Hexane/Acetone/DCM as the eluent to afford the desired product.

Table S1.	Screening	of Ag	salt.
-----------	-----------	-------	-------

S^{-N} N^{-S} N	Pd(OAc) ₂ L2 (20 Oxidant (2 CHCl ₃ /o-DCB/ ⁿ 55°C, 4	(10 mol%) mol%) 2.0 equiv) Bu ₂ O (0.05 M) .8h, Ar	N-S N CO ₂ Ph
1 2a		3	١
Entry	Oxidant	$\operatorname{Yield}^{b}(%)$	er ^c
1	AgOAc	78	95:5
2	Ag ₂ CO ₃	16	90:10
3	Ag ₃ PO ₄	10	91:9
4	AgTFA	39	50:50
5	AgNO ₃	22	75.5:24.5
6	PhCO ₂ Ag	71	83.5:16.5
7	Ag_2SO_4	17	90:10
8	Ag ₂ O	N.R.	-
9	AgBF ₄	N.R.	-

^{*a*}Reaction conditions: **1** (0.10 mmol), **2a** (0.15 mmol), Pd(OAc)₂ (10 mol %), L**2** (20 mol %), Oxidant (2.0 equiv) in solvent (2 mL), 55 °C, 48 h, under Ar. ^{*b*}Isolated yield. ^{*c*}The er value was determined by chiral HPLC. *o*-DCB = 1,2-dichlorobenzene.

Phenyl (E)-3-(4-(5-(2,5-dimethylthiophen-3-yl)benzo[1,2-c:3,4-c']bis([1,2,5]thiadiazole)-4-yl)-2,5-dimethylthioph en-3-yl)acrylate 3a:

A purification by flash chromatography in petroleum ether : dichloromethane : ethyl acetate = 15 : 4 : 1 to give **3a** as red oil (47.7 mg, 85%,). The ee value was determined by HPLC analysis on a Chiralcel IF-3 column (hexane/isopropanol = 97/3, flow = 1.0 mL/min, 254 nm) with tr = 9.0 min (major), 10.7 min (minor): 95.5 : 4.5 er. $[\alpha]_D^{20} = 110.0$ (c = 1.0, CHCl₃)

¹**H NMR (400 MHz, CDCl₃)** δ 7.45 (d, *J* = 16 Hz, 1 H), 7.43 (d, *J* = 16 Hz, 1 H), 7.27 - 7.34 (m, 4 H), 7.13 - 7.21 (m, 2 H), 6.92 - 7.02 (m, 4 H), 6.44 (s, 1 H), 6.30 (s, 1 H), 5.86 (d, *J* = 16.1 Hz, 1 H), 5.81 (d, *J* = 16 Hz, 1 H), 2.62 (s, 3 H), 2.58 (s, 3 H), 2.36 (s, 6 H), 2.14 (s, 3 H), 2.11 (s, 3 H), 2.10 (s, 3 H), 2.06 (s, 3 H). ap/p=46/54.

¹³C NMR (101 MHz, CDCl₃) δ 165.7, 165.6, 156.8, 156.8, 156.7, 150.7, 150.6, 147.7, 147.4, 140.0, 139.9, 139.6, 139.4, 137.3, 136.8, 135.9, 135.8, 135.2, 134.7, 132.9, 132.9, 132.7, 132.5, 131.5, 131.3, 131.0, 130.6, 129.9, 129.9, 129.4, 127.5, 126.5, 125.7, 121.5, 117.1, 116.6, 15.6, 15.5, 15.3, 15.2, 14.9, 14.4, 14.4.

HRMS (ESI) m/z: $[M+Na]^+$ Calculated for $C_{27}H_{20}N_4O_2S_4Na^+$: 583.0361; found: 583.0363.

<u>4-nitrophenyl (E)-3-(4-(5-(2,5-dimethylthiophen-3-yl)benzo[1,2-*c*:3,4-*c*']bis([1,2,5]thiadiazole)-4-yl)-2,5-dimethy <u>1thiophen-3-yl)acrylate 3b:</u></u>

A purification by flash chromatography in petroleum ether : dichloromethane : ethyl acetate = 15 : 4 : 1 to give **3b** as red oil (42.4 mg, 70%,). The ee value was determined by HPLC analysis on a Chiralcel IF-3 column (hexane/isopropanol = 97/3, flow = 1.0 mL/min, 254 nm) with tr = 35.2 min (major), 42.2 min (minor): 93.5 : 6.5 er. $[\alpha]_D^{20} = 127.6$ (c = 1.0, CHCl₃)

¹**H NMR (400 MHz, CDCl₃)** δ 8.21 (m, 4 H), 7.52 (d, *J* = 16.1 Hz, 1 H), 7.42 (d, *J* = 16.1 Hz, 1 H), 7.18 (m, 4 H), 6.40 (s, 1 H), 6.31 (s, 1 H), 5.86 (d, *J* = 16.1 Hz, 1 H), 5.79 (d, *J* = 16.1 Hz, 1 H), 2.64 (s, 3 H), 2.60 (s, 3 H), 2.37 (s, 3 H), 2.34 (s, 3 H), 2.12 (s, 6 H), 2.11 (s, 3 H), 2.06 (s, 3 H). ap/p=42/58.

¹³C NMR (101 MHz, CDCl₃) δ 164.7, 164.6, 156.7, 156.7, 156.6, 155.4, 155.4, 147.6, 147.3, 147.3, 145.1, 145.1, 141.2, 141.0, 140.8, 140.6, 137.1, 137.0, 136.0, 135.8, 135.5, 135.0, 132.9, 132.8, 132.7, 132.3, 131.2, 131.0, 130.8, 130.5, 129.7, 127.2, 126.5, 125.2, 122.4, 122.3, 115.6, 115.0, 15.7, 15.5, 15.3, 15.2, 15.2, 14.9, 14.4, 14.3.

HRMS (ESI) m/z: $[M+Na]^+$ Calculated for $C_{27}H_{19}N_5O_4S_4Na^+$: 628.0212; found: 628.0213.

<u>4-methoxyphenyl (E)-3-(4-(5-(2,5-dimethylthiophen-3-yl)benzo[1,2-c:3,4-c']bis([1,2,5]thiadiazole)-4-yl)-2,5-dimethylthiophen-3-yl)acrylate 3c:</u>

A purification by flash chromatography in petroleum ether : dichloromethane : ethyl acetate = 15 : 4 : 1 to give **3c** as red oil (40.2 mg, 68%,). The ee value was determined by HPLC analysis on a Chiralcel IF-3 column (hexane/isopropanol = 90/10, flow = 1.0 mL/min, 254 nm) with tr = 11.2 min (major), 13.8 min (minor): 95 : 5 er. [α]_D²⁰ = 108.6 (c = 1.0, CHCl₃)

¹**H NMR (400 MHz, CDCl₃)** δ 7.44 (d, *J* = 16 Hz, 1 H), 7.35 (d, *J* = 16 Hz, 1 H), 6.78 - 6.94 (m, 8 H), 6.44 (s, 1 H), 6.30 (s, 1 H), 5.85 (d, *J* = 16.1 Hz, 1 H), 5.79 (d, *J* = 16.1 Hz, 1 H), 3.77 (s, 3 H), 3.76 (s, 3 H), 2.61 (s, 3 H), 2.58 (s, 3 H), 2.36 (s, 6 H), 2.13 (s, 3 H), 2.10 (s, 6 H), 2.06 (s, 3 H). ap/p=43/57.

¹³C NMR (101 MHz, CDCl₃) δ 166.0, 166.0, 157.1, 156.8, 156.7, 156.6, 147.6, 147.3, 147.3, 144.1, 144.0, 140.0, 139.8, 139.4, 139.2, 137.3, 136.8, 135.9, 135.7, 135.1, 134.6, 132.8, 132.8, 132.7, 132.4, 131.5, 131.3, 130.9, 130.5, 129.9, 129.8, 127.4, 126.5, 122.2, 117.1, 116.6, 114.4, 55.6, 15.6, 15.4, 15.3, 15.2, 14.8, 14.4, 14.3, 14.2.

HRMS (ESI) m/z: [M+H]⁺ Calculated for C₂₈H₂₃N₄O₃S₄⁺: 591.0647; found: 591.0650.

<u>4-methoxyphenyl (E)-3-(4-(5-(2,5-dimethylthiophen-3-yl)benzo[1,2-*c*:3,4-*c*']bis([1,2,5]thiadiazole)-4-yl)-2,5-dimethylthiophen-3-yl)acrylate 3d:</u>

A purification by flash chromatography in petroleum ether : dichloromethane : ethyl acetate = 15 : 4 : 1 to give **3d** as red oil (27.5 mg, 43%,). The ee value was determined by HPLC analysis on a Chiralcel IF-3 column (hexane/isopropanol =

97/3, flow = 1.0 mL/min, 254 nm) with tr = 12.6 min (major), 17.7 min (minor): 94 : 6 er. $[\alpha]_D^{20} = 101.5$ (c = 1.0, CHCl₃)

¹**H NMR (400 MHz, CDCl₃)** δ 7.33 - 7.50 (m, 6 H), 6.82 - 6.94 (m, 4 H), 6.41 (s, 1 H), 6.30 (s, 1 H), 5.84 (d, *J* = 16.1 Hz, 1 H), 5.78 (d, *J* = 16.1 Hz, 1 H), 2.62 (s, 3 H), 2.58 (s, 3 H), 2.36 (s, 3 H), 2.34 (s, 3 H), 2.11 (s, 3 H), 2.10 (s, 6 H), 2.06 (s, 3 H). ap/p=43/57.

¹³C NMR (101 MHz, CDCl₃) δ 165.3, 165.3, 156.8, 156.7, 156.7, 156.6, 149.6, 149.6, 147.6, 147.3, 140.4, 140.2, 140.0, 139.7, 137.2, 136.9, 135.9, 135.8, 135.3, 134.8, 132.9, 132.8, 132.7, 132.4, 131.3, 131.1, 130.9, 130.5, 129.8, 129.7, 127.3, 126.5, 123.3, 123.3, 118.8, 118.8, 116.5, 115.9, 15.6, 15.4, 15.3, 15.2, 15.2, 14.9, 14.4, 14.3.

HRMS (ESI) m/z: $[M+H]^+$ Calculated for $C_{27}H_{20}BrN_4O_2S_4^+$: 638.9647; found: 638.9644.

<u>4-pentylphenyl (E)-3-(4-(5-(2,5-dimethylthiophen-3-yl)benzo[1,2-c:3,4-c']bis([1,2,5]thiadiazole)-4-yl)-2,5-dimethylthiophen-3-yl)acrylate 3e:</u>

A purification by flash chromatography in petroleum ether : dichloromethane : ethyl acetate = 15 : 4 : 1 to give **3e** as red oil (40.4 mg, 64%,). The ee value was determined by HPLC analysis on a Chiralcel IF-3 column (hexane/isopropanol = 97/3, flow = 1.0 mL/min, 254 nm) with tr = 12.6 min (major), 15.7 min (minor): 94.5 : 5.5 er. $[\alpha]_D^{20} = 107.3$ (c = 1.0, CHCl₃)

¹**H NMR (400 MHz, CDCl₃)** δ 7.43 (d, *J* = 16 Hz, 1 H), 7.36 (d, *J* = 16 Hz, 1 H), 7.07 - 7.15 (m, 4 H), 6.82 - 6.92 (m, 4 H), 6.45 (s, 1 H), 6.29 (s, 1 H), 5.87 (d, *J* = 16.1 Hz, 1 H), 5.81 (d, *J* = 16.1 Hz, 1 H), 2.61 (s, 3 H), 2.58 (s, 3 H), 2.50 - 2.56 (m, 4 H), 2.36 (s, 6 H), 2.13 (s, 3 H), 2.10 (s, 3 H), 2.09 (s, 3 H), 2.07 (s, 3 H), 1.51 - 1.61 (m, 4 H), 1.2 - 1.35 (m, 8 H), 0.82 - 0.92 (m, 6 H). ap/p=43/57.

¹³C NMR (101 MHz, CDCl₃) δ 165.8, 165.7, 156.8, 156.7, 156.6, 148.4, 148.4, 147.6, 147.3, 147.3, 140.4, 140.3, 139.8, 139.7, 139.3, 139.1, 137.3, 136.7, 135.8, 135.7, 135.1, 134.6, 132.8, 132.8, 132.7, 132.4, 131.4, 131.2, 130.9, 130.5, 129.8, 129.2, 127.4, 126.4, 121.0, 117.2, 116.7, 35.3, 31.4, 31.1, 22.5, 15.5, 15.4, 15.2, 15.2, 14.8, 14.3, 14.1, 14.0.

HRMS (ESI) m/z: $[M+H]^+$ Calculated for $C_{32}H_{31}N_4O_2S_4^+$: 631.1324; found: 631.1326.

<u>4-cyanophenyl (E)-3-(4-(5-(2,5-dimethylthiophen-3-yl)benzo[1,2-c:3,4-c']bis([1,2,5]thiadiazole)-4-yl)-2,5-dimethylthiophen-3-yl)acrylate 3f:</u>

A purification by flash chromatography in petroleum ether : dichloromethane : ethyl acetate = 7 : 2 : 1 to give **3f** as red oil (32.7 mg, 56%,). The ee value was determined by HPLC analysis on a Chiralcel IF-3 column (hexane/isopropanol = 90/10, flow = 1.0 mL/min, 254 nm) with tr = 15.3 min (major), 17.9 min (minor): 93.5 : 6.5 er. $[\alpha]_D^{20} = 158.6$ (c = 1.0, CHCl₃)

¹**H NMR (400 MHz, CDCl₃)** δ 7.59 - 7.66 (m, 4 H), 7.52 (d, *J* = 16 Hz, 1 H), 7.40 (d, *J* = 16 Hz, 1 H), 7.07 - 7.17 (m, 4 H), 6.39 (s, 1 H), 6.30 (s, 1 H), 5.84 (d, *J* = 16.1 Hz, 1 H), 5.77 (d, *J* = 16.1 Hz, 1 H), 2.63 (s, 3 H), 2.59 (s, 3 H), 2.36 (s, 3 H), 2.34 (s, 3 H), 2.12 (s, 6 H), 2.11 (s, 3 H), 2.06 (s, 3 H). ap/p=43/57.

¹³C NMR (101 MHz, CDCl₃)δ 164.8, 164.7, 156.8, 156.7, 156.6, 154.0, 154.0, 147.6, 147.4, 141.0, 140.8, 140.6, 140.5, 137.2, 137.0, 136.0, 135.8, 135.5, 135.0, 133.6, 133.0, 132.9, 132.7, 132.4, 131.3, 131.1, 130.9, 130.6, 129.7, 127.2, 126.5, 122.7, 122.7, 118.3, 115.8, 115.2, 109.6, 109.6, 15.7, 15.5, 15.3, 15.2, 15.0, 14.4, 14.3.

HRMS (ESI) m/z: $[M+H]^+$ Calculated for $C_{28}H_{20}N_5O_2S_4^+$: 586.0494; found: 586.0498.

<u>4-((tert-butyldimethylsilyl)oxy)phenyl (E)-3-(4-(5-(2,5-dimethylthiophen-3-yl)benzo[1,2-c:3,4-c']bis([1,2,5]thiadi azole)-4-yl)-2,5-dimethylthiophen-3-yl)acrylate 3g:</u>

A purification by flash chromatography in petroleum ether : dichloromethane : ethyl acetate = 15 : 4 : 1 to give **3g** as red oil (60.8 mg, 88%,). The ee value was determined by HPLC analysis on a Chiralcel IF-3 column (hexane/isopropanol = 95/5, flow = 1.0 mL/min, 254 nm) with tr = 5.3 min (major), 7.6 min (minor): 95 : 5 er. [α]_D²⁰ = 153.8 (c = 1.0, CHCl₃)

¹**H NMR (400 MHz, CDCl₃)** δ 7.43 (d, *J* = 16.2 Hz, 1 H), 7.34 (d, *J* = 16.2 Hz, 1 H), 6.70 - 6.89 (m, 8 H), 6.44 (s, 1 H), 6.30 (s, 1 H), 5.85 (d, *J* = 16.1 Hz, 1 H), 5.79 (d, *J* = 16.1 Hz, 1 H), 2.61 (s, 3 H), 2.57 (s, 3 H), 2.36 (s, 6 H), 2.13 (s, 3 H), 2.10 (s, 3 H), 2.06 (s, 6 H), 0.95 (m, 18 H), 0.16 (m, 12 H). ap/p=46/54.

¹³C NMR (101 MHz, CDCl₃)δ 165.9, 165.9, 156.8, 156.8, 156.7, 153.2, 147.7, 147.4, 144.6, 144.6, 139.9, 139.7, 139.4,

139.2, 137.3, 136.8, 135.9, 135.8, 135.2, 134.7, 132.9, 132.9, 132.7, 132.5, 131.6, 131.4, 131.0, 130.6, 130.0, 129.9, 127.5, 126.5, 122.1, 120.5, 117.3, 116.8, 25.7, 18.2, 15.6, 15.5, 15.3, 15.2, 14.9, 14.4, 14.4, -4.4.

HRMS (ESI) m/z: $[M+H]^+$ Calculated for $C_{33}H_{35}N_4O_3S_4Si^+$: 691.1356; found: 691.1359.

