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Analysis on invariance in diffusion models
In the forward diffusion process for positions, which reads

(27)𝑥𝑖,𝑡 = 𝛼𝑡𝑥𝑖,0 + 𝜎𝑡𝜖𝑖,𝑡

If a translation  is performed on the input positions and the added noise, then𝑡

(28)𝛼𝑡(𝑥𝑖,0 + 𝑡) + 𝜎𝑡(𝜖𝑖,𝑡 + 𝑡) = (𝑥𝑖,𝑡 + 𝑡) + (1 ‒ 𝛼𝑡)𝑡 + 𝜎𝑡𝑡.

It indicates that the intermediate diffusion states are not translational-equivariant. 

Then, the translation equivariance in the reserve process is not meaningful. For this 

reason, we fix the CoM of the input positions and each intermediate state, so will 𝑡 

always equal .0

The zero-CoM trick circumvents the problem.

By contrast, for a rotation transformation,

(29)𝛼𝑡(𝑅𝑥𝑖,0) + 𝜎𝑡(𝑅𝜖𝑖,𝑡) = 𝑅𝑥𝑖,𝑡.

As , by this way 𝜖𝑖,𝑡 ∼ 𝑁(0,1)

(30)𝑝(𝑅𝜖𝑖,𝑡) = 𝑝(𝜖𝑖,𝑡),

and thus

(31)𝑞(𝑅𝑥𝑖,𝑡|𝑅𝑥𝑖,0) = 𝑁(𝛼𝑡(𝑅𝑥𝑖,0),𝜎𝑡𝐼)

For the true position distribution, 𝑞(𝑅𝑥𝑖,0) = 𝑞(𝑥𝑖,0)

(32)
𝑞(𝑅𝑥𝑖,𝑡) = 𝑞(𝑅𝑥𝑖,𝑡|𝑅𝑥𝑖,0)𝑞(𝑅𝑥𝑖,0)

= 𝑞(𝑥𝑖,𝑡)

In this way, the intermediate states diffusion process satisfies the rotation 

invariance. And to learn the reverse process, we only require  to be 𝑝(𝑅𝑥𝑖,0|𝑅𝑥𝑖,𝑡)

rotational-equivariant. By Eq. (25), the probability of each generated intermediate state 

will also be rotation invariance.

Details in diffusion models

Diffusion Schedule. As  and are two parameters changing gradually along -axis. 𝛼𝑡 𝜎𝑡 𝑡

Lots of noise schedules proposed, such as Linear27 and Cosine69, here we choose a 

simple polynomial schedule

(33)𝛼2
𝑡 = (1 ‒ (𝑡/3)3)3,

and variance-preserving process as
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(34)𝜎2
𝑡 = 1 ‒ 𝛼2

𝑡.

Sampling Process. We give the detailed pseudo-codes of sampling algorithm of 

DiffBP in Algorithm S1.

Algorithm S1 Sampling from DiffBP

Input: Zero-centered protein , pre-trained network and graph denoiser {𝑎𝑗,𝑥𝑗}
𝑀

𝑗 = 1 𝜑𝜔 𝜙𝜃

Compute 
[𝑥𝑚𝑜𝑙

𝑐 ,𝑁𝑚𝑜𝑙] = 𝜑𝜔({𝑎𝑗,𝑥𝑗}𝑗 ∈ 𝐼𝑝𝑟𝑜
)

Subtract  from , and set 𝑥𝑚𝑜𝑙
𝑐  {𝑎𝑗,𝑥𝑗}

𝑀
𝑗 = 1 𝑁: = 𝑁𝑚𝑜𝑙

Sample 𝑥𝑖,𝑇 ∼ 𝑁(0,𝐼)

For  in  where  do𝑡 𝑇,𝑇 ‒ 1,…,1 𝑠 = 𝑡 ‒ 1

Sample 𝐼𝜖 ∼ 𝑁(0, )

Subtract center of mass from 𝜖

Compute [
^
𝜖𝑖,𝑡,

^
𝑝𝑖,0] = 𝜙𝜃({(𝑎𝑗,𝑡,𝑥𝑗,𝑡)}𝑁 + 𝑀

𝑗