Supplemental Information

Pd/NHC sequentially catalyzed atroposelective synthesis of

planar-chiral macrocycles

Gongming Yang, Shangde Liu, Shujie Ji, Xingsen Wu, Jian Wang*

School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education) Tsinghua University Beijing, 100084, China *Correspondence: wangjian2012@tsinghua.edu.cn

Table of Contents

General Information	2
General Procedure for the Synthesis of Substrates	2
Characterization Data	
Reaction Condition Optimization	12
General Procedure for Atroposelective Intermolecular Macrocyclization	13
Characterization Data of Planar Chiral Products	14
Investigations on the Thermal Stability of the Planar-Chirality	43
Dependence of Thermal Stability on Temperature	43
Experimental Determination of Rotation Barrier of 40	45
Gram-Scale Synthesis and Synthetic Transformations	47
Gram-Scale Synthesis of 3a	47
Synthetic Transformations of 3a	48
Sonogashira Coupling	48
Expoidation	49
Control Experiments	50
Mechanistic Studies	52
Crystal Structure of 3q .	53
NMR Spectra	56
HPLC Spectra	114
Supplementary References	151

General Information

Chemicals and solvents were purchased from commercial suppliers and used as received. ¹H and ¹³C NMR spectra were recorded on a Bruker ACF400 (400 MHz) spectrometer. Chemical shifts were reported in parts per million (ppm), and the residual solvent peak was used as an internal reference: proton (chloroform δ 7.26), carbon (chloroform δ 77.0) or tetramethylsilane (TMS δ 0.00) was used as a reference. Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublet), bs (broad singlet). Coupling constants were reported in Hertz (Hz). Low resolution mass spectra were obtained on a Finnigan/MAT LCQ spectrometer in ESI mode, and a Finnigan/MAT 95XL-T mass spectrometer in EI mode. All high resolution mass spectra were obtained on a Finnigan/MAT 95XL-T spectrometer. For thin layer chromatography (TLC), Merck pre-coated TLC plates (Merck 60 F254) were used, and compounds were visualized with a UV light at 254 nm. Flash chromatography separations were performed on Merck 60 (0.040-0.063 mm) mesh silica gel. The enantiomeric excesses of products were determined by chiral phase HPLC analysis. Optical rotations were recorded on Jasco DIP-1000 polarimeter.

General Procedure for the Synthesis of Substrates

Note: All of the aryl aldehydes¹ and *tert*-butyl-bromohexyl-carbamate² were synthesized according to the reported methods.

The mixture of 2-bromo-4-hydroxy-5-methoxybenzaldehyde (s1) (5 mmol, 1.0 equiv.), tert-butyl (6-bromohexyl) carbamate (s2) (6 mmol, 1.0 equiv.), K_2CO_3 (15 mmol, 3 equiv.), DMF (10 mL), were heated 50 °C for 6 h under argon atmosphere.

After cooling to room temperature, the reaction was quenched by H_2O , The crude mixture was extracted with EtOAc (x3) and the combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/EtOAc = 2/1) to give **s3** as colorless oil (2.07 g, 96%yield).

To a solution of obtained **s3** (4.8 mmol, 1.0 equiv.) in EtOAc, then the mixture was cooled to 0 °C, and HCl in dioxane (4 equiv. 4.0 M) added slowly. After that, the mixture was allowed warmed to room temperature and stirred for about 3 h (then the white solid was formed). Then the mixture was concentrated in vacuo. Lastly, the obtained crud product was dissolved in CH_2Cl_2 /pyridine (v:v = 2/l, 15 mL) at 0 °C, then TsCl (5.76 mmol, 1.2 equiv.) in CH_2Cl_2 (5 mL) was added dropwise. After that, the mixture was warmed to room temperature and stirred for 12 h. Then the reaction was quenched by H_2O , and neutralized with 1 N HCl aqueous solution and extracted with EtOAc (x3) and the combined organic extracts were washed with brine, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/EtOAc = 2/1) to give **1a** as a white solid (3.2 g, 86% yield in total).

Note: All of the vinyl ethylene carbonates (VECs) are known compounds and were synthesized according to the previously reported procedures and all characterization data are in accordance with the literature.³

Characterization Data

N-(6-(5-bromo-4-formyl-2-methoxyphenoxy)hexyl)-4-methylbenzenesulfonamide (1a)

Following the general procedure, the crude product was purified by column chromatography on a silica gel to afford the product (3.2 g, 86% yield) as White solid.

R_f (pentane:EtOAc = 2:1) = 0.25; ¹**H NMR** (400 MHz, Chloroform-*d*) δ 10.19 (s, 1H), 7.76 (d, J = 8.3 Hz, 2H), 7.42 (s, 1H), 7.32 (d, J = 8.0 Hz, 2H), 7.03 (s, 1H), 4.65 (t, J= 6.2 Hz, 1H), 4.04 (t, J = 6.5 Hz, 2H), 3.90 (s, 3H), 2.97 (q, J = 6.7 Hz, 2H), 2.44 (s, 3H), 1.83 (p, J = 6.7 Hz, 2H), 1.51 (q, J = 7.3 Hz, 2H), 1.47 – 1.25 (m, 4H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 190.8, 154.1, 149.1, 143.3, 137.0, 129.7, 127.1, 126.3, 120.3, 116.3, 110.7, 69.3, 56.2, 43.1, 29.5, 28.6, 26.2, 25.4, 21.5; **HRMS** (ESI): *m/z*: calculated for C₂₁H₂₇BrNO₅S: [M + H]⁺484.0788, found: 484.0795.

N-(6-(2,5-dibromo-4-formylphenoxy)hexyl)-4-methylbenzenesulfonamide (1b)

Following the general procedure, the crude product was purified by column chromatography on a silica gel to afford the product (420 mg, 78% yield) as White solid. **R**_f (pentane:EtOAc = 2:1) = 0.25; ¹H NMR (400 MHz, Chloroform-*d*) δ 10.16 (s, 1H), 8.12 (s, 1H), 7.77 (d, *J* = 7.9 Hz, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 7.07 (s, 1H), 4.57 (t, *J* = 6.2 Hz, 1H), 4.08 (t, *J* = 6.2 Hz, 2H), 2.98 (q, *J* = 6.7 Hz, 2H), 2.45 (s, 3H), 1.89 – 1.78 (m, 2H), 1.56 – 1.46 (m, 4H), 1.44 – 1.36 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 189.4, 160.1, 143.4, 137.0, 134.1, 129.7, 127.4, 127.3, 127.1, 116.9, 112.3, 69.8, 43.1, 29.5, 28.5, 26.1, 25.4, 21.5; HRMS (ESI): *m/z*: calculated for C₂₀H₂₄Br₂NO₄S: [M + H]⁺ 533.9767, found: 533.9776.

N-(6-(5-bromo-2-chloro-4-formylphenoxy)hexyl)-4-methylbenzenesulfonamide (1c)

Following the general procedure, the crude product was purified by column chromatography on a silica gel to afford the product (385 mg, 79% yield) as White solid. $\mathbf{R}_{\mathbf{f}}$ (pentane:EtOAc = 2:1) = 0.25; ¹H NMR (400 MHz, Chloroform-*d*) δ 10.17

(s, 1H), 7.95 (s, 1H), 7.77 (d, J = 7.8 Hz, 2H), 7.33 (d, J = 7.9 Hz, 2H), 7.11 (s, 1H), 4.44 (t, J = 6.2 Hz, 1H), 4.09 (t, J = 6.3 Hz, 2H), 2.98 (q, J = 6.7 Hz, 2H), 2.45 (s, 3H), 1.90 – 1.78 (m, 2H), 1.58 – 1.47 (m, 4H), 1.44 – 1.36 (m, 2H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 189.6, 159.2, 143.4, 137.0, 130.9, 129.7, 127.1, 127.0, 126.5, 123.5, 117.1, 69.7, 43.1, 29.5, 28.5, 26.1, 25.4, 21.5; **HRMS** (ESI): *m/z*: calculated for C₂₀H₂₄BrClNO₄S: [M + H]⁺488.0293, found: 488.0301.

Ethyl 4-bromo-5-formyl-2-((6-((4-methylphenyl)sulfonamido)hexyl)oxy)benzoate (1d)

Following the general procedure, the crude product was purified by column chromatography on a silica gel to afford the product (426 mg, 81% yield) as White solid. **R**_f (pentane:EtOAc = 2:1) = 0.25; ¹**H NMR** (400 MHz, Chloroform-*d*) δ 10.21 (s, 1H), 8.35 (s, 1H), 7.75 (d, *J* = 7.9 Hz, 2H), 7.31 (d, *J* = 8.1 Hz, 2H), 7.17 (s, 1H), 4.81 (t, *J* = 6.2 Hz, 1H), 4.35 (q, *J* = 7.1 Hz, 2H), 4.09 (t, *J* = 6.2 Hz, 2H), 2.96 (q, *J* = 6.6 Hz, 2H), 2.43 (s, 3H), 1.88 – 1.78 (m, 2H), 1.55 – 1.44 (m, 4H), 1.41 – 1.34 (m, 5H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 189.7, 164.5, 162.6, 143.3, 137.2, 133.4, 132.0, 129.7, 127.1, 126.2, 120.7, 117.5, 69.6, 61.4, 43.0, 29.4, 28.5, 26.0, 25.4, 21.49, 14.3; **HRMS** (ESI): *m/z*: calculated for C₂₃H₂₉BrNO₆S: [M + H]⁺ 526.0894, found: 526.0900.

N-(6-(3-bromo-4-formyl-2,6-dimethoxyphenoxy)hexyl)-4-

methylbenzenesulfonamide (1e)

Following the general procedure, the crude product was purified by column chromatography on a silica gel to afford the product (387 mg, 75% yield) as White

solid. **R**_f (pentane:EtOAc = 2:1) = 0.20; ¹**H NMR** (400 MHz, Chloroform-*d*) δ 10.32 (s, 1H), 7.79 – 7.74 (m, 2H), 7.33 (t, *J* = 4.0 Hz, 3H), 4.39 (q, *J* = 9.3, 6.3 Hz, 1H), 4.10 (t, *J* = 6.5 Hz, 2H), 3.91 (s, 6H), 2.97 (p, *J* = 6.3 Hz, 2H), 2.45 (s, 3H), 1.81 – 1.69 (m, 2H), 1.56 – 1.44 (m, 4H), 1.42 – 1.34 (m, 2H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 191.1, 153.3, 148.1, 143.4, 137.0, 129.7, 128.8, 127.1, 115.6, 107.6, 73.9, 61.2, 56.2, 43.1, 29.9, 29.6, 26.2, 25.3, 21.5; **HRMS** (ESI): *m/z*: calculated for C₂₂H₂₉BrNO₆S: [M + H]⁺ 514.0894, found: 514.0901.

N-(6-(5-bromo-4-formyl-2-methylphenoxy)hexyl)-4-methylbenzenesulfonamide (1f)

Following the general procedure, the crude product was purified by column chromatography on a silica gel to afford the product (400 mg, 85% yield) as White solid. **R**_f (pentane:EtOAc = 2:1) = 0.25; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.07 (s, 1H), 7.68 (d, J = 1.7 Hz, 1H), 7.67 – 7.65 (m, 2H), 7.47 (t, J = 5.8 Hz, 1H), 7.39 (d, J = 8.0 Hz, 2H), 7.27 (s, 1H), 4.09 (t, J = 6.4 Hz, 2H), 2.71 (q, J = 6.6 Hz, 2H), 2.38 (s, 3H), 2.18 – 2.08 (m, 3H), 1.75 – 1.62 (m, 2H), 1.41 – 1.23 (m, 6H). ¹³C NMR (100 MHz, DMSO-d6) δ 190.6, 142.9, 138.2, 131.5, 130.0, 127.04, 126.95, 126.1, 116.2, 69.1, 42.9, 29.3, 28.7, 26.1, 25.3, 21.4, 15.9; HRMS (ESI): *m/z*: calculated for C₂₁H₂₇BrNO₄S: [M + H]⁺ 468.0839, found: 468.0844.

N-(6-(2,5-dichloro-4-formylphenoxy)hexyl)-4-methylbenzenesulfonamide (1g)

1g

Following the general procedure, the crude product was purified by column chromatography on a silica gel to afford the product (343 mg, 77% yield) as White solid. \mathbf{R}_{f} (pentane:EtOAc = 2:1) = 0.25; ¹H NMR (400 MHz, Chloroform-*d*) δ 10.29

(s, 1H), 7.95 (s, 1H), 7.77 (d, J = 8.0 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 6.93 (s, 1H), 4.53 (t, J = 6.3 Hz, 1H), 4.08 (t, J = 6.3 Hz, 2H), 2.98 (q, J = 6.7 Hz, 2H), 2.45 (s, 3H), 1.90 – 1.80 (m, 2H), 1.58 – 1.45 (m, 4H), 1.45 – 1.35 (m, 2H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 187.5, 159.2, 143.4, 137.8, 137.0, 130.5, 129.7, 127.1, 125.9, 122.8, 113.9, 69.7, 43.0, 29.5, 28.5, 26.1, 25.4, 21.5; **HRMS** (ESI): *m/z*: calculated for C₂₀H₂₄Cl₂NO₄S: [M + H]⁺ 444.0798, found: 444.0805.

N-(6-(5-chloro-4-formyl-2-methoxyphenoxy)hexyl)-4-methylbenzenesulfonamide (1h)

Following the general procedure, the crude product was purified by column chromatography on a silica gel to afford the product (352 mg, 80% yield) as White solid. **R**_f (pentane:EtOAc = 2:1) = 0.25; ¹H NMR (400 MHz, Chloroform-*d*) δ 10.33 (s, 1H), 7.76 (d, *J* = 8.3 Hz, 2H), 7.40 (s, 1H), 7.32 (d, *J* = 8.0 Hz, 2H), 6.86 (s, 1H), 4.51 (t, *J* = 6.3 Hz, 1H), 4.05 (t, *J* = 6.6 Hz, 2H), 3.91 (s, 3H), 2.97 (q, *J* = 6.7 Hz, 2H), 2.44 (s, 3H), 1.90 – 1.80 (m, 2H), 1.55 – 1.36 (m, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 188.7, 154.1, 148.6, 143.4, 137.1, 131.9, 129.7, 127.1, 125.3, 113.2, 110.0, 69.3, 56.2, 43.1, 29.5, 28.6, 26.2, 25.4, 21.5; HRMS (ESI): *m/z*: calculated for C₂₁H₂₇CINO₅S: [M + H]⁺ 440.1293, found: 440.1299.

N-(6-((6-formyl-4-methoxy-[1,1'-biphenyl]-3-yl)oxy)hexyl)-4-

methylbenzenesulfonamide (1i)

1i

Following the general procedure, the crude product was purified by column chromatography on a silica gel to afford the product (405 mg, 84% yield) as White solid. $\mathbf{R}_{\mathbf{f}}$ (pentane:EtOAc = 2:1) = 0.25; ¹H NMR (400 MHz, Chloroform-*d*) δ 9.83 (s,

1H), 7.76 (d, J = 7.9 Hz, 2H), 7.55 (s, 1H), 7.51 – 7.43 (m, 3H), 7.42 – 7.36 (m, 2H), 7.31 (d, J = 8.0 Hz, 2H), 6.84 (s, 1H), 4.60 (t, J = 6.2 Hz, 1H), 4.08 (t, J = 6.6 Hz, 2H), 3.97 (s, 3H), 2.96 (q, J = 6.7 Hz, 2H), 2.43 (s, 3H), 1.90 – 1.79 (m, 2H), 1.57 – 1.42 (m, 4H), 1.41 – 1.33 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 191.2, 153.0, 149.0, 143.3, 141.4, 137.7, 137.0, 130.2, 129.7, 128.3, 128.0, 127.1, 126.7, 113.6, 108.9, 68.9, 56.1, 43.1, 29.5, 28.7, 26.2, 25.5, 21.5; HRMS (ESI): *m/z*: calculated for C₂₇H₃₂NO₅S: [M + H]⁺482.1996, found: 482.2000.

N-(6-(4-formyl-2-methoxy-5-(thiophen-3-yl)phenoxy)hexyl)-4-

methylbenzenesulfonamide (1j)

Following the general procedure, the crude product was purified by column chromatography on a silica gel to afford the product (395 mg, 81% yield) as White solid. **R**_f (pentane:EtOAc = 2:1) = 0.25; ¹**H NMR** (400 MHz, Chloroform-*d*) δ 9.95 (s, 1H), 7.75 (d, *J* = 8.2 Hz, 2H), 7.52 (s, 1H), 7.45 (dd, *J* = 4.9, 3.0 Hz, 1H), 7.31 (d, *J* = 8.1 Hz, 2H), 7.19 (dd, *J* = 4.9, 1.3 Hz, 1H), 6.86 (s, 1H), 4.54 (t, *J* = 6.2 Hz, 1H), 4.08 (t, *J* = 6.6 Hz, 2H), 3.96 (s, 3H), 2.96 (q, *J* = 6.7 Hz, 2H), 2.43 (s, 3H), 1.90 – 1.79 (m, 2H), 1.54 – 1.35 (m, 6H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 191.0, 153.1, 149.0, 143.3, 138.1, 137.1, 135.9, 129.7, 129.5, 127.2, 127.1, 126.0, 124.7, 113.4, 108.9, 68.9, 56.1, 43.1, 29.5, 28.7, 26.2, 25.5, 21.5; **HRMS** (ESI): *m/z*: calculated for C₂₅H₃₀NO₅S₂: [M + H]⁺488.1560, found: 488.1569.

N-(6-(4-formyl-2-methoxy-5-(thiophen-2-yl)phenoxy)hexyl)-4-

methylbenzenesulfonamide (1k)

Following the general procedure, the crude product was purified by column

chromatography on a silica gel to afford the product (389 mg, 80% yield) as White solid. **R**_f (pentane:EtOAc = 2:1) = 0.25; ¹H NMR (400 MHz, Chloroform-*d*) δ 10.04 (s, 1H), 7.76 (d, *J* = 7.8 Hz, 2H), 7.52 (s, 1H), 7.45 (d, *J* = 5.1 Hz, 1H), 7.31 (d, *J* = 8.0 Hz, 2H), 7.14 (s, 1H), 7.07 (s, 1H), 6.92 (s, 1H), 4.62 (t, *J* = 6.2 Hz, 1H), 4.08 (t, *J* = 6.6 Hz, 2H), 3.96 (s, 3H), 2.96 (q, *J* = 6.8 Hz, 2H), 2.43 (s, 3H), 1.90 – 1.79 (m, 2H), 1.56 – 1.33 (m, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 190.8, 152.9, 149.4, 143.4, 138.7, 137.0, 133.2, 129.7, 129.3, 127.6, 127.5, 127.1, 126.9, 114.1, 109.0, 67.0, 56.2, 43.1, 29.5, 28.7, 26.2, 25.5, 21.5; HRMS (ESI): *m/z*: calculated for C₂₅H₃₀NO₅S₂: [M + H]⁺ 488.1560, found: 488.1567.

