Spin State Modulation and Kinetic Control of Thermal Contraction in a [Fe₂Co₂] Discrete Prussian Blue Analogue

2-3

Jyoti Yadav^[a] and Sanjit Konar*^[a]

[a]		Jyoti Yadav and Sanjit Konar*
		Department of Chemistry, Elements Building
		Indian Institute of Science Education and Research Bhopal
		Bhauri, Bhopal By-pass road, Madhya Pradesh, India- 462066
		E-mail: jyoti17@iiserb.ac.in, skonar@iiserb.ac.in
Tab	e of	Contents
[1]		Experimental Procedures
	1	Matorials

	1.	Materials	2
	2.	Synthetic procedures	2
	3.	Physical measurements	3
[2]		Results and Discussion	4-21
	1.	Crystal structure determination of 1.4 MeOH \cdot 2H ₂ O	4-6
	2.	Crystal structure determination of $1.2H_2O$	7-11
	3.	Crystal structure determination of 1	12-13
	4.	Structure overlay	14
	5.	Thermogravimetric Analysis	15-16
	6.	FT-Infrared Spectroscopy	17-18
	7.	Magnetic study	19-23
[3]		References	23

Experimental Procedures

1.1. Materials:

Cobalt (II) perchlorate hexahydrate and Ferric chloride were purchased from Merck and used as received. All other chemicals Potassium tris(1-Pyrazolyl) borohydride, 2-Cyanopyridine, Aniline, and Sodium Methoxide were bought from Sigma- Aldrich. Sodium Cyanide is from Loba Chemie. All the reactions were performed under ambient atmospheric conditions.

Caution! Cyanides are highly toxic, therefore, they should be handled with great care and precautions. The unreacted cyanides and the glassware used for the cyanide reaction were quenched by an aqueous solution of KMnO4. Since perchlorates are highly explosive, heating was done carefully, if required.

1.2. Synthetic procedures:

1.2.1. Synthesis of Na[Fe(Tp)(CN)₃]:

The Fe-CN complex was prepared according to the earlier procedure reported.¹ Instead of KCN, NaCN was used. IR: v_{CN} = 2126 cm⁻¹

1.2.2. Synthesis of ligand ((F5-Bn)Py), (L):

A suspension of 20 ml MeOH and 250 mg of NaOMe was taken in a 50 ml round bottom flask and stirred for 10 minutes. 2-Cyanopyridine (5 mmol) was added to the suspension and heated for 30 minutes. 2, 3, 4, 5, 6-pentaflouroaniline (5 mmol) was added to the reaction mixture and refluxed overnight. The solution was evaporated to dryness and washed with diethyl ether. After evaporation, the diethyl ether part gives a colourless crystal of the ligand (L). IR: v_{NH} = 3405, 3316, 3272 cm⁻¹, v_{CH} = 3210, 3179 cm⁻¹ ¹, $v_{C=C}$ = 1592, 1568 cm⁻¹, $v_{C=N}$ = 1655, 1643 cm⁻¹, v_{C-F} = 1498 cm⁻¹.

2, 3, 4, 5, 6-pentaflouroaniline

1.2.3. Synthesis of [Fe(Tp)(CN)₃]₂[Co{L}]₂(ClO₄)₂·4MeOH·2H₂O (1·4MeOH·2H₂O):

Methanolic solution of ligand and Co(ClO₄)₂·6H₂O was added to a 2: 1 MeOH: H₂O solution of Na[FeTp(CN)₃] and heated at 40 °C for 30 minutes. The solution was filtered hot and kept for crystallisation. Red plate-like crystals of complex 1·4MeOH·2H₂O were obtained after one week of slow evaporation.

Scheme S2. Synthesis of $[Fe(Tp)(CN)_3]_2[Co\{L\}]_2(ClO_4)_2 \cdot 4MeOH \cdot 2H_2O$ (1 $\cdot 4MeOH \cdot 2H_2O$).

Elemental Analysis: 1·4MeOH·2H₂O: Experimental: N = 18.48%, C = 40.17% and H = 2.92%; Calculated: C = 39.39%, H = 2.52% and N = 18.13%.

1.2.4. Partially desolvated complex (1·2H₂O):

The complex was obtained by the eventual escape of methanol molecules when kept at room temperature (25° C). The bulk sample was prepared by keeping the crystals under vacuum for 2-3 hours at room temperature. Selective loss of methanol molecules was observed.

