Supporting Information

Direct Synthesis of Dialkyl Ketones from Deoxygenative Cross-Coupling of Carboxylic Acids and Alcohols

Bo Yang^{a,b*}, Ri-Yuan Tang^{a,b*}

^a Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China

^bState Key Laboratory of Green Pesticide, College of Materials and Energy, South China Agricultural University, Guangzhou, 510641, China

Corresponding author: Bo Yang, boyang@scau.edu.cn; Ri-Yuan Tang, rytang@scau.edu.cn

Table of Contents

I. General Information	2
II. Optimization of Reaction Conditions	2
III. General Procedure for Direct Ketone Synthesis from Carboxylic Acids and Alcohol	ls via
Metallaphotoredox Catalysis	5
IV. Late-stage Functionalization of Complex Molecules	25
V. Mechanistic Studies	30
VI. References	37
VII.NMR Spectra	38

I. General Information

Dry DMAc and 1,4-dioxane were purchased from suppliers and used directly. Unless stated otherwise, reactions were performed in flame-dried glassware. Analytical thin layer chromatography (TLC) was performed on precoated silica gel 60 F254 plates and visualization on TLC was achieved by UV light (254 and 365 nm) or by phosphomolybdic acid. Flash column chromatography was performed on silica gel (300-400 mesh). Unless otherwise noted, all the corresponding carboxylic acids and alcohols from suppliers were used directly without further purification. NMR spectra were recorded on a Bruker-500 instrument. ¹H NMR chemical shifts were referenced to the tetramethylsilane (0 ppm); ¹³C NMR chemical shifts were referenced to the solvent resonance (77.00 ppm, CDCl₃). The following abbreviations (or combinations thereof) were used to explain multiplicities: s = singlet, d = doublet, t = triplet, m = multiplet. Mass spectra (HRMS) were obtained using Waters G2-XS Q-TOF LC/MS (ESI) mass spectrometer. Melting points were determined using a hot stage apparatus. All manipulations were conducted under Schlenk tubes.

II. Optimization of Reaction Conditions

Me 1	OH +	1 mol% PC 10 mol%NiBr ₂ •DME, 15 mol% L base (1.5 equiv.), K ₂ CO ₃ (1.3 equiv.) additive (Y equiv.), DMA, r.t. N ₄ (1.5 equiv.), pyridine tBuOMe (0.1 M), r.t., 20 min then Boc ₂ O (1.3 equiv.), 450-455 nm LE	Ds, r.t.	Me 3
Entry	Base	РС	[L]	Yield (%) ^a
1	NaOAc	Ir(ppy)2(dtbbpy)PF6	dtbbpy	60
2	quinuclidine	Ir(ppy) ₂ (dtbbpy)PF ₆	dtbbpy	trace
3	2,6-lutidine	Ir(ppy) ₂ (dtbbpy)PF ₆	dtbbpy	34
4	Cs ₂ CO ₃	Ir(ppy) ₂ (dtbbpy)PF ₆	dtbbpy	42
5	DBU	Ir(ppy) ₂ (dtbbpy)PF ₆	dtbbpy	5
6	Na ₂ CO ₃	Ir(ppy) ₂ (dtbbpy)PF ₆	dtbbpy	trace
7	Cs ₂ CO ₃	Ir(ppy) ₂ (dtbbpy)PF ₆	dtbbpy	48
8	NaOAc	Ir[dF(CF ₃)ppy] ₂ (dtbbpy)PF ₆	dtbbpy	50

Screening of various bases, photocatalysts (PC) and ligands (L)

9	NaOAc	Ir[dF(Me)ppy]2(dtbbpy)PF6	dtbbpy	38
10	NaOAc	4CzIPN	dtbbpy	62
11	NaOAc	4CzIPN	bpy	37
12	NaOAc	4CzIPN	dtbbpy	39

^a Yields were determined by ¹H NMR spectroscopy with mesitylene as an internal standard.

Screening of various NHCs and additives

Me 1	O OH OH + Me 2	1 mol%Ir(ppy) ₂ (dtbbpy)PF ₆ 10 mol%NiBr ₂ ·DME, 15 mol% L ₁ Cs ₂ CO ₃ (X equiv.), K ₂ CO ₃ (1.3 equiv.) additive (Y equiv.), DMA, r.t. N _x (1.5 equiv.), pyrdine <i>t</i> BuOMe (0.1 M), r.t., 20 min <i>then</i> Boc ₂ O (1.3 equiv.), 450-455 nm LEDs, rt	Me 3
Entry	X	Additive/Y	Yield (%) ^a
1	2	/	31
2	1.5	/	48
3	1.0	/	42
4	0.5	/	trace
5	0	/	trace
6	1.0	/	trace
7	1.0	H ₂ O/5	52
8	1.5	H ₂ O/10	54
9	1.5	$H_2O/0$	26
10	1.5	H ₂ O/5	53
11	1.5	H ₂ O/15	36
12 ^b	1.5	H ₂ O/5	46
13°	1.5	H ₂ O/5	25
14	1.5	H ₂ O/5	16
15	1.5	H ₂ O/NH ₄ Cl/5/1	16

^aYields were determined by ¹H NMR spectroscopy with mesitylene as an internal standard. ^bBoc₂O/K₂CO₃ 1.5 eq; ^c Boc₂O/K₂CO₃ 1.7 equiv.

Note: The experiments showed good tolerance when water was added to the system, indicating its potential practicality.

Screening of different kinds of NHCs and Ligands

Me	OH +	1 mol%lr(ppy) ₂ (dtbbpy)PF ₆ 10 mol%MiBr ₂ rDME, 15 mol% Liga Cs ₂ CO ₃ (1.5 equiv.), K ₂ CO ₃ (1.3 equ DMA (0.1 M), r.t., 30 min NHC (1.5 equiv.), pyridine (1.5 equ solvent (0.1 M), r.t., 20 min then Boc ₂ O (1.3 equiv.), 450-455 nm LE	ind uiv.) iv.) Ds, rt, 12 h	Me Me
Entry	Solvent	Ligand	Yield (%) ^a	
1	tBuOMe	L ₁	60	
2	tBuOMe	L_2	37	
3	tBuOMe	L_3	32	
4	tBuOMe	L_4	30	
5	tBuOMe	L_5	trace	
6	PhCF ₃	L_1	54	
7	1,4-Dioxane	L_1	72	
8	THF	L_1	13	
9	MeCN	L_1	<10%	
10 ^b	1,4-Dioxane	L_1	75	
11 ^{b,c}	1,4-Dioxane	L_1	78	
	/ ^{tBu}			
-1	-2	-3	⊷4	-5

^aYields were determined by ¹H NMR spectroscopy with mesitylene as an internal standard. ^b20 h;

°5 mol% NiBr₂•DME, 7.5 mol% dtbbpy

Systematic screening of different kinds of NHCs

4	N ₄	75

^aYields were determined by ¹H NMR spectroscopy with mesitylene as an internal standard.

III. General Procedure for Direct Ketone Synthesis from Carboxylic Acids and Alcohols via Metallaphotoredox Catalysis

General procedure A:

An oven-dried 25 mL flask was evacuated and back-filled with N_2 for three times. After cooling at room temperature, $Ir(ppy)_2(dtbbpy)PF_6$ (0.003 mmol), dtbbpy (L₁) (0.0225 mmol), K_2CO_3 (0.39 mmol), Cs_2CO_3 (0.45 mmol) and $NiBr_2$ •DME (0.015 mmol) were added sequentially under N_2 atmosphere. Then DMAc (3 mL) was added. The reaction mixture was stirred at room temperature for 30 min.

Another oven-dried 10 mL flask was evacuated and back-filled with N₂ for three times. After cooling at room temperature, NHC (N₄) (0.45 mmol), 1,4-dioxane (3 mL) and alcohol **2** (0.42 mmol) were added. Then pyridine (0.42 mmol) was added dropwise via a microsyringe. The reaction mixture was stirred for 20 min at room temperature. The 1,4-dioxane suspension was transferred to a 5 ml syringe under N₂. Then a syringe filter and a new needle were installed on the syringe, and the 1,4-dioxane solution was injected through the syringe filter into the mentioned above flask containing the Ir/Ni catalysts followed by adding carboxylic acid **1** (0.3 mmol) and Boc₂O (0.39 mmol). The resulting crude mixture was then allowed to stir at room temperature and irradiated by 450-455 nm LEDS at a distance of 5 cm for 24 h at room temperature. The reaction mixture was quenched by water (10 mL) and extracted by ethyl acetate (15 mL) for 3 times. The combined organic layers were dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated in *vacuo* before it was purified by flash chromatography on silica gel to afford the desired ketone.

General procedure B:

An oven-dried 25 mL flask was evacuated and back-filled with N_2 for three times. After cooling at room temperature, $Ir(ppy)_2(dtbbpy)PF_6$ (0.004 mmol), dtbbpy (L₁) (0.03 mmol), K_2CO_3 (0.52 mmol), Cs_2CO_3 (0.60 mmol) and NiBr₂•DME (0.02 mmol) were added sequentially under N_2 atmosphere. Then DMAc (4 mL) was added. The reaction mixture was stirred at room temperature for 30 min.

Another oven-dried 10 mL flask was evacuated and back-filled with N₂ for three times. After cooling at room temperature, NHC (N₄) (0.60 mmol), 1,4-dioxane (4 mL) and alcohol **2** (0.56 mmol) were added. Then pyridine (0.56 mmol) was added dropwise via a microsyringe. The reaction mixture was stirred for 20 min at room temperature. The 1,4-dioxane suspension was transferred to a 5 ml syringe under N₂. Then a syringe filter and a new needle were installed on the syringe, and the 1,4-dioxane solution was injected through the syringe filter into the mentioned above flask containing the Ir/Ni catalysts followed by adding carboxylic acid **1** (0.4 mmol) and Boc₂O (0.52 mmol). The resulting crude mixture was then allowed to stir at room temperature and irradiated by 450-455 nm LEDS at a distance of 5 cm for 24 h at room temperature. The reaction mixture was quenched by water (10 mL) and extracted by ethyl acetate (15 mL) for 3 times. The combined organic layers were dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated in *vacuo* before it was purified by flash chromatography on silica gel to afford the desired ketone.

1,4-di-*p*-tolylpentan-3-one (**3**). Prepared according to the general procedure A employing $Ir(ppy)_2(dtbbpy)PF_6$ (2.7mg, 0.003 mmol), dtbbpy (L₁) (6.4 mg, 0.0225 mmol), K₂CO₃ (53.8 mg, 0.39 mmol),

Cs₂CO₃ (147.0 mg, 0.45 mmol), NiBr₂•DME (4.7 mg, 0.015 mmol), NHC (177.6 mg, 0.45 mmol), 1,4-dioxane (3 mL), 1-(4-Methylphenyl)ethanol (56.8 mg, 0.42 mmol), pyridine (33.3 mg, 0.42 mmol), 3-(4-methylphenyl)propionic acid (49.8 mg, 0.3 mmom) and Boc₂O (85.2 mg, 0.39 mmol). After 20 h, The reaction mixture was quenched by water (10 mL) and extracted by ethyl acetate (15 mL) for 3 times. The combined organic layers were dried over anhydrous Na₂SO₄. After filtration,

the filtrate was concentrated in *vacuo* before it was purified by flash chromatography (PE/EA = 45/1) on silica gel to afford **3** (59.9 mg, 0.225 mmol, 75% yield) as a yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.13 – 6.98 (m, 6H), 6.94 (d, *J* = 8.0 Hz, 2H), 3.65 (q, *J* = 6.8 Hz, 1H), 2.86 – 2.57 (m, 4H), 2.31 (s, 3H), 2.28 (s, 3H), 1.34 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 210.1, 137.9, 137.4, 136.7, 135.3, 129.5, 129.0, 128.1, 127.7, 52.7, 42.6, 29.5, 21.0, 20.9, 17.3; HRMS (ESI-TOF) Calcd for C₁₉H₂₂ONa [M+Na]⁺: 289.1563; Found 289.1570.