<u>3-chlorophenyl (E)-3-(4-(5-(2,5-dimethylthiophen-3-yl)benzo[1,2-c:3,4-c']bis([1,2,5]thiadiazole)-4-yl)-2,5-dimethylthiophen-3-yl)acrylate 3h:</u>

A purification by flash chromatography in petroleum ether : dichloromethane : ethyl acetate = 15 : 4 : 1 to give **3h** as red oil (34.0 mg, 57%,). The ee value was determined by HPLC analysis on a Chiralcel IF-3 column (hexane/isopropanol = 97/3, flow = 1.0 mL/min, 254 nm) with tr = 9.3 min (major), 10.8 min (minor): $94 : 6 \text{ er.} [\alpha]_D^{20} = 159.8$ (c = $1.0, \text{CHCl}_3$)

¹**H NMR (400 MHz, CDCl₃)** δ 7.46 (d, *J* = 16 Hz, 1 H), 7.37 (d, *J* = 16 Hz, 1 H), 7.20 - 7.26 (m, 4 H), 6.98 - 7.07 (m, 2 H), 6.85 - 6.94 (m, 2 H), 6.42 (s, 1 H), 6.30 (s, 1 H), 5.85 (d, *J* = 16.1 Hz, 1 H), 5.78 (d, *J* = 16.1 Hz, 1 H), 2.62 (s, 3 H), 2.58 (s, 3 H), 2.36 (s, 6 H), 2.12 (s, 3 H), 2.10 (s, 6 H), 2.06 (s, 3 H). ap/p=46/54.

¹³C NMR (101 MHz, CDCl₃) δ 165.2, 165.2, 156.8, 156.7, 156.7, 156.6, 151.1, 151.0, 147.6, 147.3, 140.5, 140.3, 140.0, 139.8, 137.2, 136.9, 135.9, 135.8, 135.3, 134.8, 134.6, 132.9, 132.8, 132.7, 132.4, 131.3, 131.1, 130.9, 130.5, 130.1, 129.8, 129.7, 127.3, 126.5, 126.0, 126.0, 122.2, 120.0, 119.9, 116.4, 115.8, 15.6, 15.5, 15.3, 15.2, 14.9, 14.4, 14.3.

HRMS (ESI) m/z: $[M+H]^+$ Calculated for $C_{27}H_{20}N_4O_2S_4Cl^+$: 595.0152; found: 595.0157.

<u>*o*-tolyl</u> (E)-3-(4-(5-(2,5-dimethylthiophen-3-yl)benzo[1,2-*c*:3,4-*c*']bis([1,2,5]thiadiazole)-4-yl)-2,5-dimethylthioph <u>en-3-yl)acrylate_3i:</u>

A purification by flash chromatography in petroleum ether : dichloromethane : ethyl acetate = 15 : 4 : 1 to give **3i** as red oil (38.5 mg, 67%,). The ee value was determined by HPLC analysis on a Chiralcel IBN-5 column (hexane/isopropanol = 90/10, flow = 1.0 mL/min, 254 nm) with tr = 8.8 min (major), 9.7 min (minor): 88.5 : 11.5 er. [α]_D²⁰ = 107.2 (c = 1.0, CHCl₃)

¹**H NMR (400 MHz, CDCl₃)** δ 7.50 (d, *J* = 16 Hz, 1 H), 7.41 (d, *J* = 16 Hz, 1 H), 7.04 - 7.19 (m, 6 H), 6.84 - 6.93 (m, 2 H), 6.41 (s, 1 H), 6.34 (s, 1 H), 5.90 (d, *J* = 16.1 Hz, 1 H), 5.84 (d, *J* = 16.1 Hz, 1 H), 2.63 (s, 3 H), 2.60 (s, 3 H), 2.37 (s, 3 H), 2.36 (s, 3 H), 2.13 (s, 3 H), 2.12 (s, 3 H), 2.09 (s, 3 H) 2.06 (s, 3 H), 2.00 (s, 3 H), 1.98 (s, 3 H). ap/p=46/54.

¹³C NMR (101 MHz, CDCl₃) δ 165.4, 156.8, 156.8, 156.7, 156.7, 149.2, 149.2, 147.6, 147.6, 147.3, 147.3, 140.2, 140.1, 139.5, 139.3, 137.2, 136.7, 135.9, 135.8, 135.2, 134.7, 132.9, 132.9, 132.7, 132.4, 131.4, 131.2, 131.1, 131.0, 130.5, 130.1, 130.0, 129.9, 129.9, 127.2, 126.9, 126.6, 125.9, 121.7, 121.7, 116.7, 116.2, 16.1, 16.1, 15.6, 15.5, 15.3, 15.3, 15.2, 14.9, 14.4, 14.3.

HRMS (ESI) m/z: $[M+H]^+$ Calculated for $C_{28}H_{23}N_4O_2S_4^+$: 575.0698; found: 575.0699.

naphthalen-2-yl (E)-3-(4-(5-(2,5-dimethylthiophen-3-yl)benzo[1,2-*c*:3,4-*c*']bis([1,2,5]thiadiazole)-4-yl)-2,5-dimet hylthiophen-3-yl)acrylate 3j:

A purification by flash chromatography in petroleum ether : dichloromethane : ethyl acetate = 17 : 2 : 1 to give **3j** as red oil (41.5 mg, 68%,). The ee value was determined by HPLC analysis on a Chiralcel IF-3 column (hexane/isopropanol = 97/3, flow = 1.0 mL/min, 254 nm) with tr = 25.8 min (major), 29.6 min (minor): 95 : 5 er. [α]_D²⁰ = 165.8 (c = 1.0, CHCl₃)

¹**H NMR (400 MHz, CDCl₃)** δ 7.70 - 7.85 (m, 6 H), 7.38 - 7.56 (m, 8 H), 7.13 (dd, *J* = 8.9, 2.3 Hz, 1 H), 7.10 (dd, *J* = 8.9, 2.3 Hz, 1 H), 6.47 (s, 1 H), 6.31 (s, 1 H), 5.92 (d, *J* = 16.1 Hz, 1 H), 5.86 (d, *J* = 16.1 Hz, 1 H), 2.64 (s, 3 H), 2.60 (s, 3 H), 2.38 (s, 3 H), 2.37 (s, 3 H), 2.17 (s, 3 H), 2.11 (s, 3 H), 2.07 (s, 6 H). ap/p=44/56.

¹³C NMR (101 MHz, CDCl₃) δ 165.8, 165.8, 156.8, 156.8, 156.7, 156.6, 148.6, 148.2, 147.6, 147.3, 147.3, 140.2, 140.0, 139.7, 139.5, 137.3, 136.8, 135.9, 135.8, 135.2, 134.7, 133.7, 132.9, 132.8, 132.7, 132.4, 131.5, 131.4, 131.3, 131.0, 130.5, 129.9, 129.8, 129.3, 127.8, 127.6, 127.4, 126.6, 126.5, 125.7, 121.1, 118.4, 117.0, 116.5, 15.6, 15.5, 15.3, 15.2, 14.9, 14.4, 14.3.

HRMS (ESI) m/z: $[M+H]^+$ Calculated for $C_{31}H_{23}N_4O_2S_4^+$: 611.0698; found: 611.0703.

butyl (E)-3-(4-(5-(2,5-dimethylthiophen-3-yl)benzo[1,2-*c*:3,4-*c*']bis([1,2,5]thiadiazole)-4-yl)-2,5-dimethylthiophe <u>n-3-yl)acrylate 3k:</u>

A purification by flash chromatography in petroleum ether : dichloromethane : ethyl acetate = 15 : 4 : 1 to give **3k** as red oil (33.5 mg, 62%,). The ee value was determined by HPLC analysis on a Chiralcel IF-3 column (hexane/isopropanol = 95/5, flow = 1.0 mL/min, 254 nm) with tr = 7.3 min (major), 8.4 min (minor): 94 : 6 er. $[\alpha]_D^{20} = 90.8$ (c = 1.0, CHCl₃)

¹**H NMR (400 MHz, CDCl₃)** δ 7.26 (d, *J* = 16 Hz, 1 H), 7.19 (d, *J* = 16 Hz, 1 H), 6.36 (d, *J* = 16 Hz, 1 H), 6.32 (d, *J* = 16 Hz, 1 H), 5.67 (d, *J* = 16.1 Hz, 1 H), 5.63 (d, *J* = 16.1 Hz, 1 H), 3.94 - 4.06 (m, 4 H), 2.57 (s, 3 H), 2.53 (s, 3 H), 2.36 (s, 3 H), 2.32 (s, 3 H), 2.10 (s, 3 H), 2.08 (s, 3 H), 2.06 (s, 3 H), 2.04 (s, 3 H), 1.45 - 1.57 (m, 4 H), 1.20 - 1.33 (m, 4 H), 0.80 - 0.91 (t, *J* = 7.2 Hz, 6 H). ap/p=44/56.

¹³C NMR (101 MHz, CDCl₃) δ 167.3, 167.2, 156.8, 156.8, 156.7, 147.6, 147.3, 147.3, 138.8, 138.8, 137.7, 137.5, 137.2, 136.7, 135.7, 135.6, 134.9, 134.4, 132.8, 132.7, 132.6, 132.3, 131.7, 131.4, 131.0, 130.5, 130.0, 130.0, 127.4, 126.5, 118.4, 117.9, 64.3, 64.2, 30.6, 19.1, 19.1, 15.5, 15.3, 15.2, 15.1, 15.0, 14.9, 14.3, 14.2, 13.7.

HRMS (ESI) m/z: $[M+H]^+$ Calculated for $C_{25}H_{25}N_4O_2S_4^+$: 541.0855; found: 541.0856.

tert-butyl (E)-3-(4-(5-(2,5-dimethylthiophen-3-yl)benzo[1,2-*c*:3,4-*c*']bis([1,2,5]thiadiazole)-4-yl)-2,5-dimethylthiophen-3-yl)acrylate 31:

A purification by flash chromatography in petroleum ether : dichloromethane : ethyl acetate = 15 : 4 : 1 to give **3l** as red oil (44.3 mg, 62%,). The ee value was determined by HPLC analysis on a Chiralcel OD-H column (hexane/isopropanol = 90/10, flow = 1.0 mL/min, 254 nm) with tr =6.7 min (major) · 5.9 min (minor): 88 : 12 er. [α]_D²⁰ = $110.6 \text{ (c} = 1.0, \text{ CHCl}_3$)

¹**H NMR (400 MHz, CDCl₃)** δ 7.16 (d, *J* = 16 Hz, 1 H), 7.09 (d, *J* = 16 Hz, 1 H), 6.40 (s, 1 H), 6.29 (s, 1 H), 5.63 (d, *J* = 16.1 Hz, 1 H), 5.59 (d, *J* = 16.1 Hz, 1 H), 2.56 (s, 3 H), 2.51 (s, 3 H), 2.35 (s, 3 H), 2.33 (s, 3 H), 2.09 (s, 3 H), 2.08 (s, 3 H), 2.04 (s, 6 H), 1.37 (s, 18 H). ap/p=44/56.

¹³C NMR (101 MHz, CDCl₃) δ 166.6, 166.5, 156.8, 156.8, 156.7, 147.6, 147.3, 147.3, 138.4, 138.2, 137.3, 136.8, 136.6,

136.6, 135.6, 135.5, 134.6, 134.1, 132.8, 132.8, 132.7, 132.5, 131.6, 131.5, 131.0, 130.5, 130.1, 130.1, 127.5, 126.5, 120.2, 119.7, 80.3, 80.3, 28.1, 28.1, 15.5, 15.4, 15.2, 15.2, 15.1, 14.8, 14.3, 14.3.

HRMS (ESI) m/z: $[M+Na]^+$ Calculated for $C_{25}H_{24}N_4O_2S_4Na^+$: 563.0674; found: 563.0673.

methyl (E)-3-(4-(5-(2,5-dimethylthiophen-3-yl)benzo[1,2-c:3,4-c']bis([1,2,5]thiadiazole)-4-yl)-2,5-dimethylthioph en-3-yl)acrylate 3m:

A purification by flash chromatography in petroleum ether : dichloromethane : ethyl acetate = 15 : 4 : 1 to give **3m** as red oil (37.9 mg, 76%,). The ee value was determined by HPLC analysis on a Chiralcel IF-3 column (hexane/isopropanol = 95/5, flow = 0.8 mL/min, 254 nm) with tr = 6.2 min (major), 6.9 min (minor): 86.5 : 13.5 er. [α]_D²⁰ = 80.7 (c = 1.0, CHCl₃)

¹**H NMR (400 MHz, CDCl₃)** δ 7.30 (d, *J* = 16 Hz, 1 H), 7.22 (d, *J* = 16 Hz, 1 H), 6.35 (s, 1 H), 6.32 (s, 1 H), 5.67 (d, *J* = 16.1 Hz, 1 H), 5.60 (d, *J* = 16.1 Hz, 1 H), 3.61 (s, 3 H), 3.60 (s, 3 H), 2.57 (s, 3 H), 2.53 (s, 3 H), 2.36 (s, 3 H), 2.31 (s, 3 H), 2.10 (s, 3 H), 2.08 (s, 3 H), 2.06 (s, 3 H), 2.04 (s, 3 H). ap/p=44/56.

¹³C NMR (101 MHz, CDCl₃) δ 167.6, 167.5, 156.8, 156.8, 156.7, 147.6, 147.3, 147.3, 139.1, 139.0, 137.9, 137.7, 137.2, 136.7, 135.8, 135.7, 135.0, 134.5, 132.8, 132.7, 132.5, 132.2, 131.6, 131.4, 131.0, 130.5, 130.0, 130.0, 127.4, 126.5, 117.8, 117.2, 51.5, 15.4, 15.2, 15.1, 15.0, 14.9, 14.3, 14.2.

HRMS (ESI) m/z: $[M+H]^+$ Calculated for $C_{22}H_{19}N_4O_2S_4^+$: 499.0385; found: 499.0384.

<u>ethyl</u> (E)-3-(4-(5-(2,5-dimethylthiophen-3-yl)benzo[1,2-*c*:3,4-*c*']bis([1,2,5]thiadiazole)-4-yl)-2,5-dimethylthiophe <u>n-3-yl)acrylate 3n:</u>

A purification by flash chromatography in petroleum ether : dichloromethane : ethyl acetate = 15 : 4 : 1 to give **3n** as red oil (40.5 mg, 79%,). The ee value was determined by HPLC analysis on a Chiralcel IF-3 column (hexane/isopropanol = 95/5, flow = 0.8 mL/min, 254 nm) with tr =8.6 min (major), 10.0 min (minor): 92.5 : 7.5 er. $[\alpha]_D^{20} = 159.9$ (c = 1.0, CHCl₃)

¹**H NMR (400 MHz, CDCl₃)** δ 7.28 (d, J = 16 Hz, 1 H), 7.20 (d, J = 16 Hz, 1 H), 6.37 (s, 1 H), 6.31 (s, 1 H), 5.67 (d, J = 16.1 Hz, 1 H), 5.61 (d, J = 16.1 Hz, 1 H), 4.00 - 4.15 (m, 4 H), 2.56 (s, 3 H), 2.53 (s, 3 H), 2.35 (s, 3 H), 2.32 (s, 3 H), 2.10 (s, 3 H), 2.08 (s, 3 H), 2.07 (s, 3 H), 2.04 (s, 3 H), 1.14 - 1.23 (m, 6 H). ap/p=44/56.

¹³C NMR (101 MHz, CDCl₃) δ 167.2, 167.1, 156.8, 156.8, 156.8, 156.7, 147.6, 147.3, 147.3, 138.9, 138.8, 137.7, 137.5, 137.3, 136.7, 135.7, 135.6, 134.9, 134.4, 132.8, 132.7, 132.6, 132.3, 131.7, 131.5, 131.0, 130.5, 130.0, 130.0, 127.4, 126.5, 118.4, 117.8, 60.3, 60.3, 15.4, 15.3, 15.2, 15.1, 15.0, 14.8, 14.3, 14.3, 14.3.

HRMS (ESI) m/z: $[M+H]^+$ Calculated for $C_{23}H_{21}N_4O_2S_4^+$: 513.0542; found: 513.0546.

OCH₂CF₃

2,2,2-trifluoroethyl (E)-3-(4-(5-(2,5-dimethylthiophen-3-yl)benzo[1,2-c:3,4-c']bis([1,2,5]thiadiazole)-4-yl)-2,5-di methylthiophen-3-yl)acrylate 30:

A purification by flash chromatography in petroleum ether : dichloromethane : ethyl acetate = 15 : 4 : 1 to give **30** as red oil (40.8 mg, 72%,). The ee value was determined by HPLC analysis on a Chiralcel IF-3 column (hexane/isopropanol = 95/5, flow = 0.8 mL/min, 254 nm) with tr =5.2 min (major), 6.0 min (minor): 89 : 11 er. [α]_D²⁰ = 133.5 (c = 1.0, CHCl₃)

¹**H NMR (400 MHz, CDCl₃)** δ 7.34 (d, *J* = 16 Hz, 1 H), 7.29 (d, *J* = 16 Hz, 1 H), 6.38 (s, 1 H), 6.30 (s, 1 H), 5.74 (d, *J* = 16.1 Hz, 1 H), 5.69 (d, *J* = 16.1 Hz, 1 H), 4.33 - 4.47 (m, 4 H), 2.59 (s, 3 H), 2.56 (s, 3 H), 2.35 (s, 3 H), 2.32 (s, 3 H), 2.09 (s, 3 H), 2.07 (s, 3 H), 2.05 (s, 6 H). ap/p=45/55.

