Supporting information Figures

Scheme S1. Synthesis of ligand ((F5-Bn)Py), (L).

Scheme S2. Synthesis of $[Fe(Tp)(CN)_3]_2[Co{L}]_2(ClO_4)_2 \cdot 4MeOH \cdot 2H_2O$ (1 $\cdot 4MeOH \cdot 2H_2O$).

Figure S1. Crystal Structure of 1.4MeOH \cdot 2H₂O. Colour Code: Green: Fe; Pink: Co; Blue: N; Grey: C; Yellow: B, Dark green: Cl, Light green: F. H-bonding interactions between the square complex, solvents and anions are shown with red dotted lines. The hydrogen not involved in H-bonding is omitted for clarity.

Figure S2. Hydrogen bonding interactions between solvent molecules, perchlorate anions and the $[Fe_2(\mu-CN)Co_2]$ square grids a) along *the bc* plane and b) along the *ab* plane in complex **1**·4MeOH·2H₂O. The Hydrogen atoms not involved in Hydrogen bonding have been omitted for clarity.

Figure S3. Crystal Structure of $1.2H_2O$. Colour Code: Green: Fe; Pink: Co; Blue: N; Grey: C; Yellow: B, Dark green: Cl, Light green: F. H-bonding interactions between the square complex, solvents and anions are shown with red dotted lines. The hydrogen not involved in H-bonding is omitted for clarity.

Figure S4. Hydrogen bonding interactions between solvent molecules, perchlorate anions and the $[Fe_2(\mu-CN)Co_2]$ square grids along the *ab* plane in complex **1**·2H₂O. The Hydrogen atoms not involved in Hydrogen bonding have been omitted for clarity.

Figure S5. Crystal Structure of **1**. Colour Code: Green: Fe; Pink: Co; Blue: N; Grey: C; Yellow: B, Dark green: Cl, Light green: F. The hydrogen not involved in H-bonding is omitted for clarity.

Figure S6. Hydrogen bonding interactions between solvent molecules, perchlorate anions and the $[Fe_2(\mu-CN)Co_2]$ square grids along the *ab* plane in complex **1**. The Hydrogen atoms not involved in Hydrogen bonding have been omitted for clarity.

Figure S7. Overlay diagram of a) 1.4MeOH \cdot 2H₂O (blue: 100 K, orange: 200 K) and b) 1.2H₂O (blue: 140 K, orange: 200 K) and c) 1.2H₂O (blue: 140 K, orange: 110 K). The Hydrogen atoms are omitted for clarity.

Figure S8. Thermogravimetric analysis of a) 1.4 MeOH \cdot 2H₂O, b) 1.2H₂O and c) 1 representing loss of solvent molecules.

Figure S9. Thermogravimetric analysis of 1·2H₂O after a) 2 days, b) 1 week, c) 2 weeks and d) 4 weeks.

Figure S10. Thermogravimetric analysis of 1 (a) and resolvated complex (b).

Figure S11. a) Infrared spectroscopy of 1.4MeOH \cdot 2H₂O, 1.2H₂O and 1. Enlarged view of b) BH⁻ and CN frequency region and c) 1750 – 400 cm⁻¹.

Figure S12. Infrared spectroscopy of ligand, 1·2H₂O, desolvated and the resolvated complex.

Figure S13. Infrared spectroscopy of 1·2H₂O with ageing a) complete spectra from 4000-400 cm⁻¹, b) fingerprint region (1800-400 cm⁻¹), and c) v_{BH} and v_{CN} stretching frequencies.

Figure S14. a) $\chi_M T vs. T$ (black), b)) $\gamma_{HS} vs. T$ and c) and d) are the derivative plots during cooling and heating, respectively, for complex $1.2H_2O$ at 5 K min⁻¹ with applied DC field of 1000 Oe. The separate derivative plot for the complex during the cooling and heating cycle (b and c, respectively).

Figure S15. $\chi_M T$ vs. T plots for complex $1.2 H_2 O$ at 5 K min⁻¹ under different applied magnetic field from 10 Oe to 10000 Oe from 2-100 K.

Figure S16. $\chi_M T vs.$ T plot at a scan rate of 5 K min⁻¹ for complex $1.2H_2O$ with three consecutive cycles upon resolvation.

Figure S17. $\chi_M T vs.$ T plots for complex $1.2H_2O$ upon thermal quenching with a scan rate of 25 K min⁻¹ (black) and 30 K min⁻¹ (red) via TIESST phenomenon. Heating was measured at a scan rate of 0.8 K min⁻¹ (black) and 2 K min⁻¹ (red). The 1st derivative plots during cooling and heating mode is shown in their representative colours with single-step and two-step transitions, respectively.

Figure S18. $\chi_M T vs.$ T plots for complex $1 \cdot 2H_2O$ upon thermal quenching with a scan rate of 30 K min⁻¹ upto a) 100 K, c) 168 K and e) 190 K followed by relaxation for about 2 hours at constant temperatures. b), d) and f) $\chi_M T vs.$ time plots at 100 K, 168 K and 190 K, respectively. Inset of a) shows the 1st derivative of heating cycle showing not so prominent three step-transition.

Figure S19. $T_{1/2}$ vs. Pressure plots for complex **1**·2H₂O showing linear relation above 0.8 GPa of threshold pressure, following Clayperon law.

Figure S20. $\chi_M T$ vs. Temperature plots for complex $\mathbf{1} \cdot 2H_2O$ with irradiation with a) 640 nm and b) 740 nm of light (orange). The cooling rate is 5 K min⁻¹ (black) and after irradiation, the heating is at 2 K min⁻¹ (blue).