1-phenyl-4-(*p*-tolyl)pentan-3-one (4). ¹ Prepared according to the general procedure B employing Ir(ppy)₂(dtbbpy)PF₆ (3.9 mg, 0.004 mmol), dtbbpy (L₁) (8.5 mg, 0.03 mmol), K₂CO₃ (72.1 mg, 0.60 mmol),

Cs₂CO₃ (196.1 mg, 0.60 mmol), NiBr₂•DME (6.4 mg, 0.02 mmol), NHC (236.0 mg, 0.60 mmol), 1,4-dioxane (4 mL), 1-(4-Methylphenyl)ethanol (78.1 mg, 0.56 mmol), pyridine (44.3 mg, 0.56 mmol), 3-Phenylpropanoic acid (60.2 mg, 0.4 mmom) and Boc₂O (114.0 mg, 0.52 mmol). After 20 h, The reaction mixture was quenched by water (10 mL) and extracted by ethyl acetate (15 mL) for 3 times. The combined organic layers were dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated in *vacuo* before it was purified by flash chromatography (PE/EA = 50/1) on silica gel to afford **4** (60.5 mg, 0.24 mmol, 60% yield) as a colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.20 (dd, *J* = 6.8, 6.4 Hz, 2H), 7.17 – 6.98 (m, 7H), 3.65 (q, *J* = 7.2 Hz, 1H), 2.91 – 2.71 (m, 2H), 2.69 – 2.57 (m, 2H), 2.30 (s, 3H), 1.35 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 210.0, 141.0, 137.4, 136.7, 129.5, 128.3, 128.2, 127.6, 125.9, 52.7, 42.4, 29.9, 21.0, 17.3.

1-(4-methoxyphenyl)-4-(p-tolyl)pentan-3-one (5). ² Prepared according to the general procedure B employing Ir(ppy)₂(dtbbpy)PF₆ (3.9 mg, 0.004 mmol), dtbbpy (L₁)

(8.5 mg, 0.03 mmol), K₂CO₃ (72.0 mg, 0.60 mmol), Cs₂CO₃ (194.7 mg, 0.60 mmol), NiBr₂•DME (6.6mg, 0.02 mmol), NHC (237.9 mg, 0.60 mmol), 1,4-dioxane (4 mL), 1-(4-methylphenyl)ethanol (76.7 mg, 0.56 mmol), pyridine (44.3 mg, 0.56 mmol), 3-(4-methoxyphenyl)propanoic acid (50.8 mg, 0.4 mmom) and Boc₂O (113.7 mg, 0.52 mmol). After 20 h, The reaction mixture was quenched by water (10 mL) and extracted by ethyl acetate (15 mL) for 3 times. The combined organic layers

were dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated in *vacuo* before it was purified by flash chromatography (PE/EA = 50/1) on silica gel to afford **5** (60.5 mg, 0.18 mmol, 45% yield) as a pale yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.10 (d, *J* = 7.6 Hz, 2H), 7.03 (d, *J* = 8.0 Hz, 2H), 6.97 (d, *J* = 8.4 Hz, 2H), 6.75 (d, *J* = 8.8 Hz, 2H), 3.76 (s, 3H), 3.65 (q, *J* = 6.8 Hz, 1H), 2.84 – 2.55 (m, 4H), 2.31 (s, 3H), 1.34 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 210.2, 157.8, 137.4, 136.7, 133.1, 129.5, 129.1, 127.7, 113.7, 55.2, 52.7, 42.7, 29.1, 21.0, 17.3.

1-(m-tolyl)-4-(p-tolyl)pentan-3-one (6). Prepared according to the general procedure B employing Ir(ppy)₂(dtbbpy)PF₆ (3.9 mg, 0.004 mmol), dtbbpy (L₁) (8.0 mg, 0.03 mmol), K₂CO₃ (71.9 mg,

0.60 mmol), Cs₂CO₃ (194.7 mg, 0.60 mmol), NiBr₂•DME (6.6mg, 0.02 mmol), NHC (236.7 mg, 0.60 mmol), 1,4-dioxane (4 mL), 1-(4-methylphenyl)ethanol (77.7 mg, 0.56 mmol), pyridine (44.3 mg, 0.56 mmol), 3-(3-methylphenyl)propionic acid (66.0 mg, 0.4 mmom) and Boc₂O (113.5 mg, 0.52 mmol). After 20 h, The reaction mixture was quenched by water (10 mL) and extracted by ethyl acetate (15 mL) for 3 times. The combined organic layers were dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated in *vacuo* before it was purified by flash chromatography (PE/EA = 50/1) on silica gel to afford **6** (66.0 mg, 0.248 mmol, 62% yield) as a yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.13 – 7.07 (m, 3H), 7.04 (d, *J* = 8.4 Hz, 2H), 6.95 (d, *J* = 7.6 Hz, 1H), 6.88 – 6.82 (m, 2H), 3.66 (q, *J* = 6.8 Hz, 1H), 2.85 – 2.55 (m, 4H), 2.31 (s, 3H), 2.26 (s, 3H), 1.35 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 210.1, 141.0, 137.9, 137.4, 136.7, 129.5, 129.0, 128.2, 127.7, 126.6, 125.2, 52.7, 42.5, 29.8, 21.3, 21.0, 17.3; HRMS (ESI-TOF) Calcd for C₁₉H₂₂ONa [M+Na]⁺: 289.1563; Found 289.1571.

6-([1,1'-biphenyl]-4-yl)-2-(p-tolyl)hexan-3-one (7). Prepared according to the general procedure A employing Ir(ppy)₂(dtbbpy)PF₆ (2.7 mg, 0.003 mmol), dtbbpy (L₁) (6.2 mg,

0.0225 mmol), K₂CO₃ (53.3 mg, 0.39 mmol), Cs₂CO₃ (147.1 mg, 0.45 mmol), NiBr₂•DME (4.8 mg, 0.015 mmol), NHC (177.5 mg, 0.45 mmol), 1,4-dioxane (3 mL), 1-(4-methylphenyl)ethanol (57.4

mg, 0.42 mmol), pyridine (33.3 mg, 0.42 mmol), 4-(4-biphenylyl)butyric acid (72.2 mg, 0.3 mmom) and Boc₂O (85.2 mg, 0.39 mmol). After 20 h, The reaction mixture was quenched by water (10 mL) and extracted by ethyl acetate (15 mL) for 3 times. The combined organic layers were dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated in *vacuo* before it was purified by flash chromatography (PE/EA = 45/1) on silica gel to afford 7 (62.7 mg, 0.183 mmol, 61% yield) as a yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.56 (d, *J* = 7.0 Hz, 2H), 7.49 – 7.39 (m, 4H), 7.35 – 7.29 (m, 1H), 7.17-7.05 (m, 6H), 3.70 (q, *J* = 6.8 Hz, 1H), 2.61 – 2.35 (m, 4H), 2.33 (s, 3H), 1.90-1.79 (m, 2H), 1.36 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 210.8, 141.0, 140.8, 138.7, 137.6, 136.8, 129.6, 128.8, 128.7, 127.7, 127.0, 126.9, 52.6, 40.0, 34.5, 25.3, 21.0, 17.4; HRMS (ESI-TOF) Calcd for C₂₅H₂₆ONa [M+Na]⁺: 365.1876; Found 365.1885.

6-(4-methoxyphenyl)-2-(p-tolyl)hexan-3-one (8).³ Prepared according to the general procedure A employing $Ir(ppy)_2(dtbbpy)PF_6$ (2.8 mg, 0.003 mmol), dtbbpy (L₁) (6.2

mg, 0.0225 mmol), K₂CO₃ (54.5 mg, 0.39 mmol), Cs₂CO₃ (147.0 mg, 0.45 mmol), NiBr₂•DME (4.7 mg, 0.015 mmol), NHC (178.0 mg, 0.45 mmol), 1,4-dioxane (3 mL), 1-(4-methylphenyl)ethanol (57.2 mg, 0.42 mmol), pyridine (33.3 mg, 0.42 mmol), 4-(4-methoxyphenyl)butyric acid (58.3 mg, 0.3 mmol) and Boc₂O (85.2 mg, 0.39 mmol). After 20 h, The reaction mixture was quenched by water (10 mL) and extracted by ethyl acetate (15 mL) for 3 times. The combined organic layers were dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated in *vacuo* before it was purified by flash chromatography (PE/EA = 45/1) on silica gel to afford **8** (53.3 mg, 0.18 mmol, 60% yield) as a yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.13 (d, *J* = 8.0 Hz, 2H), 7.08 (d, *J* = 8.0 Hz, 2H), 6.95 (d, *J* = 8.8 Hz, 2H), 6.77 (d, *J* = 8.8 Hz, 2H), 3.77 (s, 3H), 3.68 (q, *J* = 7.2 Hz, 1H), 2.50 – 2.31 (m, 7H), 1.82-1.72 (m, 2H), 1.48 (s, 3H), 1.35 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 210.9, 136.7, 133.7, 129.8, 129.6, 129.3, 127.7, 125.5, 113.6, 55.2, 52.5, 40.0, 34.0, 31.6, 29.7, 25.5, 21.0.

2,6-di-*p*-tolylhexan-3-one (9). Prepared according to the general procedure B employing Ir(ppy)₂(dtbbpy)PF₆ (3.7 mg, 0.004 mmol), dtbbpy (L₁) (8.5 mg, 0.03 mmol), K₂CO₃ (72.0 mg, 0.60

mmol), Cs₂CO₃ (196.0 mg, 0.60 mmol), NiBr₂•DME (6.6 mg, 0.02 mmol), NHC (237.5 mg, 0.60 mmol), 1,4-dioxane (4 mL), 1-(4-methylphenyl)ethanol (76.7 mg, 0.56 mmol), pyridine (44.3 mg, 0.56 mmol), 4-(*p*-Tolyl)butanoic acid (72.0 mg, 0.4 mmol) and Boc₂O (113.6 mg, 0.52 mmol). After 20 h, The reaction mixture was quenched by water (10 mL) and extracted by ethyl acetate (15 mL) for 3 times. The combined organic layers were dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated in *vacuo* before it was purified by flash chromatography (PE/EA = 50/1) on silica gel to afford **9** (140.2 mg, 0.20 mmol, 50% yield) as a colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.12 (d, *J* = 8.0 Hz, 2H), 7.11 – 7.00 (m, 4H), 6.93 (d, *J* = 8.0 Hz, 2H), 3.67 (q, *J* = 7.0 Hz, 1H), 2.52 – 2.31 (m, 7H), 2.29 (s, 3H), 1.78 (p, *J* = 7.2 Hz, 2H), 1.35 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 210.8, 138.6, 137.6, 136.7, 135.1, 129.5, 128.9, 128.2, 127.7, 52.5, 40.1, 34.4, 25.4, 21.0, 20.9, 17.4; HRMS (ESI-TOF) Calcd for C₂₀H₂₄ONa [M+Na]⁺: 303.1719; Found 303.1727.

6-(4-chlorophenyl)-2-(*p*-tolyl)hexan-3-one (10). Prepared according to the general procedure B employing $Ir(ppy)_2(dtbbpy)PF_6$ (3.7 mg, 0.004 mmol), dtbbpy (L₁) (8.4 mg,

0.03 mmol), K₂CO₃ (71.9 mg, 0.60 mmol), Cs₂CO₃ (196.0 mg, 0.60 mmol), NiBr₂•DME (6.5 mg, 0.02 mmol), NHC (237.0 mg, 0.60 mmol), 1,4-dioxane (4 mL), 1-(4-methylphenyl)ethanol (76.7 mg, 0.56 mmol), pyridine (44.3 mg, 0.56 mmol), 4-(4-chlorophenyl)butyric acid (79.4 mg, 0.4 mmol) and Boc₂O (114.0 mg, 0.52 mmol). After 20 h, The reaction mixture was quenched by water (10 mL) and extracted by ethyl acetate (15 mL) for 3 times. The combined organic layers were dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated in *vacuo* before it was purified by flash chromatography (PE/EA = 50/1) on silica gel to afford **10** (66.0 mg, 0.22 mmol, 55% yield) as a colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.17 (d, *J* = 8.0 Hz, 2H), 7.14 (d, *J* = 8.0 Hz, 2H), 7.08 (d, *J* = 8.0 Hz, 2H), 6.94 (d, *J* = 8.0 Hz, 2H), 3.68 (q, *J* = 6.8 Hz, 1H), 2.53 – 2.25 (m, 7H), 1.83-1.72 (m, 2H), 1.36 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 210.6, 140.1, 137.5, 136.8, 129.7, 129.6, 128.3, 127.7, 52.6, 39.7, 34.1, 25.1, 21.0, 17.4; HRMS (ESI-TOF) Calcd for C₁₉H₂₁CIONa [M+Na]⁺: 323.1173; Found 323.1179.

mmol), NiBr₂•DME (6.3 mg, 0.02 mmol), NHC (237.0 mg, 0.60 mmol), 1,4-dioxane (4 mL), 1-(4methylphenyl)ethanol (76.8 mg, 0.56 mmol), pyridine (44.3 mg, 0.56 mmol), valeric acid (41.3 mg, 0.4 mmol) and Boc₂O (114.0 mg, 0.52 mmol). After 20 h, The reaction mixture was quenched by water (10 mL) and extracted by ethyl acetate (15 mL) for 3 times. The combined organic layers were dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated in *vacuo* before it was purified by flash chromatography (PE/EA = 30/1) on silica gel to afford **11** (49.8 mg, 0.244 mmol, 61% yield) as a pale yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.16-7.06 (m, 4H), 3.71 (q, *J* = 7.2 Hz, 1H), 2.39 – 2.27 (m, 5H), 1.53-1.40 (m, 2H), 1.36 (d, *J* = 7.2 Hz, 3H), 1.24 – 1.13 (m, 2H), 0.81 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 211.3, 137.7, 136.6, 129.5, 127.7, 52.5, 40.6, 25.9, 22.2, 21.0, 17.5, 13.8.

