Supplementary Information (SI) for Chemical Science. This journal is © The Royal Society of Chemistry 2024

Supporting Informations

A Highly Conducting Tetrathiafulvalene-Tetracarboxylate Based Dysprosium(III) 2D Metal-Organic Framework with Single Molecule Magnet Behavior

Fabio Manna,^{abc} Mariangela Oggianu,^{ac} Pascale Auban-Senzier,^d Ghenadie Novitchi,^e Enric Canadell,^f Maria Laura Mercuri^{*ac} and Narcis Avarvari^{*b}

^a Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, I-09042 Monserrato, Italy. E-mail: <u>mercuri@unica.it</u>

^bUniv Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000 Angers, France. E-mail: <u>narcis.avarvari@univ-angers.fr</u>

^cINSTM, Via Giuseppe Giusti, 9, 50121 Firenze, Italy

^d Université Paris-Saclay, CNRS, UMR 8502, Laboratoire de Physique des Solides, 91405 Orsay, France

^e Laboratoire National des Champs Magnétiques Intenses, UPR CNRS 3228, Université Grenoble-Alpes, B.P. 166, 38042 Grenoble Cedex 9, France

^fInstitut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra, Spain, and Royal Academy of Sciences and Arts of Barcelona, Chemistry Section, La Rambla 115, 08002 Barcelona, Spain

Contents

Crystal Structure	. 2
Table S1.	. 2
Table S2	. 3
Figure S1	. 4
Table S3.	. 4
Pore and Thermal Analysis	. 5
Figure S2	. 5
Table S4	. 6
Table S5	. 6
Figure S3	. 7

Photophysical characterization
Figure S4 7
Electron transport properties of TTF-MOFs
Table S6
Magnetic Properties
Figure S5
Figure S611
Figure S7
Figure S8
Figure S9
Figure S1015
Figure S11
Figure S12
Figure S13
Figure S14
References

Crystal Structure

Table S1. Selected distances (Å) and angles (deg)					
Dy-O _{COO-}		Dy-O _{H2O}			
Dy1-O3	2.323(4)	Dy1-021	2.367(5)		
Dy1-09	2.283(5)	Dy1-023	2.392(3)		
Dy1-O2	2.526(5)	Dy1-022	2.461(5)		
Dy1-O1'	2.493(4)				
Dy1-O1	2.442(3)				
Dy1-011	2.415(5)				
Dy2-O15	2.365(3)	Dy2-O26	2.387(4)		
Dy2-O13	2.322(4)	Dy2-027	2.361(5)		
Dy2-O5	2.287(5)	Dy2-025	2.405(5)		
Dy2-07	2.286(5)	Dy2-O24	2.376(5)		
Dy3-O14	2.354(5)	Dy3-O30	2.402(5)		
Dy3-O19	2.303(4)	Dy3-O29	2.470(3)		
Dy3-O17	2.290(5)	Dy3-O31	2.394(4)		
Dy3-O4	2.306(4)	Dy3-O28	2.447(4)		
Selected angle					
Dy2-Dy3-Dy1	161.24(1)				
Dy3-Dy1-Dy1'	115.09(1)				
Dy1-O1-Dy1'	112.4(1)				

Symmetry code: (') 1-x,1-y,1-z		
Shape parameters calculated (SHAPE 2.1)	
Dy1		
Muffin (Cs)	MFF-9	7.547
Spherical capped square antiprism (C4v)	CSAPR-9	7.875
Spherical tricapped trigonal prism (D3h)	TCTPR-9	7.965
Dy2		
Biaugmented trigonal prism J50 (C2v)	JBTPR-8	5.600
Snub diphenoid J84 (D2d)	JSD-8	6.535
Biaugmented trigonal prism (C2v)	BTPR-8	6.538
Dy3		
Snub diphenoid J84 (D2d)	JSD-8	5.466
Biaugmented trigonal prism J50 (C2v)	JBTPR-8	6.407
BTPR-8	BTPR-8	7.814

Table S2. Contact distances < 7	Å for Dy ^{III}
interclusters	
Dy2…Dy3	5.6926(6)
Dy3…Dy1	5.1990(5)
Dy1…Dy1 ⁽ⁱ⁾	4.1003(5)
intralayers	
Dy1…Dy3 ⁽ⁱⁱ⁾	6.4200(7)
interlayers	
Dy2…Dy3 ^(III)	6.1672(7)
Dy2…Dy1 ^(IV)	6.4840(6)
Dy2…Dy2 ^(∨)	6.1437(6)
Symmetry codes:	
(I) 1-x,1-y,1-z; (II)2-x,1-y,1-z, (III)	; x,y,1+z; (IV) x,-1+y,z; (V) 2-x,-y,2-z.

Figure S1. H-bond interaction within two different layers.