N-(6-(4-formyl-5-(furan-2-yl)-2-methoxyphenoxy)hexyl)-4-

methylbenzenesulfonamide (11)

Following the general procedure, the crude product was purified by column chromatography on a silica gel to afford the product (365 mg, 77% yield) as White solid. **R**_f (pentane:EtOAc = 2:1) = 0.25; ¹H NMR (400 MHz, Chloroform-*d*) δ 10.24 (s, 1H), 7.76 (d, *J* = 7.8 Hz, 2H), 7.60 (s, 1H), 7.51 (s, 1H), 7.31 (d, *J* = 7.9 Hz, 2H), 7.07 (s, 1H), 6.55 (d, *J* = 4.5 Hz, 2H), 4.53 (t, *J* = 6.2 Hz, 1H), 4.10 (t, *J* = 6.6 Hz, 2H), 3.95 (s, 3H), 2.97 (q, *J* = 6.7 Hz, 2H), 2.43 (s, 3H), 1.91 – 1.81 (m, 2H), 1.55 – 1.36 (m, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 190.8, 153.1, 150.5, 149.3, 143.5, 143.4, 137.0, 129.7, 128.9, 127.1, 126.6, 111.8, 111.3, 111.1, 109.1, 67.0, 56.1, 43.1, 29.5, 28.7, 26.2, 25.5, 21.5; HRMS (ESI): *m/z*: calculated for C₂₅H₃₀NO₆S: [M + H]⁺ 472.1789, found: 472.1794.

2-(5-bromo-4-formyl-2-methoxyphenoxy)ethyl3-((4-

methylphenyl)sulfonamido)propanoate (1m)

Following the general procedure, the crude product was purified by column chromatography on a silica gel to afford the product (340 mg, 68% yield) as White solid. **R**_f (pentane:EtOAc = 1:1) = 0.30; ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.72 – 7.63 (m, 3H), 7.43 – 7.33 (m, 4H), 4.34 (s, 4H), 3.82 (s, 3H), 3.01 – 2.92 (m, 2H), 2.47 (t, *J* = 6.9 Hz, 2H), 2.38 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 190.7, 171.1, 149.1, 143.2, 137.7, 130.1, 127.0, 126.5, 119.6, 117.4, 111.4, 67.7, 62.8, 56.2, 38.8, 34.4, 21.4; HRMS (ESI): *m/z*: calculated for C₂₀H₂₃BrNO₇S: [M + H]⁺ 500.0374, found: 500.0381.

N-(3-(2-(5-bromo-4-formyl-2-methoxyphenoxy)ethoxy)propyl)-4-

Following the general procedure, the crude product was purified by column chromatography on a silica gel to afford the product (317 mg, 65% yield) as White solid. **R**_f (pentane:EtOAc = 1:1) = 0.30; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.07 (s, 1H), 7.66 (d, *J* = 8.2 Hz, 2H), 7.49 (t, *J* = 5.9 Hz, 1H), 7.38 (d, *J* = 8.0 Hz, 2H), 7.34 (s, 2H), 4.25 – 4.18 (m, 2H), 3.81 (s, 3H), 3.70 – 3.63 (m, 2H), 3.43 (t, *J* = 6.2 Hz, 2H), 2.77 (q, *J* = 6.8 Hz, 2H), 2.38 (s, 3H), 1.61 (q, *J* = 6.6 Hz, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 190.7, 154.3, 149.1, 143.0, 138.1, 130.0, 127.0, 126.3, 119.6, 117.3, 111.3, 69.1, 68.7, 68.0, 56.2, 29.8, 21.4; HRMS (ESI): *m/z*: calculated for C₂₀H₂₅BrNO₆S: [M + H]⁺ 486.0581, found: 486.0590.

N-(5-(5-bromo-4-formyl-2-methoxyphenoxy)pentyl)-4-

methylbenzenesulfonamide (10)

10

Following the general procedure, the crude product was purified by column chromatography on a silica gel to afford the product (373 mg, 79% yield) as White solid. **R**_f (pentane:EtOAc = 2:1) = 0.30; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.07 (s, 1H), 7.72 – 7.64 (m, 2H), 7.51 (t, *J* = 5.9 Hz, 1H), 7.39 (d, *J* = 8.0 Hz, 2H), 7.32 (d, *J* = 13.0 Hz, 2H), 4.05 (t, *J* = 6.5 Hz, 2H), 3.82 (s, 3H), 2.72 (q, *J* = 6.4 Hz, 2H), 2.37 (s, 3H), 1.67 (p, *J* = 6.8 Hz, 2H), 1.47 – 1.34 (m, 4H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 190.7, 154.4, 149.1, 142.9, 138.2, 130.0, 127.0, 126.1, 119.8, 117.0, 111.1, 69.4, 56.2, 42.8, 29.0, 28.3, 23.0, 21.4; HRMS (ESI): *m/z*: calculated for C₂₀H₂₅BrNO₅S: [M + H]⁺ 470.0632, found: 470.0638.

N-(7-(5-bromo-4-formyl-2-methoxyphenoxy)heptyl)-4-

methylbenzenesulfonamide (1p)

Following the general procedure, the crude product was purified by column chromatography on a silica gel to afford the product (420 mg, 84% yield) as White solid. **R**_f (pentane:EtOAc = 2:1) = 0.30; ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 10.07 (s, 1H), 7.70 – 7.65 (m, 2H), 7.48 (t, J = 5.8 Hz, 1H), 7.39 (d, J = 8.0 Hz, 2H), 7.32 (d, J = 8.1 Hz, 2H), 4.08 (t, J = 6.5 Hz, 2H), 3.82 (s, 3H), 2.69 (dq, J = 12.1, 6.8 Hz, 2H), 2.38 (s, 3H), 1.70 (p, J = 6.8 Hz, 2H), 1.33 (p, J = 7.2 Hz, 4H), 1.27 – 1.19 (m, 4H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 190.6, 154.5, 149.1, 142.9, 138.3, 130.0, 126.9, 126.1, 119.8, 117.0, 111.2, 69.5, 56.2, 42.9, 29.3, 28.7, 28.6, 26.4, 25.7, 21.4; **HRMS** (ESI): *m/z*: calculated for C₂₂H₂₉BrNO₅S: [M + H]⁺498.0945, found: 498.0952. *N*-(8-(5-bromo-4-formyl-2-methoxyphenoxy)octyl)-4-methylbenzenesulfonamide

(1q)

1q

Following the general procedure, the crude product was purified by column chromatography on a silica gel to afford the product (437 mg, 85% yield) as White solid. **R**_f (pentane:EtOAc = 2:1) = 0.30; ¹H NMR (400 MHz, Chloroform-*d*) δ 10.20 (s, 1H), 7.76 (d, *J* = 8.2 Hz, 2H), 7.43 (s, 1H), 7.33 (d, *J* = 8.0 Hz, 2H), 7.05 (s, 1H), 4.30 (d, *J* = 6.1 Hz, 1H), 4.08 (t, *J* = 6.7 Hz, 2H), 3.92 (s, 3H), 2.96 (q, *J* = 6.7 Hz, 2H), 2.45 (s, 3H), 1.92 – 1.82 (m, 2H), 1.51 – 1.42 (m, 4H), 1.35 – 1.27 (m, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 190.8, 154.2, 149.1, 143.3, 137.1, 129.7, 127.1, 126.3, 120.3, 116.3, 110.7, 69.5, 56.2, 43.2, 29.6, 29.1, 28.9, 28.7, 26.4, 25.7, 21.5; HRMS (ESI): *m/z*: calculated for C₂₃H₃₁BrNO₅S: [M + H]⁺ 512.1101, found: 512.1120.

Reaction Condition Optimization

6	L2 instead of L1	60	96
7	L3 instead of L1	65	96
8	without of L1	68	96
9	K ₂ CO ₃ instead of ⁿ Bu ₄ NOAc	28	94
10	KOAc instead of "Bu ₄ NOAc	35	96
11	Et ₃ N instead of ⁿ Bu ₄ NOAc	30	92
12	THF instead of toluene	52	90
13	CH ₂ Cl ₂ instead of toluene	68	93
14	without 4 Å MS	67	96
15	toluene (0.1 M) was used	62	96

[a] Conditions: **1a** (0.10 mmol), **2a** (0.15 mmol), Pd(PPh₃)₄ (2.5 mol%) and **L1** (3.0 mol%) in 0.3 mL of THF were allowed to stir at room temperature for 2 h. The solution was then transferred into a mixture of pre-NHC catalyst **C1** (20 mol%), "Bu₄NOAc (50 mol%), DQ (0.12 mmol) and 4Å MS 50 mg in toluene (5.0 mL). The reaction mixture was allowed to stir at room temperature for another 12 h under Ar. [b] Isolated yield after flash column chromatography. [c] Determined by HPLC analysis using a chiral stationary phase.

To a flame-dried Schlenk reaction tube equipped with a magnetic stir bar, was added the catalyst $Pd(PPh_3)_4$ (2.9 mg, 0.025 mmol), L1 (1.3 mg, 0.03 mmol), toluene (1.0 mL) was added. The mixture was then stirred at room temperature for 0.5 h. After that, 1a (48.4 mg, 0.1 mmol) and 2a (28.5 mg, 0.15 mmol) were added sequentially under Ar. The reaction mixture was then stirred at room temperature for 2 h. Then the solution was transferred into a mixture of pre-NHC catalyst C1 (20 mol%), *n*Bu₄NOAc (50 mol%), DQ (0.12 mmol) and 4Å MS 50 mg in toluene (4.0 mL) and stirred at room temperature for another 12 h (monitored by TLC). After the reaction was completed, the reaction mixture was filtered and concentrated. The residue was purified by a silica gel flash chromatography (Hexane/EtOAc = 5:1) to

afford the desired product **3a** in 72% yield with 96% ee.

Note: Racemic samples for the standard of chiral HPLC spectra were prepared using C7 as catalyst.

Characterization Data of Planar Chiral Products

(*R*_p,*Z*)-1⁵-bromo-1²-methoxy-12-phenyl-9-tosyl-2,14-dioxa-9-aza-1(1,4)benzenacyclopentadecaphan-11-en-15-one (3a)

Following the general procedure, the crude product was purified by column chromatography on a silica gel to afford the product **3a** (45.2 mg, 72% yield) as colorless oil. **R**_f (pentane:EtOAc = 4:1) = 0.30; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.72 (d, J = 8.0 Hz, 2H), 7.39 – 7.28 (m, 8H), 7.25 (s, 1H), 5.68 (t, J = 5.9 Hz, 1H), 5.20 (d, J = 13.2 Hz, 1H), 5.10 (d, J = 13.2 Hz, 1H), 4.45 – 4.28 (m, 2H), 4.03 (qd, J = 17.6, 5.9 Hz, 2H), 3.89 (s, 3H), 3.05 (ddd, J = 14.6, 10.3, 4.9 Hz, 1H), 2.87 (ddd, J = 14.5, 10.8, 4.3 Hz, 1H), 2.46 (s, 3H), 1.83 – 1.68 (m, 1H), 1.68 – 1.49 (m, 1H), 1.26 – 1.13 (m, 1H), 1.12 – 0.98 (m, 1H), 0.96 – 0.67 (m, 4H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 165.9, 151.8, 150.4, 143.2, 140.4, 137.9, 136.6, 131.3, 129.7, 128.5, 127.8, 127.2, 126.3, 126.3, 124.8, 114.3, 111.9, 70.6, 63.5, 56.3, 48.3, 46.2, 29.4, 29.1,

25.2, 25.0, 21.5; **HRMS** (ESI): *m/z*: calculated for $C_{21}H_{35}BrNO_6S$: $[M + H]^+ 628.1363$, found: 628.1369; HPLC (Chiralpak IF, *i*-propanol/hexane = 38/42, flow rate 0.8 mL/min, $\lambda = 254$ nm): t_R (major) = 26.2 min, t_R (minor) = 20.3 min, 96% ee; $[\alpha]^{25}_D =$ - 63.8 (c = 0.2, CHCl₃).

 (R_p,Z) -1⁵-bromo-1²-methoxy-9-tosyl-12-(4-(trifluoromethyl)phenyl)-2,14-dioxa-9aza-1(1,4)-benzenacyclopentadecaphan-11-en-15-one (3b)

Following the general procedure, the crude product was purified by column chromatography on a silica gel to afford the product **3b** (49.3 mg, 71% yield) as colorless oil. **R**_f (pentane:EtOAc = 4:1) = 0.28; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.72 (d, J = 8.1 Hz, 2H), 7.61 (d, J = 8.1 Hz, 2H), 7.51 (d, J = 8.2 Hz, 2H), 7.36 – 7.30 (m, 3H), 7.26 (s, 1H), 5.81 (t, J = 5.8 Hz, 1H), 5.20 (d, J = 13.3 Hz, 1H), 5.10 (d, J = 13.3 Hz, 1H), 4.42 – 4.33 (m, 2H), 4.12 – 3.93 (m, 2H), 3.89 (s, 3H), 3.07 (ddd, J = 15.1, 10.7, 5.4 Hz, 1H), 2.85 (ddd, J = 14.5, 11.4, 3.9 Hz, 1H), 2.46 (s, 3H), 1.84 – 1.72 (m, 1H), 1.58 (q, J = 6.0, 5.2 Hz, 1H), 1.27 – 1.15 (m, 1H), 1.10 – 0.98 (m, 1H), 0.94 – 0.74 (m, 4H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 165.8, 151.9, 150.4, 143.9, 143.4, 137.6, 135.6, 133. 8, 129.8, 127.2, 126.7, 125.8, 125.5 (q, J = 3.8 Hz), 124.7, 114.4, 112.0, 70.5, 63.1, 56.3, 48.6, 46.2, 29.3, 29.0, 25.1, 25.0, 21.5. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -62.57; HRMS (ESI): *m/z*: calculated for C₃₂H₃₄BrF₃NO₆S: [M + H]⁺ 696.1237, found: 696.1244; HPLC (Chiralpak IF, *i*-propanol/hexane = 38/42, flow rate 0.8 mL/min, $\lambda = 254$ nm): t_R (major) = 21.8 min, t_R (minor) = 15.9 min, 98% ee; [α]²⁵_D = - 72.5 (c = 0.2, CHCl₃).

(R_p,Z) -1⁵-bromo-1²-(4-fluorophenyl)-12-methoxy-9-tosyl-2,14-dioxa-9-aza-1(1,4)-

benzenacyclopentadecaphan-11-en-15-one (3c)

Following the general procedure, the crude product was purified by column chromatography on a silica gel to afford the product **3c** (45.3 mg, 70% yield) as colorless oil. **R**_f (pentane:EtOAc = 4:1) = 0.30; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.72 (d, J = 8.3 Hz, 2H), 7.40 – 7.30 (m, 5H), 7.26 (s, 1H), 7.03 (t, J = 8.7 Hz, 2H), 5.65 (t, J = 5.8 Hz, 1H), 5.17 (d, J = 13.3 Hz, 1H), 5.06 (d, J = 13.3 Hz, 1H), 4.42 – 4.34 (m, 2H), 4.13 – 3.90 (m, 2H), 3.89 (s, 3H), 3.13 – 2.96 (m, 1H), 2.86 (ddd, J = 14.5, 11.0, 4.1 Hz, 1H), 2.46 (s, 3H), 1.86 – 1.70 (m, 1H), 1.66 – 1.50 (m, 1H), 1.30 – 1.17 (m, 1H), 1.15 – 0.99 (m, 1H), 0.96 – 0.74 (m, 4H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 165.8, 162.5 (d, J = 247.3 Hz), 151.8, 150.37, 143.3, 137.8, 136.5 (d, J = 3.3 Hz), 135.7, 131.3, 129.7, 128.2, 128.1, 127.2, 126.0, 124.8, 115.5, 115.3, 114.4, 112.0, 70.6, 63.5, 56.3, 48.4, 46.2, 29.3, 29.0, 25.1, 25.0, 21.5. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -114.33; HRMS (ESI): *m*/*z*: calculated for C₃₁H₃₄BrFNO₆S: [M + H]⁺ 646.1269, found: 646.1274; HPLC (Chiralpak IF, *i*-propanol/hexane = 38/42, flow rate 0.8 mL/min, $\lambda = 254$ nm): *t*_R (major) = 21.8 min, *t*_R (minor) = 16.9 min, 99% ee; [α]²⁵_D = - 61.8 (*c* = 0.2, CHCl₃).

 (R_p,Z) -1⁵-bromo-1²-(4-chlorophenyl)-12-methoxy-9-tosyl-2,14-dioxa-9-aza-1(1,4)benzenacyclopentadecaphan-11-en-15-one (3d)

Following the general procedure, the crude product was purified by column chromatography on a silica gel to afford the product **3d** (47.6 mg, 72% yield) as colorless oil. **R**_f (pentane:EtOAc = 4:1) = 0.30; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.71 (d, J = 8.3 Hz, 2H), 7.35 – 7.30 (m, 7H), 7.25 (s, 1H), 5.70 (t, J = 5.8 Hz, 1H), 5.16 (d, J = 13.2 Hz, 1H), 5.06 (d, J = 13.2 Hz, 1H), 4.37 (q, J = 4.3, 3.2 Hz, 2H), 4.09 – 3.91 (m, 2H), 3.89 (s, 3H), 3.05 (ddd, J = 14.6, 10.6, 5.4 Hz, 1H), 2.91 – 2.79 (m, 1H), 2.46 (s, 3H), 1.77 (dt, J = 13.7, 6.2 Hz, 1H), 1.59 (d, J = 8.5 Hz, 1H), 1.23 (t, J = 13.8 Hz, 1H), 1.10 – 0.98 (m, 1H), 0.95 – 0.70 (m, 4H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 165.8, 151.8, 150.4, 143.3, 138.8, 137.7, 135.6, 133.8, 132.0, 129.7, 128.7, 127.7, 127.2, 126.0, 124.7, 114.4, 112.0, 70.6, 63.3, 56.3, 48.4, 46.2, 29.3, 29.0, 25.1, 25.0, 21.5; HRMS (ESI): *m/z*: calculated for C₃₁H₃₄BrClNO₆S: [M + H]⁺ 662.0974, found: 626.0982; HPLC (Chiralpak IF, *i*-propanol/hexane = 38/42, flow rate 0.8 mL/min, $\lambda = 254$ nm): *t*_R (major) = 25.5 min, *t*_R (minor) = 18.8 min, 98% ee; [α]²⁵_D = - 43.1 (*c* = 0.1, CHCl₃).