Elemental Analysis: 1·2H₂O: Experimental: C = 39.79%, H = 2.36%, N = 19.63%; Calculated: C = 39.39%, H = 2.20%, N = 19.14%.

Scheme S1. Synthesis of ligand ((F5-Bn)Py), (L).

1.2.5. Desolvated Complex (1):

The desolvation process was done by keeping freshly prepared samples at 50°C under a high vacuum for ~1 hour. The complete loss of solvents was characterised by elemental analysis and infrared spectroscopy.

Elemental Analysis: 1: Experimental: C = 40.38%, H = 2.32%, N = 19.32%; Calculated: C = 40.05%, H = 2.05%, N = 19.46%.

1.3. Physical measurements:

1.3.1. Crystal Data Collection and Structure Determination:

Intensity data were collected on a 'Bruker D8-Quest' diffractometer using a graphite monochromated MoK α radiation (λ = 0.71073) at 140 K. Data collections were performed using ϕ and ω scan. Olex2 was used as the graphical interface and the structures were solved with olex2.solve structure solution program using Charge Flipping and refined with the ShelXL refinement package using Least-Squares minimisation. All non-hydrogen atoms were refined anisotropically.² Shape analysis was done by continuous shape measurement (CShM) program and octahedral distortion parameters were calculated by using the software "Octadist".³

1.3.2. Squid Magnetometry Study:

The magnetic study has been performed using a SQUID-VSM magnetometer. All samples were ground properly before measuring magnetic moment vs. temperature data, to minimize the reorientation of the crystalline particles under the applied DC field. All the measurements have been performed with an applied DC field of 10000 Oe and 1000 Oe from the 2 K to 300 K temperature range. The measured values were corrected for the experimentally measured contribution of the sample holder and the derived susceptibilities were corrected for the diamagnetism of the samples, estimated from Pascal's tables.

The photomagnetic study was performed using a SQUID magnetometer integrated with a fibre optic sample holder (FOSH). A thin layer of 3.3 mg sample was spread evenly on a transparent tape and inserted into the optic fibre holder. The sample was irradiated with light of different wavelengths ranging from 436 nm to 850 nm at 10 K and showed maximum conversion with 525 nm of light. The sample was irradiated for 1 hour at each of the wavelengths to check for the generation of the metastable state. For the wavelengths accelerating the conversion of the diamagnetic sample to the metastable state, the irradiation was done up to saturation to the excited state, which was approximately 4-5 hours. The photo-irradiation was followed by the thermal treatment of the sample in dark conditions and observed for the temperature of relaxation to its diamagnetic state.

The operating pressure range of the hydrostatic pressure cell, which is composed of hardened beryllium bronze and uses lowviscosity Daphene oil as the pressure-transferring medium, is 10⁵ Pa to 1.3 GPa. The sample holders for the powder were cylindrical, measuring 1.1 mm in diameter and 5 mm in length. The built-in pressure sensor composed of highly pure Pb was used to measure the pressure utilizing the pressure dependence of the superconducting transition temperature. The mentioned applied pressures are the approximate calculated values concerning the compression of the Teflon tube consisting of sample, Pb and the pressuretransferring medium.

1.3.3. Thermogravimetric Analysis:

The Thermogravimetric analysis was performed on a PerkinElmer instrument at a scan rate of 3 K/min.

1.3.4. FT-Infrared Spectroscopy:

FT-IR spectra were recorded by using a Perkin-Elmer Spectrum BX Spectrometer with a wavenumber ranging between 4000 cm⁻¹ -400 cm⁻¹.

Results and Discussion

2.1. Crystal structure determination of 1·4MeOH·2H₂O:

Figure S1. Crystal Structure of **1**·4MeOH·2H₂O. Colour Code: Green: Fe; Pink: Co; Blue: N; Grey: C; Yellow: B, Dark green: Cl, Light green: F. H-bonding interactions between the square complex, solvents and anions are shown with red dotted lines. The hydrogen not involved in H-bonding is omitted for clarity.