5-methyl-2-(*p*-tolyl)hexan-3-one (**12**). Prepared according to the general procedure B employing Ir(ppy)₂(dtbbpy)PF₆ (3.8 mg, 0.004 mmol), dtbbpy (L₁) (8.3 mg, 0.03 mmol), K₂CO₃ (71.7 mg, 0.60 mmol), Cs₂CO₃ (196.0 mg,

0.60 mmol), NiBr₂•DME (6.5 mg, 0.02 mmol), NHC (236.7 mg, 0.60 mmol), 1,4-dioxane (4 mL), 1-(4-methylphenyl)ethanol (76.8 mg, 0.56 mmol), pyridine (44.3 mg, 0.56 mmol), 3methylbutanoic acid (41.0 mg, 0.4 mmol) and Boc₂O (113.9 mg, 0.52 mmol). After 20 h, The reaction mixture was quenched by water (10 mL) and extracted by ethyl acetate (15 mL) for 3 times. The combined organic layers were dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated in *vacuo* before it was purified by flash chromatography (PE/EA = 50/1) on silica gel to afford **12** (65.3 mg, 0.32 mmol, 80% yield) as a pale yellow oil. ¹H NMR (400 MHz, Chloroform*d*) δ 7.11 (q, *J* = 8.0 Hz, 4H), 3.68 (q, *J* = 6.8 Hz, 1H), 2.32 (s, 3H), 2.28 – 2.16 (m, 2H), 2.15 – 2.03 (m, 1H), 1.35 (d, *J* = 6.8 Hz, 3H), 0.84 (d, *J* = 6.8 Hz, 3H), 0.75 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 210.6, 137.5, 136.6, 129.5, 127.7, 52.8, 49.9, 24.3, 22.5, 22.2, 21.0, 17.4; HRMS (ESI-TOF) Calcd for C₁₄H₂₀ONa [M+Na]⁺: 227.1406; Found 227.1405.

Cs₂CO₃ (196.0 mg, 0.60 mmol), NiBr₂•DME (6.4 mg, 0.02 mmol), NHC (237.6 mg, 0.60 mmol), 1,4-dioxane (4 mL), 1-(4-methylphenyl)ethanol (76.8 mg, 0.56 mmol), pyridine (44.3 mg, 0.56 mmol), 3,3-dimethylbutyric acid (47.0 mg, 0.4 mmol) and Boc₂O (113.9 mg, 0.52 mmol). After 20 h, The reaction mixture was quenched by water (10 mL) and extracted by ethyl acetate (15 mL) for 3 times. The combined organic layers were dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated in *vacuo* before it was purified by flash chromatography (PE/EA = 50/1) on silica gel to afford **13** (78.6 mg, 0.36 mmol, 90% yield) as a yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.61 – 7.53 (m, 4H), 7.46 – 7.39 (m, 2H), 7.37 – 7.30 (m, 1H), 7.27 (d, *J* = 8.4 Hz, 2H), 3.76 (q, *J* = 6.8 Hz, 1H), 2.37 (d, *J* = 15.6 Hz, 1H), 2.22 (d, *J* = 15.6 Hz, 1H), 1.39 (d, *J* = 6.8 Hz, 3H), 0.97 (s, 9H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 210.3, 140.6, 139.9, 139.5, 128.7, 128.4, 127.5, 127.3, 127.0, 54.0, 53.4, 31.0, 29.6, 17.5; HRMS (ESI-TOF) Calcd for C₁₅H₂₂ONa [M+Na]⁺: 241.1563; Found 241.1559.

0.39 mmol), Cs₂CO₃ (147.1 mg, 0.45 mmol), NiBr₂•DME (4.8 mg, 0.015 mmol), NHC (177.2 mg, 0.45 mmol), 1,4-dioxane (3 mL), 1-(4-methylphenyl)ethanol (83.4 mg, 0.42 mmol), pyridine (33.3 mg, 0.42 mmol), 2-cyclopentylacetic acid (38.5 mg, 0.3 mmom) and Boc₂O (85.2 mg, 0.39 mmol). After 20 h, The reaction mixture was quenched by water (10 mL) and extracted by ethyl acetate (15 mL) for 3 times. The combined organic layers were dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated in *vacuo* before it was purified by flash chromatography (PE/EA = 45/1) on silica gel to afford **14** (47.3 mg, 0.162 mmol, 54% yield) as a yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.61 – 7.53 (m, 4H), 7.43 (t, *J* = 7.8 Hz, 2H), 7.37 – 7.31 (m, 1H), 7.28 (d, *J* = 8.4 Hz, 2H), 3.79 (q, *J* = 7.0 Hz, 1H), 2.48-2.34 (m, 2H), 2.29 – 2.14 (m, 1H), 1.86 – 1.66 (m, 2H), 1.56 – 1.45 (m, 4H), 1.41 (d, *J* = 7.2 Hz, 3H), 1.07 – 0.83 (m, 2H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 210.7, 140.6, 139.9, 139.7, 128.8, 128.3, 127.5, 127.3, 127.0, 52.7, 47.4, 35.5, 32.6, 32.3, 24.9,

24.8, 17.5; HRMS (ESI-TOF) Calcd for C₂₁H₂₄ONa [M+Na]⁺: 315.1719; Found 315.1721.

8-chloro-2-(*p*-tolyl)octan-3-one (**15**). Prepared according to the general procedure B employing Ir(ppy)₂(dtbbpy)PF₆ (3.8 mg, 0.004 mmol), dtbbpy (L₁) (8.3 mg, 0.03 mmol), K₂CO₃ (72.0 mg,

0.60 mmol), Cs₂CO₃ (196.0 mg, 0.60 mmol), NiBr₂•DME (6.5 mg, 0.02 mmol), NHC (237.6 mg, 0.60 mmol), 1,4-dioxane (4 mL), 1-(4-methylphenyl)ethanol (76.7 mg, 0.56 mmol), pyridine (44.3 mg, 0.56 mmol), 6-chlorohexanoic acid (60.5 mg, 0.4 mmol) and Boc₂O (114.0 mg, 0.52 mmol). After 20 h, The reaction mixture was quenched by water (10 mL) and extracted by ethyl acetate (15 mL) for 3 times. The combined organic layers were dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated in *vacuo* before it was purified by flash chromatography (PE/EA = 50/1 to 30/1) on silica gel to afford **15** (64.6 mg, 0.256 mmol, 64% yield) as a colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.17 – 7.05 (m, 4H), 3.70 (q, *J* = 6.8 Hz, 1H), 3.45 (t, *J* = 6.8 Hz, 2H), 2.45-2.27 (m, 5H), 1.72-1.61 (m, 2H), 1.56 – 1.45 (m, 2H), 1.36 (d, *J* = 6.8 Hz, 3H), 1.34 – 1.26 (m, 2H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 210.8, 137.6, 136.8, 129.6, 127.7, 52.6, 44.8, 40.5, 32.3, 26.2, 23.0, 21.0, 17.4; HRMS (ESI-TOF) Calcd for C₁₅H₂₁ClONa [M+Na]⁺: 275.1173; Found 275.1185.

ethyl 6-oxo-7-(*p*-tolyl)octanoate (**16**). Prepared according to the general procedure A employing $Ir(ppy)_2(dtbbpy)PF_6$ (2.9 mg, 0.003 mmol), dtbbpy (L₁) (6.3 mg, 0.0225 mmol), K₂CO₃ (53.9

mg, 0.39 mmol), Cs₂CO₃ (147.0 mg, 0.45 mmol), NiBr₂•DME (4.8 mg, 0.015 mmol), NHC (177.4 mg, 0.45 mmol), 1,4-dioxane (3 mL), 1-(4-methylphenyl)ethanol (57.8 mg, 0.42 mmol), pyridine (33.3 mg, 0.42 mmol), 6-ethoxy-6-oxohexanoic acid (52.4 mg, 0.3 mmom) and Boc₂O (85.2 mg, 0.39 mmol). After 20 h, The reaction mixture was quenched by water (10 mL) and extracted by ethyl acetate (15 mL) for 3 times. The combined organic layers were dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated in *vacuo* before it was purified by flash chromatography (PE/EA = 25/1) on silica gel to afford **16** (67.0 mg, 0.243 mmol, 81% yield) as a colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.16 – 7.04 (m, 4H), 4.09 (q, *J* = 7.1 Hz, 2H), 3.70 (q, *J* = 7.0 Hz, 1H), 2.41 – 2.28 (m, 5H), 2.24 – 2.15 (m, 2H), 1.58 – 1.44 (m, 4H), 1.36 (d, *J* = 7.2 Hz, 3H),

1.23 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 210.5, 173.3, 137.5, 136.7, 129.5, 127.6, 60.1, 52.5, 40.3, 33.9, 24.2, 23.2, 20.9, 17.3, 14.1; HRMS (ESI-TOF) Calcd for C₁₇H₂₄O₃Na [M+Na]⁺: 299.1618; Found 299.1627.

((1s,4s)-4-(2-oxo-3-(p*tert*-butyl tolyl)butyl)cyclohexyl)carbamate (17). Prepared according to the Мe general procedure B employing Ir(ppy)₂(dtbbpy)PF₆ (3.8 mg, 17 0.004 mmol), dtbbpy (L₁) (8.3 mg, 0.03 mmol), K₂CO₃ (72.0 mg, 0.60 mmol), Cs₂CO₃ (196.0 mg, 0.60 mmol), NiBr₂•DME (6.5 mg, 0.02 mmol), NHC (237.6 mg, 0.60 mmol), 1,4-dioxane (4 mL), 1-(4-methylphenyl)ethanol (76.3 mg, 0.56 mmol), pyridine (44.3 mg, 0.56 mmol), 2-(cis-4-((tertbutoxycarbonyl)amino)cyclohexyl)acetic acid (102.8 mg, 0.4 mmol) and Boc₂O (114.0 mg, 0.52 mmol). After 20 h, The reaction mixture was quenched by water (10 mL) and extracted by ethyl acetate (15 mL) for 3 times. The combined organic layers were dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated in *vacuo* before it was purified by flash chromatography (PE/EA = 50/1 to 30/1) on silica gel to afford 17 (103.5 mg, 0.288 mmol, 72% yield) as a yellow oil. The dr could not be determined through ¹H NMR analysis. ¹H NMR (400 MHz, Chloroform-d) δ 7.13 (d, J = 8.0 Hz, 2H), 7.07 (d, J = 8.0 Hz, 2H), 4.59 (s, 1H), 3.67 (q, J = 6.8 Hz, 2H), 2.33 (s, 3H), 2.29 - 2.24 (m, 2H), 1.99 - 1.83 (m, 1H), 1.61 - 1.38 (m, 17H), 1.35 (d, J = 6.8 Hz, 3H); ${}^{13}C$ NMR (101 MHz, Chloroform-*d*) δ 210.0, 155.0, 137.3, 136.7, 129.5, 127.6, 78.9, 52.9, 46.5, 31.4, 29.5, 28.3, 27.6, 20.9, 17.2; HRMS (ESI-TOF) Calcd for C₂₂H₃₃NO₃Na [M+Na]⁺: 382.2353; Found 382.2359.

