# **Supplementary Information**

# Bridge Editing of Spin-Flip Emitters gives Insight into Excited State Energies and Dynamics

Florian Reichenauer,<sup>a</sup> Robert Naumann,<sup>a</sup> Christoph Förster,<sup>a</sup> Winald R. Kitzmann,<sup>a</sup> Antti-Pekka M. Reponen,<sup>b</sup> Sascha Feldmann<sup>b</sup> and Katja Heinze<sup>\*a</sup>

<sup>a</sup> Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany

<sup>b</sup> Rowland Institute, Harvard University, 100 Edwin H. Land Boulevard, Cambridge, MA 02142

| General Methods                                 | S2         |
|-------------------------------------------------|------------|
| Synthetic Procedures                            | <b>S</b> 5 |
| Analytical data of the ligands and Cr precursor | S9         |
| Analytical and DFT/TDDFT data of Cr complexes   | S18        |
| Computational studies on the doublet energies   | S37        |
| Computational studies on the quartet states     | S44        |
| fs-Transient absorption spectroscopy            | S45        |
| Variable-temperature emission spectroscopy      | S49        |
| Photolysis Experiments                          | S52        |
| Quenching Experiments                           | S54        |
| References                                      | S57        |

## **General Methods**

All reactions and measurements were performed under argon atmosphere unless otherwise noted. Gloveboxes (UniLab/MBraun – Ar 5.0,  $O_2 < 1$  ppm,  $H_2O < 0.1$  ppm) were used to store and weight sensitive compounds for synthesis as well as to prepare samples that require the absence of oxygen and/or water. The reagents were purchased from commercial suppliers (Acros Organics, Alfa Aesar, Fischer Scientific and Sigma Aldrich) and used without further purification. Acetonitrile and petroleum ether were dried and distilled from CaH<sub>2</sub>. Anhydrous DMF (Sigma Aldrich) was used without further purification. Column chromatography was performed using aluminum oxide (neutral, Brockmann I). Analytical thin layer chromatography (TLC) was done on aluminum oxide F254 (Macherey-Nagel, coated on polyester sheets) and the spots were visualised by ultraviolet light.

**NMR Spectra** were recorded on a *Bruker Avance II 400* spectrometer at 400.42 MHz (<sup>1</sup>H) and 100.70 MHz (<sup>1</sup>C{<sup>1</sup>H}) in deuterated acetonitrile (Deutero GmbH). All data were evaluated with the software *MestReNova 12.0.4-22023*. The resonances are reported in ppm versus the solvent signal as internal standard (<sup>1</sup>H; (<sup>13</sup>C) NMR: actonitrile- $d_3$ :  $\delta = 1.94$ , 2.13; (1.32, 118.26) ppm)<sup>1</sup> and *J* values are given in Hz. (s) = singlet, (d) = doublet, (t) = triplet, (q) = quartet.

IR spectra were recorded with a Bruker Alpha FTIR spectrometer with an ATR unit containing a diamond crystal.

ESI\* mass spectra were recorded on an Agilent 6545 HPLC-ESI-QTOF-MS spectrometer.

**Elemental analyses** were performed by the central analytic service of the Department of Chemistry of the Johannes Gutenberg University Mainz using an *Elementar vario EL Cube* or by the Mikroanalytisches Labor Kolbe, c/o Fraunhofer Institut UMSICHT, Oberhausen, Germany.

**Electrochemical experiments** were carried out on a *BioLogic SP-200* voltammetric analyser using platinum wires as *counter* and working electrodes and a 0.01 M Ag/Ag(NO<sub>3</sub>) electrode as reference electrode. Cyclic voltammetry and square wave measurements were carried out at scan rates of 100 mV s<sup>-1</sup> using 0.1 M [<sup>n</sup>Bu<sub>4</sub>N][PF<sub>6</sub>] in CH<sub>3</sub>CN as supporting electrolyte. Potentials are referenced against the ferrocenium/ferrocene couple.

**UV/VIS/NIR spectra** were recorded on an *Agilent Cary 5000* spectrometer using gastight 1.00 cm quartz cuvettes with a Schott valve. Measurements were carried out in acetonitrile (Optima® LC/MS grade, Fisher Scientific). Molar absorption coefficients are given at maximum absorption and for shoulders (highlighted as sh). For deconvolution of NIR absorption band patterns, the spectra were baseline corrected using a biexponential function (eq. S1) to model the tailing of higher energy bands. Deconvolution of the baseline corrected spectra was achieved with five Voigt functions using the *Origin94* software package.

$$\varepsilon(\tilde{v}) = \varepsilon_0 + A_1 e^{\frac{\tilde{v} - \tilde{v}_0}{t_1}} + A_2 e^{\frac{\tilde{v} - \tilde{v}_0}{t_2}}$$
(eq. S1)

**Steady-state emission spectra and photoluminescent decay curves** of the complexes were measured with a *FLS1000 spectrometer* from *Edinburgh Instruments* equipped with a cooled photomultiplier detector PMT-980. A xenon arc lamp Xe2 (450 W) was used for excitation in steady-state measurements. Time-resolved luminescence experiments were conducted using a pulsed diode laser VPL-450 as excitation source. Absolute luminescence quantum yields  $\Phi$  were determined using an integrating sphere from *Edinburgh Instruments* with a relative uncertainty estimated as ±10%. Room temperature measurements were done in acetonitrile (Optima® LC/MS grade, Fisher Scientific). Measurements at low temperature were carried out using a liquid nitrogen cooled cryostat *Optistat DN* from *Oxford Instruments* in a 2:3 mixture of methanol (Optima® LC/MS grade) and ethanol (Fisher Scientific). Biexponential Arrhenius fits were performed for the entire measured temperature range on basis of eq. 1 (see main text) justified by the absent phase transition of the solvent mixture.<sup>2</sup> Emission spectra of the ligands were measured with a *spectrofluorometer FS5* from *Edinburgh Instruments*.

fs-Transient absorption spectra were recorded using a setup based on modules supplied by Light Conversion. The seed laser of the setup (Light Conversion PHAROS, Yb:KGW lasing medium) generates 1030 nm pulses with energy 400 µJ and duration 200 fs at a repetition rate of 50 kHz. The pump beam was generated from the seed in a harmonic generation unit (Light Conversion HIRO) via nonlinear crystals (beta-barium borate, lithium triborate) with residual fundamental removed by dichroic mirrors within the unit. The pump was passed through an optical chopper (operating at 100 Hz) and a beamsplitter/photodiode combination was used to divide and sort the measurements into pumped and unpumped. The pump was focused onto the sample with an effective beam diameter of roughly 900 µm. The probe beam was generated from the seed laser using supercontinuum generation in a sapphire crystal. The pump-probe delay was controlled over a range of 8 ns by changing probe path length via a multipass delay stage. For changing the wavelength region of the generated probe, the seed can be passed through a second harmonic generating medium prior to focusing onto the sapphire. Residual fundamental was filtered out and the white light probe was then focused onto the sample with an effective beam diameter of roughly 400 µm. The probe beam was passed into a grating spectrograph (Andor Kymera 193i, grating blaze wavelength 800 nm, 150 lines/mm for VIS-NIR probe and 300 nm, 300 lines/mm for UV-VIS probe) and recorded using a Si NMOS photodiode array detector (256 pixels). A 343 nm pump and 515 nm pump with fluences of 70 µJ cm<sup>-2</sup> and 3 mJ cm<sup>-2</sup> were used for [1<sup>0</sup>][OTf]<sub>3</sub> and [1<sup>5</sup>][OTf]<sub>3</sub>, respectively, with a repetition rate of 1 kHz. Experiments were carried out using a probe generated with 1030 nm fundamental, spanning 500 to 920 nm. The probe pulse arrival time has slight wavelength dependence (roughly 0.5 ps from lowest to highest wavelength), which is corrected for by applying a wavelength-dependent time offset determined by a polynomial fit to selected points in the coherent artifact at time zero. Samples were measured in 1 mm path length cuvettes, with an OD of OD of 1.29 at 343 nm for [1°][OTf]<sub>3</sub> and an OD of 0.07 at 515 nm for [1<sup>s</sup>][OTf]<sub>3</sub>. No decomposition of the samples due to the TA experiments could be observed via UV/Vis absorption spectroscopy. Chirp correction and global analysis of the TA data using a consecutive kinetic model was performed using the KiMoPack python package.<sup>3</sup> For [1<sup>s</sup>][OTf]<sub>3</sub>, the data at time delays <0.5 ps was not included in the global analysis because of the strong artifacts around time zero. For [1°][OTf]<sub>3</sub>, the ultrafast component with a time constant of 0.03 ps does not carry any physical meaning as it is faster than the excitation pulse width of ca. 200 fs.

**Photolysis experiments** were conducted by irradiating deaerated stirred solutions of the complexes in inert gas cuvettes. An *Ultra-High Power* collimated LED from *Prizmatix* (UHP-T-460-DI; output power (free): 5.5 W) with a maximum at 456 nm and the centroid at 460 nm was used. The output power was adjusted constant with 1.1 W (20% setting) for all experiments using a *UHPTLCC-02-USB Controller*. The beam of light was focused onto the cuvette with a plano convex lens. At the cuvette, the beam diameter was roughly 1 cm. The temperature of the irradiated solution was kept at 20 °C with a Peltier module. Due to the excitation source being non-monochromatic, the complexes exhibiting a different spectral absorption within the excitation range and the absorbance changing over time upon irradiation, the irradiation and decomposition times of the different complexes are not comparable and only a qualitative comparison can be made.

**Stern-Volmer measurements** were conducted by titration of deaerated solutions of *trans*-stilbene or anthracene in acetonitrile to deaerated solutions of the corresponding complex in the same solvent in inert gas cuvettes. The titration steps were done in the glovebox. The Stern-Volmer analyses were performed on the basis of eq. S2 and S3.<sup>4</sup>

| $\frac{\tau_0}{\tau} - 1 = K_{SV}[Q]$ | (eq. S2) |
|---------------------------------------|----------|
| $k_q = rac{K_{SV}}{	au_0}$           | (eq. S3) |

DFT calculations were performed using the quantum computing suite ORCA 5.0.4.<sup>5,6</sup> Geometry optimisation was performed using (un-)restricted Kohn-Sham orbitals DFT (UKS/RKS) and the B3LYP functional<sup>7-9</sup> in combination with Ahlrich's split valance triple-zeta basis set ZORA-def2-TZVPP<sup>10</sup> for all atoms. Tight convergence criteria were chosen for DFT calculations (keywords tightscf and tightopt). All DFT calculations make use of the resolution of identity (Split-RI-J) approach for the Coulomb term in combination with the chain-of-spheres approximation for the exchange term (keyword RIJCOSX).<sup>11,12</sup> The zeroth order regular approximation was used to describe relativistic effects in all calculations (keyword ZORA).<sup>13-19</sup> To account for solvent effects, a conductor-like screening model (keyword CPCM(acetonitrile)) modeling acetonitrile was used in all calculations.<sup>20,21</sup> Atom-pairwise dispersion correction was performed with the Becke-Johnson damping scheme (keyword D3BJ).<sup>22,23</sup> A numerical frequency calculation confirmed that the optimised geometry corresponds to a minimum structure. Explicit counter ions and/or solvent molecules were neglected. Fifty vertical spinallowed transitions were calculated by TD-DFT. The charge transfer number analyses of the TD-DFT calculated transitions were done using TheoDORE 2.4.24 Exited state geometry optimisations were done using TD-DFT and the given state was selected according to the TD-DFT calculation at the initial geometry (keyword iroot). To prevent root flipping after a step during the optimization the total overlap between the excited state wavefunctions was calculated and compared with the previous one (keyword followiroot). The characters of the optimised geometries were assigned to  ${}^{4}T_{2}$ , <sup>4</sup>LMCT, <sup>2</sup>T<sub>1</sub> and <sup>2</sup>E states according to the spin densities of the relaxed geometries. Starting from the optimised ground state geometries, distorted <sup>4</sup>T<sub>2</sub> and <sup>4</sup>LMCT states (see main text) could be localised. All calculations were computed on the Elwetritsch supercomputer at RPTU Kaiserslautern-Landau (hpc.rz.rptu.de). This is a member of the AHRP (Alliance for High Performance Computing Rhineland-Palatinate).

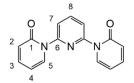
**CASSCF(x,y)-SC-NEVPT2** calculations of ground and excited state properties with respect to pure metal-centered (MC) states were performed using the complete-active-space self-consistent field (CASSCF) method<sup>25,26</sup> in conjunction with the strongly contracted N-electron valence perturbation theory to second order (SC-NEVPT2)<sup>27-29</sup> in order to recover missing dynamic electron correlation. All electronic states are classified by irreducible representations of the O point group, in spite of the lower actual symmetry of the considered complexes. To figure out the dominant bonding/antibonding orbitals describing the interaction between chromium and the ligand, an active space screening procedure was performed by comparing the results of four different active spaces with the experimental values. The active space (7,12) comprising of five d-orbitals, two occupied  $\sigma$  bonding orbitals and five unoccupied d orbitals of second d-shell<sup>30</sup> give results closest to the experimental values and was considered for all other CASSCF-calculations. 10 quartet and 10 doublet roots were calculated for all CAS calculations.

Active spaces for the active space screening procedure of the CASSCF calculations:

| CAS(3,5)   | five d orbitals                                                                                         |
|------------|---------------------------------------------------------------------------------------------------------|
| CAS(3,10)  | five d orbitals + five unoccupied d orbitals of second d-shell                                          |
| CAS(13,10) | five d orbitals + five occupied $\sigma$ and $\pi$ bonding orbitals                                     |
| CAS(7,12)  | five d orbitals + two occupied $\sigma$ bonding orbitals + five unoccupied d orbitals of second d-shell |

**Crystal structure determinations.** Intensity data were collected with a *STOE IPDS-2T* diffractometer and a *STOE STADIVARI* diffractometer from STOE & CIE GmbH with an Oxford cooling using Mo-K<sub> $\alpha$ </sub> radiation ( $\lambda = 0.71073$  Å). The diffraction frames were integrated using the STOE X-Area software package<sup>31</sup> and were corrected for absorption with MULABS<sup>32</sup> of the PLATON<sup>33</sup> software package or with the X-Area software package<sup>31,34,35</sup> (integration or semi-empirical from equivalents. The structures were solved with SHELXT<sup>36</sup> and refined by the full-matrix method based on *P*<sup>2</sup> using SHELXL<sup>37</sup> of the SHELX<sup>38</sup> software package and the ShelXle<sup>39</sup> graphical interface. All non-hydrogen atoms were refined anisotropically while the positions of all hydrogen atoms were generated with appropriate geometric constraints and allowed to ride on their respective parent atoms with fixed isotropic thermal parameters. Crystallographic data for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-2380708 for bptp, CCDC-2380706 for [1<sup>o</sup>][OTf]<sub>3</sub> and CCDC-2380707 for [1<sup>s</sup>][OTf]<sub>3</sub>.

**Crystallographic Data of bptp**:  $C_{15}H_{11}N_3S_2$  (297.39); monoclinic;  $C_{2/C}$ ; a = 12.378(3) Å, b = 9.0617(18) Å, c = 12.393(3) Å;  $\alpha = 90^{\circ}$ ;  $\beta = 99.98(3)^{\circ}$ ;  $\gamma = 90^{\circ}$ ; V = 1369.0(5) Å<sup>3</sup>; Z = 4; density, calcd. = 1.443 g cm<sup>-3</sup>, T = 120(2) K,  $\mu = 0.380$  mm<sup>-1</sup>; F(000) = 616; crystal size  $0.820 \times 0.600 \times 0.480$  mm<sup>3</sup>;  $\theta = 3.338$  to  $27.841^{\circ}$ ;  $-16 \le h \le 14$ ,  $-11 \le k \le 11$ ,  $-16 \le l \le 16$ ; reflections collected = 3504; reflections unique = 1621 [R(int) = 0.0181]; completeness to  $\theta = 25.242^{\circ}$ : 99.6%; absorption correction: integration; max. and min. transmission 0.8808 and 0.7687; data 1621; restraints 0, parameters 92; goodness-of-fit on  $F^2 = 1.055$ ; final indices [ $I > 2\sigma(I)$ ]  $R_1 = 0.0348$ , w $R_2 = 0.0905$ ; R indices (all data)  $R_1 = 0.0409$ , w $R_2 = 0.0948$ ; largest diff. peak and hole 0.419 and -0.284 e Å<sup>-3</sup>.


**Crystallographic Data of [1<sup>0</sup>][OTf]<sub>3</sub>:**  $C_{33}H_{24}CrF_9N_6O_{14}S_3$  (1047.76); monoclinic;  $P_{21}/n$ ; a = 15.110(3) Å, b = 13.307(3) Å, c = 19.705(4) Å;  $a = 90^{\circ}$ ;  $\beta = 98.83(3)^{\circ}$ ;  $\gamma = 90^{\circ}$ ; V = 3915.1(1) Å<sup>3</sup>; Z = 4; density, calcd. = 1.778 g cm<sup>-3</sup>, T = 120(2) K,  $\mu = 0.573$  mm<sup>-1</sup>; F(000) = 2116; crystal size  $0.260 \times 0.133 \times 0.070$  mm<sup>3</sup>;  $\theta = 2.395$  to  $28.175^{\circ}$ ;  $-19 \le h \le 19$ ,  $-17 \le k \le 17$ ,  $-18 \le l \le 26$ ; reflections collected = 31536; reflections unique = 9445 [R(int) = 0.0948]; completeness to  $\theta = 25.242^{\circ}$ : 99.5%; absorption correction: semi-empirical from equivalents; max. and min. transmission 1.0905 and 0.8732; data 9445; restraints 1, parameters 601; goodness-of-fit on  $F^2 = 1.112$ ; final indices [ $I > 2\sigma(I)$ ]  $R_1 = 0.0570$ ,  $wR_2 = 0.1002$ ; R indices (all data)  $R_1 = 0.1019$ ,  $wR_2 = 0.1174$ ; largest diff. peak and hole 0.888 and -0.475 e Å<sup>-3</sup>.

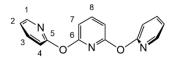
**Crystallographic** Data of  $[1^{S}][OTf]_3$ : C<sub>35.5</sub>H<sub>27</sub>CrF<sub>9</sub>N<sub>7</sub>O<sub>9.5</sub>S<sub>7</sub> (1151.06); monoclinic; *P*<sub>21</sub>/*n*; *a* = 14.7224(3) Å, *b* = 13.3391(3) Å, *c* = 22.8690(5) Å; *a* = 90°; *β* = 93.810(2)°; *γ* = 90°; *V* = 4481.17(17) Å<sup>3</sup>; *Z* = 4; density, calcd. = 1.706 g cm<sup>-3</sup>, *T* = 120(2) K, *μ* = 0.682 mm<sup>-1</sup>; *F*(000) = 2328; crystal size 0.380 × 0.293 × 0.160 mm<sup>3</sup>; *θ* = 2.062 to 31.145°; -19≤h≤20, -18≤k≤19, -30≤l≤32; reflections collected = 84775; reflections unique = 13233 [*R*(int) = 0.0475]; completeness to *θ* = 25.242°: 99.9%; absorption correction: semi-empirical from equivalents; max. and min. transmission 0.9168 and 0.0644; data 13233; restraints 139, parameters 793; goodness-of-fit on *F*<sup>2</sup> = 1.041; final indices [*I* > 2*σ*(*I*)] *R*<sub>1</sub> = 0.0420, w*R*<sub>2</sub> = 0.1142; *R* indices (all data) *R*<sub>1</sub> = 0.0618, w*R*<sub>2</sub> = 0.1213; largest diff. peak and hole 1.568 and -0.675 e Å<sup>-3</sup>.