Identification code		1.4MeOH.2H2O					
Temperature (K)	100	168	200	250			
Empirical formula	C ₃₈ H ₂₉ BClCoF ₁₀ FeN ₁₅ O ₇	$C_{38}H_{29}BClCoF_{10}FeN_{15}O_7$	C ₃₈ H ₂₉ BClCoF ₁₀ FeN ₁₅ O ₇	$C_{38}H_{32}BClCoF_{10FeN_{15}O_{7}}$			
Formula weight	1158.80	1158.80	1158.80	1161.82			
Temperature/K	100.0	168.0	200.0	250.0			
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic			
Space group	P2 ₁ /c	P2 ₁ /c	P2 ₁ /c	P2 ₁ /c			
a/Å	14.735(5)	14.852(5)	14.867(4)	14.938(11)			
b/Å	20.586(7)	20.700(8)	20.702(6)	20.830(16)			
c/Å	15.382(6)	15.425(6)	15.437(4)	15.450(12)			
α/°	90	90	90	90			
β/°	103.396(10)	103.695(11)	103.782(7)	103.72(2)			
γ/°	90	90	90	90			
Volume/Å ³	4539(3)	4608(3)	4614(2)	4670(6)			
Z	4	4	4	4			
ρ _{calc} g/cm ³	1.696	1.670	1.668	1.652			
R ₁ ^a	0.0426	0.0439	0.0432	0.0722			
wR ₂ ^a	0.1049	0.1078	0.1103	0.2135			
$[a] \ge 2\sigma(I): R_1 = \Sigma F_0 - F_C / \Sigma F_0 , wR_2 = \{\Sigma [w(Fo_2 - Fc^2)^2] / \Sigma [w(Fo^2)^2] \}^{1/2}$							

Table S1. Crystallographic data of 1 ·4MeOH·2H ₂ C

Atom	Atom	Length/Å				
		100 K	168 K	200 K	250 K	
Co1	N15	1.921(3)	1.925(3)	1.922(3)	1.946(7)	
Co1	N10	1.914(3)	1.920(3)	1.920(3)	1.942(6)	
Co1	N12	1.933(3)	1.939(3)	1.939(3)	1.933(6)	
Co1	N13	1.940(3)	1.942(3)	1.942(3)	1.946(7)	
Co1	N9	1.890(3)	1.894(3)	1.894(3)	1.899(7)	
Co1	N2 ¹	1.909(3)	1.916(3)	1.911(3)	1.906(7)	
Fe1	N3	1.999(3)	2.005(3)	2.002(3)	2.005(7)	
Fe1	N6	1.996(3)	1.998(3)	1.996(3)	2.017(8)	
Fe1	N8	2.007(3)	2.014(3)	2.010(3)	2.000(7)	
Fe1	C12	1.857(4)	1.866(4)	1.863(4)	1.878(9)	
Fe1	C1	1.889(4)	1.896(4)	1.901(4)	1.883(9)	
Fe1	C2	1.866(4)	1.871(4)	1.869(4)	1.900(11)	

Table S2. Selected bond lengths of 1.4MeOH \cdot 2H₂O:

Table S3. Selected bond angles of 1.4MeOH.2H₂O forming [Fe₂Co₂] square plane:

Atom	Atom	Atom	Angles/°					
	Atom	Atom	100 K	168 K	200 K	250 K		
N9	Co1	N2 ¹	87.52(12)	87.65(12)	87.51(12)	87.5(3)		
C12	Fe1	C2	97.36(15)	97.22(15)	97.47(14)	98.1(3)		

Table S4. Octahedral Shape Analysis of 1.4MeOH.2H₂O:

Octahedral Shape Analysis Value							
Metal centre 100K 168K 200K 250 K							
Со	0.393	0.392	0.401	0.356			
Fe	0.187	0.180	0.182	0.186			

 Table S5. Octahedral distortion parameters for 1·4MeOH·2H₂O:

Temperature	Metal centre	<d> (Å)</d>	Z (Å)	Δ	Σ (°)	Θ (°)
2E0 K	Со	1.9286	0.105140	0.000099	41.9033	131.3609
250 K	Fe	1.9471	0.361916	0.000978	38.3556	85.1762
100 K	Со	1.9178	0.080549	0.000072	45.2858	138.5380
100 K	Fe	1.9358	0.389730	0.001153	36.2276	85.7889

Figure S2. Hydrogen bonding interactions between solvent molecules, perchlorate anions and the $[Fe_2(\mu-CN)Co_2]$ square grids a) along *the bc* plane and b) along the *ab* plane in complex **1**-4MeOH-2H₂O. The Hydrogen atoms not involved in Hydrogen bonding have been omitted for clarity.