BocHN

tert-butyl (7-oxo-8-(*p*-tolyl)nonyl)carbamate (18). Prepared according to the general procedure B employing Ir(ppy)₂(dtbbpy)PF₆ (3.8 mg, 0.004 mmol),

dtbbpy (L₁) (8.3 mg, 0.03 mmol), K₂CO₃ (72.0 mg, 0.60 mmol), Cs₂CO₃ (196.0 mg, 0.60 mmol), NiBr2•DME (6.5 mg, 0.02 mmol), NHC (237.5 mg, 0.60 mmol), 1,4-dioxane (4 mL), 1-(4methylphenyl)ethanol (76.3 mg, 0.56 mmol), pyridine (44.3 mg, 0.56 mmol), 7-((tertbutoxycarbonyl)amino) heptanoic acid (98.1 mg, 0.4 mmol) and Boc₂O (114.1 mg, 0.52 mmol). After 20 h, The reaction mixture was quenched by water (10 mL) and extracted by ethyl acetate (15 mL) for 3 times. The combined organic layers were dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated in *vacuo* before it was purified by flash chromatography (PE/EA = 10/1) on silica gel to afford **18** (86.1 mg, 0.248 mmol, 62% yield) as a colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.07 (d, *J* = 8.8 Hz, 2H), 7.03 (d, *J* = 8.0 Hz, 2H), 6.95 (d, *J* = 8.0 Hz, 2H), 6.82 (d, *J* = 8.4 Hz, 2H), 3.78 (s, 3H), 3.64 (q, *J* = 6.8 Hz, 1H), 2.85 – 2.55 (m, 4H), 2.28 (s, 3H), 1.34 (d, *J* = 7.2 Hz, 3H).; ¹³C NMR (101 MHz, Chloroform-*d*) δ 210.3, 158.6, 138.0, 135.4, 132.5, 129.0, 128.8, 128.1, 114.2, 55.2, 52.2, 42.6, 29.5, 20.9, 17.3; HRMS (ESI-TOF) Calcd for C₂₁H₃₃NO₃Na [M+Na]⁺: 370.2353; Found 370.2360.

1-(4-acetylphenyl)-4-(p-tolyl)pentan-3-one (**19**). *tert*-butyl (7oxo-8-(p-tolyl)nonyl)carbamate (**18**). Prepared according to the general procedure B employing Ir(ppy)₂(dtbbpy)PF₆ (3.7 mg, 0.004 mmol), dtbbpy (L₁) (8.3 mg, 0.03 mmol), K₂CO₃ (71.5 mg,

0.60 mmol), Cs₂CO₃ (196.0 mg, 0.60 mmol), NiBr₂•DME (6.5 mg, 0.02 mmol), NHC (236.9 mg, 0.60 mmol), 1,4-dioxane (4 mL), 1-(4-methylphenyl)ethanol (76.3 mg, 0.56 mmol), pyridine (44.3 mg, 0.56 mmol), 3-(4-acetylphenyl)propanoic acid (77.0 mg, 0.4 mmol) and Boc₂O (113.5 mg, 0.52 mmol). After 20 h, The reaction mixture was quenched by water (10 mL) and extracted by ethyl acetate (15 mL) for 3 times. The combined organic layers were dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated in *vacuo* before it was purified by flash chromatography (PE/EA = 15/1) on silica gel to afford **19** (68.2 mg, 0.232 mmol, 58% yield) as a yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.80 (d, *J* = 8.0 Hz, 2H), 7.13 (d, *J* = 8.0 Hz, 2H), 7.09 (d, *J* = 8.0 Hz, 2H), 7.02 (d, *J* = 8.0 Hz, 2H), 3.67 (q, *J* = 6.8 Hz, 1H), 2.93 – 2.78 (m, 2H), 2.77 – 2.60 (m, 2H), 2.55 (s, 3H), 2.31 (s, 3H), 1.35 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 209.3, 197.6, 146.8, 137.1, 136.8, 135.0, 129.5, 128.42, 128.40, 127.6, 52.7, 41.6, 29.7, 26.4, 20.9, 17.2; HRMS (ESI-TOF) Calcd for C₂₀H₂₂O₂Na [M+Na]⁺: 317.1512; Found 317.1519.

5-methyl-2-(p-tolyl)hex-4-en-3-one (20). Prepared according to the general procedure B employing Ir(ppy)₂(dtbbpy)PF₆ (3.8 mg, 0.004 mmol), dtbbpy
 (L₁) (8.2 mg, 0.03 mmol), K₂CO₃ (71.5 mg, 0.60 mmol), Cs₂CO₃ (195.9 mg,

0.60 mmol), NiBr₂•DME (6.5 mg, 0.02 mmol), NHC (237.3 mg, 0.60 mmol), 1,4-dioxane (4 mL), 1-(4-methylphenyl)ethanol (76.7 mg, 0.56 mmol), pyridine (44.3 mg, 0.56 mmol), 3-methylbut-2-enoic acid (40.0 mg, 0.4 mmol) and Boc₂O (113.4 mg, 0.52 mmol). After 20 h, The reaction mixture was quenched by water (10 mL) and extracted by ethyl acetate (15 mL) for 3 times. The combined organic layers were dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated in *vacuo* before it was purified by flash chromatography (PE/EA = 50/1) on silica gel to afford **20** (66.3 mg, 0.328 mmol, 82% yield) as a yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.17 – 7.07 (m, 4H), 5.99 (s, 1H), 3.70 (q, *J* = 6.8 Hz, 1H), 2.32 (s, 3H), 2.14 (s, 3H), 1.79 (s, 3H), 1.37 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 200.5, 156.0, 138.2, 136.4, 129.5, 127.8, 123.0, 53.1, 27.7, 21.0, 20.8, 17.6; HRMS (ESI-TOF) Calcd for C₁₄H₁₈O Na [M+Na]⁺: 225.1250; Found 225.1254.

Ir(ppy)₂(dtbbpy)PF₆ (3.9 mg, 0.004 mmol), dtbbpy (L₁) (8.3 mg, 0.03 mmol), K₂CO₃ (71.7 mg, 0.60 mmol), Cs₂CO₃ (195.8 mg, 0.60 mmol), NiBr₂•DME (6.5 mg, 0.02 mmol), NHC (238.0 mg, 0.60 mmol), 1,4-dioxane (4 mL), 1-(4-methylphenyl)ethanol (76.6 mg, 0.56 mmol), pyridine (44.3 mg, 0.56 mmol), (9Z)-9-Octadecenoicacid (113.1 mg, 0.4 mmol) and Boc₂O (113.8 mg, 0.52 mmol). After 20 h, The reaction mixture was quenched by water (10 mL) and extracted by ethyl acetate (15 mL) for 3 times. The combined organic layers were dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated in *vacuo* before it was purified by flash chromatography (PE/EA = 40/1) on silica gel to afford **21** (115.0 mg, 0.299 mmol, 75% yield) as a colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.12 (d, *J* = 8.0 Hz, 2H), 7.09 (d, *J* = 8.0 Hz, 2H), 5.39 – 5.26 (m, 2H), 3.70 (q, *J* = 7.0 Hz, 1H), 2.41 – 2.24 (m, 5H), 2.08 – 1.88 (m, 4H), 1.55-1.41 (m, 2H), 1.40 – 1.06 (m, 23H), 0.88 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 211.0, 137.7, 136.6, 129.8, 129.7, 129.5, 127.6, 52.5, 40.8, 31.8, 29.7, 29.6, 29.5, 29.3, 29.2, 29.0, 28.9, 27.14, 27.10, 23.8, 22.6, 20.9,

1-(1-benzyl-1H-indol-3-yl)-4-(p-tolyl)pentan-3-one(22).Prepared according to the general procedure B employing $Ir(ppy)_2(dtbbpy)PF_6$ (3.8 mg, 0.004 mmol), dtbbpy (L1) (8.4 mg,0.03 mmol), K_2CO_3 (71.8 mg, 0.60 mmol), Cs2CO_3 (195.0 mg,

0.60 mmol), NiBr₂•DME (6.5 mg, 0.02 mmol), NHC (238.1 mg, 0.60 mmol), 1,4-dioxane (4 mL), 1-(4-methylphenyl)ethanol (76.6 mg, 0.56 mmol), pyridine (44.3 mg, 0.56 mmol), corresponding carboxylic acid (111.5 mg, 0.4 mmol) and Boc₂O (113.7 mg, 0.52 mmol). After 20 h, The reaction mixture was quenched by water (10 mL) and extracted by ethyl acetate (15 mL) for 3 times. The combined organic layers were dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated in *vacuo* before it was purified by flash chromatography (PE/EA = 30/1 to 20/1) on silica gel to afford **22** (57.0 mg, 0.150 mmol, 37% yield) as a colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.43 (d, *J* = 7.6 Hz, 1H), 7.29 – 7.16 (m, 4H), 7.12 (t, *J* = 7.6 Hz, 1H), 7.09 – 6.97 (m, 7H), 6.73 (s, 1H), 5.18 (s, 2H), 3.65 (q, *J* = 6.8 Hz, 1H), 3.05 – 2.84 (m, 2H), 2.83-2.65 (m, 2H), 2.29 (s, 3H), 1.33 (d, *J* = 7.2 Hz, 2H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 210.7, 137.6, 137.5, 136.7, 136.5, 129.5, 128.6, 127.8, 127.7, 127.4, 126.6, 125.5, 121.6, 118.9, 118.8, 114.4, 109.6, 52.7, 49.7, 41.4, 21.0, 19.5, 17.3; HRMS (ESI-TOF) Calcd for C₂₇H₂₇NONa [M+Na]⁺: 404.1985; Found 404.1993.

0.0225 mmol), K₂CO₃ (53.4 mg, 0.39 mmol), Cs₂CO₃ (146.6 mg, 0.45 mmol), NiBr₂•DME (4.7 mg, 0.015 mmol), NHC (177.5 mg, 0.45 mmol), 1,4-dioxane (3 mL), 4-biphenylmethanol (78.5 mg, 0.42 mmol), pyridine (33.3 mg, 0.42 mmol), 3-(4-methylphenyl)propionic acid (49.3 mg, 0.3 mmom) and Boc₂O (85.2 mg, 0.39 mmol). After 20 h, The reaction mixture was quenched by water (10 mL) and extracted by ethyl acetate (15 mL) for 3 times. The combined organic layers were dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated in *vacuo* before it was purified by

flash chromatography (PE/EA = 45/1) on silica gel to afford **28** (61.9 mg, 0.197 mmol, 62% yield) as a white solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.57 (d, *J* = 7.2 Hz, 2H), 7.53 (d, *J* = 7.6 Hz, 2H), 7.43 (t, *J* = 7.6 Hz, 3H), 7.26 – 7.19 (m, 2H), 7.10-6.98 (m, 4H), 3.69 (s, 2H), 2.90 – 2.73 (m, 4H), 2.30 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 207.5, 140.8, 140.0, 137.8, 135.6, 133.1, 129.8, 129.2, 128.8, 128.2, 127.5, 127.3, 127.1, 50.0, 43.8, 29.4, 21.0; HRMS (ESI-TOF) Calcd for C₂₃H₂₂ONa [M+Na]⁺: 337.1563; Found 337.1572.

1-phenyl-5-(*p*-tolyl)pentan-3-one (**29**). Prepared according to the general procedure A employing $Ir(ppy)_2(dtbbpy)PF_6$ (2.8 mg, 0.003 mmol), dtbbpy (L₁) (6.1 mg, 0.0225 mmol), K₂CO₃ (53.4 mg, 0.39

mmol), Cs₂CO₃ (146.6 mg, 0.45 mmol), NiBr₂•DME (4.7 mg, 0.015 mmol), NHC (177.5 mg, 0.45 mmol), 1,4-dioxane (3 mL), Phenethyl alcohol (51.1 mg, 0.42 mmol), pyridine (33.3 mg, 0.42 mmol), 3-(4-methylphenyl)propionic acid (50.0 mg, 0.3 mmom) and Boc₂O (85.1 mg, 0.39 mmol). After 20 h, The reaction mixture was quenched by water (10 mL) and extracted by ethyl acetate (15 mL) for 3 times. The combined organic layers were dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated in *vacuo* before it was purified by flash chromatography (PE/EA = 45/1) on silica gel to afford **29** (37.8 mg, 0.20 mmol, 50% yield) as a colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.26 (d, *J* = 7.8 Hz, 2H), 7.19 (d, *J* = 6.4 Hz, 1H), 7.15 (d, *J* = 8.0 Hz, 2H), 7.10-7.01 (m, 4H), 2.92-2.80 (m, 4H), 2.74-2.64 (m, 4H), 2.31 (s, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 209.2, 141.0, 137.9, 135.6, 129.1, 128.5, 128.3, 128.1, 126.1, 44.6, 44.5, 29.7, 29.3, 21.0; HRMS (ESI-TOF) Calcd for C₁₈H₂₀ONa [M+Na]⁺: 275.1406; Found 275.1415.