Table S3. Calculated parameters with Pore Analyser in Mercury					
Parameter	Result	Unit			
System Volume	2670.61	Å ³			
System Mass	3253.15	g/mol			
System Density	2.023	g/cm ³			
Total surface area	109.47	Ų			
Total surface area per volume	409.9	m ² /cm ³			
Total surface area per mass	202.65	m²/g			
Network-accessible surface area	109.47	Ų			
Network-accessible surface area per volume	409.9	m ² /cm ³			
Network-accessible surface area per mass	202.65	m²/g			
Total helium volume	712.72	Å ³			
Total helium volume	0.132	cm ³ /g			
Total geometric volume	991.388	Å ³			
Total geometric volume	0.184	cm ³ /g			
Network-accessible helium volume	712.075	Å ³			
Network-accessible helium volume	0.132	cm ³ /g			
Network-accessible geometric volume	989.354	Å ³			
Network-accessible geometric volume	0.183	cm ³ /g			
Pore limiting diameter	4.16	Å			
Maximum pore diameter	5.54	Å			

Pore and Thermal Analysis

Figure S2. a) Sphere packing representation of the structure and the voids (in blue), left, and 1D voids representation, right. Pore size distribution calculated with Poreblazer4.0. b) Thermogram (blue) and dTGA normalized from 0 to 100 (red) for **1Dy** with weight loss highlighted.

Table S4. TTF bond distances* (Å) for reference compounds							
	a	b	c	d	δ	ρ	Ref.
MIL-132K	1.340	1.768	1.747	1.360	0.815	0	[1]
MIL-133K	1.353	1.756	1.751	1.353	0.801	0	[1]
MIL-135K	1.401	1.720	1.729	1.359	0.689	1	[1]
Co(H ₂ O) ₆ (TTFTC)H ₂ ·2H ₂ O	1.335	1.752	1.745	1.356	0.806	0	[2]
$[Zn(bipy)_2(H_2O)_4][Zn(TTFTC)(H_2O)_2]$	1.327	1.759	1.750	1.356	0.845	0	[2]
[Fe(bipy) ₂ (H ₂ O) ₄][Fe(TTFTC)(H ₂ O) ₂]	1.328	1.761	1.747	1.336	0.836	0	[2]
[Co ₂ (µ ₂ -OH ₂) ₂ (H ₂ O) ₈](H ₂ TTFTC) ₂	1.344	1.744	1.746	1.345	0.812	0	[3]
${(MV)(L)[Na_2(H_2O)_8] \cdot 4H_2O}_n$	1.338	1.759	1.754	1.334	0.854	0	[4]
${(MV)[Mn(L)(H_2O)_2] \cdot 2H_2O}_n$	1.312	1.765	1.775	1.321	0.895	0	[4]
$1-{(MV)[Mn(L)(H_2O)_2]}_n$	1.342	1.759	1.765	1.332	0.851	0	[4]
$2-{(MV)[Mn(L)(H_2O)_2]}_n$	1.342	1.770	1.778	1.331	0.875	0	[4]
$([Na_4(TTFTC)(H_2O)_2] \cdot 0.5H_2O)^{47}$	1.342	1.759	1.747	1.335	0.829	0	[5]
[Rb ₄ (TTFTC)(H ₂ O) ₃]·H ₂ O	1.332	1.762	1.757	1.336	0.851	0	[5]
$1-[Cs_4(TTFTC)(H_2O)_2]$	1.317	1.764	1.756	1.368	0.834	0	[5]
2-[Cs4(TTFTC)(H ₂ O) ₂]	1.317	1.770	1.758	1.340	0.870	0	[5]
*Mean distances value are reported for each TTF-five-member ring, labels 1 and 2 correspond to							

different ring for non-centrosymmetric TTF.

Table S5. contacts S…S distances < 3,90 Å (in bold < 3,60 Å)					
interlayer		intralayer			
1		2		3	
S1…S4 ^(IV)	3.702(2)	S1…S5	3.858(2)	S5…S10 ^(I)	3.493(2)
S2…S3 ^(IV)	3.559(2)	S2…S6	3.654(2)	S6…S9 ^(I)	3.516(2)
S3…S4 ^(IV)	3.884(2)	S3…S7	3.834(2)	\$7\$9 ^(II)	3.594(2)
		S4…S8	3.763(2)	\$8\$10 ^(II)	3.506(2)
		S4…S6	3.814(2)	\$8\$9 ^(III)	3.802(2)
Symmetry codes:					
(I) 2-x,1-y,1-z; (II) x, y,1+z; (III) 2-x,1-y,1-z; (IV) 1-x,-y,1-z					

Figure S3. experimental (top, red) and calculated (bottom, black) PXRD pattern for 1-Dy.

Photophysical characterization

Figure S4. a) Direct and b) indirect band gaps optical determination trough Tauc plot. c) Gaussian fit with regular residual graphic and gaussian fit parameters calculated by Origin9.