(*R*_p,*Z*)-1⁵-bromo-1²-(4-bromophenyl)-12-methoxy-9-tosyl-2,14-dioxa-9-aza-1(1,4)benzenacyclopentadecaphan-11-en-15-one (3e)

Following the general procedure, the crude product was purified by column chromatography on a silica gel to afford the product **3e** (51.8 mg, 73% yield) as colorless oil. **R**_f (pentane:EtOAc = 4:1) = 0.30; ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.71 (d, J = 8.2 Hz, 2H), 7.49 – 7.44 (m, 2H), 7.33 (d, J = 8.1 Hz, 2H), 7.30 (s, 1H), 7.27 (s, 1H), 7.25 (s, 2H), 5.70 (t, J = 5.8 Hz, 1H), 5.16 (d, J = 13.3 Hz, 1H), 5.05 (d, J = 13.2 Hz, 1H), 4.42 – 4.32 (m, 2H), 4.09 – 3.90 (m, 2H), 3.89 (s, 3H), 3.10 – 2.98 (m, 1H), 2.84 (ddd, J = 14.5, 11.0, 4.0 Hz, 1H), 2.46 (s, 3H), 1.84 – 1.71 (m, 1H), 1.61 – 1.51 (m, 1H), 1.27 – 1.15 (m, 1H), 1.07 – 0.98 (m, 1H), 0.92 – 0.72 (m, 4H). ¹³C **NMR** (100 MHz, Chloroform-*d*) δ 165.8, 151.9, 150.4, 143.3, 139.3, 137.7, 135.7, 132.1, 131.6, 129.7, 128.0, 127.2, 125.9, 124.7, 121.9, 114.4, 112.0, 70.6, 63.2, 56.3, 48.5, 46.2, 29.3, 29.0, 25.1, 25.0, 21.5; **HRMS** (ESI): *m/z*: calculated for C₃₁H₃₄Br₂NO₆S: [M + H]⁺ 708.0448, found: 708.0455; HPLC (Chiralpak IF, *i*-propanol/hexane = 38/42, flow rate 0.8 mL/min, $\lambda = 254$ nm): *t*_R (major) = 30.5 min, *t*_R (minor) = 22.1 min, 98% ee; [α]²⁵_D = – 70.6 (*c* = 0.2, CHCl₃).

(*R*_p,*Z*)methyl-4-(1⁵-bromo-1²-methoxy-15-oxo-9-tosyl-2,14-dioxa-9-aza-1(1,4)benzenacyclopentadecaphan-11-en-12-yl)benzoate (3f)

Following the general procedure, the crude product was purified by column chromatography on a silica gel to afford the product **3f** (48.2 mg, 70% yield) as colorless oil. **R**_f (pentane:EtOAc = 4:1) = 0.30; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.01 (d, J = 8.4 Hz, 2H), 7.72 (d, J = 8.3 Hz, 2H), 7.45 (d, J = 8.5 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 7.30 (s, 1H), 7.26 (s, 1H), 5.81 (t, J = 5.8 Hz, 1H), 5.20 (d, J = 13.2 Hz, 1H), 5.10 (d, J = 13.2 Hz, 1H), 4.37 (t, J = 5.0 Hz, 2H), 4.12 – 3.98 (m, 2H), 3.95 (s, 3H), 3.89 (s, 3H), 3.07 (ddd, J = 14.6, 5.8 Hz, 1H), 2.86 (ddd, J = 14.6, 11.1, 3.9 Hz, 1H), 2.46 (s, 3H), 1.83 – 1.71 (m, 1H), 1.64 – 1.53 (m, 1H), 1.25 – 1.17 (m, 1H), 1.10 – 0.98 (m, 1H), 0.94 – 0.72 (m, 4H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 166.7, 165.8, 151.9, 150.4, 144.7, 143.4, 137.7, 135.9, 133.5, 129.9, 129.8, 129.4, 127.2, 126.3, 125.9, 124.7, 114.4, 112.0, 70.6, 63.1, 56.3, 52.2, 48.5, 46.2, 29.3, 29.1, 25.1, 25.0, 21.5; HRMS (ESI): *m/z*: calculated for C₃₃H₃₇BrNO₈S: [M + H]⁺ 686.1418, found: 686.1412; HPLC (Chiralpak IF, *i*-propanol/hexane = 38/42, flow rate 0.8 mL/min, $\lambda = 254$ nm): *t*_R (major) = 46.5 min, *t*_R (minor) = 35.0 min, 98% ee; [α]²⁵_D = -57.3 (*c* = 0.2, CHCl₃).

 (R_p,Z) -12-([1,1'-biphenyl]-4-yl)-1⁵-bromo-1²-methoxy-9-tosyl-2,14-dioxa-9-aza-1(1,4)-benzenacyclopentadecaphan-11-en-15-one (3g)

Following the general procedure, the crude product was purified by column chromatography on a silica gel to afford the product **3g** (48.7 mg, 69% yield) as colorless oil. **R**_f (pentane:EtOAc = 4:1) = 0.30; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.74 (d, *J* = 8.3 Hz, 2H), 7.61 (ddd, *J* = 11.0, 7.7, 1.7 Hz, 4H), 7.52 – 7.43 (m, 4H), 7.43 – 7.29 (m, 4H), 7.27 (s, 1H), 5.76 (t, *J* = 5.9 Hz, 1H), 5.24 (d, *J* = 13.2 Hz, 1H), 5.14 (d, *J* = 13.2 Hz, 1H), 4.37 (q, *J* = 4.6, 3.9 Hz, 2H), 4.06 (qd, *J* = 17.6, 5.9 Hz, 2H), 3.90 (s, 3H), 3.07 (ddd, *J* = 14.5, 11.0, 4.8 Hz, 1H), 2.88 (ddd, *J* = 14.5, 10.9, 4.3 Hz, 1H), 2.47 (s, 3H), 1.91 – 1.70 (m, 1H), 1.59 (s, 1H), 1.34 – 1.16 (m, 1H), 1.13 – 1.01 (m, 1H), 0.97 – 0.74 (m, 4H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 165.9, 151.8, 150.4, 143.3, 140.7, 140.5, 139.2, 137.9, 136.2, 131.3, 129.7, 128.8, 127.5, 127.23, 127.19, 127.0, 126.7, 126.3, 124.9, 114.4, 111.9, 70.64, 63.4, 56.3, 48.3, 46.2, 29.4, 29.2, 25.2, 25.0, 21.5; HRMS (ESI): *m/z*: calculated for C₃₇H₃₉BrNO₆S: [M + H]⁺ 704.1676, found: 704.1681; HPLC (Chiralpak IF, *i*-propanol/hexane = 38/42, flow rate 0.8 mL/min, $\lambda = 254$ nm): *t*_R (major) = 38.5 min, *t*_R (minor) = 28.1 min, 98% ee; [α]²⁵_D = - 70.5 (*c* = 0.2, CHCl₃).

(*R*_p,*Z*)-1⁵-bromo-1²-methoxy-12-(4-methoxyphenyl)-9-tosyl-2,14-dioxa-9-aza-1(1,4)-benzenacyclopentadecaphan-11-en-15-one (3h)

Following the general procedure, the crude product was purified by column chromatography on a silica gel to afford the product **3h** (45.2 mg, 68% yield) as colorless oil. **R**_f (pentane:EtOAc = 4:1) = 0.25; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.72 (d, J = 8.3 Hz, 2H), 7.35 – 7.29 (m, 5H), 7.24 (s, 1H), 6.88 (d, J = 8.8 Hz, 2H), 5.58 (t, J = 5.9 Hz, 1H), 5.23 – 4.98 (m, 2H), 4.36 (q, J = 4.6, 4.1 Hz, 2H), 4.12 – 3.92 (m, 2H), 3.88 (s, 3H), 3.84 (s, 3H), 3.04 (ddd, J = 14.8, 10.6, 4.9 Hz, 1H), 2.86 (ddd, J = 14.6, 10.9, 4.5 Hz, 1H), 2.46 (s, 3H), 1.82 – 1.66 (m, 1H), 1.59 (ddd, J = 14.5, 7.5, 3.6 Hz, 1H), 1.27 – 1.15 (m, 1H), 1.12 – 0.98 (m, 1H), 0.96 – 0.71 (m, 4H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 166.0, 159.4, 151.7, 150.4, 143.2, 137.9, 136.1, 132.8, 129.7, 129.5, 127.6, 127.2, 126.4, 124.8, 114.3, 113.9, 111.9, 70.7, 63.5, 56.3, 55.3, 48.2, 46.2, 29.4, 29.2, 25.2, 25.0, 21.5; HRMS (ESI): *m/z*: calculated for C₃₂H₃₇BrNO₇S: [M + H]⁺ 658.1469, found: 658.1477; HPLC (Chiralpak IF, *i*-propanol/hexane = 38/42, flow rate 0.8 mL/min, $\lambda = 254$ nm): $t_{\rm R}$ (major) = 33.7 min, $t_{\rm R}$ (minor) = 26.6 min, 97% ee; [α]²⁵D = - 33.9 (c = 0.1, CHCl₃).

(*R*_p,*Z*)-1⁵-bromo-1²-methoxy-12-(p-tolyl)-9-tosyl-2,14-dioxa-9-aza-1(1,4)benzenacyclopentadecaphan-11-en-15-one (3i)

Following the general procedure, the crude product was purified by column chromatography on a silica gel to afford the product **3i** (44.1 mg, 69% yield) as colorless oil. **R**_f (pentane:EtOAc = 4:1) = 0.30; ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.72 (d, *J* = 8.3 Hz, 2H), 7.35 – 7.30 (m, 3H), 7.28 (s, 1H), 7.25 (d, *J* = 5.7 Hz, 2H), 7.15 (d, *J* = 7.9 Hz, 2H), 5.63 (t, *J* = 6.0 Hz, 1H), 5.18 (d, *J* = 13.1 Hz, 1H), 5.08 (d, *J* = 13.1 Hz, 1H), 4.36 (dt, *J* = 7.9, 4.1 Hz, 2H), 4.11 – 3.93 (m, 2H), 3.89 (s, 3H), 3.04 (ddd, *J* = 14.7, 10.5, 4.9 Hz, 1H), 2.86 (ddd, *J* = 14.5, 10.8, 4.4 Hz, 1H), 2.46 (s, 3H), 2.37 (s, 3H), 1.84 – 1.69 (m, 1H), 1.59 (q, *J* = 6.6 Hz, 1H), 1.27 – 1.15 (m, 1H), 1.12 – 0.98 (m, 1H), 0.94 – 0.73 (m, 4H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 166.0, 151.7, 150.4, 143.2, 137.9, 137.7, 137.5, 136.4, 130.4, 129.7, 129.2, 127.2, 126.4, 126.2, 124.9, 114.3, 111.9, 70.7, 63.5, 56.3, 48.2, 46.1, 29.41, 29.2, 25.2, 25.0, 21.5, 21.1; **HRMS** (ESI): *m/z*: calculated for C₃₂H₃₇BrNO₆S: [M + H]⁺ 642.1520, found: 642.1514; HPLC (Chiralpak IF, *i*-propanol/hexane = 38/42, flow rate 0.8 mL/min, λ = 254 nm): *t*_R (major) = 22.9 min, *t*_R (minor) = 18.2 min, 97% ee; [α]²⁵_D = - 58.7 (*c* = 0.2, CHCl₃).

(R_p,Z) -1⁵-bromo-12-(3,4-dichlorophenyl)-1²-methoxy-9-tosyl-2,14-dioxa-9-aza-1(1,4)-benzenacyclopentadecaphan-11-en-15-one (3j)

Following the general procedure, the crude product was purified by column chromatography on a silica gel to afford the product 3j (50.3 mg, 72% yield) as colorless oil. \mathbf{R}_{f} (pentane:EtOAc = 4:1) = 0.30; ¹H NMR (400 MHz, Chloroform-d) δ 7.72 (d, J = 8.2 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 7.30 (s, 1H), 7.22 (s, 1H), 7.20 (dd, J = 5.2, 1.1 Hz, 1H), 7.15 (dd, J = 3.7, 1.1 Hz, 1H), 7.01 (dd, J = 5.1, 3.7 Hz, 1H), 5.75 (t, J = 6.1 Hz, 1H), 5.22 (d, J = 13.2 Hz, 1H), 5.11 (d, J = 13.2 Hz, 1H), 4.46 – 4.32 (m, 2H), 4.05 (dd, J = 6.1, 1.8 Hz, 2H), 3.88 (s, 3H), 3.00 (ddd, J = 14.1, 11.1, 5.0 Hz, 1H), 2.87 (ddd, J = 14.1, 10.9, 5.2 Hz, 1H), 2.46 (s, 3H), 1.74 (dt, J = 13.0, 7.5 Hz, 1H), 1.61 (ddd, J = 14.0, 7.4, 3.6 Hz, 1H), 1.22 (dt, J = 14.5, 7.1 Hz, 1H), 1.13 - 1.00 (m, 1H), 0.90 (dt, J = 14.0, 6.6 Hz, 2H), 0.84 - 0.71 (m, 2H). ¹³C NMR (100 MHz, Chloroform-d) & 165.8, 151.8, 150.4, 143.6, 143.3, 137.8, 130.5, 129.8, 128.8, 127.7, 127.1, 126.3, 124.9, 124.9, 124.1, 114.3, 111.8, 70.7, 62.8, 56.3, 48.3, 45.9, 29.4, 29.3, 25.3, 25.0, 21.5; **HRMS** (ESI): *m/z*: calculated for C₃₁H₃₃BrCl₂NO₆S: $[M + H]^+$ 696.0584, found: 696.0593; HPLC (Chiralpak IF, *i*-propanol/hexane = 38/42, flow rate 0.8 mL/min, $\lambda = 254$ nm): t_R (major) = 29.2 min, t_R (minor) = 19.1 min, >99% ee; $[\alpha]^{25}_{D}$ = - 69.6 (*c* = 0.2, CHCl₃).

(*R*_p,*Z*)-1⁵-bromo-12-(3-bromophenyl)-1²-methoxy-9-tosyl-2,14-dioxa-9-aza-1(1,4)benzenacyclopentadecaphan-11-en-15-one (3k)

Following the general procedure, the crude product was purified by column chromatography on a silica gel to afford the product **3k** (49.8 mg, 71% yield) as colorless oil. $\mathbf{R}_{\mathbf{f}}$ (pentane:EtOAc = 4:1) = 0.30; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.72 (d, J = 8.3 Hz, 2H), 7.47 – 7.40 (m, 2H), 7.36 (t, J = 8.3 Hz, 3H), 7.31 (s, 1H), 7.27 (s, 1H), 7.23 (t, J = 8.1 Hz, 1H), 5.64 (t, J = 5.8 Hz, 1H), 5.15 (d, J = 13.3 Hz, 1H), 5.05 (d, J = 13.3 Hz, 1H), 4.42 – 4.33 (m, 2H), 4.13 – 3.92 (m, 2H), 3.90 (s, 3H), 3.04 (ddd, J = 14.5, 10.2, 5.1 Hz, 1H), 2.92 - 2.79 (m, 1H), 2.47 (s, 3H), 1.86 - 1.71(m, 1H), 1.64 – 1.57 (m, 1H), 1.30 – 1.17 (m, 1H), 1.12 – 1.00 (m, 1H), 0.96 – 0.71 (m, 4H). ¹³C NMR (100 MHz, Chloroform-d) δ 165.8, 151.8, 150.4, 143.4, 142.4, 137.8, 135.6, 132.4, 130.8, 130.0, 129.8, 129.4, 127.1, 125.9, 124.97, 124.8, 122.7, 114.4, 112.0, 70.6, 63.2, 56.3, 48.4, 46.1, 29.2, 29.1, 25.1, 25.0, 21.6; **HRMS** (ESI): m/z: calculated for C₃₁H₃₃Br₂NO₆S: [M + H]⁺ 707.0375, found: 707.0381; HPLC (Chiralpak IF, *i*-propanol/hexane = 38/42, flow rate 0.8 mL/min, λ = 254 nm): $t_{\rm R}$ (major) = 24.7 min, $t_{\rm R}$ (minor) = 17.9 min, 97% ee; $[\alpha]^{25}_{\rm D}$ = - 51.8 (c = 0.2, CHCl₃). (R_p,Z)-1⁵-bromo-1²-methoxy-12-(3-methoxyphenyl)-9-tosyl-2,14-dioxa-9-aza-1(1,4)-benzenacyclopentadecaphan-11-en-15-one (3l)

Following the general procedure, the crude product was purified by column chromatography on a silica gel to afford the product **31** (43.8 mg, 67% yield) as colorless oil. **R**_f (pentane:EtOAc = 4:1) = 0.25; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.72 (d, J = 8.3 Hz, 2H), 7.35 – 7.30 (m, 3H), 7.29 – 7.23 (m, 2H), 6.97 (dt, J = 7.9, 1.1 Hz, 1H), 6.91 (t, J = 2.1 Hz, 1H), 6.88 – 6.82 (m, 1H), 5.80 – 5.59 (m, 1H), 5.18 (d, J = 13.1 Hz, 1H), 5.08 (d, J = 13.1 Hz, 1H), 4.37 (dt, J = 8.1, 4.1 Hz, 2H), 4.14 – 3.94 (m, 2H), 3.89 (s, 3H), 3.84 (s, 3H), 3.12 – 3.00 (m, 1H), 2.86 (ddd, J = 14.5, 10.8, 4.3 Hz, 1H), 2.45 (s, 3H), 1.87 – 1.71 (m, 1H), 1.65 – 1.51 (m, 1H), 1.27 – 1.15 (m, 1H), 1.07 (dd, J = 10.6, 5.9 Hz, 1H), 0.92 – 0.71 (m, 4H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 165.9, 159.7, 151.8, 150.4, 143.3, 141.9, 137.9, 136.6, 131.4, 129.7, 129.5, 127.1, 126.3, 124.9, 118.8, 114.3, 113.2, 112.1, 111.9, 70.7, 63.5, 56.3, 55.3, 48.2, 46.1, 29.4, 29.2, 25.2, 25.0, 21.5; HRMS (ESI): *m/z*: calculated for C₃₂H₃₇BrNO₇S: [M + H]⁺ 658.1469, found: 658.1462; HPLC (Chiralpak IF, *i*-propanol/hexane = 38/42, flow rate 0.8 mL/min, $\lambda = 254$ nm): *t*_R (major) = 28.2 min, *t*_R (minor) = 21.7 min, 96% ee; [α]²⁵_D = - 70.1 (*c* = 0.2, CHCl₃).