¹³C NMR (101 MHz, CDCl₃) δ 165.4, 156.8, 156.7, 156.7, 156.6, 147.6, 147.3, 147.3, 140.3, 140.2, 140.2, 140.0, 137.3, 136.8, 135.9, 135.8, 135.3, 134.7, 132.9, 132.8, 132.7, 132.5, 131.1, 131.0, 130.8, 130.4, 129.7, 129.6, 127.4, 126.4, 124.3, 124.3, 121.6, 121.6, 115.6, 115.2, 60.7, 60.6, 60.4, 60.3, 60.2, 59.9, 59.9, 59.6, 59.5, 15.6, 15.5, 15.2, 15.0, 14.9, 14.8, 14.4, 14.3.

¹⁹F NMR (376 MHz, CDCl₃) δ -73.6, -73.7 (both s, total 3 F)

HRMS (ESI) m/z: $[M+H]^+$ Calculated for $C_{23}H_{18}F_3N_4O_2S_4^+$: 567.0259; found: 567.0265.

$\underline{1,1,1,3,3,3-hexafluoropropan-2-yl} (E)-3-(4-(5-(2,5-dimethylthiophen-3-yl)benzo[1,2-c:3,4-c']bis([1,2,5]thiadiazolee-2-yl-2,5-dimethylthiophen-3-yl)acrylate 3p: \\ \underline{2,2,3,3-hexafluoropropan-2-yl} (E)-3-(4-(5-(2,5-dimethylthiophen-3-yl)benzo[1,2-c:3,4-c']bis([1,2,5]thiadiazolee-2-yl-2,5-dimethylthiophen-3-yl)acrylate 3p: \\ \underline{2,3,3-hexafluoropropan-2-yl} (E)-3-(4-(5-(2,5-dimethylthiophen-3-yl)benzo[1,2-c:3,4-c']bis([1,2,5]thiadiazolee-2-yl-2,5-dimethylthiophen-3-yl)acrylate 3p: \\ \underline{2,3,4-c'}bis([1,2,5]thiadiazolee-2-yl-2,5-dimethylthiophen-3-yl-3,5-dimethylthiophen-3-yl-3,5-dimethylthiophen-3-yl-3,5-dimeth$

A purification by flash chromatography in petroleum ether : dichloromethane : ethyl acetate = 40 : 10 : 1 to give **3p** as red oil (44.4 mg, 70%,). The ee value was determined by HPLC analysis on a Chiralcel A05 column (hexane/isopropanol = 90/10, flow = 1.0 mL/min, 254 nm) with tr = 5.2 min (major), 4.6 min (minor): 89 : 11 er. $[\alpha]_D^{20} = 125.9$ (c = 1.0, CHCl₃)

¹**H NMR (400 MHz, CDCl₃)** δ 7.40 (d, *J* = 16 Hz, 1 H), 7.37 (d, *J* = 16 Hz, 1 H), 6.40 (s, 1 H), 6.25 (s, 1 H), 5.66 - 5.82 (m, 4 H), 2.61 (s, 3 H), 2.58 (s, 3 H), 2.34 (s, 3 H), 2.31 (s, 3 H), 2.11 (s, 3 H), 2.10 (s, 3 H), 2.05 (s, 6 H). ap/p=45/55.

¹³C NMR (101 MHz, CDCl₃) δ 163.8, 163.7, 156.8, 156.6, 156.6, 156.5, 147.6, 147.3, 147.3, 142.2, 142.0, 141.6, 141.5, 137.4, 136.9, 136.0, 135.5, 135.0, 133.0, 132.9, 132.8, 130.7, 130.4, 129.4, 129.3, 127.3, 126.3, 121.9, 119.0, 113.4, 113.2, 66.6, 66.3, 65.9, 15.8, 15.2, 15.0, 14.9, 14.7, 14.5, 14.4.

¹⁹F NMR (376 MHz, CDCl₃) δ -73.2 (m, 6 F).

HRMS (ESI) m/z: $[M+H]^+$ Calculated for $C_{24}H_{17}F_6N_4O_2S_4^+$: 635.0133; found: 635.0133.

cyclohexyl (E)-3-(4-(5-(2,5-dimethylthiophen-3-yl)benzo[1,2-c:3,4-c']bis([1,2,5]thiadiazole)-4-yl)-2,5-dimethylthi ophen-3-yl)acrylate 3q:

A purification by flash chromatography in petroleum ether : dichloromethane : ethyl acetate = 15 : 4 : 1 to give **3q** as red oil (48.7 mg, 86%,). The ee value was determined by HPLC analysis on a Chiralcel IF-3 column (hexane/isopropanol = 95/5, flow = 1.0 mL/min, 254 nm) with tr =5.3 min (major), 6.8 min (minor): 90.5 : 9.5 er. [α]_D²⁰ = 78.9 (c = $1.0, \text{CHCl}_3$)

¹**H NMR (400 MHz, CDCl₃)** δ 7.23 (d, *J* = 16.1 Hz, 1 H), 7.16 (d, *J* = 16.1 Hz, 1 H), 6.34 (s, 1 H), 6.29 (s, 1 H), 5.67 (d, *J* = 14 Hz, 1 H), 5.63 (d, *J* = 14 Hz, 1 H), 4.62 - 4.73 (m, 2 H), 2.56 (s, 3 H), 2.52 (s, 3 H), 2.35 (s, 3 H), 2.32 (s, 3 H), 2.10 (s, 3 H), 2.09 (s, 3 H), 2.07 (s, 3 H), 2.05 (s, 3 H), 1.68 - 1.80 (m, 4 H), 1.44 - 1.63 (m, 6 H), 1.10 - 1.38 (m, 10 H). ap/p=45/55.

¹³C NMR (101 MHz, CDCl₃) δ 166.6, 166.5, 156.8, 156.8, 156.7, 147.6, 147.3, 138.5, 138.4, 137.4, 137.3, 136.6, 135.6, 135.5, 134.7, 134.3, 132.8, 132.7, 132.7, 132.4, 131.7, 131.5, 131.0, 130.5, 130.1, 130.0, 127.4, 126.5, 119.0, 118.5, 72.6, 72.5, 31.6, 31.6, 25.3, 23.7, 23.7, 15.4, 15.3, 15.1, 15.1, 14.8, 14.3, 14.2.

HRMS (ESI) m/z: $[M+H]^+$ Calculated for $C_{27}H_{27}N_4O_2S_4^+$: 567.1011; found: 567.1015.

benzyl (E)-3-(4-(5-(2,5-dimethylthiophen-3-yl)benzo[1,2-c:3,4-c']bis([1,2,5]thiadiazole)-4-yl)-2,5-dimethylthiophen-3-yl)acrylate 3r:

A purification by flash chromatography in petroleum ether : dichloromethane : ethyl acetate = 15 : 4 : 1 to give **3r** as red oil (41.4 mg, 72%,). The ee value was determined by HPLC analysis on a Chiralcel IF-3 column (hexane/isopropanol = 85/15, flow = 1.0 mL/min, 254 nm) with tr = 7.0 min (major), 6.5 min (minor): 93.5 : 6.5 er. $[\alpha]_D^{20} = 134.5$ (c = 1.0, CHCl₃)

¹**H NMR (400 MHz, CDCl₃)** δ 7.18 - 7.35 (m, 12 H), 6.33 (s, 1 H), 6.30 (s, 1 H), 5.74 (d, *J* = 16.1 Hz, 1 H), 5.69 (d, *J* = 16.1 Hz, 1 H), 5.00 - 5.10 (m, 4 H), 2.56 (s, 3 H), 2.52 (s, 3 H), 2.35 (s, 3 H), 2.26 (s, 3 H), 2.08 (s, 3 H), 2.07 (s, 3 H), 2.04 (s, 3 H), 1.98 (s, 3 H). ap/p=47/53.

¹³C NMR (101 MHz, CDCl₃) δ 167.0, 166.9, 156.8, 156.8, 156.7, 156.7, 147.6, 147.3, 147.3, 139.1, 139.0, 138.3, 138.2, 137.3, 136.7, 135.9, 135.9, 135.7, 135.6, 135.0, 134.4, 132.8, 132.8, 132.7, 132.4, 131.5, 131.4, 130.9, 130.5, 129.9, 129.8, 128.6, 128.5, 128.3, 128.3, 128.2, 128.2, 127.5, 126.5, 117.9, 117.4, 66.2, 66.1, 15.5, 15.4, 15.2, 15.1, 15.0, 14.8, 14.3, 14.3.

HRMS (ESI) m/z: $[M+H]^+$ Calculated for $C_{28}H_{23}N_4O_2S_4^+$: 575.0698; found: 575.0701.

(tetrahydrofuran-2-yl)methyl (E)-3-(4-(5-(2,5-dimethylthiophen-3-yl)benzo[1,2-*c*:3,4-*c'*]bis([1,2,5]thiadiazole)-4yl)-2,5-dimethylthiophen-3-yl)acrylate 3s:

A purification by flash chromatography in petroleum ether : dichloromethane : ethyl acetate = 7 : 2 : 1 to give **3s** as red oil (37.0 mg, 65%,). The ee value was determined by HPLC analysis on a Chiralcel IF-3 column (hexane/isopropanol = 90/10, flow = 1.0 mL/min, 254 nm) with tr = 10.7 min (major), 12.7 min (minor): 89.5 : 10.5 dr. $[\alpha]_D^{20} = 123.1$ (c = 1.0, CHCl₃)

¹**H NMR (400 MHz, CDCl₃)** δ 7.18 - 7.32 (m, 2 H), 6.37 (s, 1 H), 6.32 (s, 1 H), 5.76 (dd, *J* = 16.1, 2.8 Hz, 1 H), 5.71 (dd, *J* = 16.1, 2.8 Hz, 1 H), 3.88 - 4.18 (m, 6 H), 3.66 - 3.82 (m, 4 H), 2.56 (s, 3 H), 2.53 (s, 3 H), 2.36 (s, 3 H), 2.32 (s, 3 H), 2.09 (s, 3 H), 2.07 (s, 3 H), 2.06 (s, 3 H), 2.04 (s, 3 H), 1.75 - 1.98 (m, 6 H), 1.40 - 1.55 (m, 2 H). ap/p=47/53.

¹³C NMR (101 MHz, CDCl₃) δ 167.2, 167.2, 156.8, 156.8, 156.7, 147.6, 147.3, 139.1, 139.1, 139.0, 138.3, 138.2, 138.1, 138.1, 137.3, 137.3, 136.6, 135.7, 135.6, 134.9, 134.3, 132.8, 132.8, 132.8, 132.7, 132.4, 132.4, 131.6, 131.6, 131.4, 131.3, 131.0, 131.0, 130.5, 130.5, 130.0, 129.9, 129.9, 127.5, 126.5, 126.5, 117.8, 117.8, 117.4, 117.3, 68.4, 68.4, 66.5, 66.5, 66.4, 27.9, 27.9, 25.6, 25.6, 15.6, 15.6, 15.4, 15.4, 15.2, 15.1, 15.0, 14.8, 14.3, 14.3.

HRMS (ESI) m/z: $[M+H]^+$ Calculated for $C_{26}H_{25}N_4O_3S_4^+$: 569.0804; found: 569.0807.

<u>2-phenoxyethyl (E)-3-(4-(5-(2,5-dimethylthiophen-3-yl)benzo[1,2-c:3,4-c']bis([1,2,5]thiadiazole)-4-yl)-2,5-dimethylthiophen-3-yl)acrylate 3t:</u>

A purification by flash chromatography in petroleum ether : dichloromethane : ethyl acetate = 7 : 2 : 1 to give **3t** as red oil (33.2 mg, 55%,). The ee value was determined by HPLC analysis on a Chiralcel AD-H column (hexane/isopropanol = 92/8, flow = 0.8 mL/min, 254 nm) with tr = 16.0 min (major), 14.5 min (minor): 88 : 12 er. $[\alpha]_D^{20} = 118.4$ (c = 1.0, CHCl₃)

¹**H NMR (400 MHz, CDCl₃)** δ 7.20 - 7.31 (m, 6 H), 6.92 - 6.98 (m, 2 H), 6.86 - 6.78 (m, 4 H), 6.42 (d, *J* = 16.3 Hz, 1 H), 6.28 (d, *J* = 16.3 Hz, 1 H), 5.65 - 5.77 (m, 2 H), 4.32 - 4.46 (m, 4 H), 4.06 - 4.16 (m, 4 H), 2.56 (s, 3 H), 2.52 (s, 3 H), 2.34 (s, 3 H), 2.30 (s, 3 H), 2.08 (s, 3 H), 2.06 (s, 3 H), 2.05 (s, 3 H), 2.04 (s, 3 H). ap/p=47/53.

¹³C NMR (101 MHz, CDCl₃) δ 167.1, 167.0, 158.3, 156.8, 156.8, 156.7, 156.7, 147.6, 147.6, 147.3, 147.3, 139.2, 139.1, 138.5, 138.3, 137.3, 136.7, 135.8, 135.6, 135.0, 134.5, 132.8, 132.8, 132.7, 132.5, 131.5, 131.4, 130.9, 130.5, 129.9, 129.8, 129.6, 127.6, 126.5, 121.2, 121.2, 117.7, 117.2, 114.5, 114.5, 65.7, 62.8, 62.7, 15.5, 15.4, 15.2, 15.1, 15.1, 14.8, 14.4, 14.3.

HRMS (ESI) m/z: $[M+H]^+$ Calculated for $C_{29}H_{25}N_4O_3S_4^+$: 605.0804; found: 605.0805.

(E)-3-(4-(5-(2,5-dimethylthiophen-3-yl)benzo[1,2-*c*:3,4-*c*']bis([1,2,5]thiadiazole)-4-yl)-2,5-dimethylthiophen-3-yl)-1-phenylprop-2-en-1-one 3u:

A purification by flash chromatography in petroleum ether : dichloromethane : ethyl acetate = 15 : 4 : 1 to give **3u** as red oil (26.1 mg, 48%,). The ee value was determined by HPLC analysis on a Chiralcel AD-H column (hexane/isopropanol = 90/10, flow = 1.0 mL/min, 254 nm) with tr = 12.7 min (major), 9.0 min (minor): 87 : 13 er. [α]_D²⁰ = $146.0 \text{ (c} = 1.0, \text{ CHCl}_3$)

¹**H NMR (400 MHz, CDCl₃)** δ 7.25 - 7.62 (m, 12 H), 6.80 (d, *J* = 16.3 Hz, 1 H), 6.72 (d, *J* = 16.3 Hz, 1 H), 6.36 (s, 1 H), 6.34 (s, 1 H), 2.66 (s, 3 H), 2.62 (s, 3 H), 2.37 (s, 3 H), 2.18 (s, 3 H), 2.13 (s, 3 H), 2.12 (s, 3 H), 2.08 (s, 3 H), 1.99 (s, 3 H). ap/p=42/58.

¹³C NMR (101 MHz, CDCl₃) δ 190.1, 190.0, 156.9, 156.8, 156.8, 147.6, 147.6, 147.3, 147.3, 140.2, 139.6, 138.1, 138.0, 137.7, 137.5, 137.4, 136.6, 135.8, 135.7, 135.1, 134.6, 133.0, 133.0, 132.8, 132.7, 132.7, 132.5, 132.4, 132.3, 131.0, 130.5, 130.2, 130.1, 128.6, 128.5, 128.0, 127.9, 127.2, 126.6, 122.4, 121.4, 15.7, 15.4, 15.2, 15.1, 15.1, 14.9, 14.4, 14.2.

HRMS (ESI) m/z: $[M+H]^+$ Calculated for $C_{27}H_{21}N_4OS_4^+$: 545.0593; found: 545.0597.

<u>diethyl (*E*)-(2-(4-(5-(2,5-dimethylthiophen-3-yl)benzo[1,2-*c*:3,4-*c*']bis([1,2,5]thiadiazole)-4-yl)-2,5-dimethylthiop hen-3-yl)vinyl)phosphonate 3v:</u>

A purification by flash chromatography in petroleum ether : dichloromethane : ethyl acetate = 4 : 3 : 3 to give 3v as red oil (42.6 mg, 74%,). The ee value was determined by HPLC analysis on a Chiralcel IF-3 column (hexane/isopropanol = 85/15, flow = 1.0 mL/min, 254 nm) with tr = 7.0 min (minor), 6.5 min (major): 93.5 : 6.5 er. $[\alpha]_D^{20} = 84.7$ (c = 1.0, CHCl₃)

¹**H NMR (400 MHz, CDCl₃)** δ 7.19 (dd, *J* = 24.1, 17.7 Hz, 1 H), 7.07 (dd, *J* = 24.1, 17.7 Hz, 1 H), 6.45 (s, 1 H), 6.32 (s, 1 H), 5.27 - 5.50 (m, 2 H), 3.70 - 3.95 (m, 8 H), 2.56 (s, 3 H), 2.55 (s, 3 H), 2.39 (s, 3 H), 2.33 (s, 3 H), 2.19 (s, 3 H), 2.09 (s, 3 H), 2.02 (s, 3 H), 1.98 (s, 3 H), 1.08 - 1.21 (m, 12 H). ap/p=45/55.