2.2. Crystal structure determination of $1.2H_2O$:

Figure S3. Crystal Structure of $1 \cdot 2H_2O$. Colour Code: Green: Fe; Pink: Co; Blue: N; Grey: C; Yellow: B, Dark green: Cl, Light green: F. Hbonding interactions between the square complex, solvents and anions are shown with red dotted lines. The hydrogen not involved in Hbonding is omitted for clarity.

Identification code	1_2H ₂ O_200K_1C	1_2H ₂ O_168K_1C	1_2H ₂ O_140K_1C	1_2H ₂ O_110K_1		
Temperature (K)	200	168	140	110		
Empirical formula	$C_{36}H_{24}BClCoF_{10}FeN_{15}O_5$	$C_{36}H_{24}BClCoF_{10}FeN_{15}O_{5}$	$C_{36}H_{24}BClCoF_{10}FeN_{15}O_{5}$	$C_{36}H_{24}BClCoF_{10}FeN_{15}O_{5}$		
Formula weight	1097.74	1097.74	1097.74	1097.74		
Temperature/K	100.0	168.0	140.0	110.0		
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic		
Space group	P2 ₁ /c	P2 ₁ /c	P2 ₁ /c	P2 ₁ /c		
a/Å	14.5189(6)	14.5597(12)	14.5844(15)	14.5659(13)		
b/Å	22.4945(8)	22.1504(16)	21.947(2)	21.8912(18)		
c/Å	14.6481(6)	14.5863(12)	14.5400(15)	14.5075(14)		
α/°	90	90	90	90		
β/°	107.3870(10)	107.475(3)	107.574(3)	107.593(3)		
γ/°	90	90	90	90		
Volume/Å ³	4565.4(3)	4487.0(6)	4436.8(8)	4409.6(7)		
Z	4	4	4	4		
ρ _{calc} g/cm ³	1.597	1.625	1.643	1.654		
R ₁ ^a	0.0841	0.0592	0.0573	0.0580		
wR ₂ ^a	0.1887	0.1609	0.1555	0.1527		
$[a] I \ge 2\sigma(I): R_1 = \Sigma F_0 - F_C /\Sigma F_0 , wR_2 = \{\Sigma[w(Fo_2 - Fc^2)^2]/\Sigma[w(Fo^2)^2]\}^{1/2}$						

Identification code	1_2H ₂ O_140K_1H	1_2H ₂ O_168K_1H	1_2H ₂ O_200K_1H			
Temperature (K)	140	168	200			
Empirical formula	$C_{36H_{24}BCICoF_{10}FeN_{15}O_5}$	$C_{36H_{24}BClCoF_{10}FeN_{15}O_5}$	$C_{36H_{24}BCICoF_{10}FeN_{15}O_5}$			
Formula weight	1097.74	1097.74	1097.74			
Temperature/K	140.0	168.0	200.0			
Crystal system	Monoclinic	Monoclinic	Monoclinic			
Space group	P21/c	P21/c	P21/c			
a/Å	14.586(3)	14.555(3)	14.5088(10)			
b/Å	21.940(4)	22.133(4)	22.4672(13)			
c/Å	14.537(3)	14.590(3)	14.6367(10)			
α/°	90	90	90			
β/°	107.634(5)	107.506(6)	107.396(2)			
γ/°	90	90	90			
Volume/ų	4433.7(14)	4482.4(17)	4552.9(5)			
Z	4	4	4			
$\rho_{calc}g/cm^3$	1.645	1.627	1.601			
R ₁ ^a	0.0590	0.0583	0.0816			
wR ₂ ^a	0.1547	0.1594	0.1888			
$[a] \ge 2\sigma(I): R_1 = \Sigma F_0 - Fc / \Sigma F_0 , wR_2 = \{\Sigma[w(Fo_2 - Fc^2)^2] / \Sigma[w(Fo^2)^2] \}^{1/2}$						

Table S7. Crystallographic data of $1.2H_2O$ during heating @5 K min⁻¹:

Table S8. Selected bo	ond lengths of 1	•2H ₂ O during	cooling and he	ating mode @	95 K min ⁻¹ :
-----------------------	------------------	---------------------------	----------------	--------------	--------------------------