Electron transport properties of TTF-MOFs

$\begin{array}{c} \mbox{Compound} & \mbox{Gamma} (\mbox{Gamma} (\mbox{Gamma}) \mbox{Eq. (Scm)} & \mbox{Earobs SC} & \mbox{IG} (\mbox{Gamma}) \mbox{Composition} \\ \mbox{ZaptTFTB}) & \mbox{Zapt} (\mbox{Zapt}) \mbox{Zapt}) \mbox{Zapt} \mbox{Capt} \mbox{Zapt}) \mbox{Zapt} \mbox{Zapt}) \mbox{Zapt} \mbox{Zapt}) \mbox{Zapt} \mbox{Zapt} \mbox{Zapt}) \mbox{Zapt} \mbox{Zapt} \mbox{Zapt}) \mbox{Zapt} \mbox{Zapt} \mbox{Zapt} \mbox{Zapt} \mbox{Zapt}) \mbox{Zapt} \mbo$	Table S6. Selected example for conductive TTF-MOFs.						
$\begin{array}{cccc} Cd_{1}(TTFTB) & 2.86 \times 10^{-4} & 0.293 & 2-probe SC & [6] \\ \hline Mn_{2}(TTFTB) & 3.95 \times 10^{-6} & 2.2probe SC & [6] \\ \hline Mn_{2}(TTFTB) & 1.49 \times 10^{-3} & 2-probe SC & [6] \\ \hline Ce_{2}(TTFTB) & 1.49 \times 10^{-3} & 2.2probe SC & [6] \\ \hline La_{4}(TTFTB) & 2.5 \times 10^{-6} & 0.28 & 2-probe & [7] \\ \hline pellet & 2.5 \times 10^{-6} & 0.20 & 2-probe & [7] \\ \hline pellet & 2.5 \times 10^{-6} & 0.40 & 2-probe & [7] \\ \hline pellet & 2.5 \times 10^{-6} & 0.40 & 2-probe & [7] \\ \hline pellet & 2.5 \times 10^{-6} & 0.40 & 2-probe & [8] \\ \hline pellet & 2.5 \times 10^{-7} & 4-probe & [8] \\ \hline pellet & 2.6 \times 10^{-7} & 4-probe & [8] \\ \hline pellet & 2.0 \times 10^{-7} & 2-probe & [9] \\ \hline pellet & 2.0 \times 10^{-7} & 2-probe & [9] \\ \hline pellet & 2.0 \times 10^{-7} & 2-probe & [9] \\ \hline pellet & 2.0 \times 10^{-7} & 2-probe & [9] \\ \hline pellet & 2.0 \times 10^{-7} & 2-probe & [9] \\ \hline pellet & 2.0 \times 10^{-7} & 2-probe & [9] \\ \hline pellet & 2.0 \times 10^{-7} & 2-probe & [9] \\ \hline py_{4}(TTFTB)_{5}(1_{5}) & 1 \times 10^{-8} & 2-probe & [9] \\ \hline py_{4}(TTFTB)_{5}(1_{5}) & 2.1 \times 10^{-9} & 2-probe & [9] \\ \hline py_{4}(TTFTB)_{5}(1_{5}) & 2.1 \times 10^{-7} & 2-probe & [10] \\ \hline pellet & 2.0 \times 10^{-7} & 2-probe & [10] \\ \hline pellet & 2.0 \times 10^{-7} & 2-probe & [10] \\ \hline pellet & 2.0 \times 10^{-7} & 2-probe & [$	Compound	$\sigma_{rt}(S/cm)$	Ea (eV)	Method	Ref.		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Cd ₂ (TTFTB)	2.86×10^{-4}	0.293	2-probe SC	[6]		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Zn ₂ (TTFTB)	3.95×10^{-6}		2-probe SC	[6]		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mn ₂ (TTFTB)	8.64×10^{-5}		2-probe SC	[6]		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Co ₂ (TTFTB)	1.49×10^{-5}		2-probe SC	[6]		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	La ₄ (TTFTB) ₄	2.5×10^{-6}	0.28	2-probe	[7]		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				pellet			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	La(TTFTB)	9.0×10^{-7}	0.20	2-probe	[7]		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				pellet			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	La ₄ (TTFTB) ₃	1.0×10^{-9}	0.40	2-probe	[7]		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		7		pellet			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Dy(TTFTB)	3×10^{-7}		4-probe	[8]		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2.0.10.7		pellet	503		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Gd ₃ (TTFTB) ₂ (OAc)(OH)	2.0×10^{-7}		4-probe	[8]		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	T^{1} (TTETD) (0.4.)