¹³C NMR (101 MHz, CDCl₃) δ 156.9, 156.9, 156.8, 156.6, 147.6, 147.5, 147.3, 147.3, 141.6, 141.6, 141.4, 141.4, 139.0, 138.7, 137.1, 136.6, 135.9, 135.7, 134.9, 134.4, 132.8, 132.8, 132.5, 132.2, 132.1, 132.0, 131.8, 131.6, 131.0, 130.4,

130.1, 130.0, 127.0, 126.9, 115.2, 114.5, 113.3, 112.7, 61.5, 61.5, 61.5, 61.4, 16.3, 16.2, 15.3, 15.3, 15.2, 15.1, 15.0, 14.9, 14.3, 13.9.

³¹P NMR (162 MHz, CDCl₃) δ 19.5.

HRMS (ESI) m/z: $[M+H]^+$ Calculated for $C_{24}H_{26}N_4O_3S_4P^+$: 577.0620; found: 577.0620.

(E)-3-(4-(5-(2,5-dimethylthiophen-3-yl)benzo[1,2-*c*:3,4-*c*']bis([1,2,5]thiadiazole)-4-yl)-2,5-dimethylthiophen-3-yl)-N,N-dimethylacrylamide 3w:

A purification by flash chromatography in petroleum ether : dichloromethane : ethyl acetate = 5 : 2 : 3 to give **3w** as red oil (43.5 mg, 85%,). The ee value was determined by HPLC analysis on a Chiralcel IF-3 column (hexane/isopropanol = 85/15, flow = 1.0 mL/min, 254 nm) with tr = 14.6 min (major), 16.6 min (minor): 90 : 10 er. $[\alpha]_D^{20} = 98.6$ (c = 1.0, CHCl₃)

¹**H NMR (400 MHz, CDCl₃)** δ 7.33 (d, *J* = 15.6 Hz, 1 H), 7.17 (d, *J* = 15.6 Hz, 1 H), 6.37 (s, 1 H), 6.33 (s, 1 H), 6.11 (d, *J* = 16 Hz, 1 H), 6.00 (d, *J* = 16 Hz, 1 H), 2.88 (s, 3 H), 2.85 (s, 3 H), 2.75 (s, 3 H), 2.56 (s, 3 H), 2.52 (s, 3 H), 2.49 (s, 3 H), 2.37 (s, 3 H), 2.30 (s, 3 H), 2.18 (s, 3 H), 2.08 (s, 3 H), 2.06 (s, 3 H), 2.00 (s, 3 H). ap/p=40/60.

¹³C NMR (101 MHz, CDCl₃) δ 166.7, 166.5, 157.0, 156.9, 156.8, 156.6, 147.5, 147.4, 147.2, 137.9, 137.2, 136.8, 136.4, 135.7, 135.6, 135.5, 135.2, 134.5, 134.1, 132.8, 132.7, 132.6, 132.6, 132.6, 131.9, 131.1, 130.7, 130.6, 130.4, 127.1, 126.7, 118.4, 117.0, 37.0, 36.6, 35.8, 35.7, 15.3, 15.2, 15.1, 15.0, 14.9, 14.3, 13.9.

HRMS (ESI) m/z: $[M+H]^+$ Calculated for $C_{23}H_{22}N_5OS_4^+$: 512.0702; found: 512.0700.

methyl (*E*)-4-(2-(4-(5-(2,5-dimethylthiophen-3-yl)benzo[1,2-*c*:3,4-*c*']bis([1,2,5]thiadiazole)-4-yl)-2,5-dimethylthiophen-3-yl)vinyl)benzoate 3x:

A purification by flash chromatography in petroleum ether : dichloromethane : ethyl acetate = 7 : 2 : 1 to give 3x as red oil (37.0 mg, 65%,). The ee value was determined by HPLC analysis on a Chiralcel IF-3 column (hexane/isopropanol =

97/3, flow = 1.0 mL/min, 254 nm) with tr = 9.4 min (major), 10.6 min (minor): 92.5 : 7.5 er. $[\alpha]_D^{20} = 115.8$ (c = 1.0, CHCl₃)

¹**H NMR (400 MHz, CDCl₃)** 7.80 - 7.89 (m, 4 H), 7.06 - 7.17 (m, 4 H), 6.65 (d, *J* = 16 Hz, 1 H), 6.62 (d, *J* = 16 Hz, 1 H), 6.25 - 6.37 (m, 4 H), 3.87 (s, 3 H), 3.86 (s, 3 H), 2.56 (s, 3 H), 2.54 (s, 3 H), 2.37 (s, 3 H), 2.18 (s, 3 H), 2.09 (s, 3 H), 2.08 (s, 3 H), 2.07 (s, 3 H), 1.84 (s, 3 H). ap/p=45/55.

¹³C NMR (101 MHz, CDCl₃) 166.8, 157.0, 156.8, 147.5, 147.2, 142.0, 137.1, 136.7, 135.4, 134.7, 134.0, 133.8, 132.6, 132.3, 132.1, 132.0, 131.1, 130.7, 130.6, 130.6, 129.9, 129.8, 129.6, 129.1, 128.6, 128.5, 126.7, 125.8, 125.1, 52.1, 15.2, 15.1, 14.8, 14.5, 14.4.

HRMS (ESI) m/z: $[M+H]^+$ Calculated for $C_{28}H_{23}N_4O_2S_4^+$: 575.0698; found: 575.0700.

(E)-4-(2,5-dimethyl-4-(2-(naphthalen-2-yl)vinyl)thiophen-3-yl)-5-(2,5-dimethylthiophen-3-yl)benzo[1,2-c:3,4c']bis([1,2,5]thiadiazole) 3y:

A purification by flash chromatography in petroleum ether : dichloromethane : ethyl acetate = 90 : 10 : 1 to give **3y** as red oil (36.8 mg, 65%,). The ee value was determined by HPLC analysis on a Chiralcel IF-3 column (hexane/isopropanol = 92/8, flow = 0.8 mL/min, 254 nm) with tr = 4.9 min (major), 5.5 min (minor): 87.5 : 12.5 er. [α]_D²⁰ = $134.8 \text{ (c} = 1.0, \text{CHCl}_3$)

¹H NMR (400 MHz, CDCl₃) δ 7.56 - 7.76 (m, 6 H), 7.34 - 7.48 (m, 6 H), 7.27 - 7.30 (m, 2 H), 6.60 - 6.70 (m, 2 H), 6.34 - 6.47 (m, 4 H), 2.58 (s, 3 H), 2.56 (s, 3 H), 2.39 (s, 3 H), 2.19 (s, 3 H), 2.10 (s, 6 H), 2.08 (s, 3 H), 1.87 (s, 3 H). ap/p=45/55.

¹³C NMR (101 MHz, CDCl₃)δ 157.2, 157.1, 157.0, 147.5, 147.3, 147.3, 137.1, 136.5, 135.4, 135.4, 135.0, 134.9, 134.4, 133.8, 133.5, 133.0, 132.8, 132.5, 132.3, 132.1, 132.0, 131.3, 131.0, 130.8, 130.5, 128.1, 127.8, 127.7, 127.6, 126.7, 126.3, 126.3, 126.0, 125.8, 123.0, 122.9, 15.3, 15.2, 15.1, 15.0, 14.8, 14.5, 14.5, 14.2.

HRMS (ESI) m/z: $[M+H]^+$ Calculated for $C_{30}H_{23}N_4S_4^+$: 567.0800; found: 567.0805.

<u>4-(acryloyloxy)phenyl (E)-3-(4-(5-(2,5-dimethylthiophen-3-yl)benzo[1,2-c:3,4-c']bis([1,2,5]thiadiazole)-4-yl)-2,5-dimethylthiophen-3-yl)acrylate 3z-mono:</u>

A purification by flash chromatography in petroleum ether : dichloromethane : ethyl acetate = 7 : 2 : 1 to give **3z-mono** as red oil (47.3 mg, 75%). The ee value was determined by HPLC analysis on a Chiralcel IF-3 column (hexane/isopropanol = 95/5, flow = 1.0 mL/min, 254 nm) with tr = 20.5 min (major), 32.4 min (minor): 95.5 : 4.5 er. $[\alpha]_D^{20} = 162.8$ (c = 1.0, CHCl₃)

¹**H NMR (400 MHz, CDCl₃)** δ 7.45 (d, *J* = 16.2 Hz, 1 H), 7.37 (d, *J* = 16.2 Hz, 1 H), 6.96 - 7.14 (m, 8 H), 6.54 - 6.63 (m, 2 H), 6.24 - 6.46 (m, 4 H), 5.97 - 6.01 (m, 2 H), 5.87 (d, *J* = 16.2 Hz, 1 H), 5.81 (d, *J* = 16.2 Hz, 1 H), 2.63 (s, 3 H), 2.59 (s, 3 H), 2.36 (s, 6 H), 2.13 (s, 3 H), 2.11 (s, 3 H), 2.10 (s, 3 H), 2.07 (s, 3 H). ap/p=45/55.

¹³C NMR (101 MHz, CDCl₃) δ 165.5, 165.4, 164.4, 156.8, 156.7, 156.6, 148.1, 148.0, 147.8, 147.6, 147.3, 140.2, 140.0, 139.8, 139.6, 137.3, 136.8, 135.9, 135.8, 135.2, 134.7, 132.9, 132.8, 132.7, 132.5, 131.4, 131.2, 130.9, 130.5, 129.8, 129.7, 127.7, 127.4, 126.5, 122.4, 122.3, 116.8, 116.3, 15.6, 15.5, 15.3, 15.2, 14.8, 14.4, 14.3.

HRMS (ESI) m/z: $[M+H]^+$ Calculated for $C_{30}H_{23}N_4O_4S_4^+$: 631.0597; found: 631.0595.

<u>4-(acryloyloxy)phenyl (E)-3-(4-(5-(2,5-dimethylthiophen-3-yl)benzo[1,2-c:3,4-c']bis([1,2,5]thiadiazole)-4-yl)-2,5-dimethylthiophen-3-yl)acrylate 3z-di:</u>

A purification by flash chromatography in petroleum ether : dichloromethane : ethyl acetate = 7 : 2 : 1 to give **3z-di** as red oil (57.4 mg, 55%,). The ee value was determined by HPLC analysis on a Chiralcel IF-3 column (hexane/isopropanol = 85/15, flow = 1.0 mL/min, 254 nm) with tr = 28.4 min, 40.3 min, 56.1 min: 92 : 7.9 : 0.1. $[\alpha]_D^{20} = 130.1$ (c = 1.0, CHCl₃)

¹**H NMR (400 MHz, CDCl₃)** δ 7.44 (dd, *J* = 16.1, 2.4 Hz, 2 H), 7.34 (dd, *J* = 16.1, 2.4 Hz, 2 H), 6.88 - 6.97 (m, 8 H), 6.40 (s, 2 H), 6.28 (s, 2 H), 5.83 (dd, *J* = 16.1, 1.6 Hz, 2 H), 5.77 (dd, *J* = 16.1, 1.6 Hz, 2 H), 2.60 (s, 6 H), 2.57 (s, 6 H), 2.35 (s, 6 H), 2.33 (s, 6 H), 2.11 (s, 6 H), 2.10 (s, 6 H), 2.09 (s, 6 H), 2.06 (s, 6 H). ap/p=45/55 (calculated based on single DAE unit).

¹³C NMR (101 MHz, CDCl₃) δ 165.5, 165.4, 156.7, 156.6, 147.9, 147.8, 147.8, 147.6, 147.3, 147.3, 140.1, 140.0, 139.7, 139.5, 137.3, 136.8, 135.9, 135.7, 135.2, 134.7, 132.9, 132.8, 132.7, 132.4, 131.3, 131.2, 130.9, 130.5, 129.8, 129.7, 127.4, 126.4, 122.2, 122.2, 116.8, 116.2, 15.6, 15.5, 15.3, 15.2, 14.8, 14.4, 14.3.

HRMS (ESI) m/z: $[M+Na]^+$ Calculated for $C_{48}H_{34}N_8O_4S_8Na^+$: 1065.0361; found: 1065.0360.

(8R,98,138,148)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-3-yl (E)-3-(4-(5-(2,5-dimethylthiophen-3-yl)benzo[1,2-c:3,4-c']bis([1,2,5]thiadiazole)-4-yl)-2,5-dimethylthiophen-3-yl)acr ylate 3aa:

A purification by flash chromatography in petroleum ether : dichloromethane : ethyl acetate = 7 : 2 : 1 to give **3aa** as red oil (49.4 mg, 67%,). The ee value was determined by HPLC analysis on a Chiralcel IF-3 column (hexane/isopropanol = 90/10, flow = 1.0 mL/min, 254 nm) with tr = 35.9 min (major), 45.7 min (minor): 94 : 6 er. $[\alpha]_D^{20} = 175.9$ (c = 1.0, CHCl₃)

¹**H NMR (400 MHz, CDCl₃)** δ 7.44 (d, *J* = 16.1 Hz, 1 H), 7.35 (d, *J* = 16.1 Hz, 1 H), 7.19 - 7.25 (m, 2 H), 6.67 - 6.81 (m, 4 H), 6.40 (s, 1 H), 6.30 (s, 1 H), 5.87 (d, *J* = 16.1 Hz, 1 H), 5.81 (d, *J* = 16.1 Hz, 1 H), 2.80 - 2.93 (m, 4 H), 2.62 (s, 3 H), 2.58 (s, 3 H), 2.52 (d, *J* = 8.8 Hz, 1 H), 2.47 (d, *J* = 8.8 Hz, 1 H), 2.33 - 2.41 (m, 8 H), 2.20 - 2.30 (m, 2 H), 1.90 - 2.20 (m, 20 H), 1.36 - 1.68 (m, 12 H), 0.85 - 0.93 (m, 6 H). ap/p=44/56.

¹³C NMR (101 MHz, CDCl₃) δ 165.9, 165.8, 156.8, 156.7, 156.6, 148.5, 148.4, 147.6, 147.3, 147.3, 140.0, 139.8, 139.4, 139.2, 138.0, 137.3, 137.3, 136.8, 135.9, 135.7, 135.2, 134.6, 132.9, 132.8, 132.7, 132.4, 131.4, 131.2, 130.9, 130.5, 129.9, 129.8, 127.4, 126.5, 126.4, 121.5, 118.6, 117.2, 116.6, 50.4, 48.0, 44.1, 38.0, 35.9, 31.5, 29.4, 26.3, 25.7, 21.6, 15.6, 15.5, 15.3, 15.2, 14.9, 14.4, 14.3, 13.8.

HRMS (ESI) m/z: $[M+H]^+$ Calculated for $C_{39}H_{37}N_4O_3S_4^+$: 737.1743; found: 737.1745.

(38,88,98,10R,13R,148,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17 tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl (E)-3-(4-(5-(2,5-dimethylthiophen-3-yl)benzo[1,2-c:3,4 c']bis([1,2,5]thiadiazole)-4-yl)-2,5-dimethylthiophen-3-yl)acrylate 3ab:

A purification by flash chromatography in petroleum ether : dichloromethane : ethyl acetate = 7 : 2 : 1 to give **3ab** as red oil (55.5 mg, 65%,). The ee value was determined by HPLC analysis on a Chiralcel IF-3 column (hexane/isopropanol = 97/3, flow = 1.0 mL/min, 254 nm) with tr = 6.8 min (major), 10.4 min (minor): 93 : 7 er. $[\alpha]_D^{20} = 99.2$ (c = 1.0, CHCl₃)

¹H NMR (400 MHz, CDCl₃) δ 7.13 - 7.28 (m, 2 H), 6.38 (s, 1 H), 6.28 (s, 1 H), 5.57 - 5.68 (m, 2 H), 5.28 - 5.35 (m, 2 H), 4.45 - 4.60 (m, 2 H), 2.56 (s, 3 H), 2.51 (s, 3 H), 2.34 (s, 3 H), 2.32 (s, 3 H), 2.17 - 2.27 (m, 4 H), 2.02 - 2.13 (m, 12 H), 1.89 - 2.02 (m, 4 H), 1.70 - 1.89 (m, 6 H), 0.80 - 1.60 (m, 66 H), 0.66 (s, 6 H). ap/p=44/56.

¹³C NMR (101 MHz, CDCl₃) δ 166.7, 166.6, 156.9, 156.8, 156.7, 147.7, 147.3, 139.7, 138.8, 138.6, 137.6, 137.4, 137.3, 136.7, 135.7, 135.6, 134.8, 134.4, 132.8, 132.8, 132.7, 132.4, 131.8, 131.6, 131.0, 130.5, 130.1, 130.1, 127.5, 126.5, 122.7, 118.8, 118.3, 74.1, 74.0, 56.7, 56.2, 50.0, 42.3, 39.8, 39.6, 38.2, 37.0, 36.6, 36.2, 35.8, 31.9, 31.9, 29.8, 29.4, 28.3, 28.1, 27.8, 24.3, 23.9, 22.9, 22.6, 21.1, 19.4, 18.8, 15.4, 15.2, 15.1, 14.9, 14.4, 14.6, 11.9.

HRMS (ESI) m/z: $[M+H]^+$ Calculated for $C_{48}H_{61}N_4O_2S_4^+$: 853.3672; found: 853.3673.