(*R*_p,*Z*)-1⁵-bromo-1²-methoxy-12-(naphthalen-2-yl)-9-tosyl-2,14-dioxa-9-aza-1(1,4)-benzenacyclopentadecaphan-11-en-15-one (3m)

Following the general procedure, the crude product was purified by column chromatography on a silica gel to afford the product **3m** (49.8 mg, 71% yield) as colorless oil. **R**_f (pentane:EtOAc = 4:1) = 0.30; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.87 – 7.80 (m, 4H), 7.75 (d, *J* = 8.3 Hz, 2H), 7.53 – 7.48 (m, 3H), 7.34 (d, *J* = 8.1 Hz, 2H), 7.32 (s, 1H), 7.28 (s, 1H), 5.83 (t, *J* = 5.9 Hz, 1H), 5.31 (d, *J* = 13.2 Hz, 1H),

5.22 (d, J = 13.2 Hz, 1H), 4.37 (q, J = 4.5 Hz, 2H), 4.19 – 3.99 (m, 2H), 3.89 (s, 3H), 3.09 (ddd, J = 14.6, 10.5, 4.8 Hz, 1H), 2.90 (ddd, J = 14.6, 10.8, 4.4 Hz, 1H), 2.46 (s, 3H), 1.85 – 1.70 (m, 1H), 1.70 – 1.53 (m, 1H), 1.27 – 1.16 (m, 1H), 1.14 – 1.00 (m, 1H), 0.94 – 0.75 (m, 4H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 166.0, 151.8, 150.4, 143.23, 137.9, 137.6, 136.5, 133.3, 132.8, 131.7, 129.8, 128.19, 128.16, 127.6, 127.2, 126.4, 126.3, 126.2, 125.2, 124.9, 124.4, 114.4, 111.9, 70.6, 63.5, 56.3, 48.3, 46.3, 29.4, 29.1, 25.2, 25.0, 21.5; **HRMS** (ESI): *m/z*: calculated for C₃₅H₃₇BrNO₆S: [M + H]⁺ 678.1520, found: 678.1525; HPLC (Chiralpak IF, *i*-propanol/hexane = 38/42, flow rate 0.8 mL/min, $\lambda = 254$ nm): $t_{\rm R}$ (major) = 32.6 min, $t_{\rm R}$ (minor) = 23.7 min, 96% ee; [α]²⁵_D = - 67.4 (c = 0.2, CHCl₃).

 (R_p,Z) -12-(benzo[d][1,3]dioxol-5-yl)-1⁵-bromo-1²-methoxy-9-tosyl-2,14-dioxa-9aza-1(1,4)-benzenacyclopentadecaphan-11-en-15-one (3n)

Following the general procedure, the crude product was purified by column chromatography on a silica gel to afford the product **3n** (47.3 mg, 70% yield) as colorless oil. **R**_f (pentane:EtOAc = 4:1) = 0.25; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.72 (d, *J* = 8.3 Hz, 2H), 7.33 (d, *J* = 8.1 Hz, 2H), 7.30 (s, 1H), 7.25 (s, 1H), 6.88 (dd, *J* = 8.1, 1.9 Hz, 1H), 6.82 – 6.76 (m, 2H), 5.98 (s, 2H), 5.52 (t, *J* = 5.9 Hz, 1H), 5.13 (d, *J* = 13.2 Hz, 1H), 5.03 (d, *J* = 13.2 Hz, 1H), 4.41 – 4.33 (m, 2H), 4.09 – 3.90 (m, 2H), 3.89 (s, 3H), 3.04 (ddd, *J* = 14.7, 10.3, 5.0 Hz, 1H), 2.86 (ddd, *J* = 14.5, 10.8, 4.4 Hz, 1H), 2.46 (s, 3H), 1.82 – 1.71 (m, 1H), 1.64 – 1.54 (m, 1H), 1.22 (q, *J* = 5.1 Hz, 1H), 1.11 – 1.00 (m, 1H), 0.97 – 0.73 (m, 4H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 165.9, 151.8, 150.4, 147.9, 147.4, 143.3, 137.9, 136.3, 134.6, 129.9, 129.7, 127.2,

126.2, 124.8, 120.1, 114.4, 111.9, 108.2, 107.0, 101.2, 70.65, 63.6, 56.3, 48.2, 46.1, 29.3, 29.2, 25.2, 25.0, 21.5; **HRMS** (ESI): *m/z*: calculated for C₃₂H₃₅BrNO₈S: [M + H]⁺ 672.1262, found: 672.1268; HPLC (Chiralpak IF, *i*-propanol/hexane = 38/42, flow rate 0.8 mL/min, $\lambda = 254$ nm): *t*_R (major) = 44.0 min, *t*_R (minor) = 31.6 min, 98% ee; [α]²⁵_D = - 72.1 (*c* = 0.2, CHCl₃).

(*R*_p,*Z*)-1⁵-bromo-1²-methoxy-12-(2-methoxyphenyl)-9-tosyl-2,14-dioxa-9-aza-1(1,4)-benzenacyclopentadecaphan-11-en-15-one (30)

Following the general procedure, the crude product was purified by column chromatography on a silica gel to afford the product **30** (43.1 mg, 66% yield) as colorless oil. **R**_f (pentane:EtOAc = 4:1) = 0.25; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.70 (d, J = 8.4 Hz, 2H), 7.35 – 7.24 (m, 5H), 7.08 (dd, J = 7.5, 1.8 Hz, 1H), 6.96 – 6.82 (m, 2H), 5.61 (t, J = 6.1 Hz, 1H), 5.17 – 4.95 (m, 2H), 4.44 – 4.25 (m, 2H), 4.09 – 3.93 (m, 2H), 3.89 (s, 3H), 3.86 (s, 3H), 3.10 (td, J = 10.5, 5.3 Hz, 1H), 2.98 – 2.88 (m, 1H), 2.41 (s, 3H), 1.77 (q, J = 6.8 Hz, 1H), 1.66 – 1.52 (m, 1H), 1.19 (dd, J = 10.3, 6.1 Hz, 1H), 1.12 – 1.00 (m, 1H), 0.94 – 0.76 (m, 4H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 166.2, 156.4, 151.5, 150.4, 143.1, 137.9, 136.0, 132.6, 130.7, 129.9, 129.6, 129.2, 127.18, 127.15, 124.8, 120.7, 114.0, 111.5, 110.5, 70.5, 63.9, 56.3, 55.4, 48.1, 45.8, 29.6, 29.1, 25.3, 25.1, 21.5; HRMS (ESI): *m/z*: calculated for C₃₂H₃₇BrNO₇S: [M + H]⁺ 658.1469, found: 658.1477; HPLC (Chiralpak IF, *i*-propanol/hexane = 38/42, flow rate 0.8 mL/min, $\lambda = 254$ nm): *t*_R (major) = 18.5 min, *t*_R (minor) = 16.5 min, 96% ee; [α]²⁵_D = - 51.8 (*c* = 0.2, CHCl₃).

(*R*_p,*E*)-1⁵-bromo-1²-methoxy-12-(thiophen-2-yl)-9-tosyl-2,14-dioxa-9-aza-1(1,4)benzenacyclopentadecaphan-11-en-15-one (3p)

Following the general procedure, the crude product was purified by column chromatography on a silica gel to afford the product **3p** (44.8 mg, 71% yield) as colorless oil. $\mathbf{R}_{\mathbf{f}}$ (pentane:EtOAc = 4:1) = 0.30; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.72 (d, J = 8.2 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 7.30 (s, 1H), 7.22 (s, 1H), 7.20 (dd, J = 5.2, 1.1 Hz, 1H), 7.15 (dd, J = 3.7, 1.1 Hz, 1H), 7.01 (dd, J = 5.1, 3.7 Hz, 1H), 5.75 (t, J = 6.1 Hz, 1H), 5.22 (d, J = 13.2 Hz, 1H), 5.11 (d, J = 13.2 Hz, 1H), 4.46 -4.32 (m, 2H), 4.05 (dd, J = 6.1, 1.8 Hz, 2H), 3.88 (s, 3H), 3.00 (ddd, J = 14.1, 11.1, 5.0 Hz, 1H), 2.87 (ddd, J = 14.1, 10.9, 5.2 Hz, 1H), 2.46 (s, 3H), 1.74 (dt, J = 13.0, 7.5 Hz, 1H), 1.61 (ddd, J = 14.0, 7.4, 3.6 Hz, 1H), 1.22 (dt, J = 14.5, 7.1 Hz, 1H), 1.13 - 1.00 (m, 1H), 0.90 (dt, J = 14.0, 6.6 Hz, 2H), 0.84 - 0.71 (m, 2H). ¹³C NMR (100 MHz, Chloroform-d) & 165.8, 151.8, 150.4, 143.6, 143.3, 137.8, 130.5, 129.8, 128.8, 127.7, 127.1, 126.3, 124.89, 124.85, 124.1, 114.3, 111.8, 70.7, 62.8, 56.3, 48.3, 45.9, 29.4, 29.3, 25.3, 25.0, 21.5; **HRMS** (ESI): *m/z*: calculated for C₂₉H₃₃BrNO₆S₂: $[M + H]^+$ 634.0928, found: 634.0935; HPLC (Chiralpak IF, *i*-propanol/hexane = 38/42, flow rate 0.8 mL/min, $\lambda = 254$ nm): $t_{\rm R}$ (major) = 18.5 min, $t_{\rm R}$ (minor) = 16.5 min, 96% ee; $[\alpha]^{25}_{D}$ = - 48.2 (*c* = 0.2, CHCl₃).

(*R*_p,*E*)-1⁵-bromo-1²-(furan-2-yl)-12-methoxy-9-tosyl-2,14-dioxa-9-aza-1(1,4)benzenacyclopentadecaphan-11-en-15-one (3q)

Following the general procedure, the crude product was purified by column chromatography on a silica gel to afford the product **3q** (42.7 mg, 70% yield) as white solid. **R**_f (pentane:EtOAc = 4:1) = 0.30; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.72 (d, J = 8.3 Hz, 2H), 7.38 – 7.30 (m, 4H), 7.18 (s, 1H), 6.49 – 6.40 (m, 2H), 6.03 (t, J = 6.3 Hz, 1H), 5.15 (d, J = 13.0 Hz, 1H), 5.02 (d, J = 13.0 Hz, 1H), 4.42 – 4.31 (m, 2H), 4.04 (d, J = 6.4 Hz, 2H), 3.87 (s, 3H), 3.00 (ddd, J = 15.9, 11.3, 4.9 Hz, 1H), 2.87 (ddd, J = 14.1, 11.1, 5.1 Hz, 1H), 2.46 (s, 3H), 1.81 – 1.68 (m, 1H), 1.66 – 1.58 (m, 1H), 1.24 – 1.12 (m, 1H), 1.11 – 0.99 (m, 1H), 0.95 – 0.84 (m, 3H), 0.82 – 0.74 (m, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 165.9, 152.5, 151.7, 150.4, 143.2, 142.5, 137.7, 129.7, 127.18, 127.15, 126.5, 126.1, 124.8, 114.15, 111.7, 111.5, 106.6, 70.7, 60.6, 56.3, 48.3, 45.8, 29.6, 29.2, 25.3, 25.1, 21.5; HRMS (ESI): *m/z*: calculated for C₂₉H₃₃BrNO₇S: [M + H]⁺ 618.1156, found: 618.1161; HPLC (Chiralpak IF, *i*-propanol/hexane = 38/42, flow rate 0.8 mL/min, $\lambda = 254$ nm): $t_{\rm R}$ (major) = 31.8 min, $t_{\rm R}$ (minor) = 26.8 min, 97% ee; [α]²⁵D = - 55.3 (c = 0.2, CHCl₃).

(*R*_p,*Z*)-1⁵-bromo-1²-methoxy-12-((*E*)-styryl)-9-tosyl-2,14-dioxa-9-aza-1(1,4)benzenacyclopentadecaphan-11-en-15-one (3r)

Following the general procedure, the crude product was purified by column chromatography on a silica gel to afford the product **3r** (40.8 mg, 62% yield) as colorless oil. **R**_f (pentane:EtOAc = 4:1) = 0.30; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.71 (d, *J* = 8.3 Hz, 2H), 7.46 – 7.41 (m, 2H), 7.39 – 7.31 (m, 4H), 7.28 (d, *J* = 4.7 Hz, 2H), 7.20 (s, 1H), 6.75 – 6.58 (m, 2H), 5.69 (t, *J* = 6.2 Hz, 1H), 5.14 (d, *J* = 13.1 Hz, 1H), 5.04 (d, *J* = 13.1 Hz, 1H), 4.38 – 4.31 (m, 2H), 4.00 (d, *J* = 6.2 Hz, 2H), 3.88 (s, 3H), 3.04 (ddd, *J* = 14.9, 10.6, 4.8 Hz, 1H), 2.88 (ddd, *J* = 14.6, 10.9, 4.5 Hz, 1H), 2.46 (s, 3H), 1.80 – 1.68 (m, 1H), 1.62 – 1.51 (m, 1H), 1.24 – 1.13 (m, 1H), 1.09 –

0.97 (m, 1H), 0.92 – 0.81 (m, 2H), 0.82 – 0.73 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 166.0, 151.6, 150.4, 143.2, 137.6, 136.9, 134.1, 133.7, 129.7, 129.4, 128.7, 128.1, 127.8, 127.2, 126.6, 126.5, 124.8, 114.1, 111.7, 70.6, 59.9, 56.3, 48.4, 46.0, 29.5, 28.9, 25.3, 25.1, 21.5; **HRMS** (ESI): *m/z*: calculated for C₃₃H₃₇BrNO₆S: [M + H]⁺ 654.1520, found: 654.1527; HPLC (Chiralpak IF, *i*-propanol/hexane = 38/42, flow rate 0.8 mL/min, λ = 254 nm): *t*_R (major) = 42.1 min, *t*_R (minor) = 34.2 min, 96% ee; [α]²⁵_D = - 41.7 (*c* = 0.2, CHCl₃).

$$(R_p,Z)$$
-12-benzyl-1⁵-bromo-1²-methoxy-9-tosyl-2,14-dioxa-9-aza-1(1,4)-

benzenacyclopentadecaphan-11-en-15-one (3s)

Following the general procedure, the crude product was purified by column chromatography on a silica gel to afford the product **3s** (37.2 mg, 57% yield) as colorless oil. **R**_f (pentane:EtOAc = 4:1) = 0.35; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.66 (d, *J* = 8.3 Hz, 2H), 7.34 – 7.23 (m, 5H), 7.19 – 7.15 (m, 2H), 7.11 (s, 1H), 5.37 (t, *J* = 6.1 Hz, 1H), 4.69 (d, *J* = 12.9 Hz, 1H), 4.60 (d, *J* = 12.9 Hz, 1H), 4.42 – 4.29 (m, 2H), 3.94 – 3.87 (m, 5H), 3.43 (d, *J* = 3.0 Hz, 2H), 3.00 (ddd, *J* = 15.1, 10.6, 4.9 Hz, 1H), 2.83 (ddd, *J* = 14.7, 10.8, 4.7 Hz, 1H), 2.44 (s, 3H), 1.82 – 1.70 (m, 1H), 1.65 – 1.58 (m, 1H), 1.24 – 1.13 (m, 1H), 1.09 – 0.97 (m, 1H), 0.94 – 0.82 (m, 2H), 0.81 – 0.70 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 166.0, 151.7, 150.4, 143.0, 138.2, 137.9, 135.7, 129.6, 129.4, 129.0, 128.5, 127.1, 126.60, 126.56, 124.9, 114.1, 111.7, 70.8, 63.0, 56.3, 48.0, 45.5, 44.0, 29.5, 29.1, 25.3, 25.1, 21.5; HRMS (ESI): *m/z*: calculated for C₃₂H₃₇BrNO₆S: [M + H]⁺ 642.1520, found: 642.1529; HPLC (Chiralpak IF, *i*-propanol/hexane = 38/42, flow rate 0.8 mL/min, λ = 254 nm): *t*_R (major) = 9.3 min, *t*_R (minor) = 8.9 min, 97% ee; [α]²⁵_D = - 36.4 (*c* = 0.2, CHCl₃).

 (R_p,Z) -1⁵-bromo-12-cyclohexyl-1²-methoxy-9-tosyl-2,14-dioxa-9-aza-1(1,4)-

benzenacyclopentadecaphan-11-en-15-one (3t)

Following the general procedure, the crude product was purified by column chromatography on a silica gel to afford the product **3t** (35.8 mg, 56% yield) as colorless oil. **R**_f (pentane:EtOAc = 4:1) = 0.35; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.69 (d, J = 7.9 Hz, 2H), 7.30 (d, J = 8.5 Hz, 3H), 7.16 (s, 1H), 5.15 (t, J = 6.0 Hz, 1H), 4.70 (q, J = 12.9 Hz, 2H), 4.44 – 4.27 (m, 2H), 3.96 – 3.83 (m, 4H), 3.76 (dd, J = 16.9, 6.7 Hz, 1H), 3.09 – 2.94 (m, 1H), 2.83 (t, J = 11.4 Hz, 1H), 2.44 (s, 3H), 1.92 (t, J = 12.1 Hz, 1H), 1.74 (dd, J = 26.8, 12.2 Hz, 6H), 1.63 – 1.54 (m, 1H), 1.39 – 1.21 (m, 2H), 1.15 (t, J = 12.5 Hz, 2H), 1.09 – 0.95 (m, 3H), 0.93 – 0.66 (m, 4H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 166.2, 151.6, 150.4, 143.0, 141.4, 138.2, 129.6, 127.1, 126.9, 125.8, 124.9, 114.1, 111.5, 70.6, 62.9, 56.27, 47.8, 45.6, 45.3, 31.8, 31.6, 29.6, 29.2, 26.5, 26.4, 26.1, 25.2, 25.1, 21.5; HRMS (ESI): *m/z*: calculated for C₃₁H₄₁BrNO₆S: [M + H]⁺ 634.1833, found: 634.1835; HPLC (Chiralpak IF, *i*-propanol/hexane = 38/42, flow rate 0.8 mL/min, $\lambda = 254$ nm): *t*_R (major) = 19.4 min, *t*_R (minor) = 16.1 min, 97% ee; [α]²⁵D = - 50.3 (*c* = 0.2, CHCl₃).

 $(R_{\rm p},Z)$ -1²,1⁵-dibromo-12-phenyl-9-tosyl-2,14-dioxa-9-aza-1(1,4)-

benzenacyclopentadecaphan-11-en-15-one (4a)

Following the general procedure, the crude product was purified by column

chromatography on a silica gel to afford the product **4a** (47.2 mg, 70% yield) as colorless oil. **R**_f (pentane:EtOAc = 4:1) = 0.30; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.87 (s, 1H), 7.72 (d, J = 8.3 Hz, 2H), 7.41 – 7.31 (m, 8H), 5.73 (dd, J = 6.8, 5.1 Hz, 1H), 5.21 – 5.06 (m, 2H), 4.53 – 4.35 (m, 2H), 4.09 – 3.86 (m, 2H), 3.10 (ddd, J = 14.7, 10.7, 4.5 Hz, 1H), 2.86 (ddd, J = 13.7, 11.0, 4.5 Hz, 1H), 2.46 (s, 3H), 1.95 – 1.81 (m, 1H), 1.61 – 1.52 (m, 1H), 1.32 – 1.23 (m, 1H), 1.11 – 1.00 (m, 1H), 0.92 – 0.74 (m, 4H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 164.8, 159.1, 143.3, 140.3, 137.7, 136.3, 135.0, 131.6, 129.7, 128.6, 127.8, 127.3, 127.2, 126.3, 123.8, 120.1, 113.7, 71.0, 63.7, 48.3, 46.2, 29.2, 29.0, 24.9, 24.9, 21.5; HRMS (ESI): m/z: calculated for C₃₀H₃₂Br₂NO₅S: [M + H]⁺ 678.0342, found: 678.0350; HPLC (Chiralpak IF, *i*-propanol/hexane = 38/42, flow rate 0.8 mL/min, $\lambda = 254$ nm): $t_{\rm R}$ (major) = 25.3 min, $t_{\rm R}$ (minor) = 16.4 min, 92% ee; [α]²⁵_D = - 58.3 (c = 0.2, CHCl₃).