## **Synthetic Procedures**

#### Synthesis of 2,6-bis(2-oxopyridin-1(2H)-yl)pyridine<sup>40</sup>

Potassium *tert*-butoxide (4.85 g, 43.2 mmol) was combined with an orange solution of 2-hydroxypyridine (4.11 g, 43.2 mmol) in anhydrous DMF (100 mL). The resulting brown solution was stirred for one hour at room temperature. 2,6-Dibromopyridine (5.12 g, 21.6 mmol) was added in portions and the mixture was heated at 145 °C for 24 hours. After cooling to room temperature, the solvent of the dark brown solution was removed under reduced pressure (5 mbar, 80 °C). The crude residue was suspended in water (100 mL) and the product was extracted with ethyl acetate (3 x 100 mL). The combined organic phases were washed with a saturated aqueous solution of sodium chloride (100 mL), dried with sodium sulfate and filtered. After removing the solvent under reduced pressure (200 mbar, 40 °C), the product was purified by column chromatography on alumina (3:1:0.05 ethyl acetate/methanol/triethylamine,  $R_{\rm f}$  = 0.31) yielding the pale brown solid compound 2,6-bis(2-oxopyridin-1(2*H*)-yl)pyridine (4.19 g, 73%).




<sup>1</sup>**H NMR** (CD<sub>3</sub>CN):  $\delta$  = 8.05 (1 H, dd, <sup>3</sup>*J*<sub>HH</sub> = 8.4, <sup>3</sup>*J*<sub>HH</sub> = 7.5, H<sup>8</sup>), 7.86 (2 H, d, <sup>3</sup>*J*<sub>HH</sub> = 7.9, H<sup>7</sup>), 7.84 (2 H, ddd, <sup>3</sup>*J*<sub>HH</sub> = 7.1, <sup>4</sup>*J*<sub>HH</sub> = 2.1, <sup>5</sup>*J*<sub>HH</sub> = 0.8, H<sup>5</sup>), 7.47 (2 H, ddd, <sup>3</sup>*J*<sub>HH</sub> = 9.4, <sup>3</sup>*J*<sub>HH</sub> = 6.5, <sup>4</sup>*J*<sub>HH</sub> = 2.1, H<sup>3</sup>), 6.52 (2 H, ddd, <sup>3</sup>*J*<sub>HH</sub> = 9.3, <sup>4</sup>*J*<sub>HH</sub> = 1.3, <sup>5</sup>*J*<sub>HH</sub> = 0.7, H<sup>2</sup>), 6.32 (2 H, ddd, <sup>3</sup>*J*<sub>HH</sub> = 7.1, <sup>3</sup>*J*<sub>HH</sub> = 6.5, <sup>4</sup>*J*<sub>HH</sub> = 1.3, H<sup>4</sup>) ppm.

MS (ESI+, CH<sub>3</sub>CN): m/z (%) = 266.09 (53) [M+H]+, 288.07 (100) [M+Na]+, 553.16 (59) [2 M+Na]+.

**IR** (ATR):  $\tilde{\nu}_{max} = 3119$  (w), 3089 (w), 1659 (vs, C=O), 1598 (vs), 1576 (vs), 1537 (vs), 1443 (s), 1384 (s), 1289 (s), 1257 (s), 1243 (s), 1145 (s), 1127 (s), 1088 (w), 1007 (w), 991(w), 880 (s), 854 (s), 815 (w), 779 (s), 763 (vs), 746 (s), 730 (w), 686 (w), 616 (w), 575 (s), 537 (w), 522 (s), 474 (w), 464 (w), 429 (w), 409 (w) cm<sup>-1</sup>.

#### Synthesis of 2,6-bis(pyridin-2-yloxy)pyridine (bpop)

A solution of 2-bromopyridine (16.7 mL, 171 mmol) in anhydrous DMF (400 mL) was deaerated by purging with argon for half an hour and combined with 2,6-dihydroxypyridine hydrochloride (12.6 g, 85.4 mmol). Addition of potassium carbonate (35.4 g, 256 mmol) to the colourless solution yielded a deep blue suspension. The reaction mixture was heated at 145 °C for 24 hours. After cooling to room temperature, the blue suspension was filtered and the solvent was removed under reduced pressure (5 mbar, 80 °C). The crude residue was suspended in water (400 mL) and the product was extracted with ethyl acetate (3 x 200 mL). The combined organic phases were washed with a saturated aqueous solution of sodium chloride (200 mL), dried with sodium sulfate and filtered. After removing the solvent under reduced pressure (200 mbar, 40 °C), product purified the was by column chromatography on alumina (7:3:0.05 cyclohexane/ethyl acetate/triethylamine, Rf = 0.38) yielding the colourless solid ligand bpop (273 mg, 1.2%).



Elemental analysis calcd. for C<sub>15</sub>H<sub>11</sub>N<sub>3</sub>O<sub>2</sub>: C, 67.92; H, 4.18; N, 15.84. Found: C, 67.77; H, 4.42; N, 15.80.

<sup>1</sup>**H NMR** (CD<sub>3</sub>CN):  $\delta$  = 8.20 (2 H, ddd, <sup>3</sup>J<sub>HH</sub> = 5.0, <sup>4</sup>J<sub>HH</sub> = 2.0, <sup>5</sup>J<sub>HH</sub> = 0.8, H<sup>1</sup>), 7.89 (1 H, t, <sup>3</sup>J<sub>HH</sub> = 7.9, H<sup>8</sup>), 7.77 (2 H, ddd, <sup>3</sup>J<sub>HH</sub> = 8.2, <sup>3</sup>J<sub>HH</sub> = 7.3, <sup>4</sup>J<sub>HH</sub> = 2.0, H<sup>3</sup>), 7.13 (2 H, ddd, <sup>3</sup>J<sub>HH</sub> = 7.3, <sup>3</sup>J<sub>HH</sub> = 4.9, <sup>4</sup>J<sub>HH</sub> = 0.9, H<sup>2</sup>), 7.01 (2 H, dt, <sup>3</sup>J<sub>HH</sub> = 8.2, <sup>4</sup>J<sub>HH</sub> = 0.9, H<sup>4</sup>), 6.86 (2 H, d, <sup>3</sup>J<sub>HH</sub> = 7.9, H<sup>7</sup>) ppm.

<sup>13</sup>C{<sup>1</sup>H} NMR (CD<sub>3</sub>CN):  $\delta$  = 162.6 (s, C<sup>5</sup>), 161.5 (s, C<sup>6</sup>), 148.8 (s, C<sup>1</sup>), 143.9 (s, C<sup>8</sup>), 140.8 (s, C<sup>3</sup>), 121.2 (s, C<sup>2</sup>), 114.6 (s, C<sup>4</sup>), 109.9 (s, C<sup>7</sup>) ppm.

MS (ESI<sup>+</sup>, CH<sub>3</sub>CN): m/z (%) = 266.09 (100) [M+H]<sup>+</sup>, 288.07 (6) [M+Na]<sup>+</sup>, 553.16 (2) [2 M+Na]<sup>+</sup>.

IR (ATR):  $\tilde{\nu}_{max} = 3057$  (w), 3009 (w), 1585 (vs), 1567 (vs), 1468 (s), 1441 (s), 1414 (vs), 1286 (s), 1260 (s), 1206 (vs), 1142 (s), 1097 (w), 1075 (w), 1044 (w), 1006 (vs), 991 (vs), 870 (s), 847 (w), 776 (vs), 740 (s), 627 (w), 589 (w), 506 (w), 454 (w), 412 (s) cm<sup>-1</sup>.

**UV/Vis** (CH<sub>3</sub>CN):  $\lambda_{max}$  ( $\varepsilon$ ) = 267 (11430), 215 (18070) nm (M<sup>-1</sup> cm<sup>-1</sup>).

**Emission** (CH<sub>3</sub>CN, room temperature):  $\lambda_{max} = 307 \text{ nm} (\lambda_{exc} = 267 \text{ nm}).$ 

#### Synthesis of 2,6-bis(pyridin-2-ylthio)pyridine<sup>41</sup> (bptp)

Potassium *tert*-butoxide (5.23 g, 46.6 mmol) was combined with a yellow solution of 2-mercaptopyridine (5.18 g, 46.6 mmol) in anhydrous DMF (100 mL). The resulting red solution was stirred for one hour at room temperature. 2,6-Dibromopyridine (5.52 g, 23.3 mmol) was added in portions and the mixture was heated at 145 °C for 24 hours. After cooling to room temperature, the solvent of the dark red solution was removed under reduced pressure (5 mbar, 80 °C). The crude residue was suspended in water (100 mL) and the product was extracted with ethyl acetate (3 x 100 mL). The combined organic phases were washed with a saturated aqueous solution of sodium chloride (100 mL), dried with sodium sulfate and filtered. After removing the solvent under reduced pressure (200 mbar, 40 °C), the product was purified by column chromatography on alumina (7:3:0.05 cyclohexane/ethyl acetate/triethylamine,  $R_{\rm f} = 0.28$ ) yielding the pale yellow solid ligand bptp (5.49 g, 79%).

$$2 \frac{1}{3} \frac{N}{4} \frac{5}{5} \frac{6}{6} \frac{N}{N} \frac{5}{5} \frac{1}{5} \frac{$$

Elemental analysis calcd. for C<sub>15</sub>H<sub>11</sub>N<sub>3</sub>S<sub>2</sub>: C, 60.58; H, 3.73; N, 14.13. Found: C, 60.53; H, 3.95; N, 14.12.

<sup>1</sup>**H NMR** (CD<sub>3</sub>CN):  $\delta$  = 8.46 (2 H, ddd, <sup>3</sup>*J*<sub>HH</sub> = 4.8, <sup>4</sup>*J*<sub>HH</sub> = 1.9, <sup>5</sup>*J*<sub>HH</sub> = 0.9, H<sup>1</sup>), 7.62 (2 H, td, <sup>3</sup>*J*<sub>HH</sub> = 7.8, <sup>4</sup>*J*<sub>HH</sub> = 1.9, H<sup>3</sup>), 7.59 (1 H, t, <sup>3</sup>*J*<sub>HH</sub> = 7.8, H<sup>8</sup>), 7.40 (2 H, dt, <sup>3</sup>*J*<sub>HH</sub> = 8.0, <sup>4</sup>*J*<sub>HH</sub> = 1.0, H<sup>4</sup>), 7.27 (2 H, d, <sup>3</sup>*J*<sub>HH</sub> = 7.8, H<sup>7</sup>), 7.21 (2 H, ddd, <sup>3</sup>*J*<sub>HH</sub> = 7.5, <sup>3</sup>*J*<sub>HH</sub> = 4.8, <sup>4</sup>*J*<sub>HH</sub> = 1.1, H<sup>2</sup>) ppm.

<sup>13</sup>C{<sup>1</sup>H} NMR (CD<sub>3</sub>CN):  $\delta$  = 158.2 (s, C<sup>6</sup>), 156.7 (s, C<sup>5</sup>), 151.1 (s, C<sup>1</sup>), 139.2 (s, C<sup>8</sup>), 138.3 (s, C<sup>3</sup>), 127.2 (s, C<sup>4</sup>), 124.2 (s, C<sup>7</sup>), 123.2 (s, C<sup>2</sup>) ppm.

MS (ESI+, CH<sub>3</sub>CN): m/z (%) = 298.05 (100) [M+H]+, 320.03 (25) [M+Na]+, 617.07 (12) [2 M+Na]+.

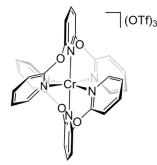
**IR** (ATR):  $\tilde{\nu}_{max} = 3042$  (w), 2987 (w), 1708 (w), 1571 (s), 1544 (vs), 1448 (s), 1409 (vs), 1279 (w), 1236 (w), 1162 (s), 1141 (s), 1113 (vs), 1083 (s), 1044 (s), 985 (s), 885 (w), 787 (s), 756 (vs), 736 (s), 719 (vs), 655 (w), 618 (w), 593 (w), 514 (w), 461 (w), 420 (w) cm<sup>-1</sup>.

**UV/Vis** (CH<sub>3</sub>CN):  $\lambda_{max}$  ( $\varepsilon$ ) = 308 (10190), 285 (12600), 244 (16850) nm (M<sup>-1</sup> cm<sup>-1</sup>).

**Emission** (CH<sub>3</sub>CN, room temperature):  $\lambda_{max} = 349$  nm ( $\lambda_{exc} = 308$  nm).

#### Synthesis of chromium(III) triflate<sup>42</sup>

Trimethylsilyl trifluormethansulfonate (50.0 g, 225 mmol) was poured into a suspension of purple chromium(III) chloride (3.56 g, 22.5 mmol) in dried acetonitrile (150 mL) and the heterogeneous mixture was heated to 82 °C. To start the reaction, chromium(II) chloride (50.0 mg, 0.407 mmol) was added, changing the colour of the solution to green. Heating the reaction mixture at 82 °C for 24 hours yielded a green-blue solution. After cooling to room temperature, the solvent was removed under reduced pressure (180 mbar, 40 °C). The residue was washed with dry petroleum ether (3 x 50 mL) and dried under reduced pressure (8 x  $10^{-3}$  mbar) for three days. The absence of chloride ions in the green-blue chromium(III) triflate (11.1 g, 99%) was verified by a negative silver(I) salt precipitation with silver(I) triflate in dry acetonitrile.


**MS** (ESI<sup>+</sup>, CH<sub>3</sub>CN): *m*/*z* (%) = 431.90 (17) [M–OTf+2 CH<sub>3</sub>CN]<sup>+</sup>, 472.92 (5) [M–OTf+3 CH<sub>3</sub>CN]<sup>+</sup>, 513.95 (11) [M–OTf+4 CH<sub>3</sub>CN]<sup>+</sup>, 598.88 (16) [M+H<sub>2</sub>O+2 CH<sub>3</sub>CN]<sup>+</sup>, 639.91 (100) [M+H<sub>2</sub>O+3 CH<sub>3</sub>CN]<sup>+</sup>.

IR (ATR):  $\tilde{\nu}_{max} = 1344$  (vs), 1247 (w), 1234 (s), 1178 (vs), 987 (vs), 955 (vs), 824 (w), 767 (w), 624 (vs), 605 (vs), 571 (w), 534 (s), 515 (s), 423 (vs) cm<sup>-1</sup>.

**UV/Vis** (CH<sub>3</sub>CN):  $\lambda_{max}$  ( $\varepsilon$ ) = 706 (7.3), 592 (51), 430 (35), 311 (17), 222 (4920) nm (M<sup>-1</sup> cm<sup>-1</sup>).

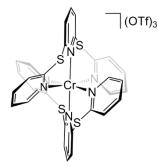
### Synthesis of [Cr(bpop<sub>2</sub>)][OTf]<sub>3</sub> ([1<sup>0</sup>][OTf]<sub>3</sub>)

A pale yellow solution of bpop (240 mg, 0.905 mmol) in dry acetonitrile (10 mL) was added dropwise to a green-blue solution of chromium(III) triflate (226 mg, 0.453 mmol) in dry acetonitrile (15 mL) without a colour change. Heating the reaction mixture at 82 °C for 2 hours yielded a red solution. After cooling to room temperature, the solvent was removed under reduced pressure (180 mbar, 40 °C) and the red residue was dried under reduced pressure (8 x  $10^{-3}$  mbar) for 24 hours. Washing the residue with THF (4 x 25 mL) by stirring for half an hour each time followed by decanting the solution, separated the yellow solid product from impurities in the red solution. The yellow powder was dried under reduced pressure (8 x  $10^{-3}$  mbar) and dissolved in acetonitrile (2.5 mL). Slow diffusion of cooled diethyl ether (fridge) into the concentrated acetonitrile solution resulted in yellow crystals of **[10][OTf]** (113 mg, 24%) with diffraction quality.



**Elemental analysis** calcd. for  $C_{33}H_{22}CrF_9N_6O_{13}S_3 \times 2 H_2O$ : C, 37.19; H, 2.46; N, 7.89; S, 9.02. Found: C, 37.18; H, 2.31; N, 7.90; S, 9.03.

**MS** (ESI<sup>+</sup>, CH<sub>3</sub>CN): m/z (%) = 194.04 (21) [1<sup>0</sup>]<sup>3+</sup>, 365.53 (67) [1<sup>0</sup>+OTf]<sup>2+</sup>, 880.01 (100) [1<sup>0</sup>+2 OTf]<sup>+</sup>.


**IR** (ATR):  $\tilde{v}_{max} = 3119$  (w), 3072 (w), 3034 (w), 1612 (vs), 1569 (s), 1483 (s), 1455 (s), 1441 (s), 1425 (vs), 1309 (s), 1240 (vs), 1224 (vs), 1154 (vs), 1108 (s), 1084 (w), 1064 (s), 1028 (vs), 1007 (vs) 871 (s), 846 (s), 789 (s), 755 (w), 729 (w), 677 (w), 658 (w), 636 (vs), 573 (s), 517 (s), 464 (w), 447 (w), 423 (w), 406 (w) cm<sup>-1</sup>.

**UV/Vis** (CH<sub>3</sub>CN):  $\lambda_{max}$  ( $\varepsilon$ ) = 737 (0.22), 716 (0.35), 689 (0.20), 463 (100), 369 (1640), 268 (17670, sh), 257 (19060), 238 (23480, sh) nm (M<sup>-1</sup> cm<sup>-1</sup>).

**Emission** (CH<sub>3</sub>CN, room temperature):  $\lambda_{max} = 741$ , 716 nm ( $\lambda_{exc} = 450$  nm).

### Synthesis of [Cr(bptp<sub>2</sub>)][OTf]<sub>3</sub> ([1<sup>S</sup>][OTf]<sub>3</sub>)

A pale yellow solution of bptp (530 mg, 1.78 mmol) in dry acetonitrile (20 mL) was added dropwise to a green-blue solution of chromium(III) triflate (445 mg, 0.891 mmol) in dry acetonitrile (30 mL) without a colour change. Heating the reaction mixture at 82 °C for 2 hours yielded a red solution. After cooling to room temperature, the solvent was removed under reduced pressure (180 mbar, 40 °C) and the red residue was dried under reduced pressure (8 x  $10^{-3}$  mbar) for 24 hours. Washing the residue with THF (4 x 50 mL) by stirring for half an hour each time followed by decanting the solution separated the yellow solid product from impurities in the red solution. The yellow powder was dried under reduced pressure (8 x  $10^{-3}$  mbar) and dissolved in acetonitrile (5.0 mL). Slow diffusion of cooled diethyl ether (fridge) into the concentrated acetonitrile solution resulted in yellow crystals of [1<sup>s</sup>][OTf]<sub>3</sub> (304 mg, 31%) with diffraction quality.



**Elemental analysis** calcd. for C<sub>33</sub>H<sub>22</sub>CrF<sub>9</sub>N<sub>6</sub>O<sub>9</sub>S<sub>7</sub>: C, 36.23; H, 2.03; N, 7.68; S, 20.51. Found: C, 36.13; H, 2.06; N, 7.66; S, 20.43.

**MS** (ESI<sup>+</sup>, CH<sub>3</sub>CN): m/z (%) = 215.34 (37) [1<sup>S</sup>]<sup>3+</sup>, 397.49 (96) [1<sup>S</sup>+OTf]<sup>2+</sup>, 943.92 (100) [1<sup>S</sup>+2 OTf]<sup>+</sup>.

**IR** (ATR):  $\tilde{v}_{max} = 3107$  (w), 3081 (w), 1593 (s), 1570 (s), 1560 (s), 1544 (w), 1469 (s), 1419 (s), 1378 (w), 1253 (vs), 1224 (vs), 1153 (vs), 1108 (w), 1092 (w), 1067 (w), 1028 (vs), 1009 (s), 808 (w), 776 (s), 756 (w), 739 (w), 725 (s), 690 (w), 636 (vs), 573 (s), 517 (s), 474 (w), 447 (w), 432 (w), 406 (w) cm<sup>-1</sup>.