(011)	1.510-6		pellet	501		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$1b_3(11F1B)_2(OAc)(OH)$	1.5×10^{-6}		4-probe	[8]		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D_{\rm ex}(\rm TTETD)(OA_{\rm e})(OI)$	2.0 × 10-7		pellet	F01		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$Dy_3(11F1B)_2(OAC)(OH)$	3.9 × 10 ⁷		4-probe	[8]		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	II_{-} (TTETD) (OA -)(OII)	6.7 × 10-6		pellet	F01		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$HO_3(11F1B)_2(OAC)(OH)$	0. / × 10 °		4-probe	رها		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	E_{π} (TTETD) (OA c)(OU)	7.4×10^{-6}		1 maha	Г 0 1		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$Er_3(11F1B)_2(OAC)(OH)$	7.4 ~ 10		4-probe	٥١		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	E_{π} (TTETD). (I.).	2×10^{-8}		2 proba	[0]		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	L14(11110)3(13)2	2 ~ 10		2-probe	[9]		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Er.(TTFTB).	1×10^{-9}		2-probe	۲ 0]		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1 ~ 10		2-prooc	[2]		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Th ₄ (TTFTB) ₂ (I ₂) ₂	4×10^{-8}		2-probe	[9]		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	104(1111)(13)2	1.10		nellet	[2]		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Th ₄ (TTFTB) ₃	1×10^{-8}		2-probe	[9]		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1 10		pellet	[~]		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$Dv_4(TTFTB)_3(I_3)_2$	1×10^{-8}		2-probe	[9]		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	- 5 1()5(-5)2			pellet	[,]		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Dy ₄ (TTFTB) ₃	7×10^{-9}		2-probe	[9]		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				pellet			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ho ₄ (TTFTB) ₃ (I ₃) ₂	8×10^{-9}		2-probe	[9]		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				pellet			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ho ₄ (TTFTB) ₃	1×10^{-9}		2-probe	[9]		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				pellet			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Yb ₆ (TTFTB) ₅	9×10^{-7}		2-probe	[10]		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		-		pellet			
$ \begin{array}{ c c c c c c } & & & & & & & & & & & & & & & & & & &$	Lu ₆ (TTFTB) ₅	3×10^{-7}		2-probe	[10]		