 (R_p,Z) -1⁵-bromo-1²-chloro-12-phenyl-9-tosyl-2,14-dioxa-9-aza-1(1,4)-

benzenacyclopentadecaphan-11-en-15-one (4b)

Following the general procedure, the crude product was purified by column chromatography on a silica gel to afford the product **4b** (44.8 mg, 71% yield) as colorless oil. **R**_f (pentane:EtOAc = 4:1) = 0.30; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.72 (d, J = 8.6 Hz, 3H), 7.41 – 7.30 (m, 8H), 5.79 – 5.66 (m, 1H), 5.22 – 5.05 (m, 2H), 4.53 – 4.35 (m, 2H), 4.09 – 3.84 (m, 2H), 3.09 (ddd, J = 14.9, 10.8, 4.6 Hz, 1H), 2.85 (ddd, J = 14.6, 11.1, 4.2 Hz, 1H), 2.46 (s, 3H), 1.85 (ddd, J = 14.6, 10.3, 5.7 Hz, 1H), 1.62 – 1.51 (m, 1H), 1.32 – 1.21 (m, 1H), 1.11 – 0.98 (m, 1H), 0.94 – 0.70 (m, 4H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 164.9, 158.1, 143.3, 140.3, 137.7, 136.4, 132.1, 131.6, 129.7, 128.6, 127.9, 127.2, 127.0, 126.3, 124.8, 124.3, 119.3, 71.1, 63.7, 48.3, 46.2, 29.2, 29.0, 25.0, 24.8, 21.5; HRMS (ESI): *m/z*: calculated for s³²

 $C_{30}H_{32}BrClNO_5S$: [M + H]⁺ 632.0868, found: 632.0874; HPLC (Chiralpak IF, *i*-propanol/hexane = 38/42, flow rate 0.8 mL/min, $\lambda = 254$ nm): t_R (major) = 22.6 min, t_R (minor) = 16.4 min, 92% ee; $[\alpha]^{25}_D = -52.4$ (c = 0.2, CHCl₃).

(*R*_p)-ethyl(Z)-1⁵-bromo-15-oxo-12-phenyl-9-tosyl-2,14-dioxa-9-aza-1(1,4)benzenacyclopentadecaphan-11-ene-1²-carboxylate (4c)

Following the general procedure, the crude product was purified by column chromatography on a silica gel to afford the product **4c** (45.1 mg, 67% yield) as colorless oil. **R**_f (pentane:EtOAc = 4:1) = 0.30; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.15 (s, 1H), 7.72 (d, *J* = 8.3 Hz, 2H), 7.44 (s, 1H), 7.39 – 7.30 (m, 7H), 5.72 (dd, *J* = 6.7, 5.2 Hz, 1H), 5.22 – 5.07 (m, 2H), 4.51 (ddd, *J* = 12.1, 9.0, 2.8 Hz, 1H), 4.44 – 4.30 (m, 3H), 4.12 – 3.90 (m, 2H), 3.07 (ddd, *J* = 14.6, 10.8, 4.6 Hz, 1H), 2.88 (ddd, *J* = 14.5, 11.0, 4.4 Hz, 1H), 2.46 (s, 3H), 1.92 – 1.77 (m, 1H), 1.67 – 1.50 (m, 1H), 1.39 (t, *J* = 7.1 Hz, 3H), 1.28 – 1.16 (m, 1H), 1.14 – 0.96 (m, 1H), 0.97 – 0.69 (m, 4H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 165.2, 164.3, 162.2, 143.3, 140.3, 137.9, 136.4, 133.7, 131.7, 129.7, 128.5, 127.8, 127.1, 126.3, 126.1, 125.2, 124.7, 122.2, 71.2, 63.5, 61.5, 48.2, 46.2, 29.5, 29.2, 25.1, 24.8, 21.5, 14.2; HRMS (ESI): *m/z*: calculated for C₃₃H₃₇BrNO₇S: [M + H]⁺ 670.1469, found: 670.1478; HPLC (Chiralpak IF, *i*-propanol/hexane = 38/42, flow rate 0.8 mL/min, λ = 254 nm): *t*_R (major) = 31.3 min, *t*_R (minor) = 24.0 min, 90% ee; [α]²⁵_D = - 46.7 (*c* = 0.2, CHCl₃).

(*R*_p,*Z*)-1³-bromo-1²,1⁶-dimethoxy-12-phenyl-9-tosyl-2,14-dioxa-9-aza-1(1,4)benzenacyclopentadecaphan-11-en-15-one (4d)

Following the general procedure, the crude product was purified by column chromatography on a silica gel to afford the product 4d (47.8 mg, 73% yield) as colorless oil. $\mathbf{R}_{\mathbf{f}}$ (pentane:EtOAc = 4:1) = 0.25; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.71 (d, J = 7.9 Hz, 2H), 7.34 (dd, J = 16.1, 6.9 Hz, 7H), 6.98 (s, 1H), 5.72 (t, J = 6.2Hz, 1H), 5.20 (d, *J* = 13.0 Hz, 1H), 5.10 (d, *J* = 13.0 Hz, 1H), 4.43 (ddd, *J* = 11.3, 8.0, 2.7 Hz, 1H), 4.29 (ddd, J = 11.6, 7.1, 3.0 Hz, 1H), 4.06 (qd, J = 17.2, 6.3 Hz, 2H), 3.91 (s, 3H), 3.89 (s, 3H), 3.06 (ddd, J = 15.6, 11.0, 5.2 Hz, 1H), 2.85 (ddd, J = 14.5, 10.7, 5.2 Hz, 1H), 2.45 (s, 3H), 1.75 – 1.62 (m, 1H), 1.62 – 1.50 (m, 1H), 1.13 – 0.99 (m, 2H), 1.00 – 0.86 (m, 1H), 0.86 – 0.58 (m, 3H). ¹³C NMR (100 MHz, Chloroformd) § 166.4, 153.0, 151.5, 144.4, 143.2, 140.4, 137.8, 136.5, 131.6, 129.7, 128.5, 128.3, 127.8, 127.1, 126.2, 108.8, 107.9, 71.0, 63.3, 60.9, 56.4, 48.0, 46.1, 29.8, 29.0, 26.1, 25.3, 21.5; **HRMS** (ESI): m/z: calculated for C₃₂H₃₇BrNO₇S: $[M + H]^+$ 658.1469, found: 658.1475; HPLC (Chiralpak IF, *i*-propanol/hexane = 28/52, flow rate 0.8 mL/min, $\lambda = 254$ nm): $t_{\rm R}$ (major) = 18.2 min, $t_{\rm R}$ (minor) = 16.3 min, 94% ee; $[\alpha]^{25}_{\rm D}$ = -40.2 (c = 0.2, CHCl₃).

 (R_{n},Z) -1⁵-bromo-1²-methyl-12-phenyl-9-tosyl-2,14-dioxa-9-aza-1(1,4)benzenacyclopentadecaphan-11-en-15-one (4e)

Following the general procedure, the crude product was purified by column

chromatography on a silica gel to afford the product **4e** (42.7 mg, 71% yield) as colorless oil. **R**_f (pentane:EtOAc = 4:1) = 0.35; ¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.72 (d, *J* = 8.3 Hz, 2H), 7.50 (s, 1H), 7.42 – 7.30 (m, 7H), 7.25 (s, 1H), 5.71 (dd, *J* = 6.7, 5.1 Hz, 1H), 5.17 (d, *J* = 13.1 Hz, 1H), 5.07 (d, *J* = 13.1 Hz, 1H), 4.45 (ddd, *J* = 12.4, 9.5, 2.8 Hz, 1H), 4.28 (dt, *J* = 12.4, 4.7 Hz, 1H), 4.12 – 3.85 (m, 2H), 3.10 (ddd, *J* = 15.0, 10.9, 4.4 Hz, 1H), 2.83 (ddd, *J* = 13.4, 10.9, 4.5 Hz, 1H), 2.46 (s, 3H), 2.21 (s, 3H), 1.79 (ddd, *J* = 14.7, 9.9, 4.9 Hz, 1H), 1.61 – 1.49 (m, 1H), 1.34 – 1.18 (m, 1H), 1.03 (ddd, *J* = 15.3, 8.3, 4.3 Hz, 1H), 0.89 – 0.70 (m, 4H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 166.2, 160.8, 143.2, 140.5, 137.8, 136.5, 133.0, 131.5, 129.7, 128.5, 128.3, 127.7, 127.2, 126.3, 125.5, 121.9, 118.4, 69.5, 63.3, 48.4, 46.3, 29.5, 29.1, 24.9, 24.9, 21.5, 15.7; **HRMS** (ESI): *m/z*: calculated for C₃₁H₃₅BrNO₅S: [M + H]⁺612.1414, found: 612.1419; HPLC (Chiralpak IF, *i*-propanol/hexane = 28/52, flow rate 0.8 mL/min, $\lambda = 254$ nm): *t*_R (major) = 23.1 min, *t*_R (minor) = 15.3 min, 97% ee; [α]²⁵_D = -63.7 (*c* = 0.2, CHCl₃).

(R_{p},Z) -1²,1⁵-dichloro-12-phenyl-9-tosyl-2,14-dioxa-9-aza-1(1,4)-

benzenacyclopentadecaphan-11-en-15-one (4f)

Following the general procedure, the crude product was purified by column chromatography on a silica gel to afford the product **4f** (38.6 mg, 66% yield) as colorless oil. **R**_f (pentane:EtOAc = 4:1) = 0.30; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.76 (s, 1H), 7.72 (d, J = 8.3 Hz, 2H), 7.39 – 7.30 (m, 7H), 7.19 (s, 1H), 5.70 (dd, J = 6.6, 5.1 Hz, 1H), 5.19 (d, J = 13.2 Hz, 1H), 5.10 (d, J = 13.2 Hz, 1H), 4.44 (dt, J = 10.1, 3.9 Hz, 2H), 3.97 (qd, J = 17.7, 5.9 Hz, 2H), 3.06 (ddd, J = 14.7, 10.6, 4.5 Hz, 1H), 2.84 (ddd, J = 13.7, 10.9, 4.4 Hz, 1H), 2.46 (s, 3H), 1.95 – 1.78 (m, 1H), 1.65 – 1.50 (m, 1H), 1.36 – 1.21 (m, 1H), 1.14 – 0.98 (m, 1H), 0.95 – 0.69 (m, 4H). ¹³C

NMR (100 MHz, Chloroform-*d*) δ 164.5, 158.2, 143.3, 140.3, 137.7, 136.5, 132.3, 132.1, 131.4, 129.8, 128.6, 127.9, 127.2, 126.3, 124.7, 124.1, 121.0, 71.0, 63.8, 48.3, 46.2, 29.1, 28.9, 24.9, 24.8, 21.5; **HRMS** (ESI): *m/z*: calculated for C₃₀H₃₂Cl₂NO₅S: [M + H]⁺ 588.1373, found: 588.1380; HPLC (Chiralpak IF, *i*-propanol/hexane = 28/52, flow rate 0.8 mL/min, λ = 254 nm): *t*_R (major) = 19.6 min, *t*_R (minor) = 14.8 min, 97% ee; [α]²⁵_D = - 59.7 (*c* = 0.2, CHCl₃).

 (R_p,Z) -1⁵-chloro-1²-methoxy-12-phenyl-9-tosyl-2,14-dioxa-9-aza-1(1,4)-

benzenacyclopentadecaphan-11-en-15-one (4g)

Following the general procedure, the crude product was purified by column chromatography on a silica gel to afford the product **4g** (41.1 mg, 70% yield) as colorless oil. **R**_f (pentane:EtOAc = 4:1) = 0.30; ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.72 (d, *J* = 8.3 Hz, 2H), 7.42 – 7.28 (m, 8H), 7.12 (s, 1H), 5.66 (t, *J* = 5.8 Hz, 1H), 5.23 (d, *J* = 13.2 Hz, 1H), 5.08 (d, *J* = 13.2 Hz, 1H), 4.42 – 4.27 (m, 2H), 4.02 (qd, *J* = 17.8, 5.9 Hz, 2H), 3.89 (s, 3H), 3.03 (ddd, *J* = 14.5, 10.1, 5.1 Hz, 1H), 2.86 (ddd, *J* = 14.6, 10.8, 4.3 Hz, 1H), 2.46 (s, 3H), 1.83 – 1.69 (m, 1H), 1.65 – 1.47 (m, 1H), 1.27 – 1.13 (m, 1H), 1.12 – 0.97 (m, 1H), 0.96 – 0.69 (m, 4H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 165.5, 151.9, 149.9, 143.2, 140.4, 137.8, 136.8, 131.1, 129.7, 128.5, 127.8, 127.2, 126.4, 125.2, 123.9, 121.6, 114.2, 70.6, 63.6, 56.3, 48.3, 46.1, 29.3, 29.1, 25.1, 25.0, 21.5; **HRMS** (ESI): *m/z*: calculated for C₃₁H₃₅ClNO₆S: [M + H]⁺ 584.1869, found: 584.1977; HPLC (Chiralpak IF, *i*-propanol/hexane = 28/52, flow rate 0.8 mL/min, $\lambda = 254$ nm): *t*_R (major) = 21.2 min, *t*_R (minor) = 17.4 min, 96% ee; [α]²⁵_D = - 60.4 (*c* = 0.2, CHCl₃).

 (R_p,Z) -1²-methoxy-1⁵,12-diphenyl-9-tosyl-2,14-dioxa-9-aza-1(1,4)benzenacyclopentadecaphan-11-en-15-one (4h)

Following the general procedure, the crude product was purified by column chromatography on a silica gel to afford the product 4h (46.0 mg, 74% yield) as colorless oil. $\mathbf{R}_{\mathbf{f}}$ (pentane:EtOAc = 4:1) = 0.30; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.68 (d, J = 7.9 Hz, 2H), 7.39 – 7.29 (m, 8H), 7.25 – 7.19 (m, 3H), 7.16 (s, 1H), 6.84 (dd, J = 7.3, 2.3 Hz, 2H), 5.41 (dd, J = 7.7, 4.3 Hz, 1H), 5.08 (d, J = 13.0 Hz, 1H), 4.44 (t, J = 4.8 Hz, 2H), 4.32 (d, J = 13.0 Hz, 1H), 3.96 (s, 3H), 3.95 – 3.87 (m, 1H), 3.62 (dd, J = 17.5, 7.7 Hz, 1H), 3.04 - 2.89 (m, 1H), 2.74 (ddd, J = 14.3, 11.1, 4.2 Hz)1H), 2.45 (s, 3H), 1.96 – 1.83 (m, 1H), 1.69 – 1.55 (m, 1H), 1.36 – 1.23 (m, 1H), 1.07 (ddd, J = 18.6, 10.2, 5.9 Hz, 2H), 0.94 - 0.78 (m, 3H). ¹³C NMR (100 MHz, Chloroform-d) & 168.9, 151.1, 150.1, 143.2, 140.8, 140.4, 137.9, 136.9, 135.9, 130.6, 129.7, 128.5, 128.2, 128.2, 127.5, 127.3, 127.1, 126.1, 124.7, 121.4, 113.7, 70.5, 62.9, 56.2, 47.8, 45.9, 29.7, 29.3, 25.2, 25.1, 21.5; HRMS (ESI): m/z: calculated for $C_{37}H_{40}NO_6S$: [M + H]⁺ 626.2571, found: 626.2577; HPLC (Chiralpak IF, *i*propanol/hexane = 28/52, flow rate 0.8 mL/min, λ = 254 nm): $t_{\rm R}$ (major) = 33.0 min, $t_{\rm R}$ (minor) = 18.5 min, >99% ee; $[\alpha]^{25}_{\rm D}$ = - 72.3 (c = 0.2, CHCl₃).

 (R_p,Z) -1²-methoxy-12-phenyl-1⁵-(thiophen-3-yl)-9-tosyl-2,14-dioxa-9-aza-1(1,4)benzenacyclopentadecaphan-11-en-15-one (4i)

Following the general procedure, the crude product was purified by column

chromatography on a silica gel to afford the product 4i (47.8 mg, 76% yield) as colorless oil. \mathbf{R}_{f} (pentane:EtOAc = 4:1) = 0.30; ¹H NMR (400 MHz, Chloroform-d) δ 7.69 (d, J = 8.3 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 7.26 (dd, J = 6.0, 4.2 Hz, 5H), 7.17 (d, J = 2.8 Hz, 2H), 7.07 (dd, J = 4.9, 1.3 Hz, 1H), 7.05 - 7.00 (m, 2H), 5.46 (dd, J = 1.0 Hz), 5.46 (dd,7.3, 4.8 Hz, 1H), 5.13 (d, J = 13.1 Hz, 1H), 4.49 (d, J = 13.1 Hz, 1H), 4.44 – 4.37 (m, 2H), 3.94 (s, 3H), 3.89 (dd, J = 17.6, 4.7 Hz, 1H), 3.69 (dd, J = 17.5, 7.3 Hz, 1H), 2.96 (ddd, J = 14.5, 10.1, 5.0 Hz, 1H), 2.85 – 2.69 (m, 1H), 2.46 (s, 3H), 1.93 – 1.76 (m, 1H), 1.63 (ddd, J = 19.5, 9.3, 5.1 Hz, 1H), 1.35 - 1.21 (m, 1H), 1.15 - 0.97 (m, 2H), 0.95 – 0.74 (m, 3H). ¹³C NMR (100 MHz, Chloroform-d) δ 168.8, 151.0, 150.2, 143.2, 141.1, 140.3, 137.9, 136.8, 130.7, 130.0, 129.7, 128.3, 128.1, 127.6, 127.1, 126.1, 125.7, 124.8, 121.8, 121.1, 113.4, 70.4, 63.0, 56.2, 47.9, 45.8, 29.6, 29.2, 25.2, 25.1, 21.5; **HRMS** (ESI): m/z: calculated for C₃₅H₃₈NO₆S₂: [M + H]⁺ 632.2136, found: 632.2141; HPLC (Chiralpak IF, *i*-propanol/hexane = 28/52, flow rate 0.8 mL/min, λ = 254 nm): $t_{\rm R}$ (major) = 55.4 min, $t_{\rm R}$ (minor) = 20.7 min, 98% ee; $[\alpha]^{25}_{\rm D}$ = - 69.3 (c = 0.2, CHCl₃).