**UV/Vis** (CH<sub>3</sub>CN):  $\lambda_{max}$  ( $\varepsilon$ ) = 724 (0.14, sh), 713 (0.43), 683 (0.22), 452 (1880), 426 (1560, sh), 353 (7000, sh), 321 (16290), 299 (18920, sh), 290 (20200), 225 (44560, sh) nm (M<sup>-1</sup> cm<sup>-1</sup>).

**Emission** (CH<sub>3</sub>CN, room temperature):  $\lambda_{max} = 727$ , 713 nm ( $\lambda_{exc} = 450$  nm).

## Analytical data of the ligands and precursor

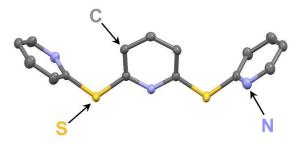
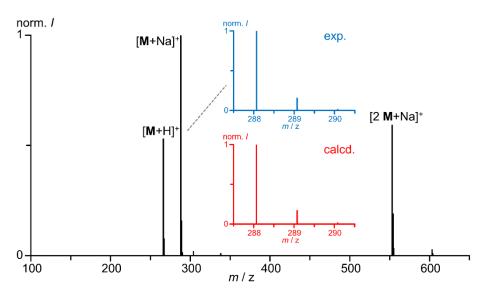




Fig. S1 Molecular structure of bptp in the solid state. Hydrogen atoms omitted, thermal ellipsoids at 50% probability level.



**Fig. S2** ESI<sup>+</sup> mass spectrum of 2,6-bis(2-oxopyridin-1(2H)-yl)pyridine in CH<sub>3</sub>CN with insets of the experimentally found (blue) and calculated (red) isotope pattern for  $[M+Na]^+$  (C<sub>15</sub>H<sub>11</sub>N<sub>3</sub>NaO<sub>2</sub>).

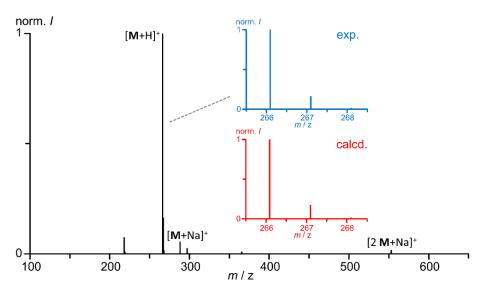



Fig. S3 ESI<sup>+</sup> mass spectrum of bpop in CH<sub>3</sub>CN with insets of the experimentally found (blue) and calculated (red) isotope pattern for  $[M+H]^+$  (C<sub>15</sub>H<sub>12</sub>N<sub>3</sub>O<sub>2</sub>).

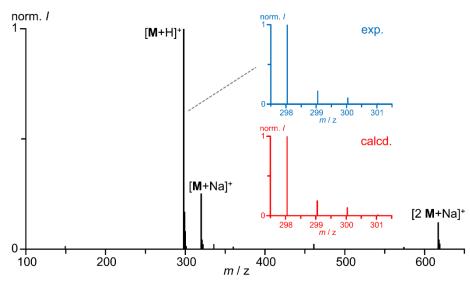



Fig. S4 ESI<sup>+</sup> mass spectrum of bptp in CH<sub>3</sub>CN with insets of the experimentally found (blue) and calculated (red) isotope pattern for  $[M+H]^+$  (C<sub>15</sub>H<sub>12</sub>N<sub>3</sub>S<sub>2</sub>).

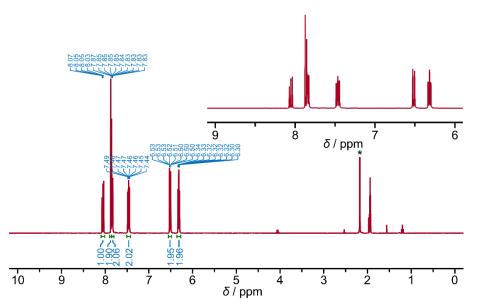



Fig. S5 <sup>1</sup>H NMR spectrum of 2,6-bis(2-oxopyridin-1(2H)-yl)pyridine in CD<sub>3</sub>CN with inset of the aromatic region. The asterisk denotes the water peak.

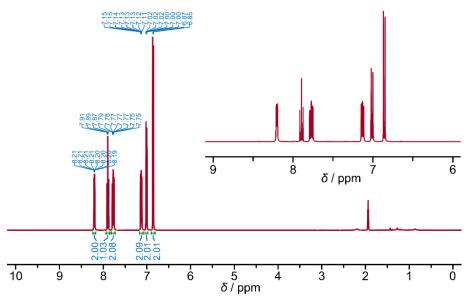



Fig. S6 <sup>1</sup>H NMR spectrum of bpop in CD<sub>3</sub>CN with inset of the aromatic region.

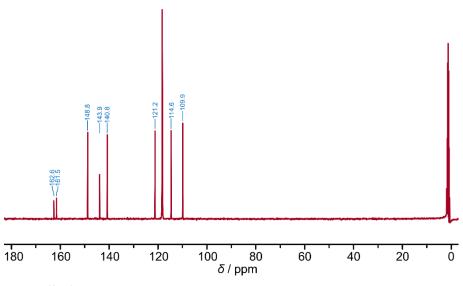
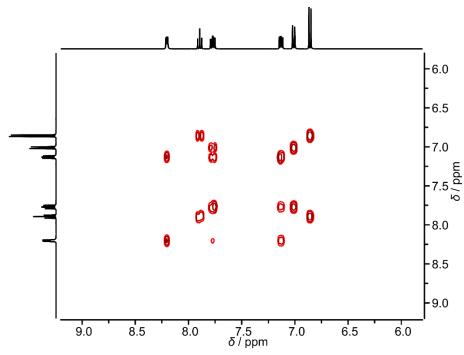




Fig. S7  $^{13}C\{^{1}H\}$  NMR spectrum of bpop in CD<sub>3</sub>CN.



**Fig. S8** <sup>1</sup>H, <sup>1</sup>H COSY of bpop in CD<sub>3</sub>CN.

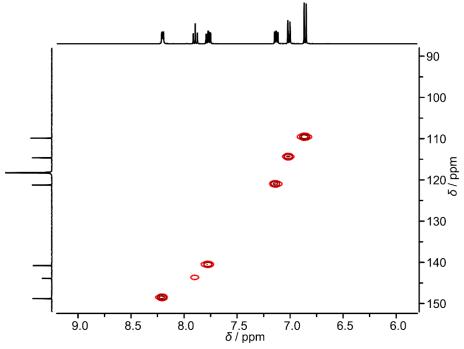



Fig. S9 <sup>13</sup>C,<sup>1</sup>H HSQC of bpop in CD<sub>3</sub>CN.

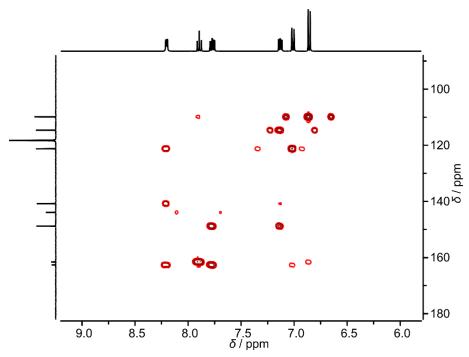



Fig. S10 <sup>13</sup>C,<sup>1</sup>H HMBC of bpop in CD<sub>3</sub>CN.

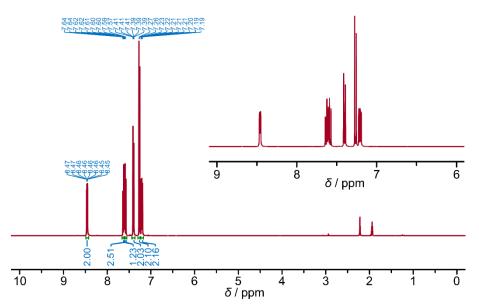



Fig. S11 <sup>1</sup>H NMR spectrum of bptp in CD<sub>3</sub>CN with inset of the aromatic region.

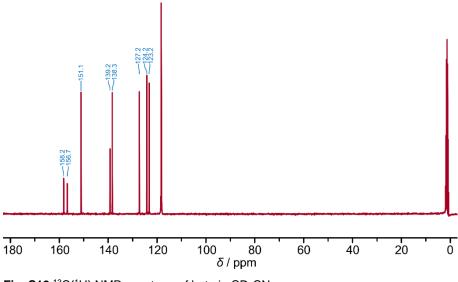



Fig. S12  $^{13}C{^1H}$  NMR spectrum of bptp in CD<sub>3</sub>CN.

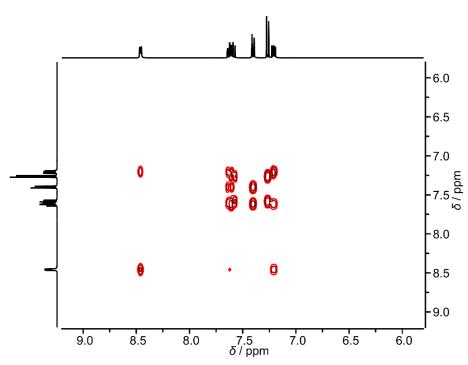
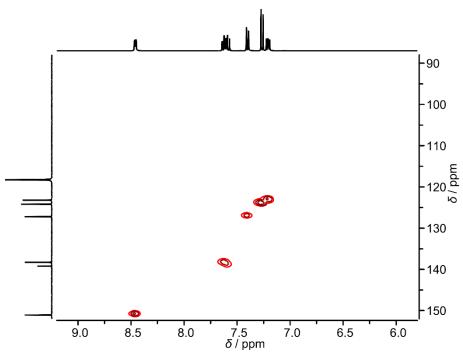




Fig. S13 <sup>1</sup>H,<sup>1</sup>H COSY of bptp in CD<sub>3</sub>CN.



**Fig. S14** <sup>13</sup>C,<sup>1</sup>H HSQC of bptp in CD<sub>3</sub>CN.

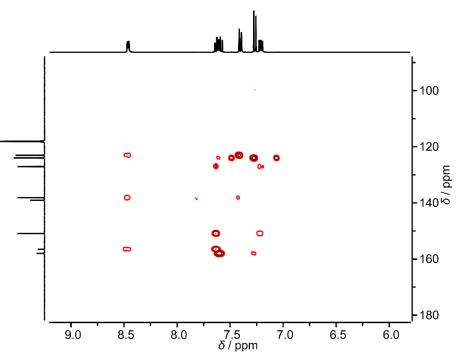



Fig. S15 <sup>13</sup>C,<sup>1</sup>H HMBC of bptp in CD<sub>3</sub>CN.

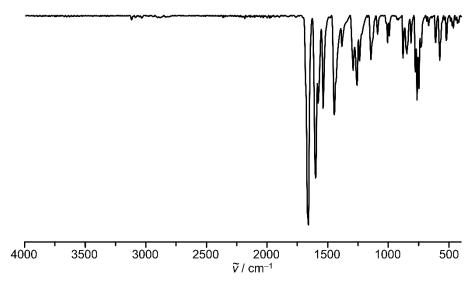



Fig. S16 ATR-IR spectrum of 2,6-bis(2-oxopyridin-1(2H)-yl)pyridine.

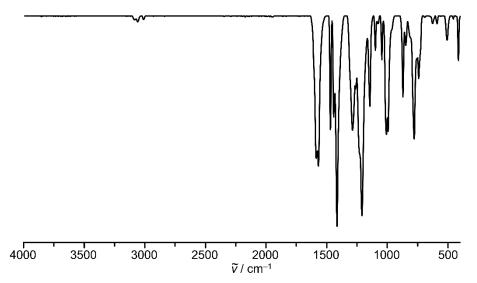
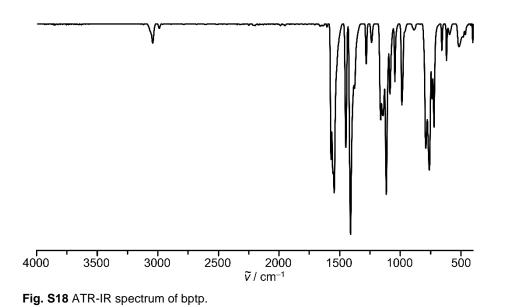
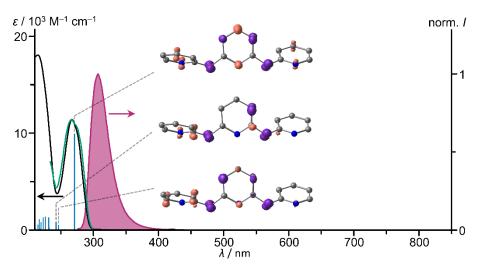
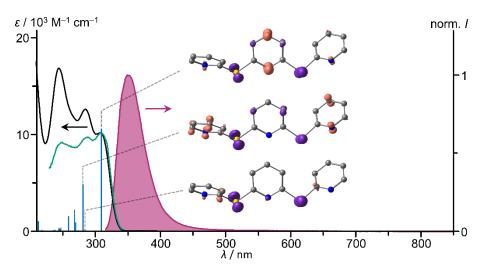
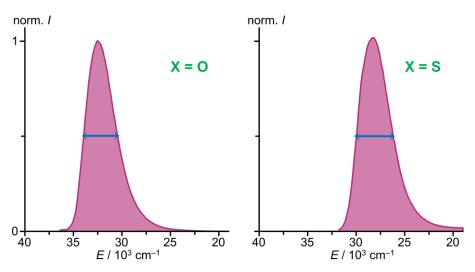
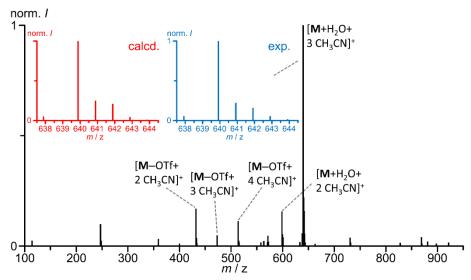






Fig. S17 ATR-IR spectrum of bpop.






**Fig. S19** UV/VIS/NIR absorption spectrum (black), excitation spectrum ( $\lambda_{em} = 307$  nm, green) and emission spectrum ( $\lambda_{exc} = 267$  nm, purple) of bpop in deaerated acetonitrile at room temperature, TD-DFT calculated oscillator strengths (blue) and difference electron densities (isosurface value 0.01 a.u.) of three low energy transitions.




**Fig. S20** UV/VIS/NIR absorption spectrum (black), excitation spectrum ( $\lambda_{em} = 351$  nm, green) and emission spectrum ( $\lambda_{exc} = 308$  nm, purple) of bptp in deaerated acetonitrile at room temperature, TD-DFT calculated oscillator strengths (blue) and difference electron densities (isosurface value 0.01 a.u.) of three low energy transitions.



**Fig. S21** Normalised emission spectra (purple) of the ligands bpop ( $\lambda_{exc} = 267 \text{ nm}$ ) and bptp ( $\lambda_{exc} = 308 \text{ nm}$ ) in acetonitrile and illustration of the full width at half maximum (FWHM).

# Analytical data of Cr compounds



**Fig. S22** ESI<sup>+</sup> mass spectrum of Cr(OTf)<sub>3</sub> in CH<sub>3</sub>CN with insets of the experimentally found (blue) and calculated (red) isotope pattern for  $[M+H_2O+3 CH_3CN]^+$  (C<sub>9</sub>H<sub>11</sub>CrF<sub>9</sub>N<sub>3</sub>O<sub>10</sub>S<sub>3</sub>).

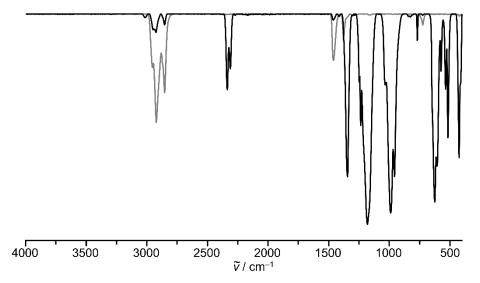



Fig. S23 ATR-IR spectrum of Cr(OTf)<sub>3</sub> as suspension in nujol (black) and ATR-IR spectrum of nujol (grey).

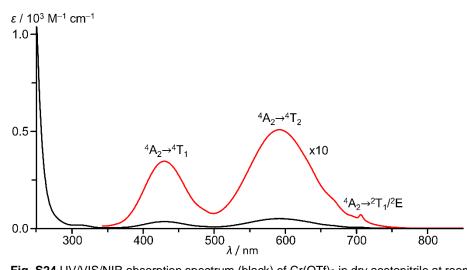



Fig. S24 UV/VIS/NIR absorption spectrum (black) of Cr(OTf)<sub>3</sub> in dry acetonitrile at room temperature and zoomed region of the ligand field bands (red).

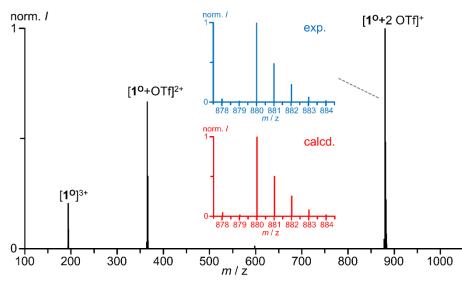



Fig. S25 ESI<sup>+</sup> mass spectrum of  $[1^{o}][OTf]_{3}$  in CH<sub>3</sub>CN with insets of the experimentally found (blue) and calculated (red) isotope pattern for  $[1^{o}+2 \text{ OTf}]^+$  (C<sub>32</sub>H<sub>22</sub>CrF<sub>6</sub>N<sub>6</sub>O<sub>10</sub>S<sub>2</sub>).

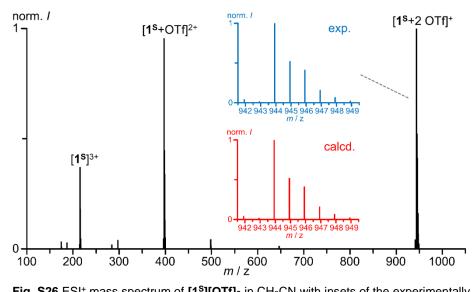



Fig. S26 ESI<sup>+</sup> mass spectrum of  $[1^{s}][OTf]_{3}$  in CH<sub>3</sub>CN with insets of the experimentally found (blue) and calculated (red) isotope pattern for  $[1^{s}+2 \text{ OTf}]^{+}$  (C<sub>32</sub>H<sub>22</sub>CrF<sub>6</sub>N<sub>6</sub>O<sub>6</sub>S<sub>6</sub>).

