Supporting Information

Two-photon brightness of NIR-emitting, atomically precise DNAstabilized silver nanoclusters

Agata Hajda,¹ Rweetuparna Guha,² Stacy Marla Copp,^{2,3,4,5} Joanna Olesiak-Bańska¹

¹ Institute of Advanced Materials, Wroclaw University of Science and Technology, Wrocław, Poland

² Department of Materials Science and Engineering, University of California, Irvine, CA 92697, USA

³ Department of Chemistry, University of California, Irvine, CA 92697, USA

⁴ Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA

⁵ Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697, USA

Contents

1.	. Synthesis and purification of DNA-stabilized silver nanoclusters (Ag _N -DNAs)	2
2.	. Mass spectrometry	2
	2.1 Molecular composition determination of Ag _N -DNAs using mass spectrometry	3
	2.2 Mass spectra of Ag _N -DNAs	4
3.	. Two photon spectra measurements of Ag _N -DNAs	6-8
4.	. References	9

1. Synthesis and purification of DNA-stabilized silver nanoclusters (Ag_N-DNAs).

A stoichiometric amount of AgNO₃ (Sigma Aldrich) was added to the ssDNA oligomer (Integrated DNA Technologies, standard desalting) in 10 mM ammonium acetate (pH 7.0) to form the Ag⁺–DNA complex. After 15 minutes, a freshly prepared aqueous solution of NaBH₄ ([BH₄⁻]/[Ag⁺] = 0.5) was added to the Ag⁺–DNA complex. Samples were stored at 4 °C in the dark for 3 to 5 days, allowing sufficient time for the Ag_N-DNA formation, followed by purification using ionpaired reverse-phase high-performance liquid chromatography (RP-HPLC). The stoichiometry for Ag⁺:DNA was optimized for each Ag_N-DNA to achieve maximum chemical yield (**Table S1**). No additional chloride source was added to synthesize chlorido-protected **Ag₁₆-DNA-Cl₂**.¹ The HPLC chromatograms of the four Ag_N-DNA species are previously reported in Ref. 2.²

Name	[DNA]/ µM	[AgNO₃]/ µM
Ag₁₅-DNA	25	125
Ag ₂₁ -DNA	20	100
Ag ₁₆ -DNA-Cl ₂	25	187.5
Ag ₁₉ -DNA	25	187.5

Table S1. The experimental conditions used for synthesis of Ag_N-DNAs.

2. Mass spectrometry

HPLC-purified Ag_N-DNAs were solvent exchanged to 10 mM ammonium acetate (pH 7) and were directly injected at 100 μ L/min in negative ion mode with a 2 kV capillary voltage, 30 V cone voltage, and no collision energy. Spectra were collected from 1000 to 4000 *m/z* and integrated for 1 s. Unless otherwise stated, the source and desolvation temperatures were 80 and 150 °C respectively. Gas flows were 45 L/h for the cone and 450 L/h for the desolvation. Samples were injected with 50 mM NH₄OAc – MeOH (80:20) solution at pH 7.

2.1 Molecular composition determination of Ag_N-DNAs using mass spectrometry.

HPLC-purified Ag_N-DNAs were directly injected to obtain mass spectra using negative-ion mode electrospray ionization mass spectrometry (ESI-MS). The molecular composition of Ag_N-DNA such as the number of ssDNA oligomers (n_s) and the presence of additional chlorido ligands, total number of silver atoms (N) were first determined. Then the number of effective valence electrons (N_0) of each Ag_N-DNA species was determined by fitting the calculated isotopic distribution of the Ag_N-DNA to the experimental spectra. Detailed explanation formulae used for the calculation of N and N_0 have been reported previously.¹⁻³ The molecular formula of Ag_N-DNA is denoted as $(DNA)_{ns} (Ag_NCl_x)^{Qc}$, where Q_c is the nanocluster charge that matches the isotope pattern. In the absence of Cl⁻ ligands, N_+ equals Q_c , whereas, in the presence of Cl⁻ ligands, $Q_{\rm c} = N_+ - x$. The nanocluster size and charge were determined by fitting the calculated isotopic distribution of the Ag_N-DNA to the experimental spectra. Calculated isotopic distributions were obtained from MassLynx using the chemical formula and corrected for the nanocluster's overall positive charge (oxidation state) cluster. The Ag_N-DNA composition and charge were determined by fitting the calculated isotopic distribution of the Ag_N-DNA to the experimental spectra. To confirm the overall charge of the nanocluster (Q_c) , we compared the best fit with the two observed charge states peaks, z = 4- (dark blue curve) and z = 5- (light blue curve) as shown in the insets of Fig. S1 to S4.

2.2 Mass spectra of Ag_N-DNAs.

Fig. S1 Mass spectra of **Ag**₁₅**-DNA**. Experimental isotopic distributions (black curves) for all peaks of **Ag**₁₅**-DNA** mass spectra. Insets show isotopic distributions aligned with experimental peaks for (DNA)₂[Ag₁₅]⁹⁺ at z = 5- (light blue) and z = 4- (dark blue). Isotopic distributions were calculated using the chemical formula C₁₉₂H₂₄₄N₇₈O₁₁₀P₁₈Ag₁₅.