 $(R_{\rm p},Z)$ -1²-methoxy-12-phenyl-1⁵-(thiophen-2-yl)-9-tosyl-2,14-dioxa-9-aza-1(1,4)benzenacyclopentadecaphan-11-en-15-one (4j)

Following the general procedure, the crude product was purified by column chromatography on a silica gel to afford the product 4j (47.1 mg, 75% yield) as colorless oil. $\mathbf{R}_{\mathbf{f}}$ (pentane:EtOAc = 4:1) = 0.30; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.69 (d, J = 8.3 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 7.26 (dd, J = 5.6, 2.9 Hz, 4H), 7.23 -7.19 (m, 2H), 7.06 - 7.00 (m, 2H), 7.00 - 6.94 (m, 2H), 5.50 (dd, J = 7.6, 4.7 Hz, 1H), 5.11 (d, J = 12.9 Hz, 1H), 4.52 (d, J = 12.9 Hz, 1H), 4.42 (q, J = 5.2, 4.4 Hz, 2H), 3.95 (s, 4H), 3.70 (dd, J = 17.4, 7.6 Hz, 1H), 3.01 (ddd, J = 14.6, 10.3, 4.9 Hz, 1H),

2.84 – 2.72 (m, 1H), 2.46 (s, 3H), 1.91 – 1.78 (m, 1H), 1.63 (ddd, J = 10.7, 7.4, 3.7 Hz, 1H), 1.34 – 1.21 (m, 1H), 1.17 – 1.05 (m, 1H), 0.98 (ddd, J = 18.0, 9.0, 4.8 Hz, 1H), 0.94 – 0.74 (m, 3H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 168.7, 150.9, 150.6, 143.1, 142.1, 140.4, 137.9, 136.6, 131.0, 129.7, 128.3, 127.6, 127.6, 127.1, 126.2, 126.0, 125.6, 125.4, 121.5, 113.3, 70.4, 63.1, 56.3, 47.9, 45.9, 29.7, 29.3, 25.2, 25.1, 21.5; **HRMS** (ESI): *m/z*: calculated for C₃₅H₃₈NO₆S₂: [M + H]⁺ 632.2136, found: 632.2143; HPLC (Chiralpak IF, *i*-propanol/hexane = 28/52, flow rate 0.8 mL/min, $\lambda = 254$ nm): $t_{\rm R}$ (major) = 44.7 min, $t_{\rm R}$ (minor) = 21.1 min, 98% ee; $[\alpha]^{25}_{\rm D} = -64.8$ (c = 0.2, CHCl₃).

 (R_p,Z) -1⁵-(furan-2-yl)-1²-methoxy-12-phenyl-9-tosyl-2,14-dioxa-9-aza-1(1,4)benzenacyclopentadecaphan-11-en-15-one (4k)

Following the general procedure, the crude product was purified by column chromatography on a silica gel to afford the product **4k** (44.8 mg, 73% yield) as colorless oil. **R**_f (pentane:EtOAc = 4:1) = 0.30; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.68 (d, J = 8.2 Hz, 2H), 7.34 – 7.29 (m, 7H), 7.23 – 7.16 (m, 3H), 6.42 (d, J = 3.3 Hz, 1H), 6.35 (dd, J = 3.4, 1.8 Hz, 1H), 5.57 (dd, J = 6.8, 5.3 Hz, 1H), 5.21 (d, J = 13.1 Hz, 1H), 4.72 (d, J = 13.1 Hz, 1H), 4.49 – 4.33 (m, 2H), 3.93 (s, 3H), 3.86 (dd, J = 17.6, 5.4 Hz, 1H), 3.73 (dd, J = 17.5, 6.9 Hz, 1H), 2.99 (ddd, J = 14.5, 10.4, 4.6 Hz, 1H), 2.80 – 2.68 (m, 1H), 2.45 (s, 3H), 1.88 – 1.76 (m, 1H), 1.67 – 1.59 (m, 1H), 1.33 – 1.21 (m, 1H), 1.12 – 1.02 (m, 1H), 0.98 – 0.78 (m, 4H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 168.6, 152.2, 150.8, 150.5, 143.1, 142.4, 140.2, 137.8, 136.2, 131.1, 129.6, 128.4, 127.7, 127.2, 126.2, 123.7, 123.6, 118.4, 113.0, 111.5, 107.3, 70.1, 63.1, 56.2, 48.0, 45.8, 29.6, 29.0, 25.1, 25.0, 21.5; HRMS (ESI): *m/z*: calculated for C₃₅H₃₈NO₇S: [M + H]⁺ 616.2364, found: 616.2373; HPLC (Chiralpak IF, *i*-

propanol/hexane = 28/52, flow rate 0.8 mL/min, λ = 254 nm): $t_{\rm R}$ (major) = 38.6 min, $t_{\rm R}$ (minor) = 23.6 min, 92% ee; $[\alpha]^{25}_{\rm D}$ = - 57.3 (c = 0.2, CHCl₃).

(*R*_p,*Z*)-1⁵-bromo-1²-methoxy-12-phenyl-9-tosyl-2,5,14-trioxa-9-aza-1(1,4)-

benzenacyclopentadecaphan-11-ene-6,15-dione (4l)

Following the general procedure, the crude product was purified by column chromatography on a silica gel to afford the product **41** (52.3 mg, 81% yield) as colorless oil. **R**_f (pentane:EtOAc = 4:1) = 0.25; ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.74 (d, *J* = 8.3 Hz, 2H), 7.40 – 7.29 (m, 8H), 7.19 (s, 1H), 5.62 (t, *J* = 6.7 Hz, 1H), 5.23 (d, *J* = 12.7 Hz, 1H), 5.06 (d, *J* = 12.8 Hz, 1H), 4.59 – 4.51 (m, 1H), 4.51 – 4.41 (m, 2H), 4.39 – 4.30 (m, 1H), 4.14 (qd, *J* = 16.9, 6.8 Hz, 2H), 3.88 (s, 3H), 3.29 – 3.09 (m, 2H), 2.45 (s, 3H), 2.26 – 2.04 (m, 2H). ¹³C **NMR** (100 MHz, Chloroform-*d*) δ 169.9, 165.9, 151.0, 150.5, 143.6, 140.3, 137.8, 137.4, 130.6, 129.9, 128.6, 128.0, 127.7, 127.1, 126.2, 126.1, 114.0, 111.1, 69.1, 64.9, 62.9, 56.3, 46.6, 42.6, 32.7, 21.5; **HRMS** (ESI): *m/z*: calculated for C₃₀H₃₁BrNO₈S: [M + H]⁺ 644.0949, found: 644.0954; HPLC (Chiralpak IF, *i*-propanol/hexane = 28/52, flow rate 0.8 mL/min, λ = 254 nm): *t*_R (major) = 61.9 min, *t*_R (minor) = 48.3 min, 90% ee; [α]²⁵_D = - 55.8 (*c* = 0.2, CHCl₃).

(*R*_p,*Z*)-1⁵-bromo-1²-methoxy-12-phenyl-9-tosyl-2,5,14-trioxa-9-aza-1(1,4)benzenacyclopentadecaphan-11-en-15-one (4m)

Following the general procedure, the crude product was purified by column chromatography on a silica gel to afford the product **4m** (50.5 mg, 80% yield) as colorless oil. **R**_f (pentane:EtOAc = 4:1) = 0.20; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.71 (d, J = 8.0 Hz, 2H), 7.46 – 7.30 (m, 8H), 7.21 (s, 1H), 5.76 (t, J = 6.1 Hz, 1H), 5.22 (d, J = 13.2 Hz, 1H), 5.10 (d, J = 13.2 Hz, 1H), 4.47 (dd, J = 13.3, 5.7 Hz, 1H), 4.29 (dd, J = 13.0, 6.0 Hz, 1H), 4.11 – 3.93 (m, 2H), 3.87 (s, 3H), 3.66 (dd, J = 11.8, 6.0 Hz, 1H), 3.58 (dd, J = 11.6, 6.0 Hz, 1H), 3.11 – 2.76 (m, 4H), 2.46 (s, 3H), 1.42 – 1.30 (m, 1H), 1.32 – 1.13 (m, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 166.1, 151.6, 151.2, 143.4, 140.4, 137.2, 136.9, 131.2, 129.8, 128.6, 127.9, 127.2, 127.0, 126.6, 126.4, 114.0, 111.3, 72.0, 70.8, 68.1, 63.5, 56.2, 46.3, 45.1, 28.8, 21.5; HRMS (ESI): *m/z*: calculated for C₃₀H₃₃BrNO₇S: [M + H]⁺ 630.1156, found: 630.1163; HPLC (Chiralpak IF, *i*-propanol/hexane = 28/52, flow rate 0.8 mL/min, $\lambda = 254$ nm): t_R (major) = 31.3 min, t_R (minor) = 22.9 min, 96% ee; [α]²⁵_D = - 63.4 (c = 0.2, CHCl₃). (R_pz **Z**)-1⁵-bromo-1²-methoxy-11-phenyl-8-tosyl-2,13-dioxa-8-aza-1(1,4)-

benzenacyclotetradecaphan-10-en-14-one (4n)

Following the general procedure, the crude product was purified by column chromatography on a silica gel to afford the product **4n** (34.2 mg, 56% yield) as colorless oil. **R**_f (pentane:EtOAc = 4:1) = 0.30; ¹H NMR (400 MHz, Chloroform-*d*) δ

7.72 (d, J = 8.3 Hz, 2H), 7.37 (s, 1H), 7.31 (dd, J = 8.0, 1.8 Hz, 5H), 7.28 – 7.24 (m, 2H), 7.22 (s, 1H), 5.35 (d, J = 14.1 Hz, 1H), 5.27 (t, J = 5.5 Hz, 1H), 5.05 (dd, J =14.1, 1.7 Hz, 1H), 4.42 (ddd, J = 12.3, 5.7, 3.3 Hz, 1H), 4.29 (ddd, J = 12.0, 9.2, 2.2 Hz, 1H), 4.04 (dd, J = 18.5, 4.8 Hz, 1H), 3.89 (s, 3H), 3.83 (dd, J = 18.7, 6.1 Hz, 1H), 3.01 (ddd, J = 14.8, 9.6, 5.5 Hz, 1H), 2.57 (ddd, J = 14.8, 9.7, 5.5 Hz, 1H), 2.46 (s, 3H), 1.92 – 1.79 (m, 0H), 1.65 – 1.51 (m, 1H), 1.27 – 1.19 (m, 1H), 1.19 – 1.08 (m, 1H), 1.05 – 0.88 (m, 1H), 0.82 – 0.68 (m, 1H). ¹³C NMR (100 MHz, Chloroform-d) δ 165.9, 152.2, 150.9, 143.2, 139.9, 138.4, 137.8, 129.7, 129.7, 128.4, 127.9, 127.2, 126.7, 125.9, 114.6, 111.9, 72.0, 64.5, 56.4, 49.1, 47.3, 30.6, 28.7, 23.6, 21.5; HRMS (ESI): m/z: calculated for C₃₀H₃₃BrNO₆S: [M + H]⁺ 614.1207, found: 614.1215; HPLC (Chiralpak IF, *i*-propanol/hexane = 28/52, flow rate 0.8 mL/min, $\lambda = 254$ nm): $t_{\rm R}$ (major) = 19.6 min, $t_{\rm R}$ (minor) = 14.8 min, 99% ee; [α]²⁵_D = - 67.4 (c = 0.2, CHCl₃). ($R_{\rm p}$,Z)-1⁵-bromo-1²-methoxy-13-phenyl-10-tosyl-2,15-dioxa-10-aza-1(1,4)benzenacyclohexadecaphan-12-en-16-one (40)

Following the general procedure, the crude product was purified by column chromatography on a silica gel to afford the product **40** (47.7 mg, 74% yield) as colorless oil. **R**_f (pentane:EtOAc = 4:1) = 0.30; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.74 (d, *J* = 8.3 Hz, 2H), 7.36 – 7.30 (m, 8H), 7.28 (s, 1H), 5.49 (t, *J* = 5.9 Hz, 1H), 5.23 – 5.11 (m, 2H), 4.42 (dt, *J* = 6.5, 4.5 Hz, 2H), 4.21 (dd, *J* = 18.0, 6.3 Hz, 1H), 4.09 (dd, *J* = 17.7, 5.9 Hz, 1H), 3.90 (s, 3H), 3.10 (ddd, *J* = 14.7, 9.4, 5.5 Hz, 1H), 2.95 (ddd, *J* = 14.5, 9.3, 5.8 Hz, 1H), 2.46 (s, 3H), 1.77 – 1.62 (m, 2H), 1.31 – 1.13 (m, 3H), 1.13 – 1.05 (m, 1H), 1.03 – 0.92 (m, 2H), 0.87 – 0.77 (m, 1H), 0.77 – 0.66 (m, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 165.6, 151.5, 149.8, 143.2, 140.3,

138.1, 137.4, 130.2, 129.7, 128.5, 127.8, 127.2, 126.3, 124.7, 123.1, 114.4, 112.5, 70.2, 63.4, 56.2, 47.8, 46.1, 28.5, 28.3, 27.7, 26.6, 25.0, 21.5; **HRMS** (ESI): m/z: calculated for C₃₂H₃₇BrNO₆S: [M + H]⁺ 642.1520, found: 642.1526; HPLC (Chiralpak IF, *i*-propanol/hexane = 28/52, flow rate 0.8 mL/min, λ = 254 nm): $t_{\rm R}$ (major) = 25.9 min, $t_{\rm R}$ (minor) = 22.8 min, 98% ee; $[\alpha]^{25}_{\rm D}$ = - 60.8 (c = 0.2, CHCl₃). (**Z**)-1⁵-bromo-1²-methoxy-14-phenyl-11-tosyl-2,16-dioxa-11-aza-1(1,4)-

benzenacycloheptadecaphan-13-en-17-one (4p)

Following the general procedure, the crude product was purified by column chromatography on a silica gel to afford the product **4p** (48.2 mg, 73% yield) as colorless oil. **R**_f (pentane:EtOAc = 4:1) = 0.30; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.74 (d, *J* = 8.3 Hz, 2H), 7.42 – 7.31 (m, 7H), 7.30 (s, 1H), 7.22 (s, 1H), 5.82 (t, *J* = 6.6 Hz, 1H), 5.21 (d, *J* = 12.5 Hz, 1H), 5.07 (d, *J* = 12.5 Hz, 1H), 4.42 (ddd, *J* = 12.0, 6.9, 4.2 Hz, 2H), 4.13 (d, *J* = 6.6 Hz, 2H), 3.84 (s, 3H), 3.13 – 2.92 (m, 2H), 2.46 (s, 3H), 1.80 – 1.68 (m, 1H), 1.68 – 1.59 (m, 1H), 1.26 (ddd, *J* = 26.8, 11.3, 6.9 Hz, 4H), 1.15 – 1.00 (m, 1H), 0.85 – 0.73 (m, 2H), 0.74 – 0.57 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 165.6, 151.1, 149.5, 143.2, 140.2, 137.7, 136.6, 131.1, 129.8, 128.6, 127.9, 127.1, 126.1, 123.8, 122.1, 114.5, 113.0, 69.6, 62.1, 56.1, 47.9, 46.1, 29.0, 28.8, 27.6, 26.9, 26.7, 24.1, 21.5; HRMS (ESI): *m*/*z*: calculated for C₃₃H₃₉BrNO₆S: [M + H]⁺ 656.1676, found: 656.1685.

Investigations on the Thermal Stability of the Planar-Chirality

Dependence of Thermal Stability on Temperature⁴

3a/4n/4o (10 mg) was dissolved in toluene (5 mL) in a Schlenk tube. Then the solution was allowed to stir at 40 °C. After 2 h, a small amount of sample (20 μ L) was taken out from solution and diluted by *i*-propanol/hexane (38/42, 0.5 mL), then the ee values of the sample was determined using HPLC. Then the temperature was increased by 10 °C and allowed to stir for two more hours and checked the ee values, and same procedure was repeated up to 140 °C.

The variation of enantiomeric excess vs temperature is given below:

TsN 13 Br MeO 0	TsN 14 MeO	Br	TsN 15 Br MeO 0 MeO 0
4n , 99% ee	3a , 96% e	ee	40 , 98% ee
No racemization at 140 °C for 2 h in toluene	No racemiza 140 °C for 2 h i	tion at n toluene	$\Delta G_{rot}^{\ddagger}$: 31.1 kcal/mol $t_{1/2}$ (25 °C): 33.5 years
Temperature (°C)	ee(%) for 4n	ee(%) for 3a	ee(%) for 40
40	99	96	98
50	99	96	98
60	99	96	98
70	99	96	96
80	99	96	94
90	99	96	87
100	99	96	77
110	99	96	55
120	99	96	29
130	99	96	9
140	99	96	0

In this experiment, the planar-chiral macrocycle **3a** or **4n** was heated in toluene under sealed conditions at 140 °C, no racemization of them was observed after 2 h. For compound **4o**, the ee value remained up to 60 °C demonstrating the restricted rotation of the *ansa* chain. These results demonstrated the good thermal stability of the macrocyclic planar-chiral products.

Experimental Determination of Rotation Barrier of 40⁵

The rotation barriers were obtained by racemization experiments of an enantiomer via chiral HPLC analysis. The racemization constant was obtained from the slope of the first-order kinetic line (kracemization = 2 ×kenantiomerzation). Rotation barrier (ΔG^{\ddagger}) was obtained from the eyring equation. (R = 8.31451 J·K⁻¹·mol⁻¹, h = 6.62608 ×10⁻³⁴ J·s and k_B = 1.38066 10⁻²³ J·K⁻¹).

Rotation barrier for 4o: (10 mg) was dissolved in toluene (5 mL) and stirred at 100 °C for about 37 h. A small amount of sample (20 μ L) was taken out from solution and diluted by *i*-propanol/hexane (38/42, 0.5 mL), then the ee values of the sample was determined using HPLC to monitor the percentage decrease of the second eluted enantiomer over time.