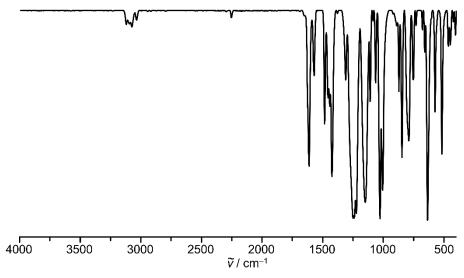
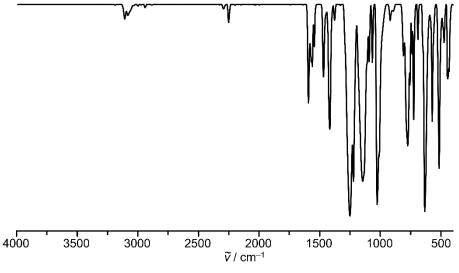
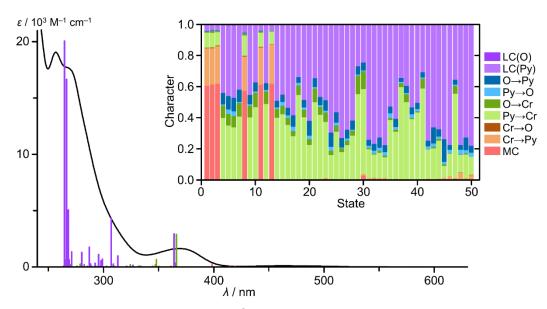
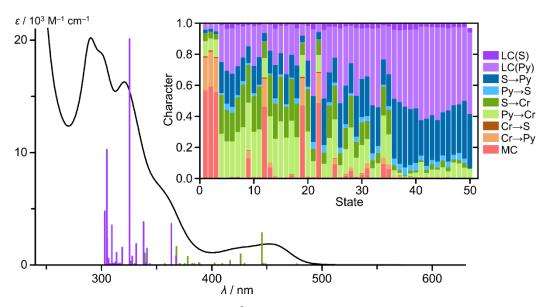
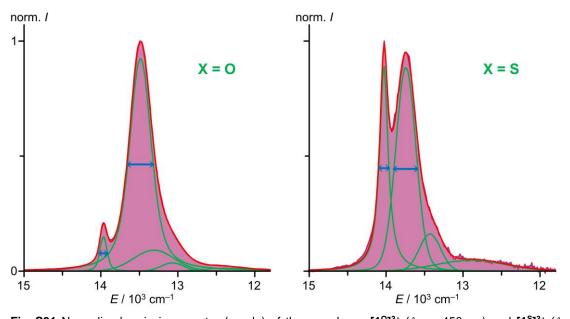
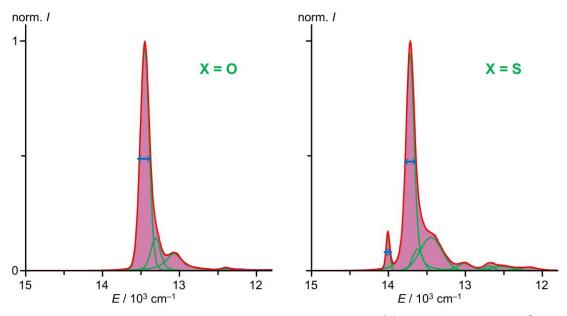



Fig. S27 ATR-IR spectrum of [1º][OTf]3.

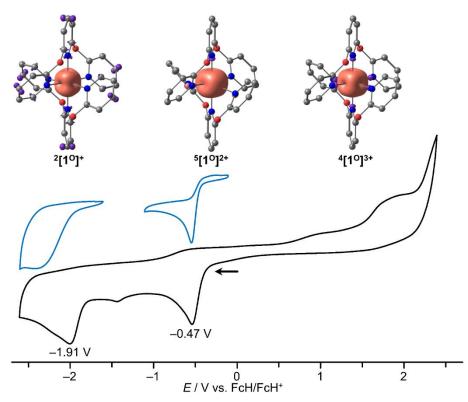






Fig. S28 ATR-IR spectrum of [1<sup>s</sup>][OTf]<sub>3</sub>.

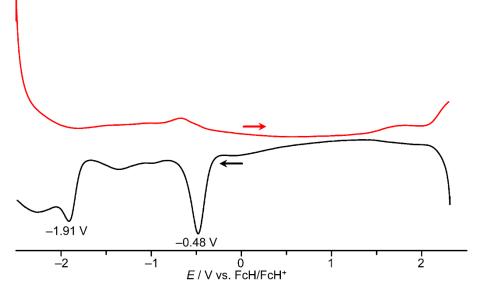



**Fig. S29** UV/VIS absorption spectrum of [1<sup>o</sup>][OTf]<sub>3</sub> in CH<sub>3</sub>CN (black) with TD-DFT calculated oscillator strengths of [1<sup>o</sup>]<sup>3+</sup> coloured according to the most dominant character of the corresponding transition (red: MC, green: LMCT, purple: LC). Inset: Charge transfer number analysis of the 50 lowest energy spin-allowed transitions calculated by Loewdin population analysis with the complex cation [1<sup>o</sup>]<sup>3+</sup> fragmented into chromium (Cr), the pyridine system (Py) and the oxygen atoms (O).

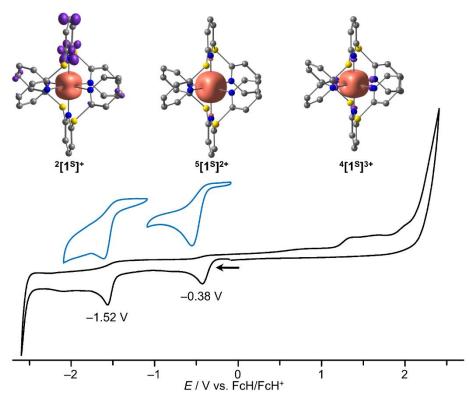



**Fig. S30** UV/VIS absorption spectrum of [1<sup>S</sup>][OTf]<sub>3</sub> in CH<sub>3</sub>CN (black) with TD-DFT calculated oscillator strengths of [1<sup>S</sup>]<sup>3+</sup> coloured according to the most dominant character of the corresponding transition (red: MC, green: LMCT, purple: LC). Inset: Charge transfer number analysis of the 50 lowest energy spin-allowed transitions calculated by Loewdin population analysis with the complex cation [1<sup>S</sup>]<sup>3+</sup> fragmented into chromium (Cr), the pyridine system (Py) and the sulphur atoms (S).

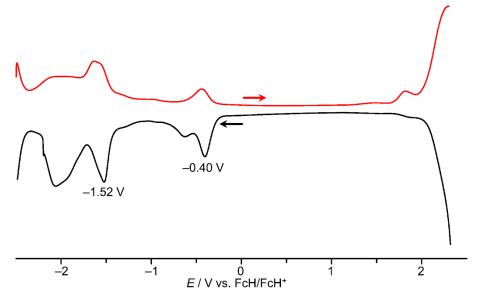



**Fig. S31** Normalised emission spectra (purple) of the complexes  $[1^{O}]^{3+}$  ( $\lambda_{exc} = 450$  nm) and  $[1^{S}]^{3+}$  ( $\lambda_{exc} = 450$  nm) in acetonitrile at 293 K fitted with Voigt functions (green) in a sum fit (red) used for determining the full width at half maximum (FWHM).




**Fig. S32** Normalised emission spectra (purple) of the complexes  $[1^{O}]^{3+}$  ( $\lambda_{exc} = 450$  nm) and  $[1^{S}]^{3+}$  ( $\lambda_{exc} = 450$  nm) in ethanol/methanol (3:2) at 77 K fitted with Voigt functions (green) in a sum fit (red) used for determining the full width at half maximum (FWHM).




**Fig. S33** Cyclic voltammograms of 3 mM [1<sup>o</sup>][OTf]<sub>3</sub> in a 100 mM solution of [ $^{n}Bu_{4}N$ ][PF<sub>6</sub>] in CH<sub>3</sub>CN over the full range (peak potentials  $E_{p}$  against FcH<sup>+</sup>/FcH) and in the range of the reduction waves and calculated spin densities (contour value: 0.01 a.u.) of the thermodynamically most stable reduced species.



**Fig. S34** Square wave voltamogramms of 3 mM  $[1^{o}][OTf]_{3}$  in a 100 mM solution of  $[^{n}Bu_{4}N][PF_{6}]$  in CH<sub>3</sub>CN (peak potentials  $E_{p}$  against FcH<sup>+</sup>/FcH).



**Fig. S35** Cyclic voltammograms of 3 mM  $[1^{s}][OTf]_{3}$  in a 100 mM solution of [<sup>n</sup>Bu<sub>4</sub>N][PF<sub>6</sub>] in CH<sub>3</sub>CN over the full range (peak potentials  $E_{p}$  against FcH<sup>+</sup>/FcH) and in the range of the reduction waves and calculated spin densities (contour value: 0.01 a.u.) of the thermodynamically most stable reduced species.



**Fig. S36** Square wave voltamogramms of 3 mM  $[1^{s}][OTf]_{3}$  in a 100 mM solution of [<sup>n</sup>Bu<sub>4</sub>N][PF<sub>6</sub>] in CH<sub>3</sub>CN (peak potentials  $E_{p}$  against FcH<sup>+</sup>/FcH).

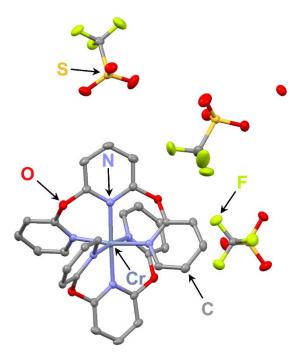



Fig. S37 Molecular structure of  $[1^{o}][OTf]_{3}xH_{2}O$  in the solid state. Hydrogen atoms omitted, thermal ellipsoids at 50% probability level.

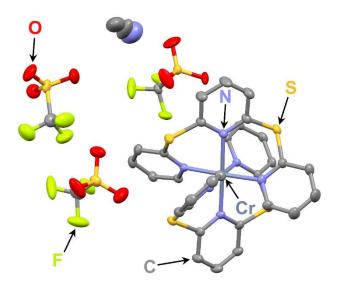



Fig. S38 Molecular structure of  $[1^{S}][OTf]_{3x}CH_{3}CN$  in the solid state. Hydrogen atoms omitted, thermal ellipsoids at 50% probability level.

| Complex                                | Method |                                              | Graphical illustration                        |                                               |                                        |                                |
|----------------------------------------|--------|----------------------------------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------------|--------------------------------|
|                                        |        | d (Cr–Nc <sup>1</sup> )                      | d (Cr–Nc <sup>2</sup> )                       |                                               |                                        |                                |
| [1 <sup>S</sup> ] <sup>3+</sup>        | XRD    | 2.1006(16)                                   | 2.0868(16)                                    | -                                             |                                        | Δ                              |
| [1,],                                  | DFT    | 2.1400                                       | 2.1399                                        |                                               |                                        | N <sub>c</sub> <sup>2</sup>    |
| [1 <sup>0</sup> ] <sup>3+</sup>        | XRD    | 2.0391(28)                                   | 2.0377(28)                                    | -                                             |                                        | Cr                             |
| [,]                                    | DFT    | 2.0510                                       | 2.0507                                        |                                               |                                        |                                |
| [1 <sup>NMe</sup> ] <sup>3+</sup>      | XRD    | 2.0405(18)                                   | 2.0358(18)                                    | -                                             |                                        |                                |
| L' J                                   | DFT    | 2.0463                                       | 2.0460                                        |                                               |                                        | N <sub>c</sub> <sup>1</sup>    |
| [1 <sup>CH2</sup> ] <sup>3+</sup>      | XRD    | 2.0771(13)                                   | 2.0599(13)                                    | -                                             |                                        | V                              |
| L' J                                   | DFT    | 2.1127                                       | 2.1119                                        |                                               |                                        |                                |
|                                        |        | d (Cr–Nt <sup>1</sup> )                      | d (Cr–Nt <sup>2</sup> )                       | d (Cr–Nt <sup>3</sup> )                       | <i>d</i> (Cr–Nt <sup>4</sup> )         |                                |
| –<br>[1 <sup>s</sup> ]³+               | XRD    | 2.0852(17)                                   | 2.0785(16)                                    | 2.0723(16)                                    | 2.0639(16)                             | Δ                              |
| [1-]-                                  | DFT    | 2.1178                                       | 2.1180                                        | 2.1178                                        | 2.1180                                 | Nt <sup>3</sup>                |
| [1 <sup>0</sup> ] <sup>3+</sup>        | XRD    | 2.0601(26)                                   | 2.0479(31)                                    | 2.0380(27)                                    | 2.0419(31)                             | Cr N <sub>t</sub> <sup>2</sup> |
|                                        | DFT    | 2.0707                                       | 2.0705                                        | 2.0707                                        | 2.0705                                 | Nt <sup>4</sup>                |
| –<br>[1 <sup>NMe</sup> ] <sup>3+</sup> | XRD    | 2.0530(18)                                   | 2.0418(19)                                    | 2.0414(18)                                    | 2.0309(18)                             |                                |
| Li J.                                  | DFT    | 2.0580                                       | 2.0576                                        | 2.0578                                        | 2.0575                                 | N <sub>t</sub> '               |
| [1 <sup>CH2</sup> ] <sup>3+</sup>      | XRD    | 2.0886(13)                                   | 2.0755(13)                                    | 2.0703(13)                                    | 2.0691(13)                             | V                              |
| L' J                                   | DFT    | 2.1128                                       | 2.1112                                        | 2.1100                                        | 2.1128                                 |                                |
|                                        |        | ∡ (Nc <sup>1</sup> CrNc <sup>2</sup> )       | $\alpha$ (Nt <sup>1</sup> CrNt <sup>3</sup> ) | $\alpha$ (Nt <sup>2</sup> CrNt <sup>4</sup> ) |                                        |                                |
| _<br>[1 <sup>s</sup> ]³+               | XRD    | 178.83(7)                                    | 177.38(7)                                     | 178.15(7)                                     |                                        | $\Lambda$                      |
| [,]                                    | DFT    | 179.99                                       | 178.65                                        | 178.69                                        |                                        | Nt <sup>3</sup>                |
| [1 <sup>0</sup> ] <sup>3+</sup>        | XRD    | 178.24(12)                                   | 172.30(12)                                    | 172.82(12)                                    |                                        | Cr Nt <sup>2</sup>             |
| [,]                                    | DFT    | 180.00                                       | 173.99                                        | 173.94                                        |                                        | N <sup>4</sup>                 |
| [1 <sup>NMe</sup> ] <sup>3+</sup>      | XRD    | 179.90(9)                                    | 171.98(7)                                     | 171.78(7)                                     |                                        | N <sub>t</sub> 1               |
| L, 1                                   | DFT    | 179.88                                       | 172.97                                        | 173.06                                        |                                        | N <sub>c</sub> <sup>1</sup>    |
| [1 <sup>CH2</sup> ] <sup>3+</sup>      | XRD    | 178.58(4)                                    | 177.47(4)                                     | 177.65(4)                                     |                                        | V                              |
| I. I                                   | DFT    | 179.72                                       | 176.56                                        | 176.74                                        |                                        |                                |
|                                        |        | $\beta$ (Nt <sup>1</sup> CrNt <sup>2</sup> ) | ∡ (Nt²CrNt³)                                  | $\beta$ (Nt <sup>3</sup> CrNt <sup>4</sup> )  | ∡ (Nt <sup>4</sup> CrNt <sup>1</sup> ) |                                |
| [1 <sup>S</sup> ] <sup>3+</sup>        | XRD    | 85.70(7)                                     | 96.75(7)                                      | 84.97(6)                                      | 92.59(7)                               | Δ                              |
| [,]                                    | DFT    | 85.58                                        | 94.44                                         | 85.58                                         | 94.43                                  | Nt <sup>3</sup>                |
| [1 <sup>0</sup> ]³+                    | XRD    | 89.63(11)                                    | 90.65(11)                                     | 89.79(11)                                     | 90.90(11)                              | Cr N <sub>t</sub> <sup>2</sup> |
|                                        | DFT    | 90.06                                        | 90.27                                         | 90.06                                         | 90.25                                  | Nt <sup>4</sup>                |
|                                        | XRD    | 90.44(7)                                     | 91.27(7)                                      | 89.08(7)                                      | 90.35(7)                               |                                |
| L' J                                   | DFT    | 88.99                                        | 91.53                                         | 88.93                                         | 91.40                                  |                                |
|                                        | XRD    | 85.08(5)                                     | 93.04(5)                                      | 84.63(5)                                      | 97.25(5)                               | V                              |
| [1 <sup>CH2</sup> ] <sup>3+</sup>      | DFT    | 84.82                                        | 95.02                                         | 84.86                                         | 95.49                                  |                                |

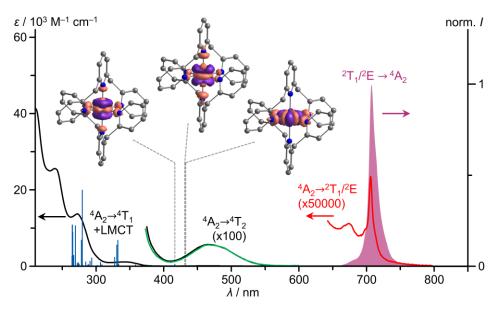
**Table S1** Structure parameters of the complex series  $[1^{x}]^{3+}$  from crystal structure determination (XRD) and DFT geometry optimisation with an exemplary structure illustration.<sup>43,44</sup> Bond lengths are given in Å and angles in °.