2.3 Synthetic Application

2.3.1 Scale-up of C-H Olefination for 3a

To an oven-dried 100 mL Schlenk tube containing a stirring bar was added 1 (829.2 mg, 2 mmol), **2a** (444.5 mg, 3 mmol), $Pd(OAc)_2$ (44.8 mg, 0.2 mmol), **L2** (287.6 mg, 0.4 mmol), AgOAc (667.6 mg, 4 mmol), and $CHCl_3/o-DCB/nBu_2O$ (13.3 mL/13.3 mL/13.3 mL). The reaction flask was degassed three times with Ar. The reaction mixture was then stirred at 55 °C (aluminum heat transfer block) for 60 h in the dark. After cooling to room temperature, the mixture was diluted with dichloromethane, filtrated through celite. After concentration, the resulting residue was purified by silica gel column chromatography in petroleum ether: dichloromethane: ethyl acetate = 15: 4: 1 to afford the product **3a** as red foam (829.9 mg, 74% yield, 95.5:4.5 er). The er value was determined by chiral HPLC.

2.3.2 Derivatizations of 3a

a) Synthesis of 5

i. Synthesis of 4

To an oven-dried 10 mL tube was added **3a** (112.1mg, 0.2 mmol), dry THF (4.0 mL). The tube was charged with Ar for more than three times and cooled to -78° C. Then DIBAL-H (5.0 equiv) was added slowly at this temperature. After completed, the reaction mixture was allowed to stir at -78° C overnight. Then the reaction was quenched by saturated NH₄Cl solution, extracted by EtOAc. The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The crude product was purified by preparative TLC using petroleum ether: dichloromethane: ethyl acetate = 3: 1: 1 to afford the product **4** as a red foam (81.9 mg, 87% yield, 97:3 er). The er value was determined by chiral HPLC.

(E)-3-(4-(5-(2,5-dimethylthiophen-3-yl)benzo[1,2-c:3,4-c']bis([1,2,5]thiadiazole)-4-yl)-2,5-dimethylthiophen-3-yl)allyl 3,4,5-tris(dodecyloxy)benzoate 4:

The er value was determined by HPLC analysis on a Chiralcel AS-H column (hexane/isopropanol = 95/5, flow = 0.8 mL/min, 254 nm) with tr = 25.5 min (minor), 28.8 min (major): 97 : 3 er. $[\alpha]_D^{20} = 95.6$ (c = 1.0, CHCl₃)

¹**H NMR (400 MHz, DMSO-d6)** δ 6.46 (s, 1 H), 6.33 (s, 1 H), 6.13 (s, 1 H), 6.03 (s, 1 H), 5.43 - 5.53 (m, 2 H), 4.42 - 4.53 (m, 2 H), 3.71 - 3.78 (m, 4 H), 2.41 (s, 3 H), 2.37 (s, 3 H), 2.32 (s, 3 H), 2.27 (s, 3 H), 2.12 (s, 3 H), 2.01 (s, 3 H), 2.00 (s, 3 H), 1.92 (s, 3 H). ap/p=46/54.

¹³C NMR (101 MHz, DMSO-d6) δ 157.3, 157.2, 157.2, 156.9, 147.8, 147.8, 147.6, 147.5, 136.1, 136.1, 134.6, 134.5, 134.4, 134.2, 133.2, 132.9, 132.7, 132.6, 132.5, 132.2, 132.1, 132.0, 131.7, 131.3, 131.2, 131.1, 127.8, 127.7, 122.7, 122.5, 62.1, 15.3, 15.0, 14.8, 14.6, 14.3, 13.9.

HRMS (ESI) m/z: [M+Na]⁺ Calculated for C₂₁H₁₈N4OS₄Na⁺: 493.0256; found: 493.0255.

ii. Synthesis of 5

To a solution of 4 (81.9 mg, 0.17 mmol) in dry CH_2Cl_2 (2 mL) at room temperature were sequentially added and 14 (236.3 mg, 0.35 mmol, 2.0 equiv), DMAP (11.0 mg, 0.09 mmol, 0.5 equiv), DCC (72.2 mg, 0.35 mmol, 2.0 equiv) under argon atmosphere. The reaction mixture was stirred at that temperature. The progress of the reaction was monitored by TLC. The reaction was quenched by adding water and extracted with CH_2Cl_2 . The organic layer was washed with water and brine, dried over anhydrous Na_2SO_4 , and concentrated in vacuo. The crude product was purified by silica gel column chromatography in petroleum ether: dichloromethane: ethyl acetate = 40: 10: 1 to afford the product **5** as red oil (178.3 mg, 93% yield, 96:4 er).

(E)-3-(4-(5-(2,5-dimethylthiophen-3-yl)benzo[1,2-c:3,4-c']bis([1,2,5]thiadiazole)-4-yl)-2,5-dimethylthiophen-3-yl)allyl 3,4,5-tris(dodecyloxy)benzoate 5:

The er value was determined by HPLC analysis on a Chiralcel IF-3 column (hexane/isopropanol = 98/2, flow = 0.4

mL/min, 254 nm) with tr = 27.2 min (minor), 30.4 min (major): 96 : 4 er. $[\alpha]_D^{20} = 40.0$ (c = 1.0, CHCl₃)

¹**H NMR (400 MHz, CDCl₃)** δ 7.07 (s, 2 H), 7.04 (s, 2 H), 6.44 (s, 1 H), 6.33 (s, 1 H), 6.29 (d, *J* = 16 Hz, 1 H), 6.20 (d, *J* = 16 Hz, 1 H), 5.53 - 5.69 (m, 2 H), 4.50 - 4.65 (m, 4 H), 3.90 - 4.08 (m, 12 H), 2.50 (s, 3 H), 2.47 (s, 3 H), 2.39 (s, 3 H), 2.37 (s, 3 H), 2.16 (s, 3 H), 2.05 (s, 3 H), 2.03 (s, 3 H), 1.98 (s, 3 H), 1.70 - 1.88 (m, 12 H), 1.20 - 1.54 (m, 108 H), 0.85 - 0.92 (m, 18 H). ap/p=45/55.

¹³C NMR (101 MHz, CDCl₃) δ 165.8, 157.0, 156.9, 156.6, 152.8, 147.5, 147.4, 147.2, 142.4, 142.3, 136.5, 136.4, 135.5, 135.4, 134.1, 133.8, 133.7, 133.3, 133.0, 132.4, 132.3, 131.9, 131.7, 131.3, 130.9, 128.2, 128.1, 127.0, 125.2, 124.7, 124.3, 107.7, 73.5, 69.1, 65.8, 65.7, 32.0, 30.4, 29.8, 29.7, 29.6, 29.5, 29.4, 26.2, 26.1, 22.7, 15.2, 15.0, 14.8, 14.6, 14.3, 14.2, 14.0.

HRMS (ESI) m/z: [M+Na]⁺ Calculated for C₆₄H₉₄N₄O₅S₄Na⁺: 1149.5999; found: 1149.5998.

b) Synthesis of 6

To an oven-dried 10 mL Schlenk tube was added **3a** (112.1 mg, 0.2 mmol), LiOH (14.4 mg, 3.0 equiv), THF/H₂O (1:1, 4.0 mL). The reaction was allowed to stir at room temperature under argon overnight. Then the reaction was quenched by water, extracted by EtOAc. The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The crude product was purified by preparative TLC using petroleum ether: dichloromethane: ethyl acetate : acetic acid = 80: 20: 20: 3 to afford the product **6a** as a red foam(89.2 mg, 92% yield).

Then the methylation of acid **6b** was produced by adding K_2CO_3 (3.0 equiv), MeI (2.0 equiv), in THF/MeOH (2:1, 5 mL), at room temperature stirring for overnight.

(E)-3-(4-(5-(2,5-dimethylthiophen-3-yl)benzo[1,2-c:3,4-c']bis([1,2,5]thiadiazole)-4-yl)-2,5-dimethylthiophen-3-yl)acrylic acid 6a:

 $[\alpha]_D^{20} = 144.9 \ (c = 1.0, CHCl_3)$

¹**H NMR (400 MHz, DMSO-***d***₆)** δ 12.10 (s, 2 H), 7.22 (d, *J* = 16.1 Hz, 1 H), 7.13 (d, *J* = 16.1 Hz, 1 H), 6.44 (s, 1 H), 6.31 (s, 1 H), 5.57 (t, *J* = 16.3 Hz, 2 H), 2.49 (s, 3 H), 2.32 (s, 3 H), 2.27 (s, 3 H), 2.10 (s, 3 H), 2.06 (s, 3 H), 2.01 (s, 3 H)

H), 2.00 (s, 3 H), 1.93 (s, 3 H). ap/p=46/54.

¹³C NMR (101 MHz, DMSO-*d*₆) δ 172.5, 167.9, 156.9, 156.8, 147.8, 147.8, 147.6, 147.5, 138.6, 138.5, 137.2, 137.0, 7136.5, 136.3, 134.9, 134.8, 134.5, 132.9, 132.7, 132.5, 132.4, 132.0, 131.7, 131.5, 130.1, 127.7, 127.6, 119.2, 118.7, 21.5, 15.2, 15.0, 14.9, 14.3, 14.1.

HRMS (ESI) m/z: $[M+H]^+$ Calculated for $C_{21}H_{17}N_4O_2S_4$: 485.0229; found: 485.0227.

<u>methyl (E)-3-(4-(5-(2,5-dimethylthiophen-3-yl)benzo[1,2-c:3,4-c'|bis([1,2,5]thiadiazole)-4-yl)-2,5-dimethylthioph</u> <u>en-3-yl)acrylate 6b:</u>

The er value was determined by HPLC analysis on a Chiralcel AD-H column (hexane/isopropanol = 90/10, flow = 1.0 mL/min, 254 nm) with tr = 7.1 min (major), 5.9 min (minor): 96 : 4 er.

c) Synthesis of 9, 10, 11

i. Synthesis of 7

To a solution of **3a** (829.9 mg, 1.48 mmol) in THF (38 mL) and H_2O (19 mL), $K_2OsO_4 \cdot 2H_2O$ (81.8 mg, 0.22 mmol, 15 mol%) and NaIO₄ (3.17g, 14.8 mmol, 10 equiv) were added at 25 °C. The reaction mixture was stirred at room temperature. The progress of the reaction was monitored by TLC. The reaction mixture was then quenched with saturated

aqueous $Na_2S_2O_3$ and stirred vigorously for 30 min. The reaction mixture was extracted with EtOAc and then the combined organic layers were washed with brine, dried over anhydrous Na_2SO_4 , and concentrated in vacuo. The crude product was purified by silica gel column chromatography in petroleum ether: dichloromethane: ethyl acetate = 15: 4: 1 to afford product 7 as red oil (563.3 mg, 86% yield, 95:5 er).

<u>4-(5-(2,5-dimethylthiophen-3-yl)benzo[1,2-*c*:3,4-*c'*]bis([1,2,5]thiadiazole)-4-yl)-2,5-dimethylthiophene-3carbaldehyde 7:</u>

The er value was determined by HPLC analysis on a Chiralcel OD-H column (hexane/isopropanol = 97/3, flow = 1.0 mL/min, 254 nm) with tr = 10.5 min (major), 15.0 min (minor): 95 : 5 er. $[\alpha]_D^{20}$ = -6.3 (c = 1.0, CHCl₃)

¹**H NMR (400 MHz, CDCl₃)** δ 9.79 (d, *J* = 3.6 Hz, 2 H), 6.61 (d, *J* = 1.3 Hz, 1 H), 6.19 (d, *J* = 1.3 Hz, 1 H), 2.80 (s, 3 H), 2.78 (s, 3 H), 2.44 (s, 3 H), 2.32 (s, 3 H), 2.23 (s, 3 H), 2.00 (s, 6 H), 1.96 (s, 3 H). ap/p=50/50.

¹³C NMR (101 MHz, CDCl₃) δ 184.4, 184.2, 157.3, 156.6, 150.9, 150.8, 147.7, 147.6, 147.2, 147.1, 136.7, 136.2, 136.1, 136.1, 135.4, 135.1, 131.8, 131.6, 131.5, 131.4, 131.3, 130.8, 130.0, 129.9, 126.9, 15.4, 15.2, 15.0, 14.4, 14.2, 14.1, 14.0, 13.5.

HRMS (ESI) m/z: $[M+H]^+$ Calculated for $C_{19}H_{15}N_4OS_4^+$: 443.0123; found: 443.0123.

ii. Synthesis of 8

To a stirred solution of 7 (543.7 mg, 1.23 mmol) in *t*-BuOH : THF (12 : 5 mL) at room temperature were sequentially added 2-methyl-2-butene (862.6mg, 12.3 mmol, 10 equiv), NaH₂PO₄ solution (12.3 mL, 0.5 M, 6.25 mmol, 5.0 equiv), and NaClO₂ solution (3.7 mL, 1.0 M, 3.7 mmol, 3.0 equiv). The reaction mixture was stirred at that temperature. The progress of the reaction was monitored by TLC. The reaction mixture was then quenched with saturated aqueous NaHSO₃. The resulting mixture was extracted with EtOAc. The combined organic phase was washed with brine, dried over anhydrous Na₂SO₄, and concentrated in vacuo. The crude product was purified by silica gel column chromatography in petroleum ether: dichloromethane: ethyl acetate : acetic acid= 80: 20: 20: 3 to afford the product **8** as red solid (473.8 mg, 84% yield). m.p. >200°C.

4-(5-(2,5-dimethylthiophen-3-yl)benzo[1,2-c:3,4-c']bis([1,2,5]thiadiazole)-4-yl)-2,5-dimethylthiophene-3-

<u>carboxylic acid 8:</u> $[\alpha]_D^{20} = 28.2 (c = 1.0, CHCl_3)$

¹H NMR (400 MHz, DMSO-*d*₆) δ 12.39 (s, 2 H), 6.76 (s, 1 H), 6.29 (s, 1 H), 2.69 (s, 3 H), 2.66 (s, 3 H), 2.43 (s, 3 H), 2.30 (s, 3 H), 2.29 (s, 3 H), 2.00 (s, 3 H), 1.96 (s, 3 H), 1.94 (s, 3 H). ap/p=47/53.

¹³C NMR (101 MHz, DMSO-*d*₆) δ 164.9, 164.8, 158.0, 157.9, 157.6, 156.8, 147.5, 147.4, 147.2, 147.0, 144.6, 144.5, 136.3, 135.7, 135.0, 134.8, 134.0, 133.7, 133.2, 132.3, 132.1, 131.9, 131.8, 130.5, 130.3, 130.2, 130.0, 128.4, 127.3, 16.1, 15.9, 15.3, 15.2, 14.2, 14.0, 13.5.

HRMS (ESI) m/z: $[M+H]^+$ Calculated for $C_{19}H_{15}N_4O_2S_4^+$: 459.0072; found: 459.0075.

iii. Synthesis of 9

To a solution of **8** (355.4 mg, 0.77 mmol) in dry CH_2Cl_2 (7 mL) at room temperature were sequentially added and 4-Pentylphenol (189.7 mg, 1.16 mmol, 1.5 equiv), DMAP (47.0 mg, 0.39 mmol, 0.5 equiv), DCC (317.7 g, 1.54 mmol, 2.0 equiv) under argon atmosphere. The reaction mixture was stirred at that temperature. The progress of the reaction was monitored by TLC. The reaction was quenched by adding water and extracted with CH_2Cl_2 . The organic layer was washed with water and brine, dried over anhydrous Na_2SO_4 , and concentrated in vacuo. The crude product was purified by silica gel column chromatography in petroleum ether: dichloromethane: ethyl acetate = 15: 4: 1 to afford product **9** as red foam (375.0 mg, 81% yield, 94 : 6 er).

<u>4-pentylphenyl 4-(5-(2,5-dimethylthiophen-3-yl)benzo[1,2-c:3,4-c']bis([1,2,5]thiadiazole)-4-yl)-2,5-dimethylthiophene-3-carboxylate 9:</u>

The er value was determined by HPLC analysis on a Chiralcel AD-H column (hexane/isopropanol = 90/10, flow = 1.0 mL/min, 254 nm) with tr = 6.7 min (major), 7.7 min (minor): 94 : 6 er. $[\alpha]_D^{20} = 6.4$ (c = 1.0, CHCl₃)

¹H NMR (400 MHz, CDCl₃) δ 7.02 (m, 4 H), 6.67 (s, 1 H), 6.35 (s, 1 H), 6.58 (m, 4 H), 2.82 (s, 3 H), 2.80 (s, 3 H), 2.48 - 2.52 (m, 4 H), 2.46 (s, 3 H), 2.35 (s, 3 H), 2.28 (s, 3 H), 2.04 (s, 3 H), 1.99 (s, 3 H), 1.98 (s, 3 H), 1.45 - 1.56 (m, 4 H), 1.20 - 1.33 (m, 8 H), 0.84 (t, *J* = 6.8 Hz, 6 H). ap/p=45/55.

¹³C NMR (101 MHz, CDCl₃) δ 162.2, 162.0, 157.9, 157.7, 157.5, 156.7, 147.9, 147.5, 147.4, 147.3, 147.2, 140.6, 140.5, 136.7, 136.2, 135.9, 135.8, 134.8, 134.5, 132.7, 131.3, 131.3, 131.0, 130.9, 129.2, 128.1, 127.7, 127.3, 127.1, 120.8, 35.2, 31.4, 31.1, 22.5, 16.4, 16.2, 15.4, 15.3, 15.2, 14.3, 14.1, 14.0, 13.7.