6-phenyl-1-(*p*-tolyl)hexan-3-one (**30**).⁵ Prepared according to the general procedure A employing $Ir(ppy)_2(dtbbpy)PF_6$ (2.8 mg, 0.003 mmol), dtbbpy (L₁) (6.1 mg, 0.0225 mmol), K₂CO₃ (53.4 mg, 0.39

mmol), Cs₂CO₃ (146.6 mg, 0.45 mmol), NiBr₂•DME (4.7 mg, 0.015 mmol), NHC (177.5 mg, 0.45 mmol), 1,4-dioxane (3 mL), 3-phenyl-1-propanol (56.9 mg, 0.42 mmol), pyridine (33.3 mg, 0.42 mmol), 3-(4-methylphenyl)propionic acid (50.0 mg, 0.3 mmom) and Boc₂O (85.3 mg, 0.39 mmol). After 20 h, The reaction mixture was quenched by water (10 mL) and extracted by ethyl acetate (15

mL) for 3 times. The combined organic layers were dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated in *vacuo* before it was purified by flash chromatography (PE/EA = 45/1) on silica gel to afford **30** (43.95 mg, 0.165 mmol, 55% yield) as a colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.30 – 7.24 (m, 2H), 7.19 (d, *J* = 7.2 Hz, 1H), 7.14 (dd, *J* = 7.2, 6.8 Hz, 2H), 7.11 – 7.02 (m, 4H), 2.83 (t, *J* = 7.6 Hz, 2H), 2.71 – 2.64 (m, 2H), 2.62 – 2.55 (m, 2H), 2.41-2.34 (m, 2H), 2.30 (s, 3H), 1.95 – 1.83 (m, 2H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 210.0, 141.6, 138.0, 135.5, 129.1, 128.4, 128.3, 128.1, 125.9, 44.4, 42.1, 35.0, 29.3, 25.1, 21.0.

tert-butyl (4-(3-oxo-5-(p-tolyl)pentyl)phenyl)carbamate (**31**). Prepared according to the general procedure B employing Ir(ppy)₂(dtbbpy)PF₆ (3.8 mg, 0.004 mmol),

dtbbpy (L₁) (8.4 mg, 0.03 mmol), K₂CO₃ (71.8 mg, 0.60 mmol), Cs₂CO₃ (195.0 mg, 0.60 mmol), NiBr₂•DME (6.5 mg, 0.02 mmol), NHC (237.4 mg, 0.60 mmol), 1,4-dioxane (4 mL), *N*-Boc-2-(4-aminophenyl)ethanol (131.2 mg, 0.56 mmol), pyridine (44.3 mg, 0.56 mmol), 3-(4-methylphenyl)propionic acid (66.0 mg, 0.4 mmol) and Boc₂O (113.6 mg, 0.52 mmol). After 20 h, The reaction mixture was quenched by water (10 mL) and extracted by ethyl acetate (15 mL) for 3 times. The combined organic layers were dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated in *vacuo* before it was purified by flash chromatography (PE/EA = 10/1 to 5/1) on silica gel to afford **31** (58.8 mg, 0.160 mmol, 40% yield) as a colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.25 (d, *J* = 8.4 Hz, 2H), 7.11-7.00 (m, 6H), 6.49 (s, 1H), 2.87-2.77 (m, 4H), 2.71-2.61 (m, 4H), 2.30 (s, 3H), 1.51 (s, 9H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 209.3, 152.8, 137.8, 136.4, 135.6, 135.5, 129.1, 128.7, 128.1, 118.7, 80.3, 44.6, 44.5, 29.2, 29.0, 28.3, 20.9; HRMS (ESI-TOF) Calcd for C₂₃H₂₉NO₃ONa [M+Na]⁺: 390.2040; Found 390.2046.

1-(*p*-tolyl)oct-7-en-3-one (**32**). Prepared according to the general procedure B employing Ir(ppy)₂(dtbbpy)PF₆ (3.8 mg, 0.004 mmol), dtbbpy (L₁) (8.1 mg, 0.03 mmol), K₂CO₃ (69.7 mg, 0.60 mmol),

Cs₂CO₃ (195.0 mg, 0.60 mmol), NiBr₂•DME (6.5 mg, 0.02 mmol), NHC (238.1 mg, 0.60 mmol), 1,4-dioxane (4 mL), 4-penten-1-ol (47.6 mg, 0.56 mmol), pyridine (44.3 mg, 0.56 mmol), 3-(4-

methylphenyl)propionic acid (65.8 mg, 0.4 mmol) and Boc₂O (114.0 mg, 0.52 mmol). After 20 h, The reaction mixture was quenched by water (10 mL) and extracted by ethyl acetate (15 mL) for 3 times. The combined organic layers were dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated in *vacuo* before it was purified by flash chromatography (PE/EA =50/1 to 40/1) on silica gel to afford **32** (38.9 mg, 0.180 mmol, 45% yield) as a colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.12 – 7.02 (m, 4H), 5.81 – 5.67 (m, 1H), 5.05 – 4.91 (m, 2H), 2.85 (t, *J* = 7.6 Hz, 2H), 2.70 (t, *J* = 7.6 Hz, 2H), 2.38 (t, *J* = 7.6 Hz, 2H), 2.31 (s, 3H), 2.03 (q, *J* = 7.2 Hz, 2H), 1.71 – 1.62 (m, 2H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 210.1, 138.0, 137.9, 135.5, 129.1, 128.1, 115.2, 44.5, 42.1, 33.0, 29.3, 22.7, 20.9; HRMS (ESI-TOF) Calcd for C₁₅H₂₀ONa [M+Na]⁺: 239.1406; Found 239.1406.

1-cyclobutyl-3-(p-tolyl)propan-1-one (**33**). Prepared according to the general procedure B employing Ir(ppy)₂(dtbbpy)PF₆ (3.6 mg, 0.004 mmol), dtbbpy (L₁) (8.4 mg, 0.03 mmol), K₂CO₃ (71.8 mg, 0.60 mmol), Cs₂CO₃

(195.0 mg, 0.60 mmol), NiBr₂•DME (6.5 mg, 0.02 mmol), NHC (237.3 mg, 0.60 mmol), 1,4dioxane (4 mL), cyclobutanol (39.3 mg, 0.56 mmol), pyridine (44.3 mg, 0.56 mmol), 3-(4methylphenyl)propionic acid (66.5 mg, 0.4 mmol) and Boc₂O (113.7 mg, 0.52 mmol). After 20 h, The reaction mixture was quenched by water (10 mL) and extracted by ethyl acetate (15 mL) for 3 times. The combined organic layers were dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated in *vacuo* before it was purified by flash chromatography (PE/EA = 45/1) on silica gel to afford **33** (32.3 mg, 0.160 mmol, 40% yield) as a colorless oil. ¹H NMR (400 MHz, Chloroform*d*) δ 7.10 – 7.03 (m, 4H), 3.22 (p, *J* = 8.0 Hz, 1H), 2.85 (t, *J* = 7.6 Hz, 2H), 2.65 (t, *J* = 7.6 Hz, 2H), 2.31 (s, 3H), 2.25 – 2.04 (m, 4H), 2.01 – 1.88 (m, 1H), 1.84 – 1.73 (m, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 211.1, 138.2, 135.5, 129.1, 128.1, 45.4, 41.7, 29.2, 24.2, 20.9, 17.7; HRMS (ESI-TOF) Calcd for C₁₄H₁₈ONa [M+Na]⁺: 225.1250; Found 225.1253.

Cs₂CO₃ (195.0 mg, 0.60 mmol), NiBr₂•DME (6.5 mg, 0.02 mmol), NHC (237.3 mg, 0.60 mmol), 1,4-dioxane (4 mL), cyclopentanol (48.3 mg, 0.56 mmol), pyridine (44.3 mg, 0.56 mmol), 3-(4-methylphenyl)propionic acid (65.1 mg, 0.4 mmol) and Boc₂O (113.5 mg, 0.52 mmol). After 20 h, The reaction mixture was quenched by water (10 mL) and extracted by ethyl acetate (15 mL) for 3 times. The combined organic layers were dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated in *vacuo* before it was purified by flash chromatography (PE/EA = 60/1) on silica gel to afford **34** (44.1 mg, 0.204 mmol, 51% yield) as a colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.08 (s, 4H), 2.89 – 2.80 (m, 3H), 2.78 – 2.71 (m, 2H), 2.31 (s, 3H), 1.83 – 1.52 (m, 8H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 212.4, 138.3, 135.4, 129.1, 128.2, 51.5, 43.5, 29.4, 28.8, 25.9, 21.0; HRMS (ESI-TOF) Calcd for C₁₅H₂₀OONa [M+Na]⁺: 239.1406; Found 239.1409.

1-cyclohexyl-3-(*p*-tolyl)propan-1-one (**35**). Prepared according to the general procedure A employing Ir(ppy)₂(dtbbpy)PF₆ (2.8 mg, 0.003 mmol), dtbbpy (L₁) (6.1 mg, 0.0225 mmol), K₂CO₃ (53.4 mg, 0.39 mmol),

Cs₂CO₃ (146.6 mg, 0.45 mmol), NiBr₂•DME (4.7 mg, 0.015 mmol), NHC (177.3 mg, 0.45 mmol), 1,4-dioxane (3 mL), cyclohexanol (42.2 mg, 0.42 mmol), pyridine (33.3 mg, 0.42 mmol), 3-(4-methylphenyl)propionic acid (49.5 mg, 0.3 mmom) and Boc₂O (85.1 mg, 0.39 mmol). After 20 h, The reaction mixture was quenched by water (10 mL) and extracted by ethyl acetate (15 mL) for 3 times. The combined organic layers were dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated in *vacuo* before it was purified by flash chromatography (PE/EA = 50/1) on silica gel to afford **35** (42.1 mg, 0.183 mmol, 61% yield) as a colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.10-7.03 (m, 4H), 2.87 – 2.79 (m, 2H), 2.77 – 2.63 (m, 2H), 2.36-2.24 (m, 4H), 1.89 – 1.72 (m, 4H), 1.67 – 1.62 (m, 1H), 1.38 – 1.16 (m, 5H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 213.2, 138.3, 135.4, 129.1, 128.1, 50.9, 42.3, 29.3, 28.4, 25.8, 25.6, 20.9; HRMS (ESI-TOF) Calcd for C₁₆H₂₂ONa [M+Na]⁺: 253.1563; Found 253.1570.

1-cycloheptyl-3-(p-tolyl)propan-1-one (**36**). Prepared according to the general procedure B employing Ir(ppy)₂(dtbbpy)PF₆ (3.6 mg, 0.004 mmol), dtbbpy (L₁) (8.4 mg, 0.03 mmol), K₂CO₃ (71.8 mg, 0.60 mmol),

 Cs_2CO_3 (195.0 mg, 0.60 mmol), NiBr₂•DME (6.5 mg, 0.02 mmol), NHC (237.3 mg, 0.60 mmol), 1,4-dioxane (4 mL), cycloheptanol (65.3 mg, 0.56 mmol), pyridine (44.3 mg, 0.56 mmol), 3-(4-methylphenyl)propionic acid (65.5 mg, 0.4 mmol) and Boc₂O (113.3 mg, 0.52 mmol). After 20 h, The reaction mixture was quenched by water (10 mL) and extracted by ethyl acetate (15 mL) for 3 times. The combined organic layers were dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated in *vacuo* before it was purified by flash chromatography (PE/EA = 60/1) on silica gel to afford **36** (48.8 mg, 0.20 mmol, 50% yield) as a colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.07 (s, 4H), 2.87 – 2.80 (m, 2H), 2.76 – 2.69 (m, 2H), 2.53-2.43 (m, 1H), 2.31 (s, 3H), 1.84 – 1.65 (m, 5H), 1.57 – 1.37 (m, 7H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 213.5, 138.3, 135.4, 129.1, 128.1, 52.4, 42.5, 29.7, 29.4, 28.2, 26.6, 20.9; HRMS (ESI-TOF) Calcd for C₁₇H₂₄ONa [M+Na]⁺: 267.1719; Found 267.1724.

mmol), K₂CO₃ (71.8 mg, 0.60 mmol), Cs₂CO₃ (195.0 mg, 0.60 mmol), NiBr₂•DME (6.3 mg, 0.02 mmol), NHC (237.4 mg, 0.60 mmol), 1,4-dioxane (4 mL), 2-Adamantanol (85.3 mg, 0.56 mmol), pyridine (44.3 mg, 0.56 mmol), 3-(4-methylphenyl)propionic acid (65.7 mg, 0.4 mmol) and Boc₂O (113.3 mg, 0.52 mmol). After 20 h, The reaction mixture was quenched by water (10 mL) and extracted by ethyl acetate (15 mL) for 3 times. The combined organic layers were dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated in *vacuo* before it was purified by flash chromatography (PE/EA = 50/1) on silica gel to afford **37** (45.2 mg, 0.16 mmol, 40% yield) as a colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.08 (s, 1H), 2.86 (t, *J* = 7.6 Hz, 1H), 2.73 (t, *J* = 7.6 Hz, 1H), 2.46 (s, 0H), 2.35 (s, 1H), 2.31 (s, 1H), 1.94 – 1.67 (m, 3H), 1.60 (s, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 212.0, 138.4, 135.4, 129.1, 128.2, 57.2, 41.6, 38.4, 37.2, 33.3, 29.4, 29.1, 27.6, 27.5, 21.0; HRMS (ESI-TOF) Calcd for C₂₀H₂₆ONa [M+Na]⁺: 305.1876; Found 305.1880.