| Complex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Method | -                                   | Graphical illustration                 |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------------|----------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | ∡ (Nc¹CrNt¹)                        | ∡ (N <sub>c</sub> ¹CrN <sub>t</sub> ²) | ∡ (Nc¹CrNt³)                                      | ∡ (N <sub>c</sub> ¹CrN <sub>t</sub> ⁴)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | XRD    | 89.30(7)                            | 89.42(6)                               | 89.81(6)                                          | 91.26(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\land$                         |
| [1,1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DFT    | 89.33                               | 90.65                                  | 89.33                                             | 90.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Nt <sup>3</sup>                 |
| -<br>[10]3+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | XRD    | 86.00(11)                           | 94.62(12)                              | 86.31(11)                                         | 92.56(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cr Nt <sup>2</sup>              |
| [,]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DFT    | 86.99                               | 93.03                                  | 87.00                                             | 93.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Nt <sup>4</sup>                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | XRD    | 86.00(7)                            | 93.90(7)                               | 86.07(7)                                          | 94.32(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |
| [, ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DFT    | 86.50                               | 93.39                                  | 86.47                                             | 93.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N <sub>c</sub> <sup>1</sup>     |
| [1 CH2]3+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | XRD    | 89.69(5)                            | 89.11(5)                               | 88.59(5)                                          | 91.20(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V                               |
| [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DFT    | 88.26                               | 91.65                                  | 88.31                                             | 91.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | ∡ (Nc²CrNt¹)                        | , (Nc²CrNt²) ≰                         | ⋨ (Nc²CrNt³)                                      | ∡ (Nc²CrNt⁴)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | XRD    | 91.44(7)                            | 89.73(6)                               | 89.50(6)                                          | 89.61(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Δ                               |
| [1 <sup>5</sup> ] <sup>3+</sup><br>[1 <sup>0</sup> ] <sup>3+</sup><br>[1 <sup>CH2</sup> ] <sup>3+</sup><br>[1 <sup>CH2</sup> ] <sup>3+</sup><br>[1 <sup>O</sup> ] <sup>3+</sup><br>[1 <sup>NMe</sup> ] <sup>3+</sup><br>[1 <sup>O</sup> ] <sup>3+</sup><br>[1 <sup>O</sup> ] <sup>3+</sup><br>[1 <sup>O</sup> ] <sup>3+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DFT    | 90.68                               | 89.35                                  | 90.67                                             | 89.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Nt <sup>3</sup> Nc <sup>2</sup> |
| [1 <sup>0</sup> ] <sup>3+</sup><br>[1 <sup>NMe</sup> ] <sup>3+</sup><br>[1 <sup>CH2</sup> ] <sup>3+</sup><br>[1 <sup>S</sup> ] <sup>3+</sup><br>[1 <sup>0</sup> ] <sup>3+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | XRD    | 92.78(11)                           | 86.63(11)                              | 94.92(11)                                         | 86.19(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cr Nt <sup>2</sup>              |
| [1,].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DFT    | 93.01                               | 86.97                                  | 93.00                                             | 86.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N <sub>t</sub> <sup>4</sup>     |
| г <u>и NMe</u> 13+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | XRD    | 94.08(7)                            | 86.04(7)                               | 93.85(7)                                          | 85.74(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |
| [1]]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DFT    | 93.56                               | 86.52                                  | 93.46                                             | 86.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N <sub>t</sub>                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | XRD    | 90.68(5)                            | 89.55(5)                               | 91.00(5)                                          | 90.11(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V                               |
| [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DFT    | 92.02                               | 88.34                                  | 91.41                                             | 88.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | a (C1–X1)                           | a (C <sup>2</sup> –X <sup>1</sup> )    | a (C <sup>3</sup> –X <sup>2</sup> )               | a (C <sup>4</sup> –X <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ~~**                            |
| -<br>[1 \$]3+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | XRD    | 1.7916(27)                          | 1.7686(21)                             | 1.7637(19)                                        | 1.7661(20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ∩C4                             |
| [1 <sup>0</sup> ] <sup>3+</sup><br>[1 <sup>NMe</sup> ] <sup>3+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DFT    | 1.7642                              | 1.7697                                 | 1.7642                                            | 1.7695                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | XX2                             |
| [10]3+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | XRD    | 1.3702(41)                          | 1.3777(40)                             | 1.3841(36)                                        | 1.3787(42)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |
| [,]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DFT    | 1.3677                              | 1.3617                                 | 1.3677                                            | 1.3618                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |
| [1 NMe]3+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | XRD    | 1.3971(28)                          | 1.4022(29)                             | 1.3866(28)                                        | 1.4114(29)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | a                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DFT    | 1.3901                              | 1.4009                                 | 1.3904                                            | 1.4007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |
| [1 <sup>CH2</sup> ] <sup>3+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | XRD    | 1.5014(21)                          | 1.5074(19)                             | 1.5015(19)                                        | 1.5092(19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C2                              |
| L. J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DFT    | 1.4999                              | 1.5045                                 | 1.4998                                            | $31(11)$ $92.56(12)$ $7.00$ $93.03$ $07(7)$ $94.32(8)$ $6.47$ $93.56$ $59(5)$ $91.20(5)$ $8.31$ $91.60$ $2^2 CrNt^3)$ $\measuredangle$ (Nc <sup>2</sup> CrNt <sup>4</sup> ) $50(6)$ $89.61(6)$ $0.67$ $89.35$ $92(11)$ $86.19(12)$ $3.00$ $86.97$ $85(7)$ $85.74(8)$ $3.46$ $86.54$ $00(5)$ $90.11(5)$ $1.41$ $88.41$ $2^3 - X^2$ ) $a$ (C <sup>4</sup> -X <sup>2</sup> ) $37(19)$ $1.7661(20)$ $7642$ $1.7695$ $41(36)$ $1.3787(42)$ $3677$ $1.3618$ $66(28)$ $1.4114(29)$ $3904$ $1.4007$ $15(19)$ $1.5092(19)$ $4998$ $1.5044$ $2^7 - X^4$ ) $a$ (C <sup>8</sup> -X <sup>4</sup> ) $73(19)$ $1.7589(21)$ $7643$ $1.7695$ $46(44)$ $1.3687(44)$ $3678$ $1.3618$ $14(28)$ $1.4070(29)$ $3906$ $1.4009$ $51(21)$ $1.5145(18)$ $4997$ $1.5044$ $^5 X^3 C^6$ ) $\measuredangle$ (C <sup>7</sup> X <sup>4</sup> C <sup>8</sup> ) $.08(9)$ $104.58(9)$ $04.44$ $104.45$ $36(27)$ $123.34(28)$ $22.48$ $122.44$ $13(19)$ $122.79(18)$ $22.5$ $122.25$ $65(12)$ $117.20(11)$ |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | a (C <sup>5</sup> –X <sup>3</sup> ) | a (C <sup>6</sup> –X <sup>3</sup> )    | a (C <sup>7</sup> –X <sup>4</sup> )               | a (C <sup>8</sup> –X <sup>4</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24                              |
| [1 S]3+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | XRD    | 1.7634(19)                          | 1.7688(21)                             | 1.7573(19)                                        | 1.7589(21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C® 1                            |
| [,]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DFT    | 1.7642                              | 1.7697                                 | 1.7643                                            | 1.7695                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | X4                              |
| [1 <sup>0</sup> ] <sup>3+</sup><br>[1 <sup>NMe</sup> ] <sup>3+</sup><br>[1 <sup>CH2</sup> ] <sup>3+</sup><br>[1 <sup>0</sup> ] <sup>3+</sup><br>[1 <sup>NMe</sup> ] <sup>3+</sup><br>[1 <sup>CH2</sup> ] <sup>3+</sup><br>[1 <sup>NMe</sup> ] <sup>3+</sup><br>[1 <sup>CH2</sup> ] <sup>3+</sup><br>[1 <sup>CH2</sup> ] <sup>3+</sup><br>[1 <sup>S</sup> ] <sup>3+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | XRD    | 1.3736(45)                          | 1.3815(43)                             | 1.3746(44)                                        | 1.3687(44)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CT-D                            |
| $\begin{bmatrix} 1^{O} \end{bmatrix}^{3+} \\ \begin{bmatrix} 1^{NMe} \end{bmatrix}^{3+} \\ \begin{bmatrix} 1^{CH2} \end{bmatrix}^{3+} \\ \begin{bmatrix} 1^{O} \end{bmatrix}^{3+} \\ \end{bmatrix}^{-} \\ \begin{bmatrix} 1^{O} \end{bmatrix}^{3+} \\ \begin{bmatrix} 1^{O} \end{bmatrix}^{3+} \\ \end{bmatrix}^{-} \\ \end{bmatrix}^{-} \\ \begin{bmatrix} 1^{O} \end{bmatrix}^{3+} \\ \end{bmatrix}^{-} \\ \begin{bmatrix} 1^{O} \end{bmatrix}^{3+} \\ \end{bmatrix}^{-} \\ \end{bmatrix}^{-} \\ \begin{bmatrix} 1^{O} \end{bmatrix}^{3+} \\ \end{bmatrix}^{-} \\ \end{bmatrix}^{-} \\ \begin{bmatrix} 1^{O} \end{bmatrix}^{3+} \\ \end{bmatrix}^{-} \\ \end{bmatrix}$ | DFT    | 1.3677                              | 1.3617                                 | 1.3678                                            | 1.3618                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |
| [1 NMe]3+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | XRD    | 1.3917(28)                          | 1.3961(29)                             | 1.3914(28)                                        | 1.4070(29)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C <sup>5</sup>                  |
| r. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DFT    | 1.3910                              | 1.4006                                 | 1.3906                                            | 1.4009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | X <sup>3</sup>                  |
| [1 <sup>CH2</sup> ] <sup>3+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | XRD    | 1.5041(19)                          | 1.5147(18)                             | 1.5051(21)                                        | 1.5145(18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U. 1                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DFT    | 1.5003                              | 1.5049                                 | 1.4997                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | ∡ (C¹X¹C²)                          | ∡ (C³X²C⁴)                             | ≰ (C <sup>5</sup> X <sup>3</sup> C <sup>6</sup> ) | ≰ (C <sup>7</sup> X <sup>4</sup> C <sup>8</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |
| [1 <sup>S</sup> ] <sup>3+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | XRD    | 103.29(12)                          | 102.83(9)                              | 104.08(9)                                         | 104.58(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |
| [1 <sup>NMe</sup> ] <sup>3+</sup><br>[1 <sup>CH2</sup> ] <sup>3+</sup><br>[1 <sup>S</sup> ] <sup>3+</sup><br>[1 <sup>O</sup> ] <sup>3+</sup><br>[1 <sup>CH2</sup> ] <sup>3+</sup><br>[1 <sup>CH2</sup> ] <sup>3+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DFT    | 104.44                              | 104.45                                 | 104.44                                            | 104.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | X4X2                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | XRD    | 122.10(26)                          | 118.16(26)                             | 119.36(27)                                        | 123.34(28)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C7                              |
| r. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DFT    | 122.47                              | 122.45                                 | 122.48                                            | 122.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CALL C                          |
| [1 <sup>NMe</sup> ] <sup>3+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | XRD    | 122.03(19)                          | 121.39(19)                             | 122.13(19)                                        | 122.79(18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C5V1                            |
| r. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DFT    | 122.30                              | 122.34                                 | 122.25                                            | 122.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |
| [1 <sup>CH2</sup> ] <sup>3+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | XRD    | 112.04(11)                          | 117.90(11)                             | 118.65(12)                                        | 117.20(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C <sup>2</sup>                  |
| r. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DFT    | 115.14                              | 115.33                                 | 115.13                                            | 115.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |

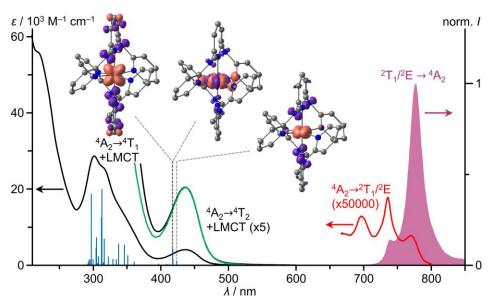
**Table S2** Structure parameters of the complex series  $[1^{x}]^{3+}$  from crystal structure determination (XRD) and DFT geometry optimisation each with an exemplary structure illustration.<sup>43,44</sup> The planes Py<sup>n</sup> (n = 1–6) or CrN<sub>4</sub> were calculated by a least-square fit and contain the corresponding pyridine ring or the meridional coordinating nitrogen atoms and the chromium centre. Angles are given in °.

| Complex                                | Method | Para                                            | meter                                           | Graphical illustration            |  |  |  |  |
|----------------------------------------|--------|-------------------------------------------------|-------------------------------------------------|-----------------------------------|--|--|--|--|
|                                        |        | $\phi$ (Py <sup>1</sup> , Py <sup>2</sup> )     |                                                 |                                   |  |  |  |  |
| [1 <sup>S</sup> ] <sup>3+</sup>        | XRD    | 18.47(22)                                       |                                                 | A Py <sup>2</sup>                 |  |  |  |  |
| [1]                                    | DFT    | 17.09                                           |                                                 |                                   |  |  |  |  |
| [1 <sup>0</sup> ] <sup>3+</sup>        | XRD    | 21.84(186)                                      |                                                 |                                   |  |  |  |  |
| L' J                                   | DFT    | 25.17                                           |                                                 |                                   |  |  |  |  |
| [1 <sup>NMe</sup> ] <sup>3+</sup>      | XRD    | 18.31(210)                                      |                                                 |                                   |  |  |  |  |
| I. 1                                   | DFT    | 18.79                                           |                                                 |                                   |  |  |  |  |
| [1 <sup>CH2</sup> ] <sup>3+</sup>      | XRD    | 29.54(20)                                       |                                                 | φ Py <sup>1</sup>                 |  |  |  |  |
| [, ]                                   | DFT    | 26.07                                           |                                                 |                                   |  |  |  |  |
|                                        |        | $\delta^1$ (Py <sup>3</sup> , Py <sup>5</sup> ) | $\delta^2$ (Py <sup>4</sup> , Py <sup>6</sup> ) |                                   |  |  |  |  |
| [1 <sup>S</sup> ] <sup>3+</sup>        | XRD    | 81.68(18)                                       | 86.26(17)                                       | Py <sup>5</sup> A Py <sup>6</sup> |  |  |  |  |
| [,]                                    | DFT    | 82.03                                           | 81.85                                           |                                   |  |  |  |  |
| [1 <sup>0</sup> ] <sup>3+</sup>        | XRD    | 73.51(122)                                      | 69.75(235)                                      | NIN NIN                           |  |  |  |  |
| L, 1                                   | DFT    | 68.41                                           | 68.56                                           | Otros Otros                       |  |  |  |  |
| [1 <sup>NMe</sup> ] <sup>3+</sup>      | XRD    | 79.06(75)                                       | 80.63(91)                                       |                                   |  |  |  |  |
| 1. I                                   | DFT    | 78.79                                           | 78.68                                           | Py <sup>3</sup>                   |  |  |  |  |
| [1 <sup>CH2</sup> ] <sup>3+</sup>      | XRD    | 72.28(32)                                       | 71.23(21)                                       | $\delta^2 = Py^4$                 |  |  |  |  |
|                                        | DFT    | 70.38                                           | 69.89                                           |                                   |  |  |  |  |
|                                        |        | ≴(Py³, CrN₄)                                    | ∡(Py⁴, CrN₄)                                    |                                   |  |  |  |  |
| [1 <sup>S</sup> ] <sup>3+</sup>        | XRD    | 49.48(18)                                       | 47.39(21)                                       |                                   |  |  |  |  |
| r. 1                                   | DFT    | 48.99                                           | 49.07                                           |                                   |  |  |  |  |
| [1 <sup>0</sup> ] <sup>3+</sup>        | XRD    | 55.42(82)                                       | 56.31(180)                                      |                                   |  |  |  |  |
| 1.1                                    | DFT    | 55.79                                           | 55.73                                           | CrN <sub>4</sub> CrN              |  |  |  |  |
| [1 <sup>NMe</sup> ] <sup>3+</sup>      | XRD    | 49.73(115)                                      | 46.82(73)                                       |                                   |  |  |  |  |
| ·· · ·                                 | DFT    | 50.69                                           | 50.60                                           | - Py <sup>3</sup>                 |  |  |  |  |
| [1 <sup>CH2</sup> ] <sup>3+</sup>      | XRD    | 56.64(16)                                       | 53.96(14)                                       | Py <sup>4</sup>                   |  |  |  |  |
|                                        | DFT    | 55.16                                           | 54.87                                           |                                   |  |  |  |  |
|                                        |        | ∡(Py⁵, CrN₄)                                    | ∡(Py <sup>6</sup> , CrN₄)                       |                                   |  |  |  |  |
| [1 <sup>S</sup> ] <sup>3+</sup>        | XRD    | 49.13(16)                                       | 46.60(17)                                       |                                   |  |  |  |  |
| L. 1                                   | DFT    | 48.98                                           | 49.07                                           |                                   |  |  |  |  |
| [1 <sup>0</sup> ] <sup>3+</sup>        | XRD    | 51.07(126)                                      | 54.03(218)                                      | CrN4 CrN4                         |  |  |  |  |
| r. 1                                   | DFT    | 55.80                                           | 55.72                                           | CrN4 CrN4                         |  |  |  |  |
| -<br>[1 <sup>NMe</sup> ] <sup>3+</sup> | XRD    | 51.27(104)                                      | 52.58(85)                                       |                                   |  |  |  |  |
| r. 1                                   | DFT    | 50.53                                           | 50.72                                           | Py <sup>5</sup> Py <sup>6</sup>   |  |  |  |  |
| [1 <sup>CH2</sup> ] <sup>3+</sup>      | XRD    | 52.28(29)                                       | 55.39(20)                                       |                                   |  |  |  |  |
| L* 1                                   | DFT    | 54.47                                           | 55.24                                           |                                   |  |  |  |  |

| # | λ/nm  | oscillator<br>strength | character                   | from                                                                                                               | to                                                                                  | difference electron density (purple:<br>density loss, orange: density gain) |
|---|-------|------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| 1 | 419.0 | 0.0000032              | MC (61%)<br>+ MLCT<br>(24%) | t <sub>2g</sub> (d <sub>xy</sub> )                                                                                 | eg (dx²-y²)                                                                         |                                                                             |
| 2 | 414.3 | 0.0002689              | MC (62%)<br>+ MLCT<br>(24%) | t <sub>2g</sub> (d <sub>xz</sub> +d <sub>yz</sub> )'                                                               | e <sub>g</sub> (d <sub>z</sub> ²)                                                   |                                                                             |
| 3 | 398.4 | 0.0009169              | MC (62%)<br>+ MLCT<br>(25%) | t <sub>2g</sub> (d <sub>xz</sub> +d <sub>yz</sub> )'<br>+<br>t <sub>2g</sub> (d <sub>xz</sub> +d <sub>yz</sub> )'' | eg (dz²)                                                                            | So S                                    |
| 4 | 366.2 | 0.0131411              | LMCT (48%)<br>+ LC (32%)    | p (O)<br>and<br>π (Pyt)                                                                                            | t <sub>2g</sub> (d <sub>xy</sub> )<br>and<br>π (Py <sub>t</sub> )                   |                                                                             |
| 5 | 364.7 | 0.0013474              | LMCT (42%)<br>+ LC (32%)    | p (O)<br>and<br>π (Py <sub>c</sub> )                                                                               | t <sub>2g</sub> (d <sub>xz</sub> +d <sub>yz</sub> )'<br>and<br>π (Py <sub>c</sub> ) |                                                                             |
| 6 | 364.1 | 0.0134968              | LMCT (41%)<br>+ LC (34%)    | p (O)<br>and<br>π (Py <sub>c</sub> )                                                                               | t <sub>2g</sub> (d <sub>xz</sub> +d <sub>yz</sub> )'<br>and<br>π (Pyc)              | S S S S S S S S S S S S S S S S S S S                                       |
| 7 | 361.2 | 0.0000006              | LMCT (49%)<br>+ ILCT (26%)  | p (O)<br>and<br>π (Py₀)                                                                                            | t <sub>2g</sub> (d <sub>xy</sub> )<br>and<br>π (Py <sub>t</sub> )                   |                                                                             |


**Table S3** TD-DFT calculated oscillator strengths and difference electron densities of the ten lowest energy spin-allowed transitions of  $[1^0]^{3+}$ .

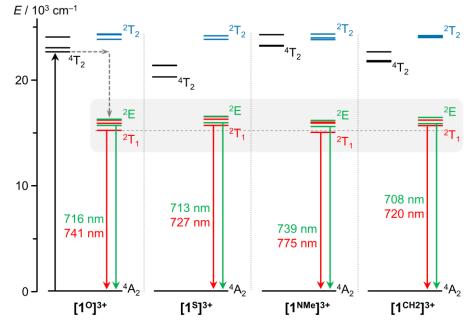
| #  | λ/nm  | oscillator<br>strength | character                   | from                   | to                                                   | difference electron density (purple:<br>density loss, orange: density gain) |
|----|-------|------------------------|-----------------------------|------------------------|------------------------------------------------------|-----------------------------------------------------------------------------|
| 8  | 350.2 | 0.000000               | MC (57%)<br>+ MLCT<br>(23%) | t₂g (d <sub>xy</sub> ) | eg (dz <sup>2</sup> )                                |                                                                             |
| 9  | 348.0 | 0.0028086              | LMCT (47%)<br>+ LC (36%)    | p (O)                  | t <sub>2g</sub> (d <sub>xz</sub> +d <sub>yz</sub> )" |                                                                             |
| 10 | 347.2 | 0.0006875              | LMCT (55%)<br>+ LC (27%)    | p (O)                  | t <sub>2g</sub> (d <sub>xz</sub> +d <sub>yz</sub> )" |                                                                             |


**Table S4** TD-DFT calculated oscillator strengths and difference electron densities of the ten lowest energy spin-allowedtransitions of  $[1^{S}]^{3+}$ .