HRMS (ESI) m/z: $[M+Na]^+$ Calculated for $C_{30}H_{28}N_4O_2S_4Na^+$: 627.0987; found: 627.0994.

iv. Synthesis of 10

To a solution of **8** (78.2 mg, 0.17 mmol) in dry CH_2Cl_2 (2 mL) at room temperature were sequentially added and **19** (168.2 mg, 0.26 mmol, 1.5 equiv), DMAP (11.0 mg, 0.09 mmol, 0.5 equiv), DCC (70.2 g, 0.34 mmol, 2.0 equiv) under argon atmosphere. The reaction mixture was stirred at that temperature. The progress of the reaction was monitored by TLC. The reaction was quenched by adding water and extracted with CH_2Cl_2 . The organic layer was washed with water and brine, dried over anhydrous Na_2SO_4 , and concentrated in vacuo. The crude product was purified by silica gel column chromatography in petroleum ether: dichloromethane: ethyl acetate = 15: 4: 1 to afford the product **10** as red oil (166.4 mg, 90% yield, 94.5 : 5.5 er).

<u>3,4,5-tris(dodecyloxy)phenyl</u> <u>4-(5-(2,5-dimethylthiophen-3-yl)benzo[1,2-c:3,4-c']bis([1,2,5]thiadiazole)-4-yl)-2,5-</u> <u>dimethylthiophene-3-carboxylate 10:</u>

The er value was determined by HPLC analysis on a Chiralcel IF-3 column (hexane/isopropanol = 95/5, flow = 1.0 mL/min, 254 nm) with tr = 10.0 min (major), 13.6 min (minor): 94.5 : 5.5 er. $[\alpha]_D^{20} = 30.4$ (c = 1.0, CHCl₃)

¹H NMR (400 MHz, CDCl₃) δ 6.68 (s, 1 H), 6.34 (s, 1 H), 5.82 (s, 1 H), 5.75 (s, 1 H), 3.65 - 3.94 (m, 12 H), 2.82 (s, 3 H), 2.80 (s, 3 H), 2.47 (s, 3 H), 2.35 (s, 3 H), 2.30 (s, 3 H), 2.04 (s, 3 H), 1.98 (s, 6 H), 1.60 - 1.78 (m, 12 H), 1.20 - 1.48 (m, 108 H), 0.84 - 0.92 (m, 18 H). ap/p=46/54.

¹³C NMR (101 MHz, CDCl₃) δ 162.0, 161.9, 157.9, 157.9, 157.5, 156.7, 153.2, 147.5, 147.4, 147.3, 145.6, 136.7, 136.3, 135.9, 135.8, 135.6, 134.9, 134.6, 132.6, 132.4, 131.7, 131.3, 131.2, 131.1, 131.0, 130.8, 128.1, 127.6, 127.3, 127.0, 99.4, 99.3, 73.4, 69.0, 32.0, 30.3, 29.8, 29.7, 29.6, 29.4, 29.3, 26.1, 22.7, 16.4, 16.2, 15.4, 15.3, 14.3, 14.2, 13.7.

HRMS (ESI) m/z: $[M+H]^+$ Calculated for $C_{61}H_{91}N_4O_5S_4^+$: 1087.5868; found: 1087.5867.

v. Synthesis of 11

To a solution of **8** (78.2 mg, 0.17 mmol) in dry CH_2Cl_2 (2 mL) at room temperature were sequentially added and **15** (171.9 mg, 0.26 mmol, 1.5 equiv), DMAP (11.0 mg, 0.09 mmol, 0.5 equiv), DCC (70.2 g, 0.34 mmol, 2.0 equiv) under argon atmosphere. The reaction mixture was stirred at that temperature. The progress of the reaction was monitored by TLC. The reaction was quenched by adding water and extracted with CH_2Cl_2 . The organic layer was washed with water and brine, dried over anhydrous Na_2SO_4 , and concentrated in vacuo. The crude product was purified by silica gel column chromatography in petroleum ether: dichloromethane: ethyl acetate = 15: 4: 1 to afford the product **11** as red oil (146.1 mg, 78 % yield, 94.5:5.5 er).

<u>3,4,5-tris(dodecyloxy)benzyl</u> <u>4-(5-(2,5-dimethylthiophen-3-yl)benzo[1,2-*c*:3,4-*c*']bis([1,2,5]thiadiazole)-4-yl)-2,5-<u>dimethylthiophene-3-carboxylate 11:</u></u>

The ee value was determined by HPLC analysis on a Chiralcel IC column (hexane/isopropanol = 90/10, flow = 1.0 mL/min, 254 nm) with tr = 4.8 min (major), 23.3 min (minor): 94.5 : 5.5 er. $[\alpha]_D^{20} = 22.2$ (c = 1.0, CHCl₃)

¹H NMR (400 MHz, CDCl₃) δ 6.57 (s, 1 H), 6.20 (s, 1 H), 5.97 (s, 2 H), 5.85 (s, 2 H), 4.45 - 4.67 (m, 4 H), 3.50 - 3.97 (m, 12 H), 2.68 (s, 3 H), 2.64 (s, 3 H), 2.37 (s, 3 H), 2.24 (s, 3 H), 2.16 (s, 3 H), 1.94 (s, 3 H), 1.83 (s, 3 H), 1.82 (s, 3 H), 1.60 - 1.78 (m, 12 H), 1.20 - 1.48 (m, 108 H), 0.74 - 0.86 (m, 18 H). ap/p=40/60.

¹³C NMR (101 MHz, CDCl₃) δ 163.3, 163.2, 157.7, 157.6, 157.3, 156.2, 152.9, 152.7, 147.2, 147.0, 146.9, 146.8, 146.5, 146.4, 138.0, 137.7, 136.3, 136.2, 135.7, 135.5, 134.4, 134.1, 132.3, 132.2, 131.7, 131.5, 131.4, 130.9, 130.4, 129.5, 129.3, 128.6, 128.2, 127.4, 126.8, 106.5, 106.1, 73.4, 73.3, 68.9, 68.7, 66.6, 66.5, 32.0, 30.4, 29.8, 29.7, 29.5, 29.4, 26.2, 26.1, 22.7, 16.0, 15.8, 15.3, 15.2, 14.2, 14.0, 13.6.

HRMS (ESI) m/z: $[M+Na]^+$ Calculated for $C_{62}H_{92}N_4O_5S_4Na^+$: 1123.5843; found: 1123.5845.

d) Synthesis of 14

i. Synthesis of 13

To an oven-dried 100 mL round-bottom flask was added **12** (3.68 g, 20 mmol) and K_2CO_3 (11.06 g, 80 mmol, 4.0 equiv), dry DMF (60 mL). The flask was charged with Ar for more than three times. Treat the suspension with 1-bromododecane (17.94 g, 72 mmol, 3.6 equiv). The reaction mixture was allowed to stir vigorously at 70 °C overnight. The reaction was quenched by adding water and extracted with Et_2O for three times. The combined organic layers were washed with 0.5M HCl, water and brine, dried over Na₂SO₄, and concentrated in vacuo. The crude product was purified by silica gel column chromatography in petroleum ether: dichloromethane: ethyl acetate = 90: 10: 1 to afford the product **13** as white solid (10.34 g, 75%). m.p. 43.4-43.8°C.

methyl 3,4,5-tris(dodecyloxy)benzoate 13:

¹**H NMR (400 MHz, CDCl₃)** δ 7.26 (s, 2 H), 4.06 - 3.97 (m, 6 H), 3.88 (s, 3 H), 1.85 - 1.71 (m, 6 H), 1.51 - 1.44 (m, 6 H), 1.37 - 1.27 (m, 48 H), 0.88 (t, *J* = 6.7 Hz, 6 H).

¹³C NMR (101 MHz, CDCl₃) δ 166.97, 152.86, 142.33, 124.69, 107.93, 73.51, 69.15, 52.13, 32.01, 30.40, 29.83, 29.81, 29.78, 29.74, 29.71, 29.64, 29.47, 29.45, 29.36, 26.15, 26.13, 22.77, 14.18.

HRMS (ESI) m/z: $[M+H]^+$ Calculated for $C_{44}H_{81}O_5$: 689.6079; found: 689.6082.

ii. Synthesis of 14

To an oven-dried 50 mL round-bottom flask was added **13** (3.45 g, 5 mmol) and NaOH (0.40 g, 10 mmol, 2.0 equiv), MeOH/H₂O (1:2, 6 mL). A reflux condenser was affixed to the flask, and the mixture was heated to reflux overnight. After completion, the mixture was concentrated in vacuo. The mixture was neutralized by 2M HCl and extracted with DCM. The combined organic layers were washed with water and brine, dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo. The crude product was purified by silica gel column chromatography in petroleum ether: ethyl acetate: acetic acid = 180: 20: 1 to afford the product **14** as white solid (2.94 g, 87%). m.p. 56.8-58.2°C.

3,4,5-tris(dodecyloxy)benzoic acid 14:

¹**H NMR (400 MHz, CDCl₃)** δ 11.35 (s, 1 H), 7.37 (s, 2 H), 4.12 - 4.02 (m, 6 H), 1.89 - 1.76 (m, 6 H), 1.55 - 1.48 (m, 6 H), 1.41 - 1.30 (m, 48 H), 0.92 (t, *J* = 6.6 Hz, 9 H).

¹³C NMR (101 MHz, CDCl₃) δ 172.3, 152.9, 143.2, 123.7, 108.6, 73.6, 69.2, 32.0, 30.4, 29.8, 29.7, 29.6, 29.5, 29.4, 29.3, 26.2, 26.1, 22.8, 14.2.

HRMS (ESI) m/z: $[M-H]^-$ Calculated for C₄₃H₇₇O₅: 673.5776; found: 673.5775.

e) Synthesis of 15

To an oven-dried 100 mL round-bottom flask was added LiAlH₄ (493.4 mg, 13 mmol), dry THF (20 mL). The flask was charged with Ar for more than three times. Treat the suspension dropwise with a solution of **13** (6.89 g, 10mmol) in THF (30 mL) at 0 °C over a period of 10 minutes. The reaction mixture was stirred at room temperature. The progress of the reaction was monitored by TLC. The reaction was quenched by slow addition of isopropyl alcohol (2 mL), water (3 mL) and 15% NaOH solution (2 mL). Filter the insoluble salts through a pad of Celite and concentrate the tiltrate under reduced pressure. The residue obtained was dissolved in CH₂Cl₂. The organic layers were washed with water, brine, dried over Na₂SO₄, and concentrated in vacuo. The crude product was purified by silica gel column chromatography in petroleum ether: dichloromethane: ethyl acetate = 15: 4: 1 to afford the product **15** as white solid (5.62 g, 85%). m.p. 47.2-49°C.

(3,4,5-tris(dodecyloxy)phenyl)methanol 15:

¹**H NMR (400 MHz, CDCl₃)** δ 6.55 (s, 2 H), 4.58 (s, 2 H), 3.98 - 3.91 (m, 6 H), 1.83 - 1.70 (m, 7 H), 1.50 - 1.42 (m, 6 H), 1.36 - 1.30 (m, 48 H), 0.88 (t, *J* = 6.6 Hz, 9 H).

¹³C NMR (101 MHz, CDCl₃) δ 153.3, 137.5, 136.1, 105.3, 73.5, 69.1, 65.7, 32.0, 30.4, 29.8, 29.7, 29.5, 29.4, 26.2, 22.8, 14.2.

HRMS (ESI) m/z: $[M+H]^+$ Calculated for C₄₃H₈₁O₄: 661.6129; found: 661.6131.

f) Synthesis of 19

i. Synthesis of 17

To an oven-dried 100 mL round-bottom flask was added **16** (3.08 g, 20 mmol) and K₂CO₃ (11.06 g, 80 mmol, 4.0 equiv), dry DMF (60 mL). The flask was charged with Ar for more than three times. Treat the suspension with 1-bromododecane (17.94 g, 72 mmol, 3.6 equiv). The reaction mixture was allowed to stir vigorously at 70 °C overnight. The reaction was quenched by adding water and extracted with Et_2O for three times. The combined organic layers were washed with 0.5M HCl, water and brine, dried over Na₂SO₄, and concentrated in vacuo. The crude product was purified by silica gel column chromatography in petroleum ether: ethyl acetate = 200 : 1 to afford the product **17** as white solid(8.96 g, 68%). m.p. 49.1-49.8°C.

3,4,5-tris(dodecyloxy)benzaldehyde 17:

¹**H NMR (400 MHz, CDCl₃)** δ 9.83 (s, 1 H), 7.08 (s, 2 H), 4.16 - 3.97 (m, 6 H), 1.86 - 1.72 (m, 6 H), 1.51 - 1.44 (m, 6 H), 1.37 - 1.26 (m, 48 H), 0.88 (t, *J* = 6.7 Hz, 10 H).

¹³C NMR (101 MHz, CDCl₃) δ 191.4, 153.6, 143.8, 131.5, 107.8, 73.7, 69.3, 32.0, 30.4, 29.8, 29.7, 29.6, 29.5, 29.4, 29.3, 26.1, 22.8, 14.2.

HRMS (ESI) m/z: $[M+H]^+$ Calculated for C₄₃H₇₉O₄: 659.5973; found: 659.5976.

ii. Synthesis of 19

To a stirred solution of **17** (659.1 mg, 1 mmol) in dry CH_2Cl_2 (5 mL) was added m-CPBA (85%, 304.5 mg, 1.5 mmol, 1.5 equiv) in portions at 0 °C over a period of 10 minutes. After 1 h, cooling was removed and the mixture was stirred at 50 °C overnight. The mixture was diluted with CH_2Cl_2 and washed with sat. NaHCO₃. The organic layers were washed with water, brine, dried over Na₂SO₄, and concentrated in vacuo to afford the crude product **18** without further purification.

To a stirred solution of **18** in MeOH (1 mL) was added KOH (56.1 mg, 1 mmol). The reaction mixture was stirred at room temperature for 30 min. The progress of the reaction was monitored by TLC. The residue obtained was dissolved in H₂O, and acidified with 1 M HCl to pH 5-6. The mixture was extracted with CH₂Cl₂ for three times. The combined

organic layers were washed with brine, dried over Na2SO4, and concentrated in vacuo. The crude product was purified by silica gel column chromatography in petroleum ether: dichloromethane: ethyl acetate = 9:1 to afford the product **19** as brown solid (401.8 mg, 62%). m.p. $52.3-53.5^{\circ}$ C.

3,4,5-tris(dodecyloxy)phenol 19:

¹**H NMR (400 MHz, CDCl₃)** δ 6.01 (s, 2 H), 5.34 (s, 1 H), 3.88 - 3.82 (m, 6 H), 1.79 - 1.66 (m, 6 H), 1.46 - 1.41 (m, 6 H), 1.32 - 1.26 (m, 48 H), 0.88 (t, *J* = 6.6 Hz, 9 H).

¹³C NMR (101 MHz, CDCl₃) δ 153.5, 152.1, 131.5, 94.1, 73.8, 68.9, 32.0, 30.3, 29.9, 29.8, 29.7, 29.5, 29.4, 26.2, 22.79, 14.2.

HRMS (ESI) m/z: $[M+H]^+$ Calculated for $C_{42}H_{79}O_4$: 647.5976; found: 647.5973.

3. Computational Data of BTTE and 1b

The rotation barrier of the parallel conformers of BTTE and **1b** was calculated. Density functional theory (DFT) geometry optimization calculations were performed with M06-2X functional and def2-SVP basis set using Gaussian 16^{S3}. THF was used in the SMD solvation model for energy calculation of optimized geometries. Gibbs free energy was calculated at 298.15K using Shermo 2.6^{S4}.

	BTTE-p	BTTE-TS	1b-p	1b-TS
Structure				
E/Hartree	-2506.0974870	-2506.0682780	-2051.7228040	-2051.7153000
G/Hartree	-2505.8580611	-2505.8277326	-2051.4948196	-2051.4866946
$\Delta G/(kcal mol^{-1})$	1	9.03	5.	10

Table S2. Computationa	l data and structures	s of BTTE-p and 1b.
------------------------	-----------------------	---------------------

4. Crystallographic Data of 8

Fig. S1. Single crystal structure of 8.

 Table S3. Crystal data and structure refinement for 8.

Compound	8	
CCDC Number	2359686	
Empirical formula	$C_{19}H_{14}N_4O_2S_4$	
Formula weight	458.58	
Temperature / K	170.00	
Wavelength / Å	1.34139	
Crystal system	Triclinic	
Space group	P1	
a / Å	7.7696(4)	
b / Å	15.7256(8)	
c / Å	19.9214(10)	
α / deg	97.434(2)	

β / deg	92.683(2)		
γ / deg	90.008(2)		
Volume / Å ³	2410.9(2)		
Ζ	4		
Density (calculated) / mg/mm ³	1.263		
Absorption coefficient / mm ⁻¹	2.505		
F(000)	944		
Crystal size / mm ³	0.17 x 0.17 x 0.05		
Theta range for data collection / deg	2.465 to 54.876		
Index ranges	-9<=h<=9, -19<=k<=19, 0<=l<=24		
Reflections collected	8958		
Independent reflections	8958 [R(int) = ?]		
Completeness to theta = 53.594°	98.0 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.7508 and 0.5502		
Refinement method	Full-matrix least-squares on F2		
Data / restraints / parameters 8958 / 33 / 1065			
Goodness-of-fit on F2	1.037		
Final R indices [I>2sigma(I)]	$R_1 = 0.0665, wR_2 = 0.1691$		
R indices (all data)	$R_1 = 0.0936, wR_2 = 0.1890$		
Absolute structure parameter	0.02(2)		

5. 2D Spectra and ¹³C NMR Assignments of 9

Fig. S2. Assignment of ¹³C NMR spectrum of 9 in low field.