Time (s)	% of major enantiomer (M)	% of minor enantiomer (m)	ln [(M+m)/(M-m)]
0	97.953	2.047	0.0148
7200	92.265	7.735	0.1681
18000	83.505	16.495	0.4003
28800	78.901	21.099	0.5481
46800	73.982	26.018	0.7347
61200	68.674	31.326	0.9849
75600	65.306	34.649	1.1838
90000	62.224	37.776	1.4086
104400	60.834	39.166	1.5293
118800	59.739	40.261	1.6359
133200	58.680	41.320	1.7510

The variation of enantiomeric excess vs time is given below:

The plot on variation of ee values with time for **40** is presented below:

 $k_{\text{racemization}} (100 \text{ °C}) = 1.0 \times 10^{-5} \text{ s}^{-1}$ $k_{\text{enantiomerization}} (100 \text{ °C}) = 0.5 \times 10^{-5} \text{ s}^{-1}$ $\mathbf{t}_{1/2}^{\text{rac}} (100 \text{ °C}) = \ln(2)/k_{\text{racemization}} = 69315 \text{ s} = 19.3 \text{ h}$ Employing the Eyring equation: $\Delta G^{\neq} = \text{RT} \ln(\text{kB} \times \text{T}/k_{\text{racemization}} \times \text{h})$ $\Delta G^{\neq} = 8.314 \ J \cdot mol^{-1} \cdot K^{-1} \times 373.15 \ K \ \times \ln(1.38 \times 10^{-23} \ J \cdot K^{-1} \times 373.15 K/0.5 \times 10^{-5} \ \text{s}^{-1} \times 6.626 \times 10^{-34} \text{ Js})$ $\Delta G^{\neq} = 129.95 \ KJ \cdot mol^{-1} = 31.1 \ kcal \cdot mol^{-1} k_{\text{racemization}} (25 \text{ °C}) = 6.57 \times 10^{-10} \ \text{s}^{-1}$ $\mathbf{t}_{1/2}^{\text{rac}} (25 \text{ °C}) = \ln(2)/k_{\text{racemization}} (25 \text{ °C}) = 1.06 \times 10^9 \text{ s} = 33.5 \text{ years}$

Gram-Scale Synthesis and Synthetic Transformations

Gram-Scale Synthesis of 3a

To a flame-dried Schlenk reaction tube equipped with a magnetic stir bar, was \$47

added the catalyst Pd(PPh₃)₄ (47.8 mg, 2.5 mol%), L1 (21.5 mg, 3 mol%), toluene (1.5 mL) was added. The mixture was then stirred at room temperature for 0.5 h. After that, **1a** (0.8 g, 1.0 equiv.) and **2a** (0.47 g, 1.5 equiv.) were added sequentially under Ar. The reaction mixture was then stirred at room temperature for 2 h. Then the solution was transferred into a mixture of pre-NHC catalyst **C1** (20 mol%), ^{*n*}Bu₄NOAc (50 mol%), DQ (0.12 mmol) and 4Å MS 50 mg in toluene (80.0 mL) and stirred at room temperature for another 12 h (monitored by TLC). After the reaction was completed, the reaction mixture was filtered and concentrated. The residue was purified by a silica gel flash chromatography (Hexane/EtOAc = 5:1) to afford the desired product **3a** in 70% yield (0.73 g) with 96% ee.

Synthetic Transformations of 3a

Sonogashira coupling

To a solution of **3a** (62.8 mg, 0.1 mmol) and ethynylbenzene (30.6 mg, 3.0 equiv) in THF/Et₃N (v/v = 1:1, 2.0 mL) was added Pd(PPh₃)₂Cl₂ (3.5.0 mg, 5 mol%) and CuI (1.5 mg, 10 mol%). The flask was flushed with nitrogen gas. The resulting mixture was stirred at 80 °C for 48 h. Then the reaction mixture was concentrated and the residue was purified by a silica gel column chromatography to give **5** in 86% yield without compromising the ee values (96% ee).

(*R*,*Z*)-1²-methoxy-12-phenyl-1⁵-(phenylethynyl)-9-tosyl-2,14-dioxa-9-aza-1(1,4)benzenacyclopentadecaphan-11-en-15-one (5)

Following the above procedure, the crude product was purified by column chromatography on a silica gel to afford the product **5** (56.1 mg, 86% yield) as colorless oil. **R**_f (pentane:EtOAc = 4:1) = 0.30; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.67 (d, J = 8.2 Hz, 2H), 7.44 (s, 1H), 7.42 – 7.36 (m, 4H), 7.35 – 7.29 (m, 2H), 7.28 – 7.21 (m, 7H), 5.73 (t, J = 5.6 Hz, 1H), 5.36 (d, J = 13.3 Hz, 1H), 5.06 (d, J = 13.3 Hz, 1H), 4.41 (dddd, J = 18.0, 12.3, 8.9, 3.7 Hz, 2H), 4.15 (dd, J = 18.1, 5.4 Hz, 1H), 4.00 (dd, J = 18.1, 6.1 Hz, 1H), 3.94 (s, 3H), 3.08 (ddd, J = 15.1, 10.6, 5.0 Hz, 1H), 2.89 (ddd, J = 13.5, 11.1, 4.0 Hz, 1H), 2.42 (s, 3H), 1.85 – 1.73 (m, 1H), 1.67 – 1.52 (m, 1H), 1.38 – 1.18 (m, 1H), 1.13 – 0.99 (m, 1H), 0.89 – 0.72 (m, 4H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 166.2, 151.4, 151.0, 143.1, 140.4, 137.7, 136.7, 131.5, 131.4, 129.6, 128.41, 128.35, 128.3, 127.7, 127.1, 126.4, 126.4, 123.7, 123.0, 116.3, 113.7, 93.0, 87.7, 70.0, 63.6, 56.2, 48.8, 46.4, 29.4, 29.1, 25.0, 24.9, 21.5; HRMS (ESI): *m/z*: calculated for C₃₉H₄₀NO₆S: [M + H]⁺ 650.2571, found: 650.2578; HPLC (Chiralpak IF, *i*-propanol/hexane = 30/50, flow rate 0.8 mL/min, $\lambda = 254$ nm): *t*_R (major) = 31.4 min, *t*_R (minor) = 28.1 min, 96% ee; [α]²⁵_D = - 63.8 (*c* = 0.2, CHCl₃).

A solution of **3a** (62.8 mg, 0.1 mmol, 1.0 equiv.) in dichloromethane (2 mL) was cooled by an ice bath and added *m*-CPBA (34.5 mg, 70% w/w, 0.15 mmol, 2.0 equiv) portion wise. The reaction mixture was allowed to warm to room temperature slowly

and stir for 12 h. The reaction was then quenched with saturated $Na_2S_2O_3$ solution. The organic phase was filtered and the solvent was removed by rotary evaporation. The residue was purified by a silica gel flash chromatography (pentane/CH₂Cl₂ = 2:1) to afford the desired product **6** (48.8 mg, 76%, 96% ee, 11:1 dr).

5²-bromo-5⁵-methoxy-1²-phenyl-13-tosyl-3,6-dioxa-13-aza-1(2,3)-oxirana-5(1,4)benzenacyclotetradecaphan-4-one (6)

Following the above procedure, the crude product was purified by column chromatography on a silica gel to afford the product **6** (48.8 mg, 76% yield) as colorless oil. **R**_f (pentane/CH₂Cl₂ = 2:1) = 0.30; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.72 (d, *J* = 8.3 Hz, 2H), 7.41 – 7.35 (m, 6H), 7.30 (d, *J* = 8.2 Hz, 2H), 7.23 (s, 1H), 5.18 (d, *J* = 12.6 Hz, 1H), 4.70 (d, *J* = 12.7 Hz, 1H), 4.39 – 4.29 (m, 2H), 4.05 (d, *J* = 16.0 Hz, 1H), 3.93 (s, 3H), 3.22 – 3.04 (m, 3H), 2.90 (ddd, *J* = 14.5, 9.5, 4.9 Hz, 1H), 2.43 (s, 3H), 1.63 (q, *J* = 6.0 Hz, 2H), 1.35 – 1.19 (m, 1H), 1.06 (dd, *J* = 14.2, 6.7 Hz, 1H), 0.95 – 0.76 (m, 3H), 0.76 – 0.56 (m, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 165.7, 151.3, 150.0, 143.3, 137.8, 137.6, 129.7, 128.6, 128.5, 127.1, 126.0, 125.8, 123.7, 115.5, 111.1, 69.9, 64.1, 61.9, 60.6, 56.3, 49.0, 46.0, 28.1, 27.8, 24.9, 24.8, 21.5; HRMS (ESI): *m/z*: calculated for C₃₁H₃₅BrNO₇S: [M + H]⁺ 644.1313, found: 644.1322; HPLC (Chiralpak IF, *i*-propanol/hexane = 38/42, flow rate 0.8 mL/min, λ = 254 nm): *t*_R (major) = 31.8 min, *t*_R (minor) = 22.4 min, 98% ee; [α]²⁵_D = - 46.2 (*c* = 0.2, CHCl₃).

Control Experiments

To a flame-dried Schlenk reaction tube equipped with a magnetic stir bar, was added the catalyst Pd(PPh₃)₄ (2.9 mg, 0.025 mmol), L1 (1.3 mg, 0.03 mmol), toluene (1.0 mL) was added. The mixture was then stirred at room temperature for 0.5 h. After that, **1a** (48.4 mg, 0.1 mmol) and **2a** (28.5 mg, 0.15 mmol) were added sequentially under Ar. The reaction mixture was then stirred at room temperature for 2 h. Then the mixture was purified by a silica gel flash chromatography (pentane/EtOAc = 2:1) directly to afford the desired product **3a**' (60.5 mg, 96%).

To a solution of pre-NHC catalyst C1 (20 mol%), ^{*n*}Bu₄NOAc (50 mol%), DQ (0.12 mmol) and 4Å MS 50 mg in toluene (4.0 mL), the obtained 3a' (60.5 mg) was added and stirred at room temperature for another 12 h (monitored by TLC). After the reaction was completed, the reaction mixture was filtered and concentrated. The residue was purified by a silica gel flash chromatography (Hexane/EtOAc = 5:1) to afford the desired product **3a** in 72% yield (43.2 mg) in total and with 96% ee.

(E)-N-(6-(5-bromo-4-formyl-2-methoxyphenoxy)hexyl)-N-(4-hydroxy-3-

phenylbut-2-en-1-yl)-4-methylbenzenesulfonamide (3a')

Following the above procedure, the crude product was purified by column chromatography on a silica gel to afford the product **3a'** (60.5 mg, 96% yield) as colorless oil. \mathbf{R}_{f} (pentane/EtOAc = 2:1) = 0.20; ¹H NMR (400 MHz, Chloroform-*d*) δ

10.20 (s, 1H), 7.73 (d, J = 8.0 Hz, 2H), 7.42 (s, 1H), 7.37 – 7.29 (m, 7H), 7.04 (s, 1H), 5.71 (t, J = 7.1 Hz, 1H), 4.57 (s, 2H), 4.09 (d, J = 7.1 Hz, 2H), 4.05 (t, J = 6.6 Hz, 2H), 3.90 (s, 3H), 3.22 (t, J = 7.4 Hz, 2H), 2.43 (s, 3H), 1.87 (p, J = 6.8 Hz, 2H), 1.66 (p, J = 7.4 Hz, 2H), 1.50 (dt, J = 14.7, 7.0 Hz, 2H), 1.42 (dd, J = 14.5, 7.6 Hz, 2H), 1.28 (t, J = 7.1 Hz, 1H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 190.8, 154.2, 149.1, 143.3, 141.9, 140.1, 137.0, 129.7, 128.5, 127.8, 127.2, 126.3, 126.3, 126.2, 120.4, 116.3, 110.7, 69.3, 59.6, 56.1, 48.2, 45.7, 28.7, 28.5, 26.3, 25.5, 21.5; **HRMS** (ESI): *m/z*: calculated for C₃₁H₃₇BrNO₆S: [M + H]⁺ 630.1520, found: 630.1526.

Mechanistic Studies

The result of equation (1) indicates that the co-catalytic process is impermissible, and the Pd-catalyzed process is prohibited by some factor. Therefore, control experiments were performed as bellow.

4	Pd(PPh ₃) ₄ (2.5 mol%), L1 (3 mol%), DQ (1.2 equiv.), "Bu ₄ NOAc (50 mol%), C1 (20 mol)	no product
5	Pd(PPh ₃) ₄ (2.5 mol%), "Bu ₄ NOAc (50 mol%), C1 (20 mol)	no product

Above results shows that the C1 affects the Pd-catalyzed process. According the literature,⁶ the probable reason is that there are formed a stable complex between generated free carbebe and palladium, which is consistent with the nature of the strong coordination between palladium and free carbene.

Crystal Structure of 3q

Single crystals of 3q (50 mg) were grown in CH₂Cl₂/hexane = 10:1 (1.5 mL). The 1.5 mL vial was capped and placed at room temperature in the experimental cabinet for 5 days, whereupon crystals formed. A clear light colorless block shaped crystal of 3q was used for the X-ray crystallographic analysis. The X-ray intensity data were measured at 173 K, on an AtlasS2 diffractometer. The crystal data of 3q have been deposited in CCDC and have been displayed at 50% ellipsoid contour probability level.

Crystal data and structure	e refinement for exp	_6622YGMre
----------------------------	----------------------	------------

Identification code	exp_6622YGMre
Empirical formula	$C_{29}H_{32}BrNO_7S$
Formula weight	618.53
Temperature / K	172.99(10)
Crystal system	orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
a / Å, b / Å, c / Å	9.65444(8), 11.52287(10), 25.33694(19)
$\alpha/^{\circ},\beta/^{\circ},\gamma/^{\circ}$	90.00, 90.00, 90.00
Volume / Å ³	2818.65(4)
Z	4
$ ho_{calc}$ / mg mm ⁻³	1.458
μ / mm^{-1}	3.079
F(000)	1280
Crystal size / mm ³	0.2 imes 0.1 imes 0.1
2Θ range for data collection	6.98 to 133.48°
Index ranges	$-11 \le h \le 11, -13 \le k \le 13, -30 \le l \le 30$
Reflections collected	80404
Independent reflections	4948[R(int) = 0.1334]
Data/restraints/parameters	4948/0/355

Goodness-of-fit on F ²	1.082
Final R indexes [I> 2σ (I) i.e. $F_o>4\sigma$ (F_o)]	$R_1 = 0.0447, wR_2 = 0.1203$
Final R indexes [all data]	$R_1 = 0.0448, wR_2 = 0.1204$
Largest diff. peak/hole / e Å ⁻³	0.673/-0.583
Flack Parameters	-0.003(18)
Completeness	0.9851

NMR Spectra

¹H NMR (400 MHz, CDCl₃) spectra of 1b

S57

¹H NMR (400 MHz, CDCl₃) spectra of 1c

¹³C NMR (100 MHz, CDCl₃) spectra of 1c

¹H NMR (400 MHz, CDCl₃) spectra of 1d

¹³C NMR (100 MHz, CDCl₃) spectra of 1d

—189.74	~164.46 ~162.57	113.29 137.15 137.15 133.35 133.35 133.35 133.35 133.35 113.35 112.19 117.54	-69.55	-61.36	-43.02	29.44 28.53 28.53 28.53 28.53 21.49 14.25
---------	--------------------	--	--------	--------	--------	---

¹H NMR (400 MHz, CDCl₃) spectra of 1e

¹H NMR (400 MHz, CDCl₃) spectra of 1f

¹H NMR (400 MHz, CDCl₃) spectra of 1g

	7.195 7.785 7.734 7.33 6.93	4.55 4.52 4.07 4.07 2.98 2.98 2.98 2.98	1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87
--	---	--	--

¹³C NMR (100 MHz, CDCl₃) spectra of 1g

¹H NMR (400 MHz, CDCl₃) spectra of 1h

8	N100070	8 F C F D 8 F C 8 8 D 4 8 9 4 8 F 8 4 8 F 8 F 8 F 8 F 8 7 F 0 4 8 7 F 9 4 8 7 F 9 4 8 7 F 9 4 8 7 F 9 4 8 7 F 9
	NN4000	ŊŊŊŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎ
10	NNNN 0	444446668888888888888888888888888888888
1		

¹³C NMR (100 MHz, CDCl₃) spectra of 1h

¹H NMR (400 MHz, CDCl₃) spectra of 1i

¹³C NMR (100 MHz, CDCl₃) spectra of 1i

¹H NMR (400 MHz, CDCl₃) spectra of 1j

9:95 7.77 7.7.74 7.7.74 7.7.45 7.7.45 7.7.45 7.7.45 7.7.45 7.7.45 7.7.45 7.7.45 7.7.45 7.7.19 6.7.10 7.7.7.10 7.7.100 7.7.100 7.7.10000000000	4.53 4.54 4.53 4.53 4.53 4.06 7.2996 7.2996 7.188 7.187 7.197 7.19
---	---

¹H NMR (400 MHz, CDCl₃) spectra of 1k

$\begin{array}{c} -10.00\\$	1.41 1.41 1.37 1.35
---	------------------------------

¹³C NMR (100 MHz, CDCl₃) spectra of 1k

¹H NMR (400 MHz, CDCl₃) spectra of 11

¹³C NMR (100 MHz, CDCl₃) spectra of 11

S69

¹H NMR (400 MHz, DMSO-d₆) spectra of 10

¹H NMR (400 MHz, DMSO-*d*₆) spectra of 1p

¹H NMR (400 MHz, CDCl₃) spectra of 1q

¹³C NMR (100 MHz, CDCl₃) spectra of 1q

¹H NMR (400 MHz, CDCl₃) spectra of 3a

¹H NMR (400 MHz, CDCl₃) spectra of 3b

¹⁹F NMR (376 MHz, CDCl₃) spectra of 3b

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) spectra of 3c

¹⁹F NMR (376 MHz, CDCl₃) spectra of 3c

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) spectra of 3d

¹H NMR (400 MHz, CDCl₃) spectra of 3e

¹H NMR (400 MHz, CDCl₃) spectra of 3f

¹H NMR (400 MHz, CDCl₃) spectra of 3g

¹H NMR (400 MHz, CDCl₃) spectra of 3h

¹³C NMR (100 MHz, CDCl₃) spectra of 3h

- 165.96	- 159,40 (151,73) (151,73) (131,03) (137,03) (137,03) (137,03) (137,03) (137,03) (137,03) (129,51) (129,51) (129,51) (129,53) (129,53) (113,03) (111,03) (11	-70.66	-63.52	55.34	-48.21	29.39 29.15 29.15 25.20 21.50 21.50
	A A A A A A A A A A A A A A A A A A A		- 18	20	11	VFF

¹H NMR (400 MHz, CDCl₃) spectra of 3i

¹H NMR (400 MHz, CDCl₃) spectra of 3j

¹H NMR (400 MHz, CDCl₃) spectra of 3k

¹H NMR (400 MHz, CDCl₃) spectra of 31

¹H NMR (400 MHz, CDCl₃) spectra of 3m

¹H NMR (400 MHz, CDCl₃) spectra of 3n

¹H NMR (400 MHz, CDCl₃) spectra of 30

¹H NMR (400 MHz, CDCl₃) spectra of 3p

¹³C NMR (100 MHz, CDCl₃) spectra of 3p

¹H NMR (400 MHz, CDCl₃) spectra of 3q

¹H NMR (400 MHz, CDCl₃) spectra of 3r

¹H NMR (400 MHz, CDCl₃) spectra of 3s

¹H NMR (400 MHz, CDCl₃) spectra of 3t

¹H NMR (400 MHz, CDCl₃) spectra of 4a

¹H NMR (400 MHz, CDCl₃) spectra of 4b

¹H NMR (400 MHz, CDCl₃) spectra of 4c

¹H NMR (400 MHz, CDCl₃) spectra of 4d

¹³C NMR (100 MHz, CDCl₃) spectra of 4d

0	000-000-00000-00-				
3	0440004000000000000	40	000	N- 40	00000
10	0 F 7 0 0 0 0 F 0 0 0 0 0 0 0	0	000	00	00004
Ö	00444000000000000	0	000	N- (0)	70000
-	****	2	000	44	00000
1	11 5111/1/11/11/11/11/11/11/11/11/11/11/11/	- T	121	17	11/1