$ \{ [Gd_4(TTF-DC)_6(DMF)_4(H_2O)_2] \cdot 4DMF \}_n $ $ \{ [Tb_4(TTF-DC)_6(DMF)_4(H_2O)_2] \cdot 4DMF \}_n $ $ \{ [Dy_4(TTF-DC)_6(DMF)_4(H_2O)_2] \cdot 4DMF \}_n $ $ \{ [Dy_4(TTF-DC)_6(DMF)_4(H_2O)_2] \cdot 4DMF \}_n $ $ \{ [Er_4(TTF-DC)_6(DMF)_4(H_2O)_2] \cdot 4DMF \}_n $ $ \{ [Er_4(TTF-DC)_6(DMF)_4(H_2O)_2] \cdot 4DMF \}_n $ $ \{ [Gd_4(TTF-DC)_6(DMF)_4(H_2O)_2] \cdot 4DMF \}_n $ $ \{ [Gd_4(TTF-DC)_4(DMF)_4(H_2O)_2(TTF^{+-} 2.96 \times 10^{-7} 2-probe [11] pellet] $ $ \{ [Er_4(TTF-DC)_4(DMF)_4(H_2O)_2(TTF^{+-} 9.88 \times 10^{-7} 2-probe [11] pellet] $		10		pellet			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	${[Gd_4(TTF-DC)_6(DMF)_4(H_2O)_2] \cdot 4DMF}_n$	2.13×10^{-10}		2-probe	[11]		
$ \{ [Tb_4(TTF-DC)_6(DMF)_4(H_2O)_2] \cdot 4DMF \}_n $ $ \{ [Dy_4(TTF-DC)_6(DMF)_4(H_2O)_2] \cdot 4DMF \}_n $ $ \{ [Er_4(TTF-DC)_6(DMF)_4(H_2O)_2] \cdot 4DMF \}_n $ $ \{ [Er_4(TTF-DC)_6(DMF)_4(H_2O)_2] \cdot 4DMF \}_n $ $ \{ [Gd_4(TTF-DC)_4(DMF)_4(H_2O)_2(TTF^{+-} 2.96 \times 10^{-7} 2-\text{probe} [11] \text{pellet}] $ $ \{ [Er_4(TTF-DC)_4(DMF)_4(H_2O)_2(TTF^{+-} 2.96 \times 10^{-7} 2-\text{probe} [11] \text{pellet}] $ $ \{ [Er_4(TTF-DC)_4(DMF)_4(H_2O)_2(TTF^{+-} 2.98 \times 10^{-7} 2-\text{probe} [11] \text{pellet}] $		1 7 1 1 0 10		pellet	5443		
$ \{ [Dy_4(TTF-DC)_6(DMF)_4(H_2O)_2] \cdot 4DMF \}_n $ $ \{ [Er_4(TTF-DC)_6(DMF)_4(H_2O)_2] \cdot 4DMF \}_n $ $ \{ [Er_4(TTF-DC)_6(DMF)_4(H_2O)_2] \cdot 4DMF \}_n $ $ \{ [Gd_4(TTF-DC)_4(DMF)_4(H_2O)_2(TTF^{*+}- 2.96 \times 10^{-7} 2-\text{probe} [11] \text{pellet}] $ $ \{ [Er_4(TTF-DC)_4(DMF)_4(H_2O)_2(TTF^{*+}- 9.88 \times 10^{-7} 2-\text{probe} [11] \text{pellet}] $	${[Tb_4(TTF-DC)_6(DMF)_4(H_2O)_2]\cdot 4DMF}_n$	1.54×10^{-10}		2-probe	[11]		
$ \{ [Dy_4(1TF-DC)_6(DMF)_4(H_2O)_2]^{*4}DMF \}_n $ $ \{ [Er_4(TTF-DC)_6(DMF)_4(H_2O)_2]^{*4}DMF \}_n $ $ \{ [Gd_4(TTF-DC)_4(DMF)_4(H_2O)_2(TTF^{*+}- 2.96 \times 10^{-7} 2-probe [11] pellet] $ $ \{ [Gd_4(TTF-DC)_4(DMF)_4(H_2O)_2(TTF^{*+}- 2.96 \times 10^{-7} 2-probe [11] pellet] $ $ \{ [Er_4(TTF-DC)_4(DMF)_4(H_2O)_2(TTF^{*+}- 9.88 \times 10^{-7} 2-probe [11] pellet] $	$(D_{-}(TTE, DO)(D, D)(U, O) + (D, D)(D)$	1.0410-10		pellet	F11		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\{ [DY_4(11F-DC)_6(DMF)_4(H_2O)_2] \cdot 4DMF \}_n$	1.24×10^{-10}		2-probe			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(\text{IE}_{\pi}(\text{TTE} \mathbf{D}C) (\mathbf{D}ME) (\mathbf{U} \mathbf{O}) + 4\mathbf{D}ME)$	6.62×10^{-9}			[11]		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\{[LLI4(11F-UC)6(UNF)4(H2U)2]^{4}UMF\}_{n}$	0.03 × 10 -		2-probe			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\{[Gd_{TTE}DC], (DME), (H_{O}), (TTE)^{+}\}$	2.06×10^{-7}		2 probe	[11]		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\{[Ou4(111-DC)4(DN11)4(\Pi2C)2(111-DC)a](L_{2})a\}$	2.90 ^ 10		2-probe	[11]		
$\frac{11}{DC} \left[\frac{1}{2} \right]_{n}^{2}$	$\frac{1}{[Fr_4(TTF_DC)_4(DMF)_4(H_2O)_2(TTF^{+}_{-})]}$	9.88×10^{-7}		2-probe	[11]		
	$DC_{2}(I_{2})_{2}$	2.00 ^ 10		pellet			