Fig. S2 Mass spectra of **Ag**₂₁**-DNA**. Experimental isotopic distributions (black curves) for all peaks of **Ag**₂₁**-DNA** mass spectra. Insets show isotopic distributions aligned with experimental peaks for (DNA)₃[Ag₂₁]¹⁵⁺ at z = 6- (light blue) and z = 5- (dark blue). Isotopic distributions were calculated using the chemical formula C₂₉₁H₃₆₃N₁₃₂O₁₆₅P₂₇Ag₂₁.

Fig. S3 Mass spectra of **Ag**₁₆**-DNA-Cl**₂. Experimental isotopic distributions (black curves) for all peaks of **Ag**₁₆**-DNA-Cl**₂ mass spectra. Insets show isotopic distributions aligned with experimental peaks for $(DNA)_2[Ag_{16}Cl_2]^{8+}$ at z = 6- (light red) and z = 5- (dark red). Isotopic distributions were calculated using the chemical formula $C_{192}H_{244}N_{78}O_{112}P_{18}Cl_2Ag_{16}$.

Fig. S4 Mass spectra of **Ag**₁₉**-DNA**. Experimental isotopic distributions (black curves) for peaks of **Ag**₁₉**-DNA** mass spectra. Insets show isotopic distributions aligned with experimental peaks for (DNA)₂[Ag₁₉]¹¹⁺ at z = 5- (light blue) and z = 4- (dark blue), as indicated by circles. Isotopic distributions were calculated using the chemical formula C₁₉₆H₂₄₄N₈₆O₁₁₂P₁₈Ag₁₉.

3. Two-photon spectra measurements of Ag_N-DNAs.

Fig. S5 Zoomed-in comparison of one-photon excitation (1PE, filled blue band) and two-photon absorbance (2PA, blue circles and lines) for **Ag**₂₁**.DNA**.

Fig. S6 Comparison of one-photon excitation (1PE, filled red band) and two-photon absorption (2PA) spectra of Ag_{16} -DNA-Cl₂ obtained with fs lasers at repetition rates of 1 kHz (black lines with inverted triangles) and 80 MHz (orange line with circles).

Legend for Log-log plots of the PL intensity. Power exponent (n) is shown for all measured wavelengths.					
Ag ₁₅ -DNA	Ag ₂₁ -DNA	Ag ₁₆ -DNA-Cl ₂	Ag ₁₉ -DNA		
n ₈₁₀ : 1.87±0.07 n ₈₅₀ : 1.91±0.04 n ₉₀₀ : 2.08±0.07	n ₈₁₀ : 1.48±0.02 n ₈₂₀ : 1.67±0.02 n ₈₅₀ : 1.86±0.01 n ₈₈₀ : 1.97±0.02 n ₉₈₀ : 2.07±0.07 n ₁₀₂₀ : 1.90±0.01	$\begin{array}{c} n_{810:} \ 1.82 \pm 0.06 \\ n_{850:} \ 1.95 \pm 0.04 \\ n_{880:} \ 2.04 \pm 0.02 \\ n_{980:} \ 1.91 \pm 0.01 \\ n_{1020:} \ 1.98 \pm 0.04 \\ n_{1060:} \ 2.09 \pm 0.02 \end{array}$	n ₈₁₀ : 1.19±0.02 n ₈₅₀ : 1.52±0.07 n ₉₈₀ : 1.75±0.04 n ₁₀₂₀ : 1.88±0.06		

Fig. S7 Log-log plot of the PL intensity of (A) Ag_{15} -DNA, (B) Ag_{21} -DNA, (C) Ag_{16} -DNA-Cl₂, and (D) Ag_{19} -DNA. Slopes indicate power exponent (n).

Fig. S8 Comparison between one-photon excitation (1PE, filled bands) and two-photon absorption (2PA, points and lines) of **Ag**₁₉-**DNA**. Grey shaded area implies a high contribution of one-photon processes based on power exponent.

4. References

- A. Gonzàlez-Rosell, S. Malola, R. Guha, N. R. Arevalos, M. F. Matus, M. E. Goulet, E. Haapaniemi, B. B. Katz, T. Vosch, J. Kondo, H. Häkkinen and S. M. Copp, *J. Am. Chem. Soc.*, 2023, 145, 10721-10729.
- R. Guha, A. Gonzàlez-Rosell, M. Rafik, N. Arevalos, B. B. Katz and S. M. Copp, *Chem. Sci.*, 2023, 14, 11340-11350.
- 3. R. Guha, S. Malola, M. Rafik, M. Khatun, A. Gonzàlez-Rosell, H. Häkkinen and S. M. Copp, *Nanoscale*, 2024, DOI: 10.1039/D4NR03533J.