Fig. S3. Assignment of ¹³C NMR spectrum of 9 in high field.

Fig. S4. 2D NOESY spectrum of 9.

Fig. S5. 2D COSY spectrum of 9.

Fig. S6. 2D HMQC spectrum of 9.

Fig. S7. 2D HMBC spectrum of 9.

6. Photochromic and Chiral Regulation Properties

6.1 Absorption Changes of 10 and 11

Fig. S8. UV-Vis spectra of 10 and 11 during irradiation of UV light ($\lambda = 313$ nm) ($c = 4 \times 10^{-5}$ M, THF).

6.2 Fatigue Resistance Experiments

Fig. S9. Absorbance changes at 535 nm of 9 alternatively irradiated by UV light ($\lambda = 313$ nm) and visible light ($\lambda > 490$ nm) ($c = 4 \times 10^{-5}$ M, THF).

Fig. S10. Absorbance changes at 535 nm of 10 alternatively irradiated by UV light ($\lambda = 313$ nm) and visible light ($\lambda > 490$ nm) ($c = 4 \times 10^{-5}$ M, THF).

Fig. S11. Absorbance changes at 535 nm of 11 alternatively irradiated by UV light ($\lambda = 313$ nm) and visible light ($\lambda > 490$ nm) ($c = 4 \times 10^{-5}$ M, THF).

Fig. S12. Changes of CD signals of 10 at 535 nm during alternatively irradiation with UV light ($\lambda = 313$ nm) and visible light ($\lambda > 490$ nm) ($c = 4 \times 10^{-5}$ M, THF).

Fig. S13. Changes of CD signals of 11 at 535 nm during alternatively irradiation with UV light ($\lambda = 313$ nm) and visible light ($\lambda > 490$ nm) ($c = 4 \times 10^{-5}$ M, THF).

6.3 Thermal Stability Tests

Fig. S14. Absorbance changes of 10 and 11 at PSS at 535 nm during 96 h (T = 298K) ($c = 4 \times 10^{-5}$ M, THF).

Fig. S15. Absorbance changes of 9, 10 and 11 at PSS at 535 nm during 24 h (T = 333K) ($c = 4 \times 10^{-5}$ M, THF).

6.4 Conversion Ratio of 9, 10 and 11 under UV Light Irradiation ($\lambda = 313$ nm)

Fig. S16. Changes of ¹H NMR spectra of **9** at open state and PSS ($c = 5 \times 10^{-3}$ M, THF-d8). The integration of H_e + H_f' should represent 3 actual protons of **90** and the integration of H_e" + H_f" should represent 6 actual protons of **9c**. Thus, the conversion ratio should be 32.44/[2*(32.44/2+1)] = 94%

Fig. S17. Partial ¹H NMR spectra of 9 in CD_2Cl_2 and THF-d8. The ratio of 90-ap and 90-p is 43/57 in CD_2Cl_2 and 44/56 in THF-d8.

Fig. S18. Partial ¹H NMR spectra changes of 10 at open state and PSS ($c = 5 \times 10^{-3}$ M, CD₂Cl₂).

Fig. S19. Partial ¹H NMR spectra changes of 11 at open state and PSS ($c = 5 \times 10^{-3}$ M, CD₂Cl₂).

6.5 CD Spectra of 10 and 11

Fig. S20. CD spectra of 10, 11 during irradiation with UV light ($\lambda = 313$ nm) ($c = 4 \times 10^{-5}$ M, THF).

6.6 Experiments of Photocyclization and Photocycloreversion Quantum Yields

Photocyclization quantum yield (Φ_{o-c}) and photocycloreversion quantum yield (Φ_{c-o}) were measured by monitoring the absorption changes at 517 nm during irradiation with UV light ($\lambda = 313 \text{ nm}$) (Φ_{o-c}) or visible light ($\lambda = 517 \text{ nm}$) (Φ_{c-o}) in THF according to standard procedure using BTF6 as reference^{S1} whose Φ_{o-c} and Φ_{c-o} are both known as 0.35^{S2} , respectively. At the beginning of irradiation, Φ_{o-c} and Φ_{c-o} should follow eq. S1 and eq. S2. See supporting information of reference S1 for the detailed derivation process of equations.

$$\Phi_{o-c} = \frac{k_{o-c}V}{l\varepsilon_1 I(1-10^{-l\varepsilon_2 c_0})} \quad \text{eq. S1}$$
$$\Phi_{c-o} = \frac{|k_{c-o}|V}{l\varepsilon_1 I(1-10^{-l\varepsilon_3 c})} \quad \text{eq. S2}$$

 c_o is the concentration of ring-open isomer. c is the concentration of ring-closed isomer. l is the optical path. V is the volume of the test solution. I is the intensity of incident light calculated from the known data of BTF6. ε_l is the extinction coefficient of ring-closed isomer at the detection wavelength (that is, 517 nm). ε_2 is the extinction coefficient of ring-closed isomer at irradiation wavelength (that is, 313 nm). ε_3 is the extinction coefficient of ring-closed isomer at irradiation wavelength (that is, 517 nm).

Figure S21. Absorption changes of BTF6, 9, 10, 11 during irradiation with UV light ($\lambda = 313$ nm) and visible light ($\lambda > 490$ nm) ($c = 2 \times 10^{-4}$ M, THF).

Table S4.	Photochromie	c data of 9 ,	10 and 11.
-----------	--------------	----------------------	------------

Molecular	$\epsilon_{\max}{}^a$	CR^b	$\Phi_{ ext{o-c}}{}^c$	$arPsi_{ ext{c-o}}{}^d$
9	37758	0.90	0.37	-
9c	5511	>0.99	-	0.042
10	46430	0.90	0.29	-
10c	5626	>0.99	-	0.0058
11	37620	0.90	0.32	-
11c	5052	>0.99	-	0.0023

^{*a*}Typical absorption maxima ε_{max} of ring-open isomer in the UV region and ring-closed isomer in the visible region,

respectively. ^bCaculated from ¹H NMR in CD₂Cl₂. ^cQuantum yields of photocyclization (Φ_{o-c}) at 313 nm and cycloreversion (Φ_{c-o}) at 517 nm.

7. Measurements of the HTPs of 9, 10, 11

The HTPs of **9**, **10**, **11** were calculated using the Grandjean-Cano wedge technique^{S5} according to the equation: $\beta_{\rm M} = (P c)^{-1}$, where $\beta_{\rm M}$ is HTP, *P* is the pitch length of the helical structure, and *c* is the concentration of dopants. *P* was determined using a Cano wedge cell. *P* satisfies the following formula: $P = 2 L \tan \theta$, where *L* is the distance between two disclination lines and θ is the wedge angle. *L* was observed under the polarizing optical microscope before and after irradiation at 365 nm light. **9**, **10**, **11** were mixed with TEB300, heated to melt, and subsequently injected into a wedge cell respectively for HTP measurements.

Fig. S22. Scheme of the Grandjean-Cano wedge technique.

Fig. S23. Schematic illustration of pitch length modulation.

Table S5. Data for calculation of the HTPs of 9, 10 and 11.

Dopant	$\tan \theta$	<i>L</i> / μm	P / μm	<i>c</i> (mol%)	$eta_{ m M}$ / $\mu { m m}^{ ext{-1}}$
9	0.0183	108.5	3.9711	0.36	69.8
9 at PSS	0.0183	159.6	5.8413	0.36	47.4
10	0.0183	510.1	18.6697	0.12	44.5
10 at PSS	0.0183	408.0	14.9328	0.12	55.9
11	0.0183	438.9	16.0637	0.12	52.1
11 at PSS	0.0183	396.7	14.5192	0.12	57.5

Fig. S24. Distance changes between two disclination lines changes of 10 or 11.

8. NMR Spectra

2b, ¹H NMR, 400 MHz, CDCl₃

2b,¹³C NMR, 101 MHz, CDCl₃

2c, ¹H NMR, 400 MHz, CDCl₃

2c,¹³C NMR, 101 MHz, CDCl₃

S63

2d, ¹H NMR, 400 MHz, CDCl₃

S64

2d,¹³C NMR, 101 MHz, CDCl₃

2e, ¹H NMR, 400 MHz, CDCl₃

2e,¹³C NMR, 101 MHz, CDCl₃

2f, ¹H NMR, 400 MHz, CDCl₃

2f,¹³C NMR, 101 MHz, CDCl₃

2g, ¹H NMR, 400 MHz, CDCl₃

2g,¹³C NMR, 101 MHz, CDCl₃

2h, ¹H NMR, 400 MHz, CDCl₃

2h,¹³C NMR, 101 MHz, CDCl₃

2i, ¹H NMR, 400 MHz, CDCl₃

2i,¹³C NMR, 101 MHz, CDCl₃

2j, ¹H NMR, 400 MHz, CDCl₃

S76

2j,¹³C NMR, 101 MHz, CDCl₃

0 ||

2z, ¹H NMR, 400 MHz, CDCl₃

тт (БЪШ

2z,¹³C NMR, 101 MHz, CDCl₃

2aa, ¹H NMR, 400 MHz, CDCl₃

2aa,¹³C NMR, 101 MHz, CDCl₃

2ab, ¹H NMR, 400 MHz, CDCl₃

2ab,¹³C NMR, 101 MHz, CDCl₃

S83

3a, ¹H NMR, 400 MHz, CDCl₃

3a,¹³C NMR, 101 MHz, CDCl₃

3b, ¹H NMR, 400 MHz, CDCl₃

3b,¹³C NMR, 101 MHz, CDCl₃

3c, ¹H NMR, 400 MHz, CDCl₃

3c,¹³C NMR, 101 MHz, CDCl₃

S89

3d, ¹H NMR, 400 MHz, CDCl₃

3d,¹³C NMR, 101 MHz, CDCl₃

f1 (ppm) -10

3e, ¹H NMR, 400 MHz, CDCl₃

3e,13C NMR, 101 MHz, CDCl₃

f1 (ppm)

3f, ¹H NMR, 400 MHz, CDCl₃

3f,¹³C NMR, 101 MHz, CDCl₃

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 f1 (ppm)

3g, ¹H NMR, 400 MHz, CDCl₃

3g,¹³C NMR, 101 MHz, CDCl₃

3h, ¹H NMR, 400 MHz, CDCl₃

3h,¹³C NMR, 101 MHz, CDCl₃

3i, ¹H NMR, 400 MHz, CDCl₃

3i,¹³C NMR, 101 MHz, CDCl₃

3j, ¹H NMR, 400 MHz, CDCl₃

4.0 f1 (ppm)

S102

3j,¹³C NMR, 101 MHz, CDCl₃

f1 (ppm) -10

3k, ¹H NMR, 400 MHz, CDCl₃

3k,¹³C NMR, 101 MHz, CDCl₃

3l, ¹H NMR, 400 MHz, CDCl₃

3l,¹³C NMR, 101 MHz, CDCl₃

3m, ¹H NMR, 400 MHz, CDCl₃

3m,¹³C NMR, 101 MHz, CDCl₃

S109

3n, ¹H NMR, 400 MHz, CDCl₃

3n,¹³C NMR, 101 MHz, CDCl₃

30, ¹H NMR, 400 MHz, CDCl₃

30,13C NMR, 101 MHz, CDCl₃

30,¹⁹F NMR, 376 MHz, CDCl₃

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

3p, ¹H NMR, 400 MHz, CDCl₃

3p,¹³C NMR, 101 MHz, CDCl₃

3p,¹⁹F NMR, 376 MHz, CDCl₃

3q, ¹H NMR, 400 MHz, CDCl₃

3q,¹³C NMR, 101 MHz, CDCl₃

3r, ¹H NMR, 400 MHz, CDCl₃

3r,¹³C NMR, 101 MHz, CDCl₃

S121

3s, ¹H NMR, 400 MHz, CDCl₃

3s,13C NMR, 101 MHz, CDCl₃

3t, ¹H NMR, 400 MHz, CDCl₃

3t,¹³C NMR, 101 MHz, CDCl₃

3u, ¹H NMR, 400 MHz, CDCl₃

3u,¹³C NMR, 101 MHz, CDCl₃

3v, ¹H NMR, 400 MHz, CDCl₃

3v,13C NMR, 101 MHz, CDCl₃

f1 (ppm)

3v,³¹P NMR, 162 MHz, CDCl₃

3w, ¹H NMR, 400 MHz, CDCl₃

3w,¹³C NMR, 101 MHz, CDCl₃

3x, ¹H NMR, 400 MHz, CDCl₃

3x,¹³C NMR, 101 MHz, CDCl₃

3y, ¹H NMR, 400 MHz, CDCl₃

3y,¹³C NMR, 101 MHz, CDCl₃

3z-mono, ¹H NMR, 400 MHz, CDCl₃

3z-mono,¹³C NMR, 101 MHz, CDCl₃

3z-di, ¹H NMR, 400 MHz, CDCl₃

3z-di,¹³C NMR, 101 MHz, CDCl₃

3aa, ¹H NMR, 400 MHz, CDCl₃

3aa,¹³C NMR, 101 MHz, CDCl₃

3ab, ¹H NMR, 400 MHz, CDCl₃

3ab,¹³C NMR, 101 MHz, CDCl₃

4, ¹H NMR, 400 MHz, DMSO-*d*₆

4,¹³C NMR, 101 MHz, DMSO-*d*₆

5,13C NMR, 101 MHz, CDCl₃

6a, ¹H NMR, 400 MHz, DMSO-d₆

6a, ¹³C NMR, 101 MHz, DMSO-d₆

7,13C NMR, 101 MHz, CDCl₃

8, ¹H NMR, 400 MHz, DMSO-*d*₆

8,13C NMR, 101 MHz, DMSO-d₆

9,13C NMR, 101 MHz, CDCl₃

10,13C NMR, 101 MHz, CDCl₃

f1 (ppm) -10

13,13C NMR, 101 MHz, CDCl₃

15,13C NMR, 101 MHz, CDCl₃

9. HPLC Charts

3a: IF-3, Hex/iPrOH=97/3, rate=1.000 mL/min, 254 nm

<Chromatogram>

mAU

<Peak Table>

PDA Ch1 254nm

Peak#	Ret. Time	Area	Height	Area%
1	9.048	942165	58655	50.071
2	10.731	939498	40745	49.929
Total		1881663	99400	100.000

<Chromatogram>

PDA Ch1 254nm					
Peak# Ret. Time		Ret. Time	Area	Height	Area%
	1	9.002	7121299	438560	95.649
	2	10.745	323968	11437	4.351
	Total		7445267	449997	100.000

3b: IF-3, Hex/iPrOH=97/3, rate=1.000 mL/min, 254 nm

<Chromatogram>

PDA Ch1 254nm Peak# Ret. Time Area Height Area% 35.410 42.186 51.863 48.137 1 501022 7673 2 465034 5368 966056 13041 100.000 Total

<**Chromatogram>** mAU

PDA Ch1 254nm					
	Peak#	Ret. Time	Area	Height	Area%
	1	35.180	11169174	170491	93.293
	2	42.228	802972	9243	6.707
	Total		11972146	179734	100.000

3c: IF-3, Hex/iPrOH=90/10, rate=1.000 mL/min, 254 nm

<Chromatogram>

Detector A 254nm						
Peak# Ret. Time		Ret. Time	Area	Height	Conc.	
	1	11.186	2449638	115293	53.472	
	2	13.794	2131520	74453	46.528	
	Total		4581159	189746		

<**Chromatogram**> mV

Detect	or A 254nm			
Peak# Ret. Time		Area	Height	Conc.
1	11.171	16017930	756244	94.799
2	13.844	878761	30919	5.201
Tota		16896691	787163	

3d: IF-3, Hex/iPrOH=97/3, rate=1.000 mL/min, 254 nm

<Chromatogram>

PDA C	h1 254nm			
Peak#	Ret. Time	Area	Height	Area%
1	12.999	1302172	47472	50.871
2	18.064	1257582	29873	49.129
Total		2559754	77345	100.000

<**Chromatogram>** mAU

PDA Ch1 254nm					
Ī	Peak#	Ret. Time	Area	Height	
	1	12.591	14876806	573440	
۳	-				

Peak#	Ret. Time	Area	Height	Area%		
1	12.591	14876806	573440	93.942		
2	17.659	959307	23736	6.058		
Total		15836113	597176	100.000		

3e: IF-3, Hex/iPrOH=97/3, rate=1.000 mL/min, 254 nm

<Chromatogram>

PDA Ch1 254nm

Peak#	Ret. Time	Area	Height	Area%
1	12.677	2928336	104392	51.850
2	15.714	2719408	76798	48.150
Total		5647744	181190	100.000

PDA C	h1 254nm			
Peak#	Ret. Time	Area	Height	Area%
1	12.592	10675119	382122	94.429
2	15.737	629829	18316	5.571
Total		11304948	400437	100.000
3f: IF-3, Hex/iPrOH=97/3, rate=1.000 mL/min, 254 nm

<Chromatogram>

mAU

PDA Ch1 254nm

Peak#	Ret. Time	Area	Height	Area%
1	15.295	2270552	90807	49.892
2	17.855	2280380	71190	50.108
Total		4550932	161997	100.000

PDA C	h1 254nm			
Peak#	Ret. Time	Area	Height	Area%
1	15.306	20933276	851157	93.419
2	17.874	1474598	43767	6.581
Total		22407873	894924	100.000