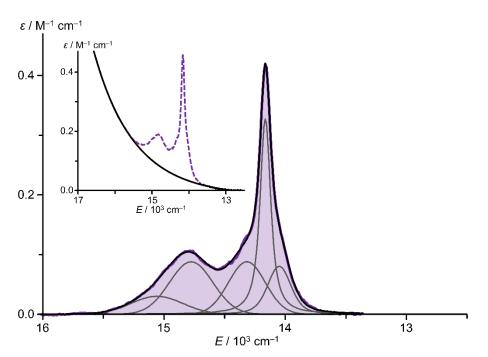
| # | λ/nm  | oscillator<br>strength | character                   | from                                                                                                               | to                                | difference electron density (purple:<br>density loss, orange: density gain) |
|---|-------|------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------|
| 1 | 477.0 | 0.0000202              | MC (57%)<br>+ MLCT<br>(22%) | t <sub>2g</sub> (d <sub>xz</sub> +d <sub>yz</sub> )'                                                               | e <sub>g</sub> (d <sub>z</sub> ²) |                                                                             |
| 2 | 448.9 | 0.0001916              | MC (59%)<br>+ MLCT<br>(23%) | t <sub>2g</sub> (d <sub>xz</sub> +d <sub>yz</sub> )'<br>+<br>t <sub>2g</sub> (d <sub>xz</sub> +d <sub>yz</sub> )'' | eg (dz²)                          |                                                                             |
| 3 | 447.0 | 0.0000868              | MC (56%)<br>+ MLCT<br>(23%) | t2g (dxy)                                                                                                          | eg (dx²-y²)                       |                                                                             |

| #  | λ/nm  | oscillator<br>strength | character                  | from                                 | to                                                                                                                                               | difference electron density (purple:<br>density loss, orange: density gain) |
|----|-------|------------------------|----------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| 4  | 446.2 | 0.0000026              | LMCT (53%)<br>+ ILCT (32%) | p (S)<br>and<br>π (Py <sub>c</sub> ) | t <sub>2g</sub> (d <sub>xy</sub> )                                                                                                               |                                                                             |
| 5  | 445.6 | 0.0228827              | LMCT (44%)<br>+ ILCT (36%) | p (S)<br>and<br>π (Py <sub>c</sub> ) | t <sub>2g</sub> (d <sub>xz</sub> +d <sub>yz</sub> )'<br>and<br>π (Py <sub>c</sub> )                                                              |                                                                             |
| 6  | 429.8 | 0.0001514              | LMCT (41%)<br>+ ILCT (37%) | p (S)<br>and<br>π (Py <sub>c</sub> ) | t <sub>2g</sub> (d <sub>xz</sub> +d <sub>yz</sub> )'<br>+<br>t <sub>2g</sub> (d <sub>xz</sub> +d <sub>yz</sub> )"<br>and<br>π (Py <sub>c</sub> ) | S OF S                                                                      |
| 7  | 426.1 | 0.0072654              | LMCT (51%)<br>+ ILCT (29%) | p (S)                                | t <sub>2g</sub> (d <sub>xy</sub> )                                                                                                               |                                                                             |
| 8  | 416.6 | 0.0023140              | LMCT (60%)<br>+ ILCT (26%) | p (S)<br>and<br>π (Py₀)              | t <sub>2g</sub> (d <sub>xz</sub> +d <sub>yz</sub> )"                                                                                             |                                                                             |
| 9  | 409.4 | 0.0000000              | LMCT (55%)<br>+ ILCT (19%) | p (S)                                | e <sub>g</sub> (d <sub>z</sub> 2)<br>and<br>e <sub>g</sub> (d <sub>x<sup>2</sup>-y<sup>2</sup>)</sub>                                            | S OF CONTRACTOR                                                             |
| 10 | 402.6 | 0.0004712              | LMCT (52%)<br>+ ILCT (28%) | p (S)                                | t <sub>2g</sub> (d <sub>xz</sub> +d <sub>yz</sub> )"                                                                                             |                                                                             |

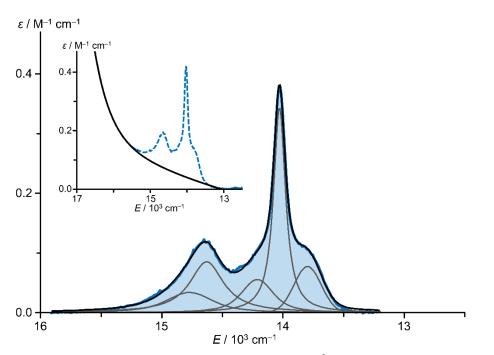



**Fig. S39** UV/VIS/NIR absorption spectrum (black, red), excitation spectrum ( $\lambda_{em} = 708$  nm, green) and emission spectrum ( $\lambda_{exc} = 462$  nm, purple) of  $[1^{CH2}][OTf]_3$  in deaerated acetonitrile at room temperature, TD-DFT calculated oscillator strengths (blue) and difference electron densities of three low energy transitions of <sup>4</sup>MC character of  $[1^{CH2}]^{3+.43}$  The regions of the spin forbidden absorption bands, the lowest energy spin allowed absorption band and the excitation spectrum are zoomed.

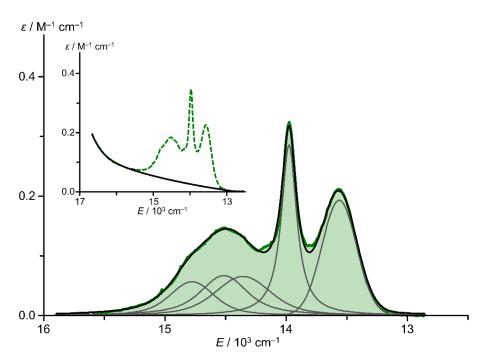



**Fig. S40** UV/VIS/NIR absorption spectrum (black, red), excitation spectrum ( $\lambda_{em} = 775$  nm, green) and emission spectrum ( $\lambda_{exc} = 435$  nm, purple) of  $[1^{NMe}][BF_4]_3$  in deaerated acetonitrile at room temperature, TD-DFT calculated oscillator strengths (blue) and difference electron densities of three low energy transitions of <sup>4</sup>LMCT and <sup>4</sup>MC character of  $[1^{NMe}]^{3+.44}$  The regions of the spin forbidden absorption bands, the lowest energy spin allowed/LMCT absorption band and the excitation spectrum are zoomed.

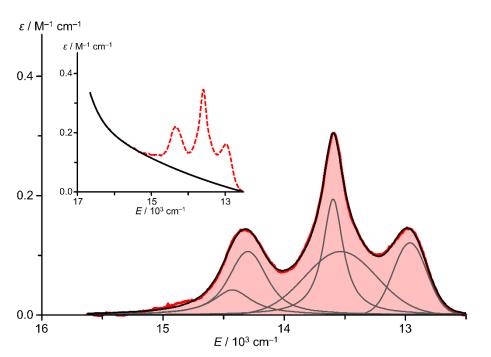
| Complex                           | (x,y)   | <sup>2</sup> E(1) | <sup>2</sup> E(2) | <sup>2</sup> T <sub>1</sub> (1) | <sup>2</sup> T <sub>1</sub> (2) | <sup>2</sup> T <sub>1</sub> (3) | <sup>2</sup> T <sub>2</sub> (1) | <sup>2</sup> T <sub>2</sub> (2) | <sup>2</sup> T <sub>2</sub> (3) | <sup>4</sup> T <sub>2</sub> (1) | <sup>4</sup> T <sub>2</sub> (2) | <sup>4</sup> T <sub>2</sub> (3) |
|-----------------------------------|---------|-------------------|-------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| [1 <sup>0</sup> ] <sup>3+</sup>   | (3,5)   | 16440             | 17239             | 15924                           | 16849                           | 17181                           | 25217                           | 25641                           | 25674                           | 22000                           | 22486                           | 23571                           |
|                                   | (3,10)  | 16196             | 16991             | 15659                           | 16580                           | 16936                           | 24926                           | 25372                           | 25376                           | 21614                           | 22068                           | 23168                           |
| 1.1                               | (13,10) | 16271             | 16912             | 15760                           | 16515                           | 16792                           | 24507                           | 25053                           | 25094                           | 22267                           | 22638                           | 23787                           |
|                                   | (7,12)  | 15726             | 16299             | 15265                           | 15915                           | 16206                           | 23861                           | 24310                           | 24334                           | 22664                           | 23047                           | 24073                           |
|                                   | (3,5)   | 16610             | 17470             | 16325                           | 17228                           | 17501                           | 25045                           | 25415                           | 25489                           | 19511                           | 20638                           | 20667                           |
| [1 <sup>s</sup> ] <sup>3+</sup>   | (3,10)  | 16369             | 17224             | 16067                           | 16950                           | 17266                           | 24786                           | 25110                           | 25185                           | 19144                           | 20294                           | 20304                           |
| 1.1                               | (13,10) | 16536             | 17154             | 16226                           | 16938                           | 17159                           | 24564                           | 24835                           | 24878                           | 19762                           | 20974                           | 21040                           |
|                                   | (7,12)  | 15958             | 16544             | 15725                           | 16292                           | 16568                           | 23835                           | 24178                           | 24186                           | 20293                           | 21372                           | 21393                           |
|                                   | (3,5)   | 16345             | 17155             | 15712                           | 16897                           | 17002                           | 25205                           | 25414                           | 25779                           | 22626                           | 22648                           | 23846                           |
| [1 <sup>NMe</sup> ] <sup>3+</sup> | (3,10)  | 16091             | 16902             | 15454                           | 16625                           | 16758                           | 24940                           | 25101                           | 25479                           | 22233                           | 22243                           | 23432                           |
| I. 1                              | (13,10) | 16140             | 16749             | 15460                           | 16519                           | 16545                           | 24551                           | 24588                           | 25074                           | 22700                           | 22818                           | 23928                           |
|                                   | (7,12)  | 15597             | 16180             | 15051                           | 15928                           | 16011                           | 23823                           | 23984                           | 24361                           | 23216                           | 23262                           | 24310                           |
|                                   | (3,5)   | 16562             | 17407             | 16331                           | 17135                           | 17440                           | 25270                           | 25462                           | 25502                           | 20914                           | 21103                           | 22027                           |
| [1 <sup>CH2</sup> ] <sup>3+</sup> | (3,10)  | 16322             | 17165             | 16069                           | 16858                           | 17206                           | 25007                           | 25173                           | 25200                           | 20571                           | 20692                           | 21636                           |
| [1, ].                            | (13,10) | 16503             | 17144             | 16286                           | 16894                           | 17125                           | 24814                           | 24899                           | 25014                           | 21276                           | 21415                           | 22374                           |
|                                   | (7,12)  | 15882             | 16454             | 15691                           | 16208                           | 16467                           | 24006                           | 24085                           | 24208                           | 21727                           | 21840                           | 22679                           |


**Table S5** CASSCF(x,y)-SC/NEVPT2 results of the complex series  $[1^x]^{3+}$  depending on the active space with energies in cm<sup>-1</sup> (bold values indicate the lowest state of each multiplicity).




**Fig. S41** CASSCF(7,12)-SC-NEVPT2 calculated energy diagram of the metal centred excited states of the **[1<sup>x</sup>]**<sup>3+</sup> complex series with experimental observed maxima of the main room temperature emission bands and arrows indicating excitation (black) inter-system-crossing/internal conversion/vibrational cooling (dotted) and emission (red from <sup>2</sup>T<sub>1</sub>, green from <sup>2</sup>E).



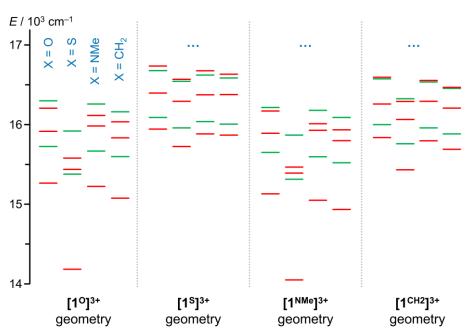

**Fig. S42** Baseline corrected NIR absorption spectra of  $[1^{CH2}][OTf]_3$  (purple) in acetonitrile with sum fit (black) consisting of five Voigt functions (grey). Inset: NIR absorption spectra of  $[1^{CH2}](OTf)_3$  (purple, dotted) with exponential fit (black) describing the tail of the spin-allowed transitions used for the baseline correction.



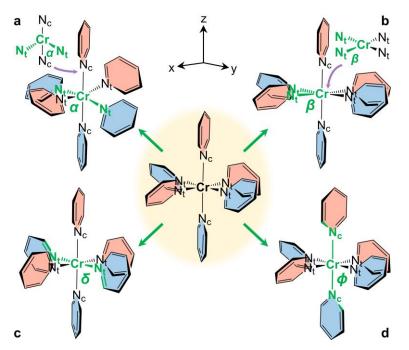
**Fig. S43** Baseline corrected NIR absorption spectra of  $[1^{S}][OTf]_{3}$  (blue) in acetonitrile with sum fit (black) consisting of five Voigt functions (grey). Inset: NIR absorption spectra of  $[1^{S}][OTf]_{3}$  (blue, dotted) with exponential fit (black) describing the tail of the spin-allowed transitions used for the baseline correction.



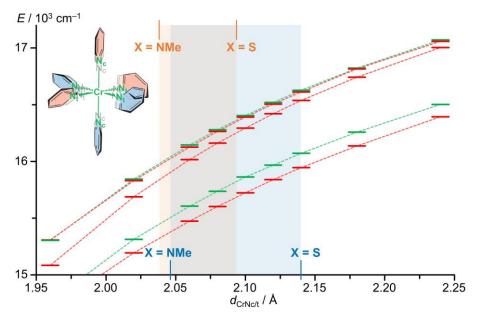
**Fig. S44** Baseline corrected NIR absorption spectra of  $[1^{o}][OTf]_{3}$  (green) in acetonitrile with sum fit (black) consisting of five Voigt functions (grey). Inset: NIR absorption spectra of  $[1^{o}][OTf]_{3}$  (green, dotted) with exponential fit (black) describing the tail of the spin-allowed transitions used for the baseline correction.



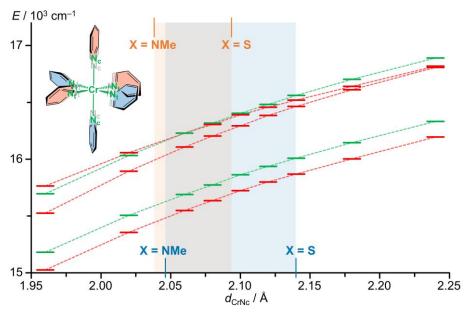

**Fig. S45** Baseline corrected NIR absorption spectra of  $[1^{NMe}][BF_4]_3$  (red) in acetonitrile with sum fit (black) consisting of five Voigt functions (grey). Inset: NIR absorption spectra of  $[1^{NMe}][BF_4]_3$  (red, dotted) with exponential fit (black) describing the tail of the spin-allowed transitions used for the baseline correction.


# Computational studies on the doublet energies

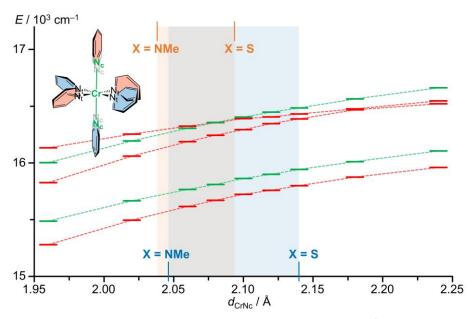
| Table S6 CASSCF(7,12)-SC/NEVPT2 results of the complex series [1x] <sup>3+</sup> at DFT optimised geometries of the four |  |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Molecular Rubies with energies in cm <sup>-1</sup> (bold values indicate the lowest state of each multiplicity).         |  |  |  |  |  |  |  |  |  |


| [1 <sup>X</sup> ] <sup>3+</sup>   | Geo.                              | <sup>2</sup> E(1) | <sup>2</sup> E(2) | <sup>2</sup> T <sub>1</sub> (1) | <sup>2</sup> T <sub>1</sub> (2) | <sup>2</sup> T <sub>1</sub> (3) | <sup>2</sup> T <sub>2</sub> (1) | <sup>2</sup> T <sub>2</sub> (2) | <sup>2</sup> T <sub>2</sub> (3) | <sup>4</sup> T <sub>2</sub> (1) | <sup>4</sup> T <sub>2</sub> (2) | <sup>4</sup> T <sub>2</sub> (3) |
|-----------------------------------|-----------------------------------|-------------------|-------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| [1 <sup>0</sup> ] <sup>3+</sup>   | [1 <sup>0</sup> ] <sup>3+</sup>   | 15726             | 16299             | 15265                           | 15915                           | 16206                           | 23861                           | 24310                           | 24334                           | 22664                           | 23047                           | 24073                           |
|                                   | [1 <sup>S</sup> ] <sup>3+</sup>   | 16089             | 16678             | 15944                           | 16396                           | 16735                           | 23926                           | 24100                           | 24290                           | 19584                           | 20500                           | 20824                           |
|                                   | [1 <sup>NMe</sup> ] <sup>3+</sup> | 15650             | 16215             | 15131                           | 15892                           | 16170                           | 23923                           | 24004                           | 24336                           | 23139                           | 23235                           | 24299                           |
|                                   | [1 <sup>CH2</sup> ] <sup>3+</sup> | 16000             | 16574             | 15838                           | 16258                           | 16593                           | 24129                           | 24136                           | 24196                           | 20907                           | 21266                           | 21770                           |
| [1 <sup>\$</sup> ] <sup>3+</sup>  | [1 <sup>0</sup> ] <sup>3+</sup>   | 15378             | 15920             | 14183                           | 15436                           | 15580                           | 23569                           | 23951                           | 24622                           | 23222                           | 23249                           | 24567                           |
|                                   | [1 <sup>S</sup> ] <sup>3+</sup>   | 15958             | 16544             | 15725                           | 16292                           | 16568                           | 23835                           | 24178                           | 24186                           | 20293                           | 21372                           | 21393                           |
|                                   | [1 <sup>NMe</sup> ] <sup>3+</sup> | 15313             | 15868             | 14050                           | 15392                           | 15467                           | 23558                           | 23841                           | 24666                           | 23312                           | 23748                           | 24691                           |
|                                   | [1 <sup>CH2</sup> ] <sup>3+</sup> | 15759             | 16325             | 15433                           | 16064                           | 16290                           | 23834                           | 23988                           | 24064                           | 21506                           | 22016                           | 22594                           |
| [1 <sup>NMe</sup> ] <sup>3+</sup> | [1 <sup>0</sup> ] <sup>3+</sup>   | 15669             | 16257             | 15224                           | 15983                           | 16115                           | 23796                           | 24172                           | 24324                           | 22674                           | 23213                           | 24130                           |
|                                   | [1 <sup>S</sup> ] <sup>3+</sup>   | 16040             | 16622             | 15882                           | 16374                           | 16677                           | 23892                           | 24149                           | 24253                           | 20119                           | 20981                           | 21047                           |
|                                   | [1 <sup>NMe</sup> ] <sup>3+</sup> | 15597             | 16180             | 15051                           | 15928                           | 16011                           | 23823                           | 23984                           | 24361                           | 23216                           | 23262                           | 24310                           |
|                                   | [1 <sup>CH2</sup> ] <sup>3+</sup> | 15958             | 16535             | 1 <b>5796</b>                   | 16293                           | 16555                           | 24041                           | 24132                           | 24145                           | 21141                           | 21344                           | 21982                           |
| [1 <sup>CH2</sup> ] <sup>3+</sup> | [1 <sup>0</sup> ] <sup>3+</sup>   | 15599             | 16159             | 15078                           | 15832                           | 16035                           | 23746                           | 24159                           | 24327                           | 23045                           | 23916                           | 24780                           |
|                                   | [1 <sup>S</sup> ] <sup>3+</sup>   | 16006             | 16585             | 15868                           | 16376                           | 16633                           | 23868                           | 24185                           | 24256                           | 20689                           | 21169                           | 21534                           |
|                                   | [1 <sup>NMe</sup> ] <sup>3+</sup> | 15522             | 16088             | 14933                           | 15799                           | 15936                           | 23780                           | 23927                           | 24342                           | 23529                           | 24048                           | 24975                           |
|                                   | [1 <sup>CH2</sup> ] <sup>3+</sup> | 15882             | 16454             | 15691                           | 16208                           | 16467                           | 24006                           | 24085                           | 24208                           | 21727                           | 21840                           | 22679                           |




**Fig. S46** CASSCF(7,12)-SC-NEVPT2 calculated  ${}^{2}T_{1}$  (red) and  ${}^{2}E$  energies (green) of  $[1^{x}]^{3+}$  (X = O, S, NMe, CH<sub>2</sub>) at DFT-optimised geometries of  $[1^{x}]^{3+}$  (X = O, S, NMe, CH<sub>2</sub>) – X substitution at fixed geometry.

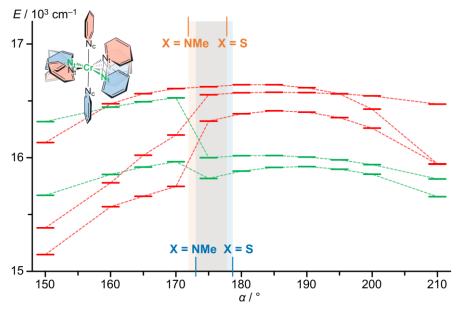



**Fig. S47** Parameters  $\alpha$ ,  $\beta$ ,  $\delta$  and  $\phi$  used for characterising the structure of the Molecular Rubies  $[1^X]^{3+}$  (X = S, O, NMe, CH<sub>2</sub>) illustrated on the reference  $[Cr(py)_6]^{3+}$ . The structures demonstrate, which structural modifications were performed on the reference system  $[Cr(py)_6]^{3+}$  to investigate their influence on the doublet energies: Compression of the angle  $\alpha$  to yield Nt distortion within the xz/yz plane (a); compression of the angle  $\beta$  to yield Nt distortion within the xy plane (b); torsion  $\delta$  of the terminal pyridine (c); torsion  $\phi$  of the central pyridines (d).