{[Tb ₄ (TTF-DC) ₄ (DMF) ₄ (H ₂ O) ₂ (TTF ⁺ -	1.28×10^{-6}		2-probe	[11]
$DC_{2}[(I_{3})_{2}]_{n}$			pellet	
${[Dy_4(TTF-DC)_4(DMF)_4(H_2O)_2(TTF^{+}-$	2.19×10^{-6}		2-probe	[11]
$DC_{2}(I_{3})_{2}_{n}$	-		pellet	
$([Na_4(TTFTC)(H_2O)_2] \cdot 0.5H_2O)$	3.4×10^{-5}	0.06	2-probe	[5]
	-		pellet	
$([K_4(TTFTC)(H_2O)_2] \cdot 2H_2O)$	1.7×10^{-5}	0.18	2-probe	[5]
			pellet	
$([K_4(TTFTC)(H_2O)_2] \cdot 2H_2O)(ox)$	6.3×10^{-5}	0.16	2-probe	[5]
			pellet	
$([Rb_4(TTFTC)(H_2O)_3] \cdot H_2O)$	1.5×10^{-5}	0.19	2-probe	[5]
	4.1	0.10	pellet	F 63
$([Rb_4(11F1C)(H_2O)_3] \cdot H_2O)(ox)$	4.1×10^{-5}	0.19	2-probe	[5]
	1 2 10-7		pellet	[[]
$([Cs_4(11F1C)(H_2O)_2])$	1.3×10^{-7}		2-probe	[2]
([T], (TTETD) 2.5(TODD) (UCOO)]	1.0 × 10-8		pellet	[10]
$([1b_6(m11F1B)2.3(\mu_3-OH)8(H_2O)_2(HCOO)_2]$	$1.8 \times 10^{\circ}$		2-probe	[12]
$([D_{Y} (mTTETD)) 2.5(, OII) 8(II O) (IICOO)]$	2.0×10^{-8}		2 maha	[12]
$([Dy_6(\Pi \Pi \Pi \Pi \Pi B)2.3(\mu_3 - O\Pi)8(\Pi_2 O)_2(\Pi C O O)_2]$	5.0 × 10		2-probe	[12]
$([E_{\pi} (mTTETD)) 2.5(, OII) 8(II O) (IICOO)]$	7.1×10^{-8}		2 maha	[12]
$([Er_6(m11F1B)2.5(\mu_3-OH)8(H_2O)_2(HCOO)_2]$	7.1 × 10 °		2-probe	[12]
$\left[\left(C_{12}C_{11}\right)\left(TTE\left(m_{12}\right)\right)\right]$	2.5×10^{-10}		2 maha	[12]
$\left[\left(CuCN\right)_2\left(11F(py)_4\right)\right]$	3.3×10^{-10}		2-probe	[13]
$\left[\left(C_{\mathbf{N}}C_{\mathbf{N}}\right)\left(\mathbf{TTE}(\mathbf{r}_{\mathbf{Y}})\right)\right]\left(\mathbf{L}_{\mathbf{Y}}\right)$	2.2×10^{-5}		2 maha	[12]
$[(CuCiN)_2(11F(py)_4)](1_2 \text{ ox})$	2.3 × 10 *		2-probe	[15]
$[C_{12}(\mathbf{H} \mathbf{T}\mathbf{T}\mathbf{E}\mathbf{T}\mathbf{P})(\mathbf{N}\mathbf{H} \mathbf{M}_{2})]_{2}\mathbf{D}\mathbf{M}\mathbf{E}_{4}\mathbf{H}\mathbf{O}$	1.12×10^{-5}		Not specified	[14]
$[Cu(H_2)]^{(1111B)}([NH_2]Ne_2)]^{(2DNI1^34H_2O)}$	1.12×10^{-5}		Not specified	[14]
$M_{\rm p}$ (TTETP) (H 0)7DME	1.17×10^{-6}		2 proba	[14]
10114(111110)4(1120)/D1011	5.17 ~ 10		2-probe	[15]
C_{0} (TTETB) (H ₂ O)	1.66×10^{-7}		2-probe	[15]
$CO_6(1111D)_4(112O)$	1.00 ^ 10		2-probe	[13]
	8 97 ×1 0 ⁻⁹		2-probe	[15]
	0.97 ~10		nellet	[13]
$(UO_2)_4(TTFTB)_2(DMA)_4(H2O)_4(DMF)_8$	2.2×10^{-7}		4-probe	[16]
	2.2 10		nellet	[10]
$[Zn(TTF(pv)_4)(TCNO^{-})_{1/2}](TCNO^{-})_{1/2}]$	2.48×10^{-8}		2-probe	[17]
$1_{10}(NO_3) \cdot 2CH_3OH$	2000 10		pellet	[-,]
$[Cd(TTF(pv)_4)(TCNO^{-})_{1/2}](TCNO^{-})_{1/2}$	2.63×10^{-8}		2-probe	[17]
$1_{1/2}(NO_3) \cdot CH_2 Cl_2$			pellet	[-,]
$[Cd(TTF(pv)_4)(TCNO^{-})]$	2.16×10^{-7}		2-probe	[17]
$_{1/2}](I_3)(NO_3)_{1/2} \cdot 1/2(C_6H_{12} \cdot CH_3OH)$			pellet	
[Ni(py-TTF-py)(BPDC)]·2H ₂ O	$8.0 imes 10^{-11}$		2-probe	[18]
			pellet	
[Zn(py-TTF-py)(BPDC)]·2H ₂ O	4.1×10^{-12}		2-probe	[18]
			pellet	
[Ni(py-TTF-py)(BPDC)]·2H ₂ O (I ₂ ox)	$2.5 \times 10-5$		2-probe	[18]
			pellet	
[Zn(py-TTF-py)(BPDC)]·2H ₂ O (I ₂ ox)	1.9×10^{-5}		2-probe	[18]
			pellet	
$[Fe(dca)_2][TTF(py)_4]0.5 \cdot 0.5 CH_2 Cl_2 n$	4.1×10^{-9}		2-probe	[19]
			pellet	
${[Fe(dca)][TTF(py)_4] \cdot ClO_4 \cdot CH_2Cl_2 \cdot 2CH_3OH]}n$	1.2×10^{-7}		2-probe	[19]
			pellet	
$[Fe(dca)_2][TTF(py)_4]_{0.5} \cdot 0.5CH_2Cl_2 n (I_2 \text{ ox})$	1.3×10^{-6}		2-probe	[19]
			pellet	
${[Fe(dca)][TTF(py)_4] \cdot ClO_4 \cdot CH_2Cl_2 \cdot 2CH_3OH]}n$	7.6×10^{-5}		2-probe	[19]
(I ₂ ox)	10		pellet	
Zn ₃ (ExTTFTB) ₂ (H ₂ O) ₄ ·6EtOH	3.02×10^{-10}		2-probe	[20]
			pellet	