3g: IF-3, Hex/iPrOH=97/3, rate=1.000 mL/min, 254 nm

<Chromatogram>

mAU

PDA Ch1 254nm

Peak#	Ret. Time	Area	Height	Area%
1	5.405	1697497	148354	50.325
2	7.596	1675591	93012	49.675
Total		3373088	241366	100.000

PDA C	h1 254nm			
Peak#	Ret. Time	Area	Height	Area%
1	5.323	25528969	2060232	94.996
2	7.633	1344707	69379	5.004
Total		26873676	2129611	100.000

3h: IF-3, Hex/iPrOH=97/3, rate=1.000 mL/min, 254 nm

<Chromatogram>

mAU

PDA Ch1 254nm Peak# Ret. Time Area Height Area% 9.362 1136200 64908 49.889 1 50879 115786 2 10.761 1141252 50.111 Total 2277452 100.000

<Peak Table> PDA Ch1 254nm

PDA Ch1 254nm					
	Peak#	Ret. Time	Area	Height	Area%
	1	9.325	15274658	891281	94.084
	2	10.770	960533	40618	5.916
	Total		16235191	931899	100.000

3i: IBN-5, Hex/iPrOH=90/10, rate=1.000 mL/min, 254 nm

<Chromatogram>

mAU

PDA Ch1 254nm Peak# Ret. Time Area Height Т

Peak#	Ret. Time	Area	Height	Area%
1	9.100	2275026	129158	49.699
2	10.045	2302580	124517	50.301
Total		4577606	253675	100.000

г	DAC	111 2341111			
F	Peak#	Ret. Time	Area	Height	Area%
Γ	1	8.790	17144496	1050333	88.275
	2	9.728	2277143	126241	11.725
Γ	Total		19421639	1176573	100.000

3j: IF-3, Hex/iPrOH=97/3, rate=1.000 mL/min, 254 nm

<Chromatogram>

mAU

PDA C	h1 254nm			
Peak#	Ret. Time	Area	Height	Area%
1	26.049	5495915	93036	50.715
2	29.251	5340845	82270	49.285
Total		10836761	175306	100.000

PDA Ch1 254nm

Peak#	Ret. Time	Area	Height	Area%
1	25.773	12658764	212739	94.699
2	29.599	708618	10194	5.301
Total		13367382	222932	100.000

3k: IF-3, Hex/iPrOH=95/5, rate=1.000 mL/min, 254 nm

<Chromatogram>

Detector A 254nm					
	Peak#	Ret. Time	Area	Height	Area%
	1	7.201	4819505	345095	50.408
	2	8.307	4741411	281607	49.592
	Total		9560917	626702	100.000

Detect	or A 254nm			
Peak#	Ret. Time	Area	Height	Area%
1	7.310	5673231	399119	93.763
2	8.445	377365	21333	6.237
Total		6050596	420452	100.000

31: OD-H, Hex/iPrOH=90/10, rate=1.000 mL/min, 254 nm

<Chromatogram>

PDA Ch1 254nm					
	Peak#	Ret. Time	Area	Height	Area%
	1	5.851	935354	67639	49.474
	2	6.721	955260	28469	50.526
	Total		1890614	96108	100.000

PDA C	n1 254nm			
Peak#	Ret. Time	Area	Height	Area%
1	5.882	1634430	117069	11.932
2	6.665	12063373	421233	88.068
Total		13697802	538302	100.000

3m: IF-3, Hex/iPrOH=95/5, rate=0.800 mL/min, 254 nm

<Chromatogram>

mAU

PDA Ch1 254nm

Peak#	Ret. Lime	Area	Height	Area%
1	6.185	933057	67844	49.789
2	6.944	940951	65107	50.211
Total		1874008	132951	100.000

PDAC	NT 254NM			
Peak#	Ret. Time	Area	Height	Area%
1	6.160	391362	28686	86.403
2	6.912	61588	4250	13.597
Total		452950	32935	100.000

3n: IF-3, Hex/iPrOH=95/5, rate=0.800 mL/min, 254 nm

<Chromatogram>

mAU

100.000

Total

PDA Ch1 254nm Peak# Ret. Time 1 8.585 Height 215558 Area% Area 3173117 50.375 2 9.944 3125860 168859 49.625

6298977

384417

PDA C	h1 254nm			
Peak#	Ret. Time	Area	Height	Area%
1	8.608	658876	46122	92.278
2	10.011	55140	3250	7.722
Total		714016	49372	100.000
	PDA C Peak# 1 2 Total	PDA Ch1 254nm Peak# Ret. Time 1 8.608 2 10.011 Total	PDA Ch1 254nm Peak# Ret. Time Area 1 8.608 658876 2 10.011 55140 Total 714016	PDA Ch1 254nm Peak# Ret. Time Area Height 1 8.608 658876 46122 2 10.011 55140 3250 Total 714016 49372

30: IF-3, Hex/iPrOH=95/5, rate=0.800 mL/min, 254 nm

<Chromatogram>

- 0/

PDA Ch1 254nm Peak# Ret. Time Area

Peak#	Ret. Time	Area	неідпі	Area%
1	5.082	9416262	522636	50.065
2	5.882	9391960	484726	49.935
Total		18808222	1007362	100.000

PDA Chi 254nm					
	Peak#	Ret. Time	Area	Height	Area%
	1	5.168	19726911	2117271	89.236
	2	5.978	2379564	229971	10.764
	Total		22106475	2347243	100.000

3p: A05, Hex/iPrOH=90/10, rate=1.000 mL/min, 254 nm

<Chromatogram>

Detector A 254nm Peak# Ret. Time Height Area

201001	0			
Peak#	Ret. Time	Area	Height	Conc.
1	4.477	727020	86022	50.477
2	5.065	713292	53411	49.523
Total		1440312	139434	

Delecti	01 A 2341111			
Peak#	Ret. Time	Area	Height	Conc.
1	4.579	8120	897	11.030
2	5.150	65499	5110	88.970
Total		73618	6007	

3q: IF-3, Hex/iPrOH=95/5, rate=1.000 mL/min, 254 nm

<Chromatogram>

mAU

PDA Ch1 254nm

Peak#	Ret. Time	Area	Height	Area%
1	5.382	1599725	177074	50.646
2	6.881	1558918	117834	49.354
Total		3158643	294908	100.000

mAU

PDA Chi Z54nm					
	Peak#	Ret. Time	Area	Height	Area
	1	5.324	25068256	2781412	90
	2	6.814	2556702	191480	9

PDA C	n i 254nm			
Peak#	Ret. Time	Area	Height	Area%
1	5.324	25068256	2781412	90.745
2	6.814	2556702	191480	9.255
Total		27624958	2972892	100.000

3r: IF-3, Hex/iPrOH=85/15, rate=1.000 mL/min, 254 nm

<Chromatogram>

Detecto	or A 254nm			
Peak#	Ret. Time	Area	Height	Conc.
1	6.491	616870	52307	48.783
2	7.043	647651	50635	51.217
Total		1264521	102941	

<Peak Table> Detector A 254nm

Delector A 254nm				
Peak#	Ret. Time	Area	Height	Conc.
1	6.482	67856	5816	6.675
2	7.026	948759	76765	93.325
Total		1016615	82581	

3s: IF-3, Hex/iPrOH=90/10, rate=1.000 mL/min, 254 nm

<Chromatogram>

<Peak Table>

???A 254nm

Peak#	Ret. Time	Area	Area%
1	57.419	2699254	27.439
2	66.885	2452058	24.926
3	128.672	2301817	23.399
4	162.365	2384219	24.236
Total		9837348	100.000

???A 254nm				
Peak#	Ret. Time	Area	Area%	
1	57.982	1310597	5.908	
2	67.546	1254565	5.656	
3	124.733	9473540	42.709	
4	157.511	10143043	45.727	
Total		22181745	100.000	

3t: AD-H, Hex/iPrOH=92/8, rate=0.800 mL/min, 254 nm

<Chromatogram>

PDA Ch1 254nm Δrea

FDAG					
Peak#	Ret. Time	Area	Height	Area%	
1	14.513	381520	14384	49.895	
2	16.009	383120	11391	50.105	
Total		764640	25775	100.000	

PDA C	n1 254nm			
Peak#	Ret. Time	Area	Height	Area%
1	14.506	286512	10755	11.912
2	15.999	2118684	62813	88.088
Total		2405196	73568	100.000

3u: AD-H, Hex/iPrOH=90/10, rate=1.000 mL/min, 254 nm

<Chromatogram>

 PDA Ch1 254nm

 Peak# Ret. Time
 Area
 Height
 Area%

 1
 8.957
 1871689
 107720
 51.179

 2
 12.634
 1785451
 69618
 48.821

 Total
 3657139
 177338
 100.000

4
0
783
217
000

3v: IF-3, Hex/iPrOH=85/15, rate=1.000 mL/min, 254 nm

<Chromatogram>

Conc. 48.783 51.217

102941

<Peak Table>

Total

 Detector A 254nm

 Peak# Ret. Time
 Area
 Height

 1
 6.491
 616870
 52307

 2
 7.043
 647651
 50635

1264521

S213	

Jelector A 234mm				
Peak#	Ret. Time	Area	Height	Conc.
1	6.482	67856	5816	6.675
2	7.026	948759	76765	93.325
Total		1016615	82581	

3w: IF-3, Hex/iPrOH=85/15, rate=1.000 mL/min, 254 nm

<Chromatogram>

mAU

A 01-1 05

PDA C	2DA Chil 254nm					
Peak#	Ret. Time	Area	Height	Area%		
1	15.234	4820787	148818	49.977		
2	16.919	4825173	139277	50.023		
Total		9645960	288095	100.000		

PDAC	111 2341111			
Peak#	Ret. Time	Area	Height	Area%
1	14.600	28791490	905695	90.143
2	16.576	3148281	94787	9.857
Total		31939771	1000482	100.000
3x: IF-3, Hex/iPrOH=97/3, rate=1.000 mL/min, 254 nm

<Chromatogram>

Detector A 254nm

Peak#	Ret. Time	Area	Height	Area%
1	8.984	2635881	145705	50.839
2	10.049	2548876	124480	49.161
Total		5184757	270185	100.000

Detecto	or A 254nm			
Peak#	Ret. Time	Area	Height	Area%
1	9.430	3464387	195543	92.340
2	10.587	287368	13600	7.660
Total		3751755	209143	100.000

3y: IF-3, Hex/iPrOH=92/8, rate=0.800 mL/min, 254 nm

<Chromatogram>

 PDA Ch1 254nm

 Peak# Ret. Time
 Area
 Height
 Area%

 1
 4.944
 2069641
 251635
 50.984

 2
 5.530
 1989759
 217989
 49.016

 Total
 4059399
 469624
 100.000

mAU

PDA C	h1 254nm			
Peak#	Ret. Time	Area	Height	Area%
1	4.946	30380998	3999526	87.317
2	5.529	4412749	505687	12.683
Total		34793746	4505213	100.000

3z-mono: IF-3, Hex/iPrOH=95/5, rate=1.000 mL/min, 254 nm

<Chromatogram>

PDA C	PDA Ch1 254nm					
Peak#	Ret. Time	Area	Height	Area%		
1	20.913	1174465	28590	50.435		
2	32.713	1154195	16187	49.565		
Total		2328660	44777	100.000		

 PDA Ch1 254nm

 Peak# Ret. Time
 Area
 Height
 Area%

 1
 20.516
 9832123
 241994
 95.348

 2
 32.369
 479652
 6699
 4.652

 Total
 10311775
 248692
 100.000

3z-di: IF-3, Hex/iPrOH=85/15, rate=1.000 mL/min, 254 nm

<Chromatogram>

PDA C	h1 254nm			
Peak#	Ret. Time	Area	Height	Area%
1	28.190	4965637	57419	25.614
2	40.255	9589051	97267	49.463
3	55.214	4831500	35142	24.922
Total		19386188	189829	100.000

PDA Ch1 254nm

Peak#	Ret. Time	Area	Height	Area%
1	28.432	15909407	203527	91.975
2	40.692	1366446	14770	7.900
3	56.114	21690	244	0.125
Total		17297544	218541	100.000

3aa: IF-3, Hex/iPrOH=90/10, rate=1.000 mL/min, 254 nm

<Chromatogram>

Detector A 254nm					
Ρ	eak#	Ret. Time	Area	Height	Conc.
	1	36.532	3758110	42666	50.719
	2	45.395	3651534	36429	49.281
	Total		7409644	79096	

Jetector A 254nm						
Peak#	Ret. Time	Area	Height	Conc.		
1	35.865	12854753	147142	93.838		
2	45.663	844138	8468	6.162		
Total		13698891	155610			

3ab: IF-3, Hex/iPrOH=97/3, rate=1.000 mL/min, 254 nm

<**Chromatogram>** mAU

PDA Ch1 254nm

Peak#	Ret. Time	Area	Height	Area%
1	6.853	1054702	67219	51.511
2	10.371	992813	40581	48.489
Total		2047515	107800	100.000

<Chromatogram>

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Height	Area%
1	6.784	16315771	1038674	92.858
2	10.351	1254819	50703	7.142
Total		17570590	1089378	100.000

4: IF-3, Hex/iPrOH=97/3, rate=1.000 mL/min, 254 nm

<Chromatogram>

mAU

PDA Ch1 254nm Area

Peak#	Ret. Time	Area	Height	Area%
1	25.585	1395202	14612	48.161
2	28.966	1501754	10737	51.839
Total		2896957	25349	100.000

<Peak Table> PDA Ch1 254nm

PDAC	n i 254nm			
Peak#	Ret. Time	Area	Height	Area%
1	25.538	770953	9467	2.642
2	28.842	28404565	202483	97.358
Total		29175518	211951	100.000

5: IF-3, Hex/iPrOH=98/2, rate=0.400 mL/min, 254 nm

<Chromatogram>

???A 254nm

Peak#	Ret. Time	Area	Height	Area%
1	26.669	5683765	71329	49.847
2 30.369		5718585	69901	50.153
Total		11402351	141230	100.000

	Detect	or A 254nm			
Peak# Ret. Time		Ret. Time	Area	Height	Area%
	1	27.153	4675716	94014	3.840
2 30.407		30.407	117082244	1795199	96.160
	Total		121757960	1889213	100.000

6b: AD-H, Hex/iPrOH=90/10, rate=1.000 mL/min, 254 nm

<Chromatogram>

PDA C	h1 254nm			
Peak#	Ret. Time	Area	Height	Area%
1	5.857	1649183	139657	50.026
2	7.085	1647497	117472	49.974
Total		3296680	257129	100.000

<Peak Table> PDA Ch1 254nm

PDA Ch1 254nm					
Peak# Ret. Time		Ret. Time	Area	Height	Area%
	1	5.883	1544026	131520	95.916
	2	7.143	65735	4665	4.084
	Total		1609761	136185	100.000

7: OD-H, Hex/iPrOH=97/3, rate=1.000 mL/min, 254 nm

<Chromatogram>

Detector A 254nm					
Peak# Ret. Time		Ret. Time	Area	Height	Area%
	1	10.654	1028936	43985	50.120
	2	15.046	1024024	44236	49.880
	Total		2052960	88221	100.000

Detect	or A 254nm			
Peak# Ret. Time		Area	Height	Area%
1	10.499	5780798	244253	95.071
2	15.036	299735	12974	4.929
Total		6080534	257227	100.000

9: AD-H, Hex/iPrOH=90/10, rate=1.000 mL/min, 254 nm

<Chromatogram>

Detector A 254nm

Peak#	Ret. Time	Area	Height	Area%
1	6.695	1661849	86839	49.054
2	7.710	1725966	65905	50.946
Total		3387815	152744	100.000

Detecto	or A 254nm			
Peak#	Ret. Time	Area	Height	Area%
1	6.692	1458519	74668	94.223
2	7.727	89425	3004	5.777
Total		1547945	77672	100.000

10: IF-3, Hex/iPrOH=95/5, rate=1.000 mL/min, 254 nm

PDA Ch1 254nm

Peak#	Ret. Time	Area	Height	Area%
1	10.117	3984818	148185	50.018
2	13.443	3981882	120943	49.982
Total		7966700	269128	100.000

PDA Ch1 254nm Peak# Ret. Time Area Т

	Peak# Ret. Time		Area	Height	Area%
	1	10.043	44301553	1475386	94.444
	2	13.629	2606179	79666	5.556
	Total		46907732	1555051	100.000

11: IC, Hex/iPrOH=97/3, rate=1.000 mL/min, 254 nm

<Chromatogram>

Area% 50.605 49.395 100.000

61028

<Peak Table>

Total

PDA Ch1 254nm				
Peak#	Ret. Time	Area	Height	
1	4.735	689505	52219	
2	23 446	673015	8809	

1362520

Peak#	Ret. Time	Area	Height	Area%
1	4.778	8322975	681713	94.438
2	23.303	490225	6783	5.562
Total		8813199	688496	100.000

10. References

S1 T. Sumi, Y. Takagi, A. Yagi, M. Morimotoa and M. Irie, Chem. Commun. 2014, 50, 3928-3930.

S2 K. Uchida, E. Tsuchida, Y. Aoi and S. Nakamura, Irie, M. Chem. Lett. 1999, 28, 63-64.

S3 Gaussian 16, Revision C.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016.

S4 T. Lu, Q.-X Chen, Computational and Theoretical Chemistry 2021, 1200, 113249.

S5 D. Podolskyy, O. Banji, and P. Rudquist, Liquid Crystals. 2008, 35, 789-791.