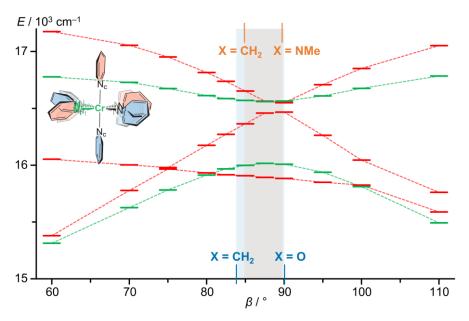


**Fig. S48** CASSCF(7,12)-SC-NEVPT2 results of the model  $[Cr(py)_6]^{3+}$  showing the dependence of the  ${}^2T_1$  (red) and  ${}^2E$  energies (green) on the Cr–N<sub>c/t</sub> elongation in local O<sub>h</sub> symmetry including structures illustrating the geometry modification. The corresponding parameter for  $[1^x]^{3+}$  falls within the blue and orange shaded regions according to CASSCF(7,12)-SC-NEVPT2 calculations and the crystal structures.

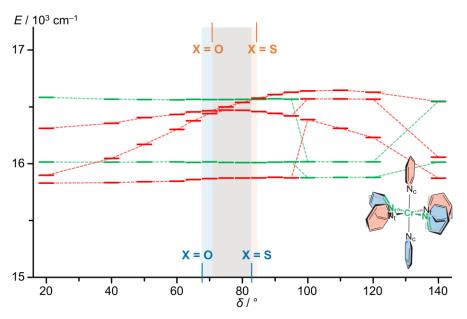



**Fig. S49** CASSCF(7,12)-SC-NEVPT2 results of the model  $[Cr(py)_6]^{3+}$  showing the dependence of the  ${}^2T_1$  (red) and  ${}^2E$  energies (green) on the Cr–N<sub>c/t</sub> elongation in local D<sub>4h</sub> symmetry including structures illustrating the geometry modification. The corresponding parameter for  $[1^x]^{3+}$  falls within the blue and orange shaded regions according to CASSCF(7,12)-SC-NEVPT2 calculations and the crystal structures.

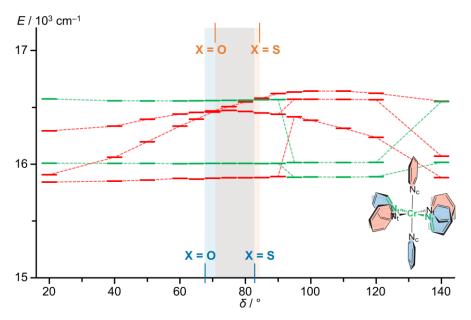



**Fig. S50** CASSCF(7,12)-SC-NEVPT2 results of the model  $[Cr(py)_6]^{3+}$  showing the dependence of the  ${}^2T_1$  (red) and  ${}^2E$  energies (green) on the Cr–N<sub>c</sub> elongation including structures illustrating the geometry modification. The corresponding parameter for  $[1^X]^{3+}$  falls within the blue and orange shaded regions according to CASSCF(7,12)-SC-NEVPT2 calculations and the crystal structures.

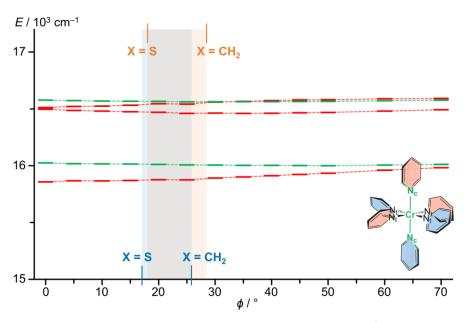



**Fig. S51** CASSCF(7,12)-SC-NEVPT2 results of the model  $[Cr(py)_6]^{3+}$  showing the dependence of the  ${}^2T_1$  (red) and  ${}^2E$  energies (green) on the Cr–Nt elongation including structures illustrating the geometry modification. The corresponding parameter for  $[1^X]^{3+}$  falls within the blue and orange shaded regions according to CASSCF(7,12)-SC-NEVPT2 calculations and the crystal structures.

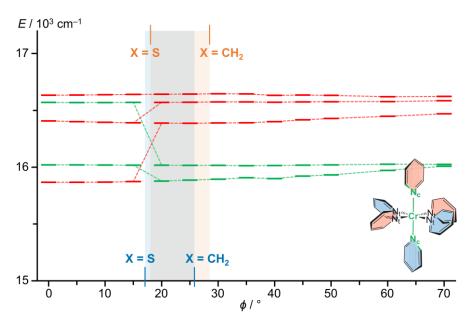



**Fig. S52** CASSCF(7,12)-SC-NEVPT2 results of the model  $[Cr(py)_6]^{3+}$  showing the dependence of the  ${}^{2}T_1$  (red) and  ${}^{2}E$  energies (green) on the Nt distortion within the xz/yz plane including structures illustrating the geometry modification. The corresponding parameter for  $[1^{x}]^{3+}$  falls within the blue and orange shaded regions according to CASSCF(7,12)-SC-NEVPT2 calculations and the crystal structures.

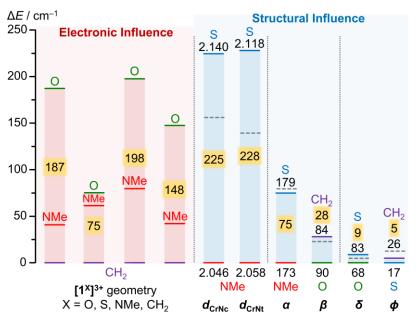



**Fig. S53** CASSCF(7,12)-SC-NEVPT2 results of the model  $[Cr(py)_6]^{3+}$  showing the dependence of the  ${}^2T_1$  (red) and  ${}^2E$  energies (green) on the Nt distortion within the xy plane including structures illustrating the geometry modification. The corresponding parameter for  $[1^X]^{3+}$  falls within the blue and orange shaded regions according to CASSCF(7,12)-SC-NEVPT2 calculations and the crystal structures.




**Fig. S54** CASSCF(7,12)-SC-NEVPT2 results of the model  $[Cr(py)_6]^{3+}$  showing the dependence of the  ${}^2T_1$  (red) and  ${}^2E$  energies (green) on the torsion of the terminal pyridines ( $\phi = 19^\circ$ ) including structures illustrating the geometry modification. The corresponding parameter for  $[1^x]^{3+}$  falls within the blue and orange shaded regions according to CASSCF(7,12)-SC-NEVPT2 calculations and the crystal structures.




**Fig. S55** CASSCF(7,12)-SC-NEVPT2 results of the model  $[Cr(py)_6]^{3+}$  showing the dependence of the  ${}^2T_1$  (red) and  ${}^2E$  energies (green) on the torsion of the terminal pyridines ( $\phi = 26^\circ$ ) including structures illustrating the geometry modification. The corresponding parameter for  $[1^X]^{3+}$  falls within the blue and orange shaded regions according to CASSCF(7,12)-SC-NEVPT2 calculations and the crystal structures.



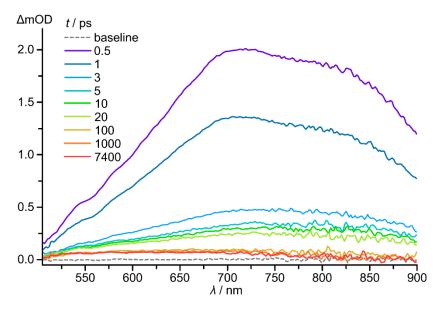
**Fig. S56** CASSCF(7,12)-SC-NEVPT2 results of the model  $[Cr(py)_6]^{3+}$  showing the dependence of the  ${}^2T_1$  (red) and  ${}^2E$  energies (green) on the torsion of the central pyridines ( $\delta = 80^\circ$ ) including structures illustrating the geometry modification. The corresponding parameter for  $[1^X]^{3+}$  falls within the blue and orange shaded regions according to CASSCF(7,12)-SC-NEVPT2 calculations and the crystal structures.



**Fig. S57** CASSCF(7,12)-SC-NEVPT2 results of the model  $[Cr(py)_6]^{3+}$  showing the dependence of the  ${}^2T_1$  (red) and  ${}^2E$  energies (green) on the torsion of the central pyridines ( $\delta = 100^\circ$ ) including structure illustrating the geometry modification. The corresponding parameter for  $[1^X]^{3+}$  falls within the blue and orange shaded regions according to CASSCF(7,12)-SC-NEVPT2 calculations and the crystal structures.



**Fig. S58** Electronic and structural impact on the relative CASSCF(7,12)-SC-NEVPT2 energies of the lowest doublet states. The bridging groups X are indicated at the top and bottom of each column define the constitution at minimal and maximal energy and are described by bond lengths (in Å) and angles (in °). The maximum energy shifts  $\Delta E$  highlighted in yellow are given in cm<sup>-1</sup>. Left:  $[1^X]^{3+}$  (X = O: green; X = NMe: red; X = CH<sub>2</sub>: purple). Right:  $[Cr(py)_6]^{3+}$  with structural parameters taken from of the geometries of  $[1^X]^{3+}$  with X = O, S, NMe, CH<sub>2</sub> (green, blue, red, purple).


# Computational studies on the quartet states

**Table S7** Bond lengths of TD-DFT optimised geometries of quartet states of the complex series  $[1^{x}]^{3+}$  (bold values indicate largest bond elongations) with single point energy differences between the excited quartet states <sup>4</sup>ES and the lowest optimised doublet state <sup>2</sup>E. Distances are given in Å and energies in eV. The colour code corresponds to the different tridentate ligands.

| character                         | Cr–N5 (N <sub>t</sub> ) | Cr–N2 (N <sub>c</sub> ) | Cr–N4 (N <sub>t</sub> ) | Cr–N7 (N <sub>t</sub> ) | Cr–N3 (N <sub>c</sub> ) | Cr–N6 (N <sub>t</sub> ) | $\Delta E$ ( <sup>4</sup> ES– <sup>2</sup> E) |
|-----------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-----------------------------------------------|
| [1 <sup>0</sup> ] <sup>3+</sup>   |                         |                         |                         |                         |                         |                         |                                               |
| <sup>4</sup> A <sub>2</sub>       | 2.071                   | 2.051                   | 2.071                   | 2.071                   | 2.051                   | 2.071                   |                                               |
| <sup>4</sup> T <sub>2</sub> (1)   | 2.049                   | 2.107                   | 2.049                   | 2.095                   | 2.493                   | 2.094                   | 1.28                                          |
| <sup>4</sup> T <sub>2</sub> (2)   | 2.076                   | 2.239                   | 2.076                   | 2.077                   | 2.241                   | 2.077                   | 1.39                                          |
| [1 <sup>S</sup> ] <sup>3+</sup>   |                         |                         |                         |                         |                         |                         |                                               |
| <sup>4</sup> A <sub>2</sub>       | 2.118                   | 2.140                   | 2.118                   | 2.118                   | 2.140                   | 2.118                   |                                               |
| <sup>4</sup> T <sub>2</sub> (1)   | 2.106                   | 2.421                   | 2.109                   | 2.073                   | 2.214                   | 2.075                   | 1.17                                          |
| <sup>4</sup> T <sub>2</sub> (2)   | 2.106                   | 2.364                   | 2.105                   | 2.078                   | 2.238                   | 2.080                   | 1.17                                          |
| <sup>4</sup> T <sub>2</sub> (3)   | 2.086                   | 2.265                   | 2.086                   | 2.100                   | 2.311                   | 2.100                   | 1.17                                          |
| <sup>4</sup> T <sub>2</sub> (4)   | 2.095                   | 2.290                   | 2.095                   | 2.091                   | 2.289                   | 2.091                   | 1.17                                          |
| <sup>4</sup> LMCT(1)              | 2.123                   | 2.356                   | 2.123                   | 2.149                   | 2.462                   | 2.149                   | 1.20                                          |
| <sup>4</sup> LMCT(2)              | 2.405                   | 2.200                   | 2.403                   | 2.132                   | 2.115                   | 2.134                   | 1.16                                          |
| [1 <sup>NMe</sup> ] <sup>3+</sup> |                         |                         |                         |                         |                         |                         |                                               |
| <sup>4</sup> A <sub>2</sub>       | 2.058                   | 2.046                   | 2.058                   | 2.058                   | 2.046                   | 2.058                   |                                               |
| <sup>4</sup> T <sub>2</sub>       | 2.036                   | 2.061                   | 2.036                   | 2.138                   | 2.316                   | 2.138                   | 1.30                                          |
| <sup>4</sup> LMCT(1)              | 2.043                   | 2.059                   | 2.044                   | 2.052                   | 2.045                   | 2.052                   | 1.76                                          |
| <sup>4</sup> LMCT(2)              | 2.310                   | 2.087                   | 2.301                   | 2.152                   | 2.046                   | 2.112                   | 1.76                                          |
| [1 <sup>CH2</sup> ] <sup>3+</sup> |                         |                         |                         |                         |                         |                         |                                               |
| <sup>4</sup> A <sub>2</sub>       | 2.113                   | 2.112                   | 2.111                   | 2.110                   | 2.113                   | 2.113                   |                                               |
| <sup>4</sup> T <sub>2</sub>       | 2.068                   | 2.161                   | 2.068                   | 2.121                   | 2.546                   | 2.121                   | 1.54                                          |

### fs-Transient absorption spectroscopy

In order to obtain information on the ultrafast processes after light excitation, we measured femtosecond TA spectra of [1<sup>0</sup>]<sup>3+</sup> and [1<sup>s</sup>]<sup>3+</sup>. As the dd absorptions of [1<sup>0</sup>]<sup>3+</sup> are too weak for obtaining meaningful TA data, TA spectra of [10]<sup>3+</sup> were recorded in CH<sub>3</sub>CN with <sup>4</sup>LMCT excitation at 343 nm (Fig. S59–S61). Global analysis with a consecutive kinetic model yields two time constants. The initially observed broad excited state absorption (ESA) in the red to NIR spectral region decays with a time constant of  $\tau_1 = 1.0$  ps to a spectrally similar component with a lifetime of  $\tau_2 = 47$  ps. The spectral similarity of the two components decaying with  $\tau_1$  and  $\tau_2$  to the final long-lived state indicates that they belong to similar electronic states, possibly LMCT states. The ultrafast process with the time constant  $\tau_1$  likely corresponds to internal conversion (IC) and vibrational cooling (VC) on the <sup>2</sup>LMCT manifold. Finally, a blue-shifted signal that does not decay on the timescale of the experiment (8 ns) is obtained. ISC appears to be faster the time resolution of our experiment (200 fs). Due to the higher absorption coefficient of the dd/LMCT band of [1<sup>s</sup>]<sup>3+</sup>, TA spectra of [1<sup>s</sup>]<sup>3+</sup> in water were obtained with excitation at 515 nm. The initial TA spectrum features a broad ESA in the green to red spectral region that decays to a long-lived component within  $\tau_1 = 1.2$  ps (Fig. S62–S64). A small spectral shift is associated with a time constant of  $\tau_2$  = 90 ps yielding the non-decaying component, i.e. the characteristics of the long-lived SF states. The TA spectra are qualitatively similar to those of  $[1^{NMe}]^{3+}$ . Hence, we assign the ultrafast component  $\tau_1$  to ISC from the quartet to the doublet states, which is convoluted with IC/VC within the doublet manifold. The longer component  $\tau_2$  is assigned to reorganization of the solvent cage around the doublet states. The final spectrum that does not decay on the time scale of the experiment corresponds to the emissive SF states.



**Fig. S59** Transient absorption spectra of **[1<sup>0</sup>][OTf]**<sub>3</sub> in acetonitrile after pulsed excitation at 343 nm at various time delays (fluence: 70 µJ cm<sup>-2</sup>, repetition rate: 1 kHz).

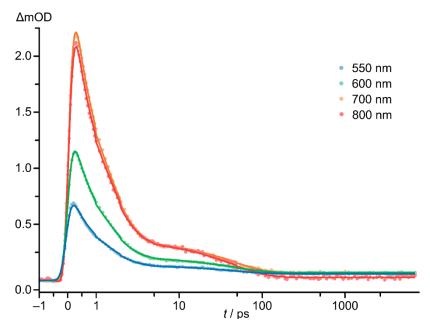
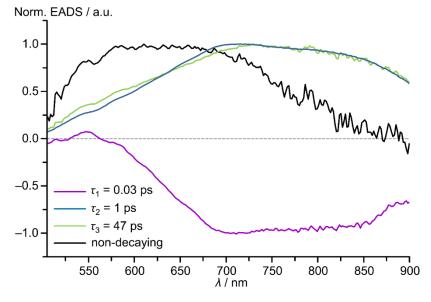




Fig. S60 Decay traces of excited state absorptions of [1<sup>o</sup>][OTf]<sub>3</sub> in acetonitrile (coloured symbols) at different wavelengths with global fit (solid lines).



**Fig. S61** Normalised evolution associated difference spectra obtained from a global analysis of transient absorption data of [1<sup>o</sup>][OTf]<sub>3</sub> (acetonitrile,  $\lambda_{exc}$  = 343 nm, fluence: 70 µJ cm<sup>-2</sup>, repetition rate: 1 kHz).

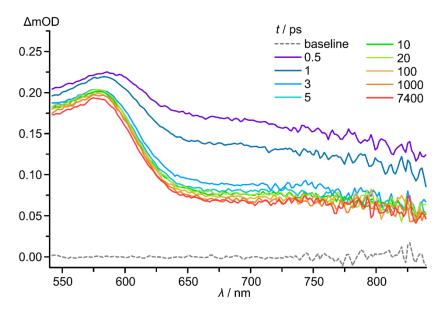
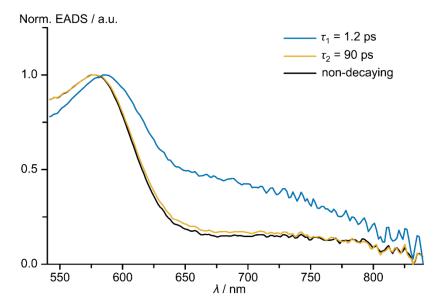




Fig. S62 Transient absorption spectra of  $[1^{S}][OTf]_{3}$  in water after pulsed excitation at 515 nm at various time delays (fluence: 3 mJ cm<sup>-2</sup>, repetition rate: 1 kHz).