1-(2,3-dihydro-1H-inden-1-yl)-3-(p-tolyl) propan-1-one (38). Prepared according to the general procedure B employing $Ir(ppy)_2(dtbbpy)PF_6$ (3.8 mg, 0.004 mmol), dtbbpy (L₁) (8.4 mg, 0.03

mmol), K₂CO₃ (71.8 mg, 0.60 mmol), Cs₂CO₃ (195.0 mg, 0.60 mmol), NiBr₂•DME (6.3 mg, 0.02 mmol), NHC (237.3 mg, 0.60 mmol), 1,4-dioxane (4 mL), 1-indanol (75.3 mg, 0.56 mmol), pyridine (44.3 mg, 0.56 mmol), 3-(4-methylphenyl)propionic acid (65.7 mg, 0.4 mmol) and Boc₂O (113.5 mg, 0.52 mmol). After 20 h, The reaction mixture was quenched by water (10 mL) and extracted by ethyl acetate (15 mL) for 3 times. The combined organic layers were dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated in *vacuo* before it was purified by flash chromatography (PE/EA = 50/1) on silica gel to afford **38** (45.4 mg, 0.172 mmol, 43% yield) as a colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.25 – 7.11 (m, 4H), 7.07 (d, *J* = 8.0 Hz, 2H), 7.04 (d, *J* = 8.0 Hz, 2H), 4.07 (t, *J* = 7.2 Hz, 1H), 3.11-3.00 (m, 1H), 2.97 – 2.72 (m, 5H), 2.33 – 2.24 (m, 5H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 209.9, 144.6, 140.8, 138.0, 135.5, 129.1, 128.2, 127.5, 126.4, 124.9, 124.7, 58.3, 42.2, 31.9, 29.4, 28.5, 21.0; HRMS (ESI-TOF) Calcd for C₁₉H₂₀ONa [M+Na]⁺: 287.1406; Found 287.1415.

2-([1,1'-biphenyl]-4-yl)-5,5-dimethylhexan-3-one (**39**). Prepared according to the general procedure A employing Ir(ppy)₂(dtbbpy)PF₆ (2.8 mg, 0.003 mmol), dtbbpy (L₁) (6.1 mg, 0.0225 mmol), K₂CO₃ (53.4 mg, 0.39 mmol),

Cs₂CO₃ (146.6 mg, 0.45 mmol), NiBr₂•DME (4.7 mg, 0.015 mmol), NHC (177.8 mg, 0.45 mmol), 1,4-dioxane (3 mL), 1-(4-biphenylyl) ethanol (83.3 mg, 0.42 mmol), pyridine (33.3 mg, 0.42 mmol), *t*ert-butyl acetic acid (35.1 mg, 0.3 mmom) and Boc₂O (85.1 mg, 0.39 mmol). After 20 h, The reaction mixture was quenched by water (10 mL) and extracted by ethyl acetate (15 mL) for 3 times. The combined organic layers were dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated in *vacuo* before it was purified by flash chromatography (PE/EA = 50/1) on silica gel to afford **39** (39.5 mg, 0.141 mmol, 47% yield) as a colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.61 – 7.53 (m, 4H), 7.46 – 7.39 (m, 2H), 7.37 – 7.30 (m, 1H), 7.27 (d, *J* = 8.4 Hz, 2H), 3.76 (q, *J* = 6.8 Hz, 1H), 2.37 (d, *J* = 15.6 Hz, 1H), 2.22 (d, *J* = 15.6 Hz, 1H), 1.39 (d, *J* = 6.8 Hz, 3H), 0.97 (s, 9H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 210.3, 140.6, 139.9, 139.5, 128.7, 128.4, 127.5,

127.3, 127.0, 54.0, 53.4, 31.0, 29.6, 17.5; HRMS (ESI-TOF) Calcd for C₂₀H₂₄ONa [M+Na]⁺: 303.1719; Found 303.1724.

Me 4-phenyl-1-(*p*-tolyl)hexan-3-one (**40**). Prepared according to the general procedure B employing Ir(ppy)₂(dtbbpy)PF₆ (3.8 mg, 0.004 mmol), dtbbpy (L₁) (8.4 mg, 0.03 mmol), K₂CO₃ (71.8 mg, 0.60 mmol),

Cs₂CO₃ (195.0 mg, 0.60 mmol), NiBr₂•DME (6.3 mg, 0.02 mmol), NHC (236.9 mg, 0.60 mmol), 1,4-dioxane (4 mL), 1-Phenyl-1-propanol (76.3 mg, 0.56 mmol), pyridine (44.3 mg, 0.56 mmol), 3- (4-methylphenyl)propionic acid (65.8 mg, 0.4 mmol) and Boc₂O (113.5 mg, 0.52 mmol). After 20 h, The reaction mixture was quenched by water (10 mL) and extracted by ethyl acetate (15 mL) for 3 times. The combined organic layers were dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated in *vacuo* before it was purified by flash chromatography (PE/EA = 50/1) on silica gel to afford **40** (67.2 mg, 0.24 mmol, 60% yield) as a colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.32-7.20 (m, 3H), 7.15 (d, *J* = 7.2 Hz, 2H), 7.02 (d, *J* = 8.0 Hz, 2H), 6.94 (d, *J* = 7.6 Hz, 2H), 3.47 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 209.7, 138.7, 137.8, 135.3, 129.0, 128.7, 128.2, 128.0, 127.1, 60.9, 43.5, 29.3, 25.0, 20.9, 12.0; HRMS (ESI-TOF) Calcd for C₂₀H₂₄ONa [M+Na]⁺: 303.1719; Found 303.1714.

4-(4-methoxyphenyl)-1-(p-tolyl)pentan-3-one (**41**). Prepared according to the general procedure A employing Ir(ppy)₂(dtbbpy)PF₆ (2.8 mg, 0.003 mmol), dtbbpy (L₁) (6.1 mg,

0.0225 mmol, K₂CO₃ (53.4 mg, 0.39 mmol), Cs₂CO₃ (146.6 mg, 0.45 mmol), NiBr₂•DME (4.7 mg, 0.015 mmol), NHC (177.9 mg, 0.45 mmol), 1,4-dioxane (3 mL), 1-(4-methoxyphenyl)ethanol (63.9 mg, 0.42 mmol), pyridine (33.3 mg, 0.42 mmol), 3-(4-methylphenyl)propionic acid (49.5 mg, 0.3 mmom) and Boc₂O (85.1 mg, 0.39 mmol). After 20 h, The reaction mixture was quenched by water (10 mL) and extracted by ethyl acetate (15 mL) for 3 times. The combined organic layers were dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated in *vacuo* before it was purified by flash chromatography (PE/EA = 50/1) on silica gel to afford **41** (52.5 mg, 0.186 mmol, 62%)

yield) as a colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.07 (d, *J* = 8.8 Hz, 2H), 7.03 (d, *J* = 8.0 Hz, 2H), 6.95 (d, *J* = 8.0 Hz, 2H), 6.82 (d, *J* = 8.4 Hz, 1H), 3.78 (s, 3H), 3.64 (q, *J* = 7.0 Hz, 1H), 2.85 – 2.55 (m, 4H), 2.28 (s, 3H), 1.34 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 210.3, 158.6, 138.0, 135.4, 132.5, 129.0, 128.8, 128.1, 114.2, 55.2, 52.2, 42.6, 29.5, 20.9, 17.3; HRMS (ESI-TOF) Calcd for C₁₉H₂₂O₂Na [M+Na]⁺: 305.1512; Found 305.1522.

IV. Late-stage Functionalization of Complex Molecules

An oven-dried 25 mL flask was evaculated and back-filled with N_2 for three times. After cooling at room temperature, $Ir(ppy)_2(dtbbpy)PF_6$ (0.004 mmol), dtbbpy (L₁) (0.03 mmol), K_2CO_3 (0.52 mmol), Cs_2CO_3 (0.60 mmol) and $NiBr_2$ •DME (0.02 mmol) were added sequentially under N_2 . Then DMAc (4 mL) was added. The reaction mixture was stirred at room temperature for 30 min.

Another oven-dried 10 mL flask was evaculated and back-filled with N₂ for three times. After cooling at room temperature, NHC (N₄) (0.60 mmol), 1,4-dioxane (4 mL) and alcohol (0.56 mmol) were added. Then pyridine (0.56 mmol) was added dropwise via a microsyringe. The reaction mixture was stirred for 20 min at room temperature. The 1,4-dioxane suspension was transferred to a 5 ml syringe under N₂. Then a syringe filter and a new needle were installed on the syringe, and the 1,4-dioxane solution was injected through the syringe filter into the mentioned above flask containing the Ir/Ni catalysts followed by adding carboxylic acid (0.4 mmol) and Boc₂O (0.52 mmol). The resulting crude mixture was then allowed to stir at room temperature and irradiated by 450-455 nm LEDS at a distance of 5 cm for 24 h at rt. The reaction mixture was quenched by water (10 mL) and extracted by ethyl acetate (15 mL) for 3 times. The combined organic layers were dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated in *vacuo* before it was purified by flash chromatography on silica gel to afford the Late-stage functionalized ketone.

0.60 mmol), NiBr₂•DME (6.3 mg, 0.02 mmol), NHC (236.9 mg, 0.60 mmol), 1,4-dioxane (4 mL), alcohol (76.3 mg, 0.56 mmol), pyridine (44.3 mg, 0.56 mmol), Oxaprozin (117.0 mg, 0.4 mmol) and Boc₂O (113.5 mg, 0.52 mmol). After 20 h, The reaction mixture was quenched by water (10 mL) and extracted by ethyl acetate (15 mL) for 3 times. The combined organic layers were dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated in *vacuo* before it was purified by flash chromatography (PE/EA = 15/1) on silica gel to afford **44** (86.9 mg, 0.22 mmol, 55% yield) as a yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.58 (d, *J* = 7.2 Hz, 2H), 7.52 (d, *J* = 7.6 Hz, 2H), 7.37-7.26 (m, 6H), 7.11 (s, 4H), 3.81 (q, *J* = 6.8 Hz, 1H), 3.15 – 2.88 (m, 4H), 2.29 (s, 3H), 1.41 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 208.7, 162.3, 145.1, 137.2, 136.8, 134.9, 132.4, 129.6, 128.9, 128.5, 128.4, 128.3, 127.9, 127.8, 127.7, 126.3, 52.5, 37.4, 22.3, 21.0, 17.4; HRMS (ESI-TOF) Calcd for C₂₇H₂₆NO₂ [M+H]⁺: 396.1958; Found 396.1967.