		Bond length/Å								
Atom	Atom	200	168	140	110	140	168	200		
Co1	N13	2.110(6)	2.061(4)	2.008(4)	2.005(4)	2.014(4)	2.062(4)	2.124(6)		
Co1	N12	2.113(6)	2.047(4)	2.012(4)	2.002(4)	2.012(4)	2.048(4)	2.108(5)		
Co1	N15	2.109(5)	2.052(4)	1.997(4)	1.998(4)	2.001(4)	2.047(4)	2.112(6)		
Co1	N21	2.107(6)	2.032(4)	1.989(4)	1.983(4)	1.989(4)	2.031(4)	2.099(6)		
Co1	N9	2.107(6)	2.028(4)	1.976(4)	1.974(4)	1.981(4)	2.024(4)	2.106(6)		
Co1	N10	2.129(6)	2.041(4)	2.024(4)	2.015(4)	2.025(4)	2.039(4)	2.110(6)		
Fe1	N3	1.975(6)	1.981(4)	1.988(4)	1.990(4)	1.987(4)	1.979(4)	1.969(6)		
Fe1	N8	1.968(6)	1.991(4)	1.984(4)	1.986(4)	1.983(4)	1.987(4)	1.967(6)		
Fe1	N6	1.975(6)	1.980(4)	1.994(4)	1.996(4)	2.001(4)	1.978(4)	1.970(6)		
Fe1	C12	1.913(8)	1.896(5)	1.893(5)	1.885(5)	1.881(5)	1.900(5)	1.895(7)		
Fe1	C2	1.894(7)	1.885(5)	1.880(5)	1.871(5)	1.869(5)	1.885(5)	1.925(8)		
Fe1	C1	1.924(8)	1.918(5)	1.922(5)	1.917(5)	1.913(5)	1.918(5)	1.923(7)		

Table S9. Selected bond angles of $1.2H_2O$ during cooling and heating mode @5 K min⁻¹:

Atoms					Angles/°				
	Atoms		200 K	168 K	140 K	110 K	140 K	168 K	200 K
N9	Co1	N2 ¹	84.9(2)	85.10(15)	85.53(15)	85.85(15)	85.71(15)	85.31(15)	84.7(2)
C12	Fe1	C2	90.6(3)	93.24(19)	94.70(19)	94.70(19)	94.64(19)	93.28(19)	90.8(3)

Table S10. Octahedral Shape Analysis of $1\cdot 2H_2O$ during cooling and heating mode @5 K min⁻¹:

Octahedral Shape Analysis Value							
Metal centre 200 K 168 K 140 K 110 K 140 K 168 K 200 K							200 K
Со	1.130	0.883	0.723	0.723	0.706	0.869	1.150
Fe 0.109 0.147 0.167 0.167 0.166 0.135 0.105							

Table S11. Octahedral distortion parameters for 1·2H₂O during cooling and heating mode @5 K min⁻¹:

Temperature (K)	Metal centre	<d> (Å)</d>	Z (Å)	Δ	Σ (°)	Θ (°)
200	Со	2.1125	0.034745	0.000013	71.3885	216.0295
200	Fe	1.9415	0.186854	0.000278	21.0018	64.1777
100	Со	2.0435	0.058561	0.000030	62.7426	197.4726
108	Fe	1.9420	0.252804	0.000499	24.7315	77.3182
140	Со	2.0012	0.081449	0.000061	56.5163	181.0988
140	Fe	1.9433	0.271347	0.000586	26.9007	83.3626
110	Со	1.9965	0.070066	0.000047	54.6728	175.5133
110	Fe	1.9407	0.298537	0.000708	26.0526	82.7088
140	Со	2.0037	0.079822	0.000057	55.7630	178.6307
140	Fe	1.9389	0.309204	0.000761	26.1240	82.5078
100	Со	2.0417	0.063576	0.000037	61.9579	195.7921
168	Fe	1.9413	0.240597	0.000453	24.2697	74.3951
200	Со	2.1099	0.032355	0.000012	71.8219	218.3610
	Fe	1.9417	0.163342	0.000221	21.3293	64.4477