¹H NMR (400 MHz, CDCl₃) spectra of 4e

¹H NMR (400 MHz, CDCl₃) spectra of 4f

¹H NMR (400 MHz, CDCl₃) spectra of 4g

¹³C NMR (100 MHz, CDCl₃) spectra of 4g

3	0007000F0FF00F07	122	25	122	1000	
40	ϕ	80	10	Z	0 0	10000
52	20002200022000224	**	47	10	00 00	0010
16	* * * * * * * * * * * * * * * * * * * *	22	ò.	5	44	00000
1		I	1	1	17	V VV

¹H NMR (400 MHz, CDCl₃) spectra of 4h

¹H NMR (400 MHz, CDCl₃) spectra of 4i

¹³C NMR (100 MHz, CDCl₃) spectra of 4i

-168.75	112106 112106 112106 112106 112106 112106 112106 112106 112106 112106 112106 112106 112106 112106 112106 112106	-70.43	-63.02	-56.23	-47.88 -45.82	29 59 29 17 25 17 21 49	
---------	--	--------	--------	--------	------------------	----------------------------------	--

¹H NMR (400 MHz, CDCl₃) spectra of 4j

¹³C NMR (100 MHz, CDCl₃) spectra of 4j

- 168.66	125.33 125.33 125.34 125.35 12	-70.44	-63.06	-56.26	47.87	29.67 29.26 25.21 25.11 25.11
	V VIII Internet	T	1	1	17	VV-

¹H NMR (400 MHz, CDCl₃) spectra of 4k

60	200807220007772000777000000000000000000	~	-	N	0 10	00401
00	1- mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm	5	5	2	OF	00-04
9	000444000000000000000000000000000000000	0	\$2	Q	00 40	000005
-		~	e a	4)	44	(1 (1 (1 (1 (1 (1
1	VY VIII Contraction	1	1	1	17	NYZ

¹H NMR (400 MHz, CDCl₃) spectra of 4l

¹³C NMR (100 MHz, CDCl₃) spectra of 4l

169.93 165.94	(111.10) (111.10) (111.10) (112.13) (112.13) (112.13) (112.13) (112.13) (112.13) (112.13) (112.13) (112.13) (112.13) (112.13) (112.13) (111.10)	- 68.15 - 62.86 - 62.95	-56.25	46.64 42.62	-32.71	-21.50
------------------	--	-------------------------------	--------	----------------	--------	--------

¹H NMR (400 MHz, CDCl₃) spectra of 4m

¹H NMR (400 MHz, CDCl₃) spectra of 4n

¹H NMR (400 MHz, CDCl₃) spectra of 40

¹H NMR (400 MHz, CDCl₃) spectra of 4p

¹³C NMR (100 MHz, CDCl₃) spectra of 4p

- 165,55 151,07 151,07 131,05 132,05 132,05 132,05 122,15 122,15 122,15 122,15 122,15 122,15 122,15 122,15 122,15 122,15 122,15 122,15 123,15	- 69.60	-62.11	-56.13	~47.85 ~46.12	29.01 28.78 27.62 27.62 26.74 26.74 24.13 24.13
	(b)	. t.	22	10	

¹H NMR (400 MHz, CDCl₃) spectra of 5

¹³C NMR (100 MHz, CDCl₃) spectra of 5

N	04 100000000000000000000000000000000000	122121	202	1324.0	25	CL 92 ALSCH 01
N	00 000004404000-40000000	N	9	ത		00 40 00 00 00 00 00 00 00 00 00 00 00 0
(0)		0	40	-	00 00	00004
(Õ		0	c0	(0)	01 00	
1		R	ò.	40	44	00000
11		25,000	- T*	- m	3.7	1122
	יר איז אר			- A	1.0.6	

¹H NMR (400 MHz, CDCl₃) spectra of 6

¹³C NMR (100 MHz, CDCl₃) spectra of 6

-165.70 -151.31 -151.31 -143.30 -143.30 -143.30 -143.30 -143.30 -1123.75 -1123.75 -1123.75 -1123.75 -1123.75 -1123.75 -111.11	- 26.35 - 26.35 - 26.38 - 26.30 - 26.30 - 26.30	49.05 45.98	Z28.09 27.84 24.90 21.47
---	--	----------------	-----------------------------------

¹H NMR (400 MHz, CDCl₃) spectra of 3a'

-10.20	7.77 7.72 7.35 7.35 7.34 7.34 7.34	5.73 5.71 5.70	4.00 2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	2 2 2 2 2 2 2 2 2 2 2 2 2 2

HPLC Spectra

HPLC Spectrum of racemic 3a.

HPLC Spectrum of enantioenriched 3a.

HPLC Spectrum of racemic 3b.

100.000

100.000

10773150

HPLC Spectrum of racemic 3c.

100.000

100.000

1198293

Peak	Ret. time	Area	Height	Area%	Height%
1	16.883	22087	700	0.507	1.142
2	21.813	4337467	60594	99.493	98.858
Total		4359554	61294	100.000	100.000

HPLC Spectrum of enantioenriched 3c.

Peak	Ret. time	Area	Height	Area%	Height%
1	18.998	2424528	49675	50.134	57.404
2	25.796	2411532	36861	49.866	42.596
Total		4836060	86537	100.000	100.000

HPLC Spectrum of racemic 3d.

Peak	Ret. time	Area	Height	Area%	Height%
1	18.827	59199	1242	0.903	1.478
2	25.529	6498239	82807	99.097	98.522
Total		6557438	84050	100.000	100.000

HPLC Spectrum of enantioenriched 3d.

Peak	Ret. time	Area	Height	Area%	Height%
1	22.059	2755230	49385	50.351	57.882
2	30.593	2716819	35935	49.649	42.118
Total		5472049	85319	100.000	100.000

HPLC Spectrum of racemic 3e.

HPLC Spectrum of enantioenriched 3e.

100.000

100.000

10064326

Peak	Ret. time	Area	Height	Area%	Height%
1	34.912	3570614	37218	50.295	57.776
2	46.615	3528744	27200	49.705	42.224
Total		7099358	64418	100.000	100.000

HPLC Spectrum of racemic 3f.

HPLC Spectrum of enantioenriched 3f.

HPLC Spectrum of racemic 3g.

HPLC Spectrum of enantioenriched 3g.

HPLC Spectrum of racemic 3h.

HPLC Spectrum of enantioenriched 3h.

HPLC Spectrum of racemic 3i.

HPLC Spectrum of enantioenriched 3i.

Peak	Ret. time	Area	Height	Area%	Height%
1	19.043	1510707	23942	50.808	59.473
2	29.230	1462652	16315	49.192	40.527
Total		2973360	40256	100.000	100.000

HPLC Spectrum of racemic 3j.

HPLC Spectrum of enantioenriched 3j.

HPLC Spectrum of racemic 3k.

HPLC Spectr	um of enan	tioenriched	3k.
-------------	------------	-------------	-----

Peak	Ret. time	Area	Height	Area%	Height%
1	21.538	1531254	20288	50.248	57.038
2	28.300	1516141	15281	49.752	42.962
Total		3047395	35569	100.000	100.000

HPLC Spectrum of racemic 3l.

HPLC Spectrum of enantioenriched 3l.

Peak	Ret. time	Area	Height	Area%	Height%
1	23.618	6280899	76947	49.950	57.111
2	32.510	6293533	57786	50.050	42.889
Total		12574432	134733	100.000	100.000

HPLC Spectrum of racemic 3m.

HPLC Spectrum of enantioenriched 3m.

Peak	Ret. time	Area	Height	Area%	Height%
1	31.571	935113	9921	49.884	59.692
2	44.253	939460	6699	50.116	40.308
Total		1874574	16620	100.000	100.000

HPLC Spectrum of racemic 3n.

HPLC Spectrum of enantioenriched 3n.

Peak	Ret. time	Area	Height	Area%	Height%		
1	16.481	801210	15660	49.608	53.754		
2	18.473	813884	13473	50.392	46.246		
Total		1615094	29133	100.000	100.000		

HPLC Spectrum of racemic 3o.

Peak	Ret. time	Area	Height	Area%	Height%
1	16.510	50061	1087	1.798	2.442
2	18.474	2733897	43417	98.202	97.558
Total		2783958	44504	100.000	100.000

HPLC	Spectrum	of enan	tioenriched	30.
------	----------	---------	-------------	-----

Peak	Ret. time	Area	Height	Area%	Height%		
1	23.580	1551959	23456	50.291	56.360		
2	29.536	1533995	18162	49.709	43.640		
Total		3085954	41618	100.000	100.000		

HPLC Spectrum of racemic 3p.

HPL	CS	pectrum	of	enantioer	nriched	l 3p.
-----	----	---------	----	-----------	---------	-------

Peak	Ret. time	Area	Height	Area%	Height%
1	26.596	2262075	29718	49.999	55.585
2	31.690	2262151	23746	50.001	44.415
Total		4524226	53464	100.000	100.000

HPLC Spectrum of racemic 3q.

HPLC Spectrum of enantioenriched 3q.

Peak	Ret. time	Area	Height	Area%	Height%
1	34.166	1174904	10488	49.920	53.140
2	42.214	1178678	9249	50.080	46.860
Total		2353582	19737	100.000	100.000

HPLC Spectrum of racemic 3r.

HPLC Spectrum of)f	enantioenriched	3r.
-------------------------	----	-----------------	-----

100.000

100.000

3258667

mAU 254nm,4nm]		
100							
75							
50					9.291		
25-				\wedge	Ň		
0			~		*		
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 min							
Peak	Ret. time	Area	Height	Area%	Height%		
1	8.882	397804	35797	50.223	51.956		

2

Total

9.291

33102

68898

49.777

100.000

48.044

100.000

HPLC Spectrum of enantioenriched 3s.

Peak	Ret. time	Area	Height	Area%	Height%
1	16.077	320879	6383	49.632	52.368
2	19.344	325633	5805	50.368	47.632
Total		646512	12188	100.000	100.000

HPLC Spectrum of racemic 3t.

HPLC	Spectrum	of enantio	enriched 3t.
------	----------	------------	--------------

Peak	Ret. time	Area	Height	Area%	Height%
1	16.386	2056135	32276	49.910	57.748
2	25.351	2063570	23615	50.090	42.252
Total		4119705	55891	100.000	100.000

HPLC Spectrum of racemic 4a.

HPLC Spectrum of enantioenriched 4a.

Peak	Ret. time	Area	Height	Area%	Height%
1	16.503	1867694	35416	50.150	54.344
2	22.797	1856499	29754	49.850	45.656
Total		3724192	65170	100.000	100.000

HPLC Spectrum of racemic 4b.

HPL	C S	pectrum	of	enantioen	riched	4b .
-----	-----	---------	----	-----------	--------	-------------

Peak	Ret. time	Area	Height	Area%	Height%
1	23.849	2461624	31553	50.939	56.431
2	31.250	2370914	24361	49.061	43.569
Total		4832539	55915	100.000	100.000

HPLC Spectrum of racemic 4c.

HPLC Spectrum of enantioenriched 4c.

Peak	Ret. time	Area	Height	Area%	Height%
1	16.265	1916040	38200	49.343	55.637
2	18.221	1967093	30460	50.657	44.363
Total		3883134	68660	100.000	100.000

HPLC Spectrum of racemic 4d.

HPLC Spectrum of enantioenriched 4d.

Peak	Ret. time	Area	Height	Area%	Height%
1	15.312	4000111	72756	49.707	58.014
2	23.207	4047212	52656	50.293	41.986
Total		8047324	125412	100.000	100.000

HPLC Spectrum of racemic 4e.

HPLC Spectrum of enantioenriched 4e.

Peak	Ret. time	Area	Height	Area%	Height%
1	14.935	3673716	82683	49.967	54.535
2	19.846	3678567	68931	50.033	45.465
Total		7352283	151614	100.000	100.000

HPLC Spectrum of racemic 4f.

HPLC	Spectrum	of enant	tioenrich	ed 4f.

Peak	Ret. time	Area	Height	Area%	Height%
1	17.385	2058399	37320	50.716	55.977
2	21.077	2000310	29350	49.284	44.023
Total		4058709	66670	100.000	100.000

HPLC Spectrum of racemic 4g.

HPLC Spectrum of enantioenriched 4g.

6431931

Total

100.000

100.000

Peak	Ret. time	Area	Height	Area%	Height%
1	18.460	820392	11155	50.229	66.059
2	33.186	812912	5731	49.771	33.941
Total		1633305	16886	100.000	100.000

HPLC Spectrum of racemic 4h.

HPLC Spectrum of enantioenriched 4h.

Peak	Ret. time	Area	Height	Area%	Height%
1	20.591	864170	12442	50.380	76.908
2	55.850	851135	3736	49.620	23.092
Total		1715305	16178	100.000	100.000

HPLC Spectrum of racemic 4i.

HPLC Spectrum of enantioenriched 4i.

Peak	Ret. time	Area	Height	Area%	Height%
1	21.103	2170098	29045	49.745	73.112
2	45.176	2192357	10682	50.255	26.888
Total		4362456	39728	100.000	100.000

HPLC Spectrum of racemic 4j.

HPLC Spectrum of enantioenriched 4j.

I Cak	Ret. time	Area	Height	Area%	Height%
1	23.576	1390590	18161	49.981	62.759
2	38.725	1391640	10776	50.019	37.241
Total		2782230	28937	100.000	100.000

HPLC Spectrum of racemic 4k.

HPLC Spectrum of enantioenriched 4k.

Peak	Ret. time	Area	Height	Area%	Height%
1	48.190	2147996	9085	49.464	48.843
2	62.184	2194562	9515	50.536	51.157
Total		4342558	18601	100.000	100.000

HPLC Spectrum of racemic 4l.

HPLC Spectrum of enantioenriched 4l.

HPLC Spectrum of racemic 4m.						
3514118	43657	100.000				
-	3514118	3514118 43657				

1765463

19502

50.239

44.672

100.000

2

Total

31.152

HPLC Spectrum of enantioenriched 4m.

Peak	Ret. time	Area	Height	Area%	Height%
1	14.758	1036827	21677	50.241	55.026
2	19.645	1026872	17717	49.759	44.974
Total		2063699	39394	100.000	100.000

HPLC Spectrum of racemic 4n.

HPLC Spectrum of enantioenriched 4n.

HPLC Spectrum of racemic 40.

HPLC Spectrum of enantioenriched 4o.

150 <u>-254nm,4nm</u> 125- 100-						
75 50 25 0						
0.0	5.0 10.0	15.0 20.0	25.0 30.0	35.0	40.0 45.0 min	
Peak	Ret. time	Area	Height	Area%	Height%	
1	28.049	3363633	35882	50.142	52.207	
2	31.526	3344565	32848	49.858	47.793	

HPLC Spectrum of racemic 5.

68730

100.000

100.000

6708197

Total

HPLC Spectrum of enantioenriched 5.

Peak	Ret. time	Area	Height	Area%	Height%
1	22.313	1252566	19496	49.758	64.012
2	31.895	1264765	10961	50.242	35.988
Total		2517331	30457	100.000	100.000

HPLC Spectrum of racemic 6.

HPLC Spectrum of enantioenriched 6.

Supplementary References

- (a) H. Chen, H. Long, X. Cui, J. Zhou, M. Xu, G. Yuan, *J. Am. Chem. Soc.* 2014, **136**, 2583-2591;
 (b) T. J. Doyon, J. C. Perkins, S. A. Baker Dockrey, E. O. Romero, K. C. Skinner, P. M. Zimmerman, A. R. H. Narayan, *J. Am. Chem. Soc.* 2019, **141**, 20269-20277; (c) T. Chen, N. W. Reich, N. Bell, P. D. Finn, D. Rodriguez, J. Kohler, K. Kozuka, L. He, A. G. Spencer, D. Charmot, M. Navre, C. W. Carreras, S. Koo-McCoy, J. Tabora, J. S. Caldwell, J. W. Jacobs, J. G. Lewis, *J. Med. Chem.* 2018, **61**, 7589-7613.
- (a) K. Lee, J.-M. Rouillard, T. Pham, E. Gulari, J. Kim, *Angew. Chem. Int. Ed.* 2007, 46, 4667-4670; (b) D. V. Hingorani, E. A. Randtke, M. D. Pagel, *J. Am. Chem. Soc.* 2013, 135, 6396-6398; (c) T. Noguchi, B. Roy, D. Yoshihara, Y. Tsuchiya, T. Yamamoto, S. Shinkai, *Chem. Eur. J.* 2014, 20, 13938-13944; (d) M. Takioku, Y. Takamura, M. Fujihara, M. Watanabe, S. Yamada, M. Kawasaki, S. Ito, S. Nakano, H. Kakuta, *ACS Med. Chem. Lett.* 2021, 12, 1024-1029.
- (a) A. Khan, R. Zheng, Y. Kan, J. Ye, J. Xing, Y. J. Zhang, *Angew. Chem. Int. Ed.* 2014, **53**, 6439-6442; (b) A. Khan, J. Xing, J. Zhao, Y. Kan, W. Zhang, Y. J. Zhang, *Chem. Eur. J.* 2015, **21**, 120-124; (c) W. Guo, L. Martínez-Rodríguez, E. Martin, E. C. Escudero-Adán, A. W. Kleij, *Angew. Chem. Int. Ed.* 2016, **55**, 11037-11040; (d) A. Khan, S. Khan, I. Khan, C. Zhao, Y. Mao, Y. Chen, Y. J. Zhang, *J. Am. Chem. Soc.* 2017, **139**, 10733-10741; (e) S. Singha, T. Patra, C. G. Daniliuc, F. Glorius, *J. Am. Chem. Soc.* 2018, **140**, 3551-3554.
- 4 (a) D. B. Guthrie, D. P. Curran, *Org. Lett.* 2009, **11**, 249-251; (b) S. Mondal, S. Mukherjee, *Org. Lett.* 2022, **24**, 8300-8304.
- (a) G. Yang, S. Sun, Z. Li, Y. Liu, J. Wang, *Commun. Chem.* 2021, 4, 144; (b) S. Shee, S. Shree Ranganathappa, M. S. Gadhave, R. Gogoi, A. T. Biju, *Angew. Chem. Int. Ed.* 2023, 62, e202311709; (c) J. Wang, M. Wang, Y. Wen, P. Teng, C. Li, C. Zhao, *Org. Lett.* 2024, 26, 1040-1045.
- 6 (a) C. Guo, M. Fleige, D. Janssen-Müller, C. G. Daniliuc, F. Glorius, J. Am. Chem. Soc. 2016, 138, 7840-7843; (b) L. Zhou, X. Wu, X. Yang, C. Mou, R. Song, S. Yu, H. Chai, L. Pan, Z. Jin, Y. R. Chi, Angew. Chem. Int. Ed. 2020, 59, 1557-1561; (c) T. Fan, J. Song, L.-Z. Gong, Angew. Chem. Int. Ed. 2022, 61, e202201678.