(8R,9S,10S,13R,14S)-10,13-dimethyl-17-((2R,6S)-5-oxo-6-(ptolyl)heptan-2-yl)hexadecahydro-3H-cyclopenta[a]phenanthren-3-one (**45**). Prepared according to the general procedure employing Ir(ppy)₂(dtbbpy)PF₆ (3.8 mg, 0.004 mmol), dtbbpy (L₁) (8.4 mg, 0.03 mmol), K₂CO₃ (71.8 mg, 0.60 mmol), Cs₂CO₃ (195.0 mg, 0.60 mmol), NiBr₂•DME (6.3 mg, 0.02 mmol), NHC (236.9 mg, 0.60 mmol), 1,4dioxane (4 mL), 1-(4-Methylphenyl)ethanol (76.5 mg, 0.56 mmol), pyridine (44.3 mg, 0.56 mmol), Lithocholic acid analogue (149.9 mg, 0.4 mmol) and Boc₂O (113.5 mg, 0.52 mmol). After 20 h, The reaction mixture was quenched by water (10 mL) and extracted by ethyl acetate (15 mL) for 3 times. The combined organic layers were dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated in *vacuo* before it was purified by flash chromatography (PE/EA = 50/1 to 20/1) on silica gel to afford **45** (114.3 mg, 0.24 mmol, 60% yield, 1/1 *dr*) as a yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.13 (q, *J* = 8.0 Hz, 4H), 3.79 – 3.68 (m, 1H), 2.69 (t, *J* = 14.0 Hz, 1H), 2.45 – 2.22 (m, 6H), 2.21 – 1.76 (m, 7H), 1.51 – 1.11 (m, 17H), 1.09 – 0.98 (s, 6H), 0.80 (d, *J* = 6.4 Hz, 1.5H), 0.74 (d, *J* = 6.4 Hz, 1.5H), 0.63 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 213.2, 211.6, 211.4, 137.7, 137.6, 136.6, 136.0, 129.4, 127.7, 127.6, 124.6, 56.30, 56.26, 56.0, 55.9, 52.6, 52.4, 44.2, 42.6, 42.3, 40.6, 39.9, 37.9, 37.7, 37.1, 36.9, 35.4, 35.2, 35.1, 34.8, 30.2, 29.9, 28.0, 27.9, 26.5, 25.7, 24.0, 22.6, 21.1, 20.9, 18.3, 18.1, 17.44, 17.42, 11.95, 11.93; HRMS (ESI-TOF) Calcd for C₃₃H₄₈O₂Na [M+Na]⁺: 499.3547; Found 499.3554.

one

employing $Ir(ppy)_2(dtbbpy)PF_6$ (3.8 mg, 0.004 mmol), dtbbpy (L₁) (8.4 mg, 0.03 mmol), K₂CO₃ (71.8 mg, 0.60 mmol), Cs₂CO₃ (195.0 mg, 0.60 mmol), NiBr₂•DME (6.3 mg, 0.02 mmol), NHC (236.5 mg, 0.60 mmol), 1,4-dioxane (4 mL), 1-(4-Methylphenyl)ethanol (76.1 mg, 0.56 mmol), pyridine (44.3 mg, 0.56 mmol), corresponding Lithocholic acid analogue (196.4 mg, 0.4 mmol) and Boc₂O (113.6 mg, 0.52 mmol). After 20 h, The reaction mixture was quenched by water (10 mL)

and extracted by ethyl acetate (15 mL) for 3 times. The combined organic layers were dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated in *vacuo* before it was purified by flash chromatography (PE/EA = 15/1) on silica gel to afford **46** (146.9 mg, 0.248 mmol, 62% yield) as a colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.19 – 7.10 (m, 4H), 3.79-3.71 (m, 1H), 3.65 – 3.55 (m, 1H), 2.41 – 2.22 (m, 5H), 1.94 – 1.65 (m, 6H), 1.61 – 1.52 (m, 2H), 1.47 – 1.32 (m, 11H), 1.26 – 0.96 (m, 10H), 0.94 – 0.89 (m, 12H), 0.80 (d, *J* = 6.4 Hz, 1.5H), 0.74 (d, *J* = 6.4 Hz, 1.5H), 0.60 (d, *J* = 6.4 Hz, 3H), 0.09 (s, 6H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 211.7, 211.6, 137.70, 137.67, 136.6, 129.5, 127.72, 127.70, 72.8, 56.33, 56.29, 55.9, 55.8, 52.7, 52.4, 42.60, 42.59, 42.2, 40.1, 40.0, 37.9, 37.7, 36.9, 35.8, 35.5, 35.2, 35.1, 34.5, 31.0, 30.02, 29.99, 29.7, 28.1, 28.0, 27.2, 26.3, 25.9, 24.15, 24.13, 23.3, 21.02, 21.00, 20.7, 18.35, 18.30, 18.2, 17.49, 17.47, 11.94, 11.92, -4.6; HRMS (ESI-TOF) Calcd for C₃₉H₆₄O₂SiNa [M+Na]⁺: 615.4568; Found 615.4576.

2-(*p*-tolyl)icosan-3-one (**47**). Prepared according to the general procedure employing $Ir(ppy)_2(dtbbpy)PF_6$ (3.9 mg, 0.004 mmol), dtbbpy (L₁) (8.4 mg, 0.03 mmol), K₂CO₃ (71.8 mg, 0.60 mmol), Cs₂CO₃ (196.0 mg, 0.60 mmol), NiBr₂•DME (6.3 mg, 0.02 mmol), NHC (237.5 mg, 0.60 mmol),

1,4-dioxane (4 mL), 1-(4-Methylphenyl)ethanol (76.3 mg, 0.56 mmol), pyridine (44.3 mg, 0.56 mmol), stearic acid (113.6 mg, 0.4 mmol) and Boc₂O (113.6 mg, 0.52 mmol). After 20 h, The reaction mixture was quenched by water (10 mL) and extracted by ethyl acetate (15 mL) for 3 times. The combined organic layers were dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated in *vacuo* before it was purified by flash chromatography (PE/EA = 40/1) on silica gel to afford **47** (115.9 mg, 0.30 mmol, 75% yield) as a white solid. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.13 (d, *J* = 8.0 Hz, 2H), 7.09 (d, *J* = 8.4 Hz, 2H), 3.70 (q, *J* = 6.8 Hz, 1H), 2.37 – 2.27 (m, 5H), 1.54 – 1.40 (m, 2H), 1.36 (d, *J* = 7.2 Hz, 3H), 1.33-1.06 (m, 28H), 0.88 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 211.2, 137.7, 136.6, 129.5, 127.7, 52.5, 40.9, 31.9, 29.7, 29.65, 29.64, 29.62,

29.56, 29.4, 29.35, 29.30, 29.0, 23.8, 22.7, 21.0, 17.4, 14.1; HRMS (ESI-TOF) Calcd for C₂₇H₄₆ONa [M+Na]⁺: 409.3441; Found 409.3450.

1-((5S,8R,9S,10S,13R,14S,17R)-10,13-dimethyl17-((R)-6-methylheptan-2-yl)hexadecahydro-1*H*cyclopenta[*a*]phenanthren-3-yl)-3-(*p*tolyl)propan-1-one (**48**). Prepared according to the
general procedure employing Ir(ppy)₂(dtbbpy)PF₆

(3.9 mg, 0.004 mmol), dtbbpy (L1) (8.4 mg, 0.03 mmol), K2CO3 (71.8 mg, 0.60 mmol), Cs2CO3 (195.5 mg, 0.60 mmol), NiBr₂•DME (6.3 mg, 0.02 mmol), NHC (237.4 mg, 0.60 mmol), 1.4dioxane (4 mL), dihydrocholesterol (217.8 mg, 0.56 mmol), pyridine (44.3 mg, 0.56 mmol), 3-(4methylphenyl)propionic acid (66.0 mg, 0.4 mmol) and Boc₂O (113.6 mg, 0.52 mmol). After 20 h, The reaction mixture was quenched by water (10 mL) and extracted by ethyl acetate (15 mL) for 3 times. The combined organic layers were dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated in *vacuo* before it was purified by flash chromatography (PE/EA = 40/1) on silica gel to afford 48 (70.5 mg, 0.136 mmol, 34% yield) as a colorless oil. ¹H NMR (400 MHz, Chloroformd) 8 7.07 (s, 4H), 2.89 – 2.78 (m, 2H), 2.78 – 2.66 (m, 2H), 2.53 – 2.44 (m, 1H), 2.30 (s, 3H), 2.00 – 1.89 (m, 2H), 1.85-1.73 (m, 2H), 1.69 - 1.60 (m, 3H), 1.58 - 1.42 (m, 7H), 1.38 - 1.28 (m, 6H), 1.17 - 1.07 (m, 7H), 1.04-0.95 (m, 4H), 0.89 (d, J = 6.4 Hz, 3H), 0.86 (d, J = 6.4 Hz, 6H), 0.77 (d, J = 9.6 Hz, 3H), 0.86 (d, J = 6.4 Hz, 6H), 0.77 (d, J = 9.6 Hz, 3H), 0.86 (d, J = 6.4 Hz, 6H), 0.77 (d, J = 9.6 Hz, 3H), 0.86 (d, J = 6.4 Hz, 6H), 0.77 (d, J = 9.6 Hz, 3H), 0.86 (d, J = 6.4 Hz, 6H), 0.77 (d, J = 9.6 Hz, 3H), 0.86 (d, J = 6.4 Hz, 6H), 0.77 (d, J = 9.6 Hz, 3H), 0.86 (d, J = 6.4 Hz, 6H), 0.77 (d, J = 9.6 Hz, 3H), 0.86 (d, J = 6.4 Hz, 6H), 0.77 (d, J = 9.6 Hz, 3H), 0.86 (d, J = 6.4 Hz, 6H), 0.77 (d, J = 9.6 Hz, 3H), 0.86 (d, J = 6.4 Hz, 6H), 0.77 (d, J = 9.6 Hz, 3H), 0.86 (d, J = 6.4 Hz, 6H), 0.77 (d, J = 9.6 Hz, 3H), 0.86 (d, J = 6.4 Hz, 6H), 0.77 (d, J = 9.6 Hz, 3H), 0.86 (d, J = 6.4 Hz, 6H), 0.77 (d, J = 9.6 Hz, 3H), 0.86 (d, J = 6.4 Hz, 6H), 0.86 (d, J = 6.4 Hz, 6H), 0.77 (d, J = 9.6 Hz, 3H), 0.86 (d, J = 6.4 Hz, 6H), 0.77 (d, J = 9.6 Hz, 3H), 0.86 (d, J = 6.4 Hz, 6H), 0.77 (d, J = 9.6 Hz, 3H), 0.86 (d, J = 6.4 Hz, 6H), 0.77 (d, J = 9.6 Hz, 3H), 0.86 (d, J = 6.4 Hz, 6H), 0.77 (d, J = 9.6 Hz, 3H), 0.86 (d, J = 6.4 Hz, 6H), 0.77 (d, J = 9.6 Hz, 3H), 0.86 (d, J = 6.4 Hz, 6H), 0.77 (d, J = 9.6 Hz, 3H), 0.86 (d, J = 6.4 Hz, 6H), 0.77 (d, J = 9.6 Hz, 3H), 0.86 (d, J = 6.4 Hz, 6H), 0.77 (d, J = 9.6 Hz, 3H), 0.86 (d, J = 6.4 Hz, 6H), 0.77 (d, J = 9.6 Hz, 3H), 0.86 (d, J = 6.4 Hz, 6H), 0.77 (d, J = 9.6 Hz, 3H), 0.86 (d, J = 6.4 Hz, 6H), 0.77 (d, J = 9.6 Hz, 3H), 0.86 (d, J = 6.4 Hz, 6H), 0.77 (d, J = 9.6 Hz, 3H), 0.86 (d, J = 6.4 Hz, 6H), 0.77 (d, J = 9.6 Hz, 3H), 0.86 (d, J = 6.4 Hz, 6H), 0.86 (d, J = 60.63 (d, J = 6.4 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ 212.8, 138.4, 135.4, 129.1, 128.2, 56.4, 56.3, 56.2, 54.4, 54.1, 51.4, 46.9, 46.1, 42.54, 42.51, 42.3, 41.8, 39.9, 39.5, 36.1, 35.84, 35.79, 35.76, 35.4, 35.3, 34.9, 31.7, 29.6, 29.0, 28.8, 28.2, 28.0, 24.1, 23.8, 22.8, 22.5, 22.1, 20.9, 20.7, 18.65, 18.63, 12.2, 12.0, 11.6; HRMS (ESI-TOF) Calcd for C₃₇H₅₈ONa [M+Na]⁺: 541.4380; Found 541.4391.