Identification code	1_2H ₂ O_120K_2H	1_2H ₂ O_140K_2H	1_2H ₂ O_168K_2H	1_2H ₂ O_200K_2H		
Temperature (K)	120	140	168	200		
Empirical formula	$C_{36}H_{24}BClCoF_{10}FeN_{15}O_5$	$C_{36}H_{24}BClCoF_{10}FeN_{15}O_5$	$C_{36}H_{24}BClCoF_{10}FeN_{15}O_5$	$C_{36}H_{24}BClCoF_{10}FeN_{15}O_5$		
Formula weight	1097.74	1097.74	1097.74	1097.74		
Temperature/K	120.0	140.0	168.0	200.0		
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic		
Space group	P2 ₁ /c	P2 ₁ /c	P2 ₁ /c	P2 ₁ /c		
a/Å	14.608(3)	14.6328(10)	14.618(3)	14.5568(5)		
b/Å	21.690(4)	21.6526(17)	21.998(4)	22.4909(8)		
c/Å	14.447(3)	14.4816(12)	14.513(3)	14.6069(5)		
α/°	90	90	90	90		
β/°	107.574(4)	107.596(4)	107.492(4)	107.3370(10)		
γ/°	90	90	90	90		
Volume/Å ³	4363.8(14)	4373.6(6)	4451.1(15)	4565.0(3)		
Z	4	4	4	4		
ρ _{calc} g/cm ³	1.671	1.667	1.638	1.597		
R ₁ ^a	0.0706	0.0918	0.0684	0.1264		
wR ₂ ^a	0.1859	0.2086	0.1861	0.2943		
[a] $I \ge 2\sigma(I)$: $R_1 = \Sigma F_0 - F_C /\Sigma F_0 $, $wR_2 = {\Sigma[w(Fo_2 - Fc^2)^2]/\Sigma[w(Fo^2)^2]}^{1/2}$						

Table S12. Crystallographic data of $1\cdot 2H_2O$ during heating @1 K min⁻¹:

Table S13. Selected bond lengths of $1.2H_2O$ during heating mode @1 K min⁻¹:

Atom	A t a u a		Bond length/Å					
Atom	Atom	110 К	120 К	140 К	168 K	200 K		
Co1	N13	2.005(4)	1.971(5)	1.974(7)	2.030(5)	2.131(9)		
Co1	N12	2.002(4)	1.966(5)	1.952(7)	2.030(5)	2.103(9)		
Co1	N15	1.998(4)	1.949(6)	1.949(7)	2.020(6)	2.106(9)		
Co1	N2 ¹	1.983(4)	1.944(6)	1.933(7)	2.017(5)	2.101(10)		
Co1	N9	1.974(4)	1.914(6)	1.913(7)	1.996(6)	2.103(10)		
Co1	N10	2.015(4)	1.952(6)	1.960(7)	2.010(5)	2.113(9)		
Fe1	N3	1.990(4)	2.001(5)	2.005(7)	1.986(6)	1.953(9)		
Fe1	N8	1.986(4)	1.997(5)	1.980(7)	1.990(5)	1.969(9)		
Fe1	N6	1.996(4)	1.986(6)	1.995(7)	1.977(5)	1.972(10)		
Fe1	C12	1.885(5)	1.874(7)	1.872(9)	1.890(7)	1.875(11)		
Fe1	C2	1.871(5)	1.853(7)	1.849(9)	1.871(7)	1.933(13)		
Fe1	C1	1.917(5)	1.914(7)	1.908(9)	1.917(7)	1.928(12)		

Table S14. Selected bond angles of $1.2H_2O$ during heating mode @1 K min⁻¹:

Ata <i>m</i> a			Angles/°						
	Atoms		110 K	120 K	140 K	168 K	200 K		
N9	Co1	N2 ¹	85.85(15)	86.3(2)	86.7(3)	85.5(2)	85.1(4)		
C12	Fe1	C2	94.70(19)	96.1(3)	96.2(3)	93.9(3)	90.4(4)		

Table S15. Octahedral Shape Analysis of 1.2H₂O during heating mode @1 K min⁻¹:

Matal contro	Octahedral Shape Analysis Value							
weta centre	110 K	120 K	140 K	168 K	200 K			
Со	0.723	0.507	0.499	0.786	1.107			
Fe	0.167	0.204	0.213	0.175	0.108			

Table S16. Octahedral distortion parameters for 1·2H₂O during cooling and heating mode @1 K min⁻¹:

Temperature (K)	Metal centre	<d> (Å)</d>	Z (Å)	Δ	Σ(°)	Θ (°)
110	Со	1.9965	0.070066	0.000047	54.6728	175.5133
110	Fe	1.9407	0.298537	0.000708	26.0526	82.7088
120	Со	1.9492	0.082225	0.000090	47.6205	152.0882
120	Fe	1.9376	0.342168	0.000956	30.3329	91.5087
	Со	1.9491	0.097277	0.000104	49.3176	154.9531
140	Fe	1.9349	0.350755	0.001005	31.6110	92.9399
169	Со	2.0169	0.056827	0.000034	59.0672	186.9598
168	Fe	1.9385	0.275537	0.000614	26.2375	83.8221
200	Со	2.1095	0.049495	0.000023	70.4376	213.3041
	Fe	1.9383	0.157658	0.000284	20.6208	63.8449

HB interactions (Å)	110 K	120 K	140 K	168 K	200 К
N _{NH2} ····O _{H2O}	2.807	2.795	2.784	2.812	2.855
N_{CN} ···O _{H2O}	2.799	2.796	2.785	2.825	2.869

Figure S4. Hydrogen bonding interactions between solvent molecules, perchlorate anions and the $[Fe_2(\mu-CN)Co_2]$ square grids along the *ab* plane in complex **1**·2H₂O. The Hydrogen atoms not involved in Hydrogen bonding have been omitted for clarity.

2.3. Crystal structure determination of 1:

Figure S5. Crystal Structure of 1. Colour Code: Green: Fe; Pink: Co; Blue: N; Grey: C; Yellow: B, Dark green: Cl, Light green: F. The hydrogen not involved in H-bonding is omitted for clarity.

Table S18. Crystallographic data of 1:

Identification code	1
Empirical formula	$C_{36}H_{22}BCICoF_{10}FeN_{15}O_4$
Formula weight	1079.72
Temperature/K	117.0
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	14.768(3)
b/Å	22.615(6)
c/Å	14.318(4)
α/°	90
β/°	109.286(5)
γ/°	90
Volume/Å ³	4513.6(19)
Z	4
$\rho_{calc}g/cm^3$	1.589
R ₁ ^a	0.0707
wR ₂ ^a	0.1738

Table S19. Selected bond lengths of 1 at 117 K:

Atom	Atom	Bond length/Å		
Co1	N15	2.126(6)		
Co1	N12	2.103(6)		
Co1	N2 ¹	2.112(6)		
Co1	N13	2.104(6)		
Co1	N9	2.114(6)		
Co1	N10	2.127(6)		
Fe1	N6	1.968(6)		
Fe1	N8	1.976(6)		
Fe1	N3	1.965(6)		
Fe1	C2	1.900(8)		
Fe1	C1	1.929(8)		
Fe1	C12	1.896(8)		

Table S20. Selected bond angles of 1 at 117 K:

Atoms Angles/°	Atoms
----------------	-------

N9	Co1	N2 ¹	85.5(2)
C12	Fe1	C2	90.6(3)

Table S21. Octahedral Shape Analysis of 1 at 117 K:

Octahedral Shape Analysis Value				
Metal centre	117 K			
Со	1.137			
Fe	0.093			

Table S22. Octahedral distortion parameters for 1 at 117 K:

Metal centre	<d> (Å)</d>	Z (Å)	Δ	Σ (°)	Θ (°)
Со	2.1142	0.048023	0.000019	70.9624	211.9373
Fe	1.9388	0.182791	0.000277	19.5784	61.4659

Figure S6. Hydrogen bonding interactions between solvent molecules, perchlorate anions and the $[Fe_2(\mu-CN)Co_2]$ square grids along the *ab* plane in complex **1**. The Hydrogen atoms not involved in Hydrogen bonding have been omitted for clarity.

Figure S7. Overlay diagram of a) 1.4MeOH \cdot 2H₂O (blue: 100 K, orange: 200 K) and b) 1.2H₂O (blue: 140 K, orange: 200 K) and c) 1.2H₂O (blue: 140 K, orange: 110 K). The Hydrogen atoms are omitted for clarity.

2.5. Thermogravimetric analysis:

Figure S8. Thermogravimetric analysis of a) 1.4MeOH.2H₂O, b) 1.2H₂O and c) 1 representing loss of solvent molecules.