Zn ₃ (ExTTFTB) ₂ (H ₂ O) ₄ ·6EtOH (I ₂ ox)	3.18×10^{-6}		2-probe	[20]
			pellet	
Zn ₂ (DPTTF)(TCPB)·3DMA	1×10^{-8}		2-probe	[21]
			pellet	
$Zn_2(DPTTF)(TCPB) \cdot 3DMA (I_2 \text{ ox})$	5×10^{-7}		2-probe	[21]
			pellet	
(BVDT-TTF-Py ₄)(CdCl ₂)	$7-9 \times 10^{-10}$		2-probe SC	[22]
$(BVDT-TTF-Py_4)(CdCl_2)(I_3)$	$4-6 \times 10^{-9}$		2-probe SC	[22]
[Dy6(TTFTC)5(H2O)22] · (H2O)21	1 × 10 ⁻³	0.164	4-probe SC &	This work
			2-probe SC	

Magnetic Properties

Figure S5. ac susceptibility of 1Dy at 0.0, 1.0 and 2.0 kOe,

$$\chi'(\omega) = \chi_{S,tot} + \Delta \chi_1 \frac{1 + (\omega\tau_1)^{1-\alpha_1} \sin\left(\frac{\pi\alpha_1}{2}\right)}{1 + (\omega\tau_1)^{1-\alpha_1} \sin\left(\frac{\pi\alpha_1}{2}\right) + (\omega\tau_1)^{(2-2\alpha_1)}} + \Delta \chi_2 \frac{1 + (\omega\tau_2)^{1-\alpha_2} \sin\left(\frac{\pi\alpha_2}{2}\right)}{1 + (\omega\tau_2)^{1-\alpha_2} \sin\left(\frac{\pi\alpha_2}{2}\right) + (\omega\tau_2)^{(2-2\alpha_2)}}$$
(eq-1)
$$\chi''(\omega) = \Delta \chi_1 \frac{1 + (\omega\tau_1)^{1-\alpha_1} \cos\left(\frac{\pi\alpha_1}{2}\right)}{1 + (\omega\tau_1)^{1-\alpha_1} \sin\left(\frac{\pi\alpha_1}{2}\right) + (\omega\tau_1)^{(2-2\alpha_1)}} + \Delta \chi_2 \frac{1 + (\omega\tau_2)^{1-\alpha_2} \cos\left(\frac{\pi\alpha_2}{2}\right)}{1 + (\omega\tau_2)^{1-\alpha_2} \sin\left(\frac{\pi\alpha_2}{2}\right) + (\omega\tau_2)^{(2-2\alpha_2)}}$$
(eq-2)

Were $\omega = 2\pi$

Figure S6. Field dependence of *ac* susceptibility a,b) (H_{ac} =3.0 Oe) and Cole-Cole plots(c) for **1** at indicated temperature and field. The solid lines represented the best fits according the generalized Debye model for two relaxation processes. (eq. 1, 2) see also **Figure S8**).

Figure S7. Example of AC susceptibility analysis for $[Dy_6(TTFTC)_5(H_2O)_{22}] \cdot (H_2O)_{21}$ (1) using the extended Debye model for two relaxation processes at H_{dc} =1500 Oe (left) and H_{dc} =3500 Oe (right). The contributions of the two relaxation processes are depicted in blue and green.

Figure S8. Graphical representation of variable parameters deduced from the best fits of the *ac* susceptibility of **1** collected with a 3.0 Oe *ac* field oscillating under different *dc* fields using the generalized Debye model for two relaxation processes. (See **Figure S6**).

Figure S9. Temperature dependence of *ac* susceptibility a,b) (H_{ac} =3.0 Oe) and Cole-Cole plots (c) for 1 at indicated temperature and field. The solid lines represented the best fits according to the generalized Debye model for two relaxation processes. (eq. 1, 2) see also **Figure S10**)

Figure S10. Graphical representation of variable parameters deduced from the best fits of the *ac* susceptibility of **1** collected under 1.5 kOe static field at deferent temperatures using the generalized Debye model for two relaxation processes. (See **Figure S9**).

Figure S11. Temperature dependence of *ac* susceptibility a,b) (H_{ac} =3.0 Oe) and Cole-Cole plots(c) for 1 at indicated temperature and field. The solid lines represented the best fits according the generalized Debye model for two relaxation processes. (eq. 1, 2) see also **Figure S12**)

Figure S12. Graphical representation of variable parameters deduced from the best fits of the *ac* susceptibility of **1** collected under 1.5 kOe static field at deferent temperatures using the generalized Debye model for two relaxation processes. (See also **Figure S11**).

Figure S13. Temperature (a) and Field (b) dependence of relaxation time for Low Frequency process in **1**. The solid lines are the best fits with contribution of Raman and QTM.