1,3-dimethyl-7-(2-methyl-3-oxo-5-(*p*-tolyl)pentyl)-3,7dihydro-1*H*-purine-2,6-dione (**49**). Prepared according to the general procedure employing Ir(ppy)₂(dtbbpy)PF₆ (3.9 mg, 0.004 mmol), dtbbpy (L₁) (8.4 mg, 0.03 mmol), K₂CO₃

(71.8 mg, 0.60 mmol), Cs₂CO₃ (195.5 mg, 0.60 mmol), NiBr₂•DME (6.3 mg, 0.02 mmol), NHC (237.4 mg, 0.60 mmol), 1,4-dioxane (4 mL), Proxyphylline (135.0 mg, 0.56 mmol), pyridine (44.3 mg, 0.56 mmol), 3-(4-Methylphenyl)propionic acid (65.6 mg, 0.4 mmol) and Boc₂O (113.6 mg, 0.52 mmol). After 20 h, The reaction mixture was quenched by water (10 mL) and extracted by ethyl acetate (15 mL) for 3 times. The combined organic layers were dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated in *vacuo* before it was purified by flash chromatography (PE/EA = 40/1) on silica gel to afford **49** (30.9 mg, 0.084 mmol, 21% yield) as a colorless oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.56 (s, 1H), 7.01 (d, *J* = 7.8 Hz, 2H), 6.95 (d, *J* = 7.8 Hz, 2H), 4.47 (dd, *J* = 13.6, 8.8 Hz, 1H), 4.16 (dd, *J* = 13.2, 4.8 Hz, 1H), 3.58 (s, 3H), 3.40 (s, 3H), 3.33 – 3.18 (m, 1H), 2.86 – 2.72 (m, 3H), 2.68 – 2.51 (m, 1H), 2.27 (s, 3H), 1.14 (d, *J* = 7.6 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 211.1, 155.1, 151.5, 148.9, 142.5, 137.2, 135.6, 129.0, 127.9, 106.5, 48.0, 46.8, 43.1, 29.8, 29.1, 27.9, 20.9, 14.6; HRMS (ESI-TOF) Calcd for C₂₀H₂₄N₄O₃Na [M+Na]⁺: 391.1741; Found 391.1749.

V. Mechanistic Studies

An oven-dried 25 mL flask was evaculated and back-filled with N_2 for three times. After cooling at room temperature, $Ir(ppy)_2(dtbbpy)PF_6$ (2.8 mg, 0.003 mmol), dtbbpy (L₁) (6.3 mg, 0.0225 mmol), K_2CO_3 (53.6 mg, 0.39 mmol), Cs_2CO_3 (147.0 mg, 0.45 mmol) and $NiBr_2$ •DME (4.9 mg, 0.015 mmol) were added sequentially under N_2 . Then DMAc (3 mL) was added. The reaction mixture was stirred at room temperature for 30 min.

Another oven-dried 10 mL flask was evaculated and back-filled with N₂ for three times. After cooling at room temperature, NHC (N₄) (177.4 mg, 0.45 mmol), 1,4-dioxane (3 mL) and alcohol **2** (58.0 mg, 0.42 mmol) were added. Then pyridine (34 μ L, 0.42 mmol) was added dropwise via a microsyringe. The reaction mixture was stirred for 20 min at room temperature. The 1,4-dioxane suspension was transferred to a 5 ml syringe under N₂. Then a syringe filter and a new needle were installed on the syringe, and the 1,4-dioxane solution was injected through the syringe filter into the mentioned above flask containing the Ir/Ni catalysts followed by adding carboxylic acid **1** (50.0 mg, 0.3 mmol), Boc₂O (85.2 mg, 0.39 mmol) and TEMPO (94.1 mg, 0.6 mmol). The resulting crude mixture was then allowed to stir at room temperature and irradiated by 450-455 nm LEDS at a distance of 5 cm for 24 h at rt. The reaction mixture was quenched by water (10 mL) and extracted by ethyl acetate (15 mL) for 3 times. The reaction mixture was concentrated in *vacuo*. The crude mixture was monitored by ¹H NMR (0% NMR yield) with mesitylene as an internal standard. However, the benzylic radical-trapping adduct **50** was observed by HRMS and the detailed information is illustrated as follows:

Single Mass Analysis Tolerance = 5.0 mDa / Element prediction: Off DBE: min = -1.5, max = 50.0 Number of isotope peaks used for i-FIT = 3

2

51

Calcd. for [M+Na]⁺: 311.1082, detected: 311.1082

Monoisotopic Mass, Even Electron Ions 329 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass)

1.5 equiv.

at room temperature for 30 min. Another oven-dried 10 mL flask was evacuated and back-filled with N2 for three times. After cooling at room temperature, NHC (N₄) (237.0 mg, 0.60 mmol), 1,4-dioxane (4 mL) and alcohol 2 (76.5 mg, 0.56 mmol) were added. Then pyridine (0.56 mmol) was added dropwise via a microsyringe. The reaction mixture was stirred for 20 min at room temperature. The 1,4-dioxane suspension was

An oven-dried 25 mL flask was evacuated and back-filled with N₂ for three times. After cooling at

room temperature, Ir(ppy)₂(dtbbpy)PF₆ (3.9 mg, 0.004 mmol), dtbbpy (L₁) (8.2 mg, 0.03 mmol),

K₂CO₃ (72.2 mg, 0.52 mmol), Cs₂CO₃ (193.3 mg, 0.60 mmol) and NiBr₂•DME (6.2 mg, 0.02 mmol)

were added sequentially under N₂. Then DMAc (4 mL) was added. The reaction mixture was stirred

transferred to a 5 ml syringe under N2. Then a syringe filter and a new needle were installed on the syringe, and the 1,4-dioxane solution was injected through the syringe filter into the mentioned above flask containing the Ir/Ni catalysts followed by adding carboxylic acid 1 (0.4 mmol), Boc2O (0.52 mmol) and phenylvinyl sulfone (101.1 mg, 0.60 mmol). The resulting crude mixture was then allowed to stir at room temperature and irradiated by 450-455 nm LEDS at a distance of 5 cm for 24 h at rt with a fan. The reaction mixture was quenched by water (10 mL) and extracted by ethyl acetate (15 mL) for 3 times. The combined organic layers were dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated in *vacuo* and monitored by HRMS, which suggested the generation of adduct **51**. The detailed information was illustrated as follows:

4-phenyl-1-(p-tolyl)hept-6-en-3-one (**53**). Prepared according to the general procedure employing Ir(ppy)₂(dtbbpy)PF₆ (3.7 mg, 0.004 mmol), K₂CO₃ (71.0 mg, 0.52 mmol), Cs₂CO₃ (196.0 mg, 0.60 mmol),

K₂HPO₄ (210.0 mg, 1.2 mmol), MeCN (19 mL) and H₂O (1 mL). After 24 h, the reaction mixture was cooled to rt and filtered through a short pad of silica using EA. The filtrate was concentrated in *vacuo* before it was purified by flash chromatography (PE/EA = 15/1) on silica gel to afford **53** (66.7 mg, 0.24 mmol, 60% yield) as a yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.32 – 7.21 (m, 3H), 7.16 (d, *J* = 7.2 Hz, 2H), 7.02 (d, *J* = 7.6 Hz, 2H), 6.94 (d, *J* = 7.6 Hz, 2H), 5.71 – 5.55 (m, 1H), 4.98 (d, *J* = 16.8 Hz, 1H), 4.93 (d, *J* = 10.0 Hz, 1H), 3.65 (t, *J* = 7.6 Hz, 1H), 2.88 – 2.76 (m,

2H), 2.75 – 2.60 (m, 3H), 2.48 – 2.37 (m, 1H), 2.28 (s, 3H); ¹³C NMR (101 MHz, Chloroform-d) δ

208.8, 138.2, 137.8, 135.7, 135.4, 129.0, 128.9, 128.3, 128.1, 127.2, 116.6, 58.9, 43.5, 36.2, 29.3,

20.9; HRMS (ESI-TOF) Calcd for C₂₀H₂₂ONa [M+Na]⁺: 301.1563; Found 301.1565.

Four oven-dried 25 mL flasks was evaculated and back-filled with N_2 for three times. After cooling at room temperature, $Ir(ppy)_2(dtbbpy)PF_6$ (0.004 mmol), dtbbpy (L₁) (0.03 mmol), K_2CO_3 (0.52 mmol), Cs_2CO_3 (0.60 mmol) and NiBr₂•DME (0.02 mmol) were added sequentially under N_2 . Then DMAc (4 mL) was added. The reaction mixture was stirred at room temperature for 30 min.

Another oven-dried 25 mL flask was evaculated and back-filled with N_2 for three times. After cooling at room temperature, NHC (N₄) (2.40 mmol), 1,4-dioxane (16 mL) and alcohol **2** (2.24 mmol) were added. Then pyridine (2.24 mmol) was added dropwise via a microsyringe. The reaction mixture was stirred for 20 min at room temperature. The 1,4-dioxane suspension was transferred to a 20 ml syringe under N_2 . Then a syringe filter and a new needle were installed on the syringe, and the 1,4-dioxane solution was injected through the syringe filter into the mentioned above four flasks containing the Ir/Ni catalysts followed by adding carboxylic acid 1 (0.4 mmol) and Boc₂O (0.52 mmol) equally. The resulting crude mixtures were then allowed to stir at room temperature and irradiated by 450-455 nm LEDS at a distance of 5 cm for 2 h, 2 h with LEDs + 2 hours without light, 2 h with LEDs + 2 hours without light + 2 h with LEDs + 2 hours without light + 2 h with LEDs + 2 h with LEDs + 2 h with use the structure of by 1 H NMR analysis with mesitylene as an internal standard.

The light-on-off experiment

An oven-dried 25 mL flask was evaculated and back-filled with N_2 for three times. After cooling at room temperature, carboxylic acid **1** (49.5 mg, 0.3 mmol), K₂CO₃ (54.0 mg, 0.39 mmol) and 1,4dioxane (3 mL) were added sequentially under N_2 . The reaction mixture was stirred at room temperature for 3h. The reaction mixture was then diluted with EtOAc and filtered through a short pad of silica using EtOAc. The filtrate was concentrated in *vacuo*. The crude mixture was monitored by ¹H NMR (11% NMR yield) with mesitylene as an internal standard.

(d)Carboxylic acids activation

An oven-dried 25 mL flask was evaculated and back-filled with N₂ for three times. After cooling at room temperature, carboxylic acid **55** (49.6 mg, 0.3 mmol), K₂CO₃ (53.7 mg, 0.39 mmol) and 1,4-dioxane (3 mL) were added sequentially under N₂. The reaction mixture was stirred at room temperature for 3h. The reaction mixture was then diluted with EtOAc and filtered through a short pad of silica using EtOAc. The filtrate was concentrated in *vacuo*. The crude mixture was monitored by ¹H NMR (0% NMR yield) with mesitylene as an internal standard.

(e) Demonstration of the presence of Ni(0) species

An oven-dried 25 mL flask was evacuated and back-filled with N₂ for three times. After cooling at room temperature, $Ir(ppy)_2(dtbbpy)PF_6$ (0.003 mmol), dtbbpy (L₁) (0.0225 mmol), K₂CO₃ (0.39 mmol), Cs₂CO₃ (0.45 mmol) and Ni(COD)₂ (6.5 mg, 0.015 mmol) were added sequentially under N₂ atmosphere. Then DMAc (3 mL) was added. The reaction mixture was stirred at room temperature for 30 min.

Another oven-dried 10 mL flask was evacuated and back-filled with N₂ for three times. After cooling at room temperature, NHC (N₄) (0.45 mmol), 1,4-dioxane (3 mL) and alcohol **2** (0.42 mmol) were added. Then pyridine (0.42 mmol) was added dropwise via a microsyringe. The reaction mixture was stirred for 20 min at room temperature. The 1,4-dioxane suspension was transferred to a 5 ml syringe under N₂. Then a syringe filter and a new needle were installed on the syringe, and the 1,4-dioxane solution was injected through the syringe filter into the mentioned above flask containing the Ir/Ni catalysts followed by adding carboxylic acid **1** (0.3 mmol) and Boc₂O (0.39 mmol). The resulting crude mixture was then allowed to stir at room temperature and irradiated by 450-455 nm LEDS at a distance of 5 cm for 24 h at room temperature. The reaction mixture was quenched by water (10 mL) and extracted by ethyl acetate (15 mL) for 3 times. The combined organic layers were dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated in *vacuo* and monitored through ¹H NMR analysis with mesitylene as an internal standard (68% NMR yield).
VI. References

- ² A. H. Cherney, N. T. Kadunce, S. E. Reisman. J. Am. Chem. Soc. 2013, 135, 7442–7445.
- ³ A. Whyte, T. P. Yoon. Angew. Chem. Int. Ed. **2022**, 61, e202213739.

¹ P.-F. Yang, W. Shu. Org. Lett. 2020, 22, 6203–6208.

⁴ B. Roh, A. O. Farah, B. Kim, T. Feoktistova, F. Moeller, K. D. Kim, P. H.-Y. Cheong, H. G. Lee. *J. Am. Chem. Soc.* **2023**, *145*, 7075–7083.

⁵ T. Yuan, X. Ye, P. Zhao, S. Teng, Y. Yi, J. Wang, C. Shan, L. Wojtas, J. Jean, H. Chen, X. Shi, *Chem.* **2020**, *6*, 1420–1431.

VII. NMR Spectra

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