Figure S9. Thermogravimetric analysis of $1 \cdot 2H_2O$ after a) 2 days, b) 1 week, c) 2 weeks and d) 4 weeks.

Figure S10. Thermogravimetric analysis of 1 (a) and resolvated complex (b).

2.6. Infrared spectroscopy study:

Figure S11. a) Infrared spectroscopy of **1**·4MeOH·2H₂O, **1**·2H₂O and **1**. Enlarged view of b) BH⁻ and CN frequency region and c) 1750 – 400 cm⁻¹.

Figure S12. Infrared spectroscopy of ligand, 1·2H₂O, desolvated and the resolvated complex.

Figure S13. Infrared spectroscopy of $1.2H_2O$ with ageing a) complete spectra from 4000-400 cm⁻¹, b) fingerprint region (1800-400 cm⁻¹), and c) v_{BH} and v_{CN} stretching frequencies.

Figure S14. a) $\chi_M T vs. T$ (black), b)) $\gamma_{HS} vs. T$ and c) and d) are the derivative plots during cooling and heating, respectively, for complex 1·2H₂O at 5 K min⁻¹ with applied DC field of 1000 Oe. The separate derivative plot for the complex during the cooling and heating cycle (b and c, respectively).

The HS fraction (γ_{HS}) with temperature is calculated from the equation:

$$\frac{(\chi_M T)m - (\chi_M T)LS}{(\chi_M T)HS - (\chi_M T)LS} \dots (1)$$

Here, $(\chi_M T)$ m corresponds to the $\chi_M T$ value at any measured temperature and $(\chi_M T)$ HS and $(\chi_M T)$ LS represent the $\chi_M T$ values at absolutely populated HS and low spin species of the molecule, respectively.⁵

Figure S15. $\chi_M T$ vs. T plots for complex $1.2H_2O$ at 5 K min⁻¹ under different applied magnetic field from 10 Oe to 10000 Oe from 2-100 K. The variation in $\chi_M T$ values observed at 100 K between the two samples in Figures S14 and S15 may be due to multiple measurements performed using the same sample, leading to minor changes in the solvent content over time.

Figure S16. $\chi_M T$ vs. T plot at a scan rate of 5 K min⁻¹ for complex 1·2H₂O with three consecutive cycles upon resolvation.

Figure S17. $\chi_M T vs.$ T plots for complex $1.2H_2O$ upon thermal quenching with a scan rate of 25 K min⁻¹ (black) and 30 K min⁻¹ (red) via TIESST phenomenon. Heating was measured at a scan rate of 0.8 K min⁻¹ (black) and 2 K min⁻¹ (red). The 1st derivative plots during cooling and heating mode is shown in their representative colours with single-step and two-step transitions, respectively.

Figure S18. $\chi_M T vs.$ T plots for complex $1.2H_2O$ upon thermal quenching with a scan rate of 30 K min⁻¹ upto a) 100 K, c) 168 K and e) 190 K followed by relaxation for about 2 hours at constant temperatures. b), d) and f) $\chi_M T vs.$ time plots at 100 K, 168 K and 190 K, respectively. Inset of a) shows the 1st derivative of heating cycle showing not so prominent three step-transition.

Figure S19. $T_{1/2}$ *vs.* Pressure plots for complex **1**·2H₂O showing linear relation above 0.8 GPa of threshold pressure, following Clayperon law.

Figure S20. $\chi_M T$ vs. Temperature plots for complex $1.2H_2O$ with irradiation with a) 640 nm and b) 740 nm of light (orange). The cooling rate is 5 K min⁻¹ (black) and after irradiation, the heating is at 2 K min⁻¹ (blue).

References

- (1) J. Kim, S. Han, I.-K. Cho, K. Y. Choi, M. Heu, S. Yoon, and B. J. Suh, Polyhedron, 2004, 23, 1333-1339.
- (2) O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann, J. Appl. Cryst., 2009, 42, 339-341.
- (3) R. Ketkaew et al. Octadist. 2019.
- (4) L. D. Marco, W. Carpenter, H. Liu, R. Biswas, J. M. Bowman, A. Tokmakoff, J. Phys. Chem. Lett., 2016, 7, 1769-1774.
- (5) J. Yadav, D. J. Mondal and S. Konar, Chem. Commun., 2021, 57, 5925-5928.