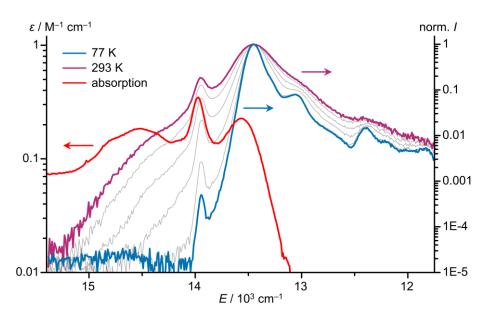
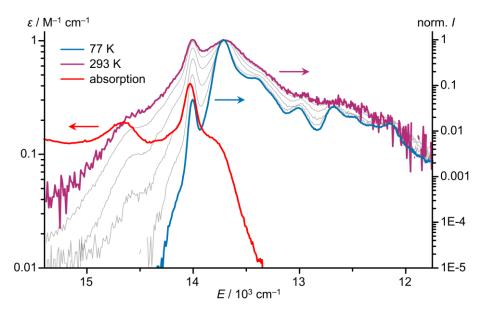
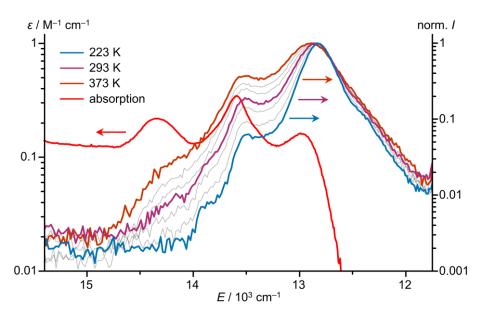


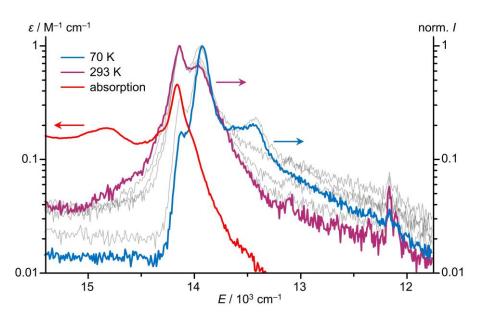

Fig. S63 Decay traces of excited state absorptions of [1<sup>s</sup>][OTf]<sub>3</sub> in water (coloured symbols) at different wavelengths with global fit (solid lines).



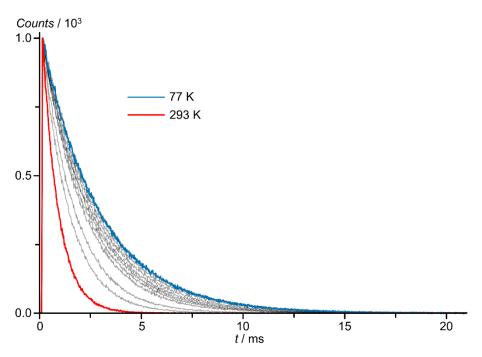

**Fig. S64** Normalised evolution associated difference spectra obtained from a global analysis of transient absorption data of [1<sup>s</sup>][OTf]<sub>3</sub> (water,  $\lambda_{exc}$  = 515 nm, fluence: 3 mJ cm<sup>-2</sup>, repetition rate: 1 kHz).


#### Variable-temperature emission spectroscopy

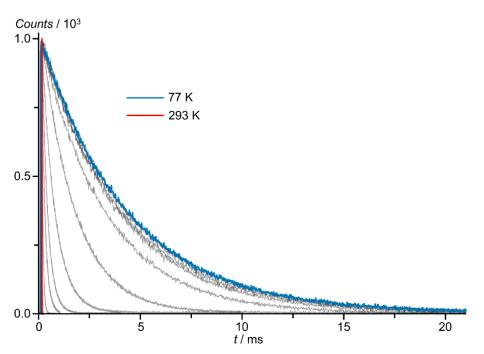



**Fig. S65** Spin- and symmetry forbidden absorption band (logarithmic scale) of an acetonitrile solution (red) and temperature dependent emission spectra ( $\lambda_{exc} = 450$  nm, logarithmic scale) of a (frozen) solution of [1°][OTf]<sub>3</sub> in deaerated ethanol/methanol (3:2) at 77 K (blue), 293 K (purple) and temperatures between 77 und 293 K (grey).



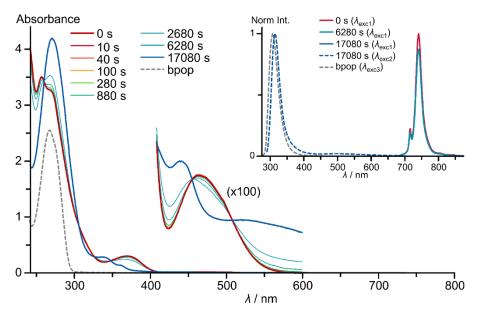

**Fig. S66** Spin- and symmetry forbidden absorption band (logarithmic scale) of an acetonitrile solution (red) and temperature dependent emission spectra ( $\lambda_{exc} = 450$  nm, logarithmic scale) of a (frozen) solution of [1<sup>s</sup>][OTf]<sub>3</sub> in deaerated ethanol/methanol (3:2) at 77 K (blue), 293 K (purple) and temperatures between 77 and 293 K (grey).



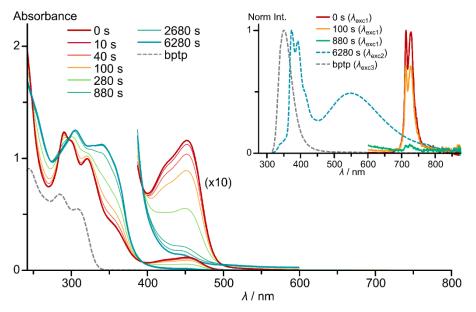

**Fig. S67** Spin- and symmetry forbidden absorption band (logarithmic scale) of an acetonitrile solution (red) and temperature dependent emission spectra ( $\lambda_{exc}$  = 436 nm, logarithmic scale) of a solution of [1<sup>NMe</sup>][BF4]<sub>3</sub> in deaerated ethylene glycol/water (2:1) at 223 K (blue), 293 K (purple), 373 K (brown) and temperatures between 223 and 373 K (grey).<sup>44</sup>



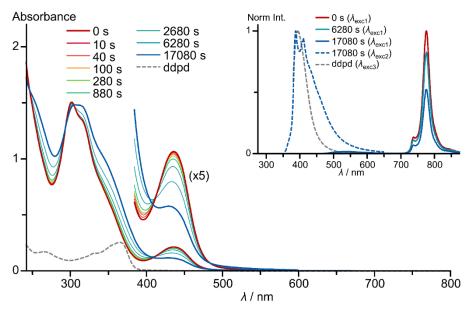
**Fig. S68** Spin- and symmetry forbidden absorption band (logarithmic scale) of an acetonitrile solution (red) and temperature dependent emission spectra ( $\lambda_{exc}$  = 355 nm, logarithmic scale) of [1<sup>CH2</sup>][OTf]<sub>3</sub> in KBr at 70 K (blue), 293 K (purple) and temperatures between 70 and 293 K (grey).<sup>43</sup>



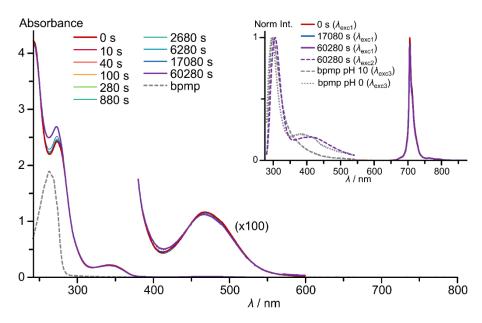

**Fig. S69** Normalised temperature dependent emission decay traces recorded at 742 nm following excitation ( $\lambda_{exc} = 450 \text{ nm}$ ) of a 0.33 mM solution of [1<sup>o</sup>][OTf]<sub>3</sub> in deaerated ethanol/methanol (3:2).




**Fig. S70** Normalised temperature dependent emission decay traces recorded at 729 nm following excitation ( $\lambda_{exc} = 450 \text{ nm}$ ) of a 0.13 mM solution of [1<sup>s</sup>][OTf]<sub>3</sub> in deaerated ethanol/methanol (3:2).

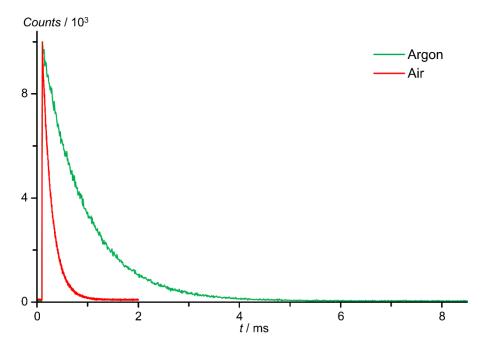

### **Photolysis experiments**



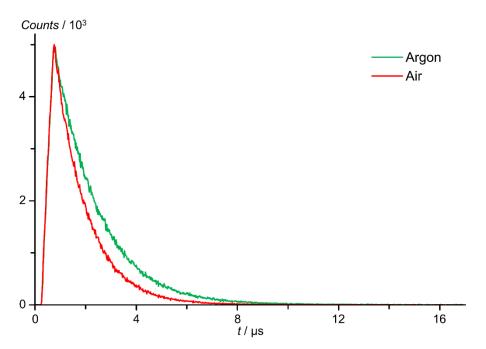

**Fig. S71** UV/VIS/NIR absorption (with zoom) and normalised emission spectra of 0.205 mM [1<sup>o</sup>][OTf]<sub>3</sub> in deaerated acetonitrile after different UHP-LED irradiation time periods ( $\lambda_{exc} = 460 \text{ nm}$ ) with an output power of 1.1 W and UV/VIS/NIR absorption and normalised emission spectra of bpop in acetonitrile ( $\lambda_{exc1} = 462 \text{ nm}$ ,  $\lambda_{exc2} = 270 \text{ nm}$ ,  $\lambda_{exc3} = 267 \text{ nm}$ ).



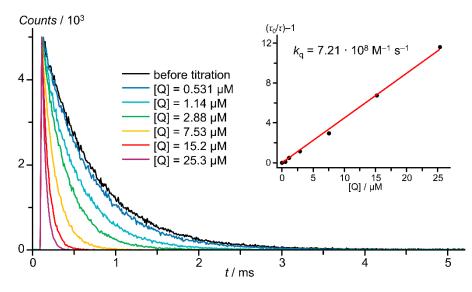
**Fig. S72** UV/VIS/NIR absorption (with zoom) and normalised emission spectra of 0.061 mM [1<sup>s</sup>][OTf]<sub>3</sub> in deaerated acetonitrile after different UHP-LED irradiation time periods ( $\lambda_{exc} = 460$  nm) with an output power of 1.1 W and UV/VIS/NIR absorption and normalised emission spectra of bptp in acetonitrile ( $\lambda_{exc1} = 452$  nm,  $\lambda_{exc2} = 308$  nm,  $\lambda_{exc3} = 308$  nm).



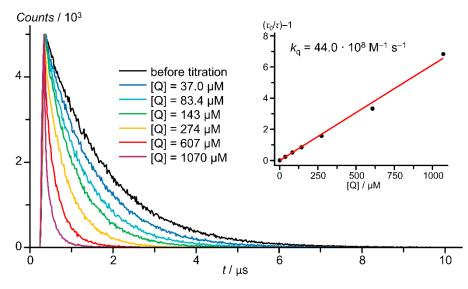

**Fig. S73** UV/VIS/NIR absorption (with zoom) and normalised emission spectra of 0.066 mM [1<sup>Me</sup>][OTf]<sub>3</sub> in deaerated acetonitrile after different UHP-LED irradiation time periods ( $\lambda_{exc} = 460$  nm) with an output power of 1.1 W and UV/VIS/NIR absorption and normalised emission spectra of ddpd in dichloromethane ( $\lambda_{exc1} = 436$  nm,  $\lambda_{exc2} = 345$  nm,  $\lambda_{exc3} = 369$  nm).<sup>44</sup>



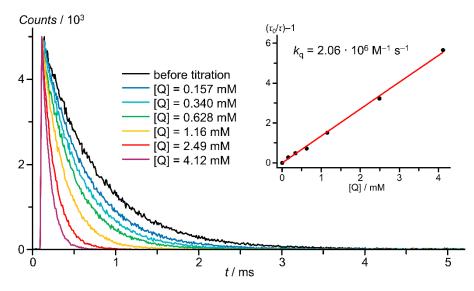

**Fig. S74** UV/VIS/NIR absorption (with zoom) and normalised emission spectra of 0.177 mM [1<sup>CH2</sup>][OTf]<sub>3</sub> in deaerated acetonitrile after different UHP-LED irradiation time periods ( $\lambda_{exc} = 460$  nm) with an output power of 1.1 W and UV/VIS/NIR absorption and normalised emission spectra of bpmp in water at pH = 0 and pH = 10 ( $\lambda_{exc1} = 467$  nm,  $\lambda_{exc2} = 270$  nm,  $\lambda_{exc3} = 266$  nm).<sup>43</sup>


## **Quenching Experiments**

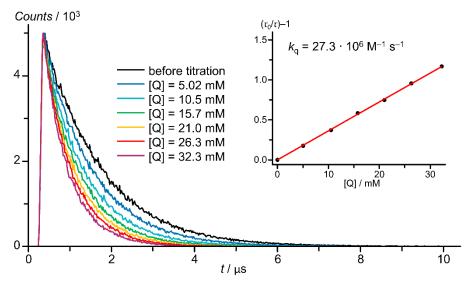



**Fig. S75** Emission decay traces recorded at 742 nm following excitation ( $\lambda_{exc} = 450$  nm) of a solution of [1<sup>0</sup>][OTf]<sub>3</sub> in deaerated acetonitrile (green) and air saturated acetonitrile (red).




**Fig. S76** Emission decay traces recorded at 729 nm following excitation ( $\lambda_{exc} = 450$  nm) of a solution of [1<sup>S</sup>][OTf]<sub>3</sub> in deaerated acetonitrile (green) and air saturated acetonitrile (red).




**Fig. S77** Quencher concentration dependent emission decay traces recorded at 742 nm following excitation  $(\lambda_{exc} = 450 \text{ nm})$  of a solution of  $[1^{\circ}][OTf]_3$  in deaerated acetonitrile for Stern-Volmer analysis with anthracene and the corresponding Stern-Volmer plot with linear fit (red line).



**Fig. S78** Quencher concentration dependent emission decay traces recorded at 729 nm following excitation  $(\lambda_{exc} = 450 \text{ nm})$  of a solution of **[1<sup>s</sup>][OTf]**<sub>3</sub> in deaerated acetonitrile for Stern-Volmer analysis with anthracene and the corresponding Stern-Volmer plot with linear fit (red line).



**Fig. S79** Quencher concentration dependent emission decay traces recorded at 742 nm following excitation ( $\lambda_{exc} = 450 \text{ nm}$ ) of a solution of **[1<sup>o</sup>][OTf]**<sup>3</sup> in deaerated acetonitrile for Stern-Volmer analysis with trans-stilbene and the corresponding Stern-Volmer plot with linear fit (red line).



**Fig. S80** Quencher concentration dependent emission decay traces recorded at 729 nm following excitation ( $\lambda_{exc} = 450 \text{ nm}$ ) of a solution of **[1<sup>S</sup>][OTf]**<sup>3</sup> in deaerated acetonitrile for Stern-Volmer analysis with trans-stilbene and the corresponding Stern-Volmer plot with linear fit (red line).

#### References

- [1] H. E. Gottlieb, V. Kotlyar and A. Nudelman, J. Org. Chem., 1997, 62, 7512–7515.
- [2] F. Barigelletti, D. Sandrini, M. Maestri, V. Balzani, A. von Zelewsky, L. Chassot, P. Jolliet and U. Maeder, *Inorg. Chem.*, 1988, 27, 3644–3647.
- [3] C. Müller, T. Pascher, A. Eriksson, P. Chabera and J. Uhlig, J. Phys. Chem. A., 2022, 126, 4087–4099.
- [4] J. R. Lakowicz, *Principles of Fluorescence Spectroscopy*, Springer, New York, 2010.
- [5] F. Neese, WIREs Comp. Mol. Sci., 2012, 2, 73–78.
- [6] F. Neese, WIREs Comp. Mol. Sci., 2022, 12, 12753.
- [7] C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 1988, **37**, 785–789.
- [8] B. Miehlich, A. Savin, H. Stoll and H. Preuss, Chem. Phys. Lett., 1989, 157, 200–206.
- [9] A. D. Becke, J. Chem. Phys., 1993, 98, 5648–5652.
- [10] F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297–3305.
- [11] F. Neese, F. Wennmohs, A. Hansen and U. Becker, Chem. Phys., 2009, 356, 98–109.
- [12] R. Izsák and F. Neese, J. Chem. Phys., 2011, 135, 144105.
- [13] F. Weigend, Phys. Chem. Chem. Phys., 2006, 8, 1057–1065.
- [14] D. A. Pantazis and F. Neese, J. Chem. Theory Comput., 2009, 5, 2229–2238.
- [15] D. A. Pantazis, X.-Y. Chen, C. R. Landis and F. Neese, J. Chem. Theory Comput., 2008, 4, 908–919.
- [16] D. A. Pantazis and F. Neese, *Theor. Chem. Acc.*, 2012, **131**, 89.
- [17] D. A. Pantazis and F. Neese, J. Chem. Theory Comput., 2011, 7, 677–684.
- [18] C. van Wüllen, J. Chem. Phys., 1998, 109, 392–399.
- [19] E. van Lenthe, E. J. Baerends and J. G. Snijders, J. Chem. Phys., 1993, 99, 4597–4610.
- [20] S. Miertuš, E. Scrocco and J. Tomasi, Chem. Phys., 1981, 55, 117–129.
- [21] V. Barone and M. Cossi, J. Phys. Chem. A, 1998, 102, 1995–2001.
- [22] S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- [23] S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem., 2011, 32, 1456–1465.
- [24] F. Plasser, J. Chem. Phys., 2020, 152, 84108.
- [25] B. O. Roos, P. R. Taylor and P. E. M. Sigbahn, Chem. Phys., 1980, 48, 157–173.
- [26] P. E. M. Siegbahn, J. Almlöf, A. Heiberg and B. O. Roos, J. Chem. Phys., 1981, 74, 2384–2396.
- [27] C. Angeli, R. Cimiraglia, S. Evangelisti, T. Leininger and J.-P. Malrieu, J. Chem. Phys., 2001, 114, 10252– 10264.
- [28] C. Angeli, R. Cimiraglia and J.-P. Malrieu, Chem. Phys. Lett., 2001, 350, 297–305.
- [29] C. Angeli, R. Cimiraglia and J.-P. Malrieu, J. Chem. Phys., 2002, 117, 9138–9153.
- [30] K. Pierloot, Int. J. Quantum Chem., 2011, 111, 3291–3301.
- [31] STOE & Cie, X-Area, STOE & Cie GmbH, Darmstadt, Germany.
- [32] R. H. Blessing, Acta Crystallogr. A 1995, 51, 33–38.
- [33] A. L. Spek, Acta Crystallogr. D 2009, 65, 148–155.
- [34] J. Koziskova, F. Hahn, J. Richter and J. Kožíšek, Acta Chim. Slovaca 2016, 9, 136–140.
- [35] STOE & Cie, X-Area LANA, STOE & Cie GmbH, Darmstadt, Germany.
- [36] G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Adv., 2015, 71, 3-8.
- [37] G. M. Sheldrick, Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71, 3-8.
- [38] G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64, 112–122.
- [39] C. B. Hübschle, G. M. Sheldrick and B. Dittrich, J. Appl. Crystallogr., 2011, 44, 1281–1284.
- [40] P.-S. Wang, C.-K. Liang and M.-k. Leung, Tetrahedron, 2005, 61, 2931–2939.

- [41] S. Balamurugan, S. Ganesan, S. Kamaraj, V. Mathew, J. Kim, N. Arumugam and A. I. Almansour, *Optical Materials*, 2022, **125**, 112082.
- [42] R. D. Köhn, A. G. N. Coxon, S. Chunawat, C. Heron, S. Mihan, C. L. Lyall, S. B. Reeksting and G. Kociok-Köhn, *Polyhedron*, 2020, **185**, 114572.
- [43] F. Reichenauer, C. Wang, C. Förster, P. Boden, N. Ugur, R. Báez-Cruz, J. Kalmbach, L. M. Carrella, E. Rentschler, C. Ramanan, G. Niedner-Schatteburg, M. Gerhards, M. Seitz, U. Resch-Genger and K. Heinze, J. Am. Chem. Soc., 2021, 143, 11843–11855.
- [44] S. Otto, M. Grabolle, C. Förster, C. Kreitner, U. Resch-Genger, K. Heinze, Angew. Chem. Int. Ed. Engl., 2015, 54, 11572–11576.