Figure S14. The ATR Spectrum of 1.

References

- T. L. A. Nguyen, R. Demir-Cakan, T. Devic, M. Morcrette, T. Ahnfeldt, P. Auban-Senzier, N. Stock, A. M. Goncalves, Y. Filinchuk, J. M. Tarascon and G. Férey, *Inorg. Chem.*, 2010, 49, 7135–7143.
- 2 Y. Han and Y. Song, *Inorg. Chem. Commun.*, 2015, **55**, 83–87.
- 3 Y. F. Han, M. Li, T. W. Wang, Y. Z. Li, Z. Shen, Y. Song and X. Z. You, *Inorg. Chem. Commun.*, 2008, **11**, 945–947.
- 4 Y. De Huang, P. Huo, M. Y. Shao, J. X. Yin, W. C. Shen, Q. Y. Zhu and J. Dai, *Inorg. Chem.*, 2014, **53**, 3480–3487.
- 5 S. Zhang, D. K. Panda, A. Yadav, W. Zhou and S. Saha, *Chem. Sci.*, 2021, **12**, 13379–13391.
- 6 S. S. Park, E. R. Hontz, L. Sun, C. H. Hendon, A. Walsh, T. Van Voorhis and M. Dincə, *J. Am. Chem. Soc.*, 2015, **137**, 1774–1777.
- 7 L. S. Xie, E. V. Alexandrov, G. Skorupskii, D. M. Proserpio and M. Dincă, *Chem. Sci.*, 2019, **10**, 8558–8565.
- J. Castells-Gil, S. Mañas-Valero, I. J. Vitórica-Yrezábal, D. Ananias, J. Rocha, R. Santiago, S. T. Bromley,
 J. J. Baldoví, E. Coronado, M. Souto and G. Mínguez Espallargas, *Chem. A Eur. J.*, 2019, 25, 12636–12643.
- 9 J. Su, T. H. Hu, R. Murase, H. Y. Wang, D. M. D'Alessandro, M. Kurmoo and J. L. Zuo, *Inorg. Chem.*, 2019, **58**, 6, 3698–3706.
- 10 L. S. Xie and M. Dincă, *Isr. J. Chem.*, 2018, **58**, 1119–1122.
- 11 J. J. Hu, Y. G. Li, H. R. Wen, S. J. Liu, Y. Peng and C. M. Liu, *Dalt. Trans.*, 2021, **50**, 14714–14723.
- 12 J. Su, N. Xu, R. Murase, Z. Yang, D. M. D'Alessandro, J. Zuo and J. Zhu, *Angew. Chem.*, 2021, **133**, 4839–4845.

- 13 Z. R. Zhang, Z. H. Ren, C. Y. Luo, L. J. Ma, J. Dai and Q. Y. Zhu, *Inorg. Chem.*, 2023, **62**, 4672–4679.
- 14 J. Su, S. Yuan, Y. X. Cheng, Z. M. Yang and J. L. Zuo, *Chem. Sci.*, 2021, **12**, 14254–14259.
- 15 J. Liu, D. H. Zhang, B. Wang, Z. A. Nan, X. L. Cao, G. L. Li, W. Wang, Z. Zhuo, Z. X. Lu and Y. G. Huang, *J. Mol. Struct.*, 2023, **1292**, 136119.
- 16 F. Zhai, H. Li, D. Gui, C. Xia, Z. Chai and S. Wang, *Dalt. Trans.*, 2022, **12**, 16448–16452.
- 17 H. Y. Wang, J. Su, J. P. Ma, F. Yu, C. F. Leong, D. M. D'Alessandro, M. Kurmoo and J. L. Zuo, *Inorg. Chem.*, 2019, **58**, 8657–8664.
- 18 Z. H. Ren, Z. R. Zhang, L. J. Ma, C. Y. Luo, J. Dai and Q. Y. Zhu, ACS Appl. Mater. Interfaces, 2023, **15**, 6621–6630.
- 19 H. Y. Wang, J. Y. Ge, C. Hua, C. Q. Jiao, Y. Wu, C. F. Leong, D. M. D'Alessandro, T. Liu and J. L. Zuo, *Angew. Chemie - Int. Ed.*, 2017, **56**, 5465–5470.
- 20 M. A. Gordillo, P. A. Benavides, D. K. Panda and S. Saha, *ACS Appl. Mater. Interfaces*, 2020, **12**, 12955–12961.
- 21 M. A. Gordillo, P. A. Benavides, K. Spalding and S. Saha, *Front. Chem.*, 2021, **9**, 1–6.
- 22 F. Solano, P. Auban-Senzier, I. Olejniczak, B. Barszcz, T. Runka, P. Alemany, E. Canadell, N. Avarvari and N. Zigon, *Chem. Eur. J.*, 2023, **29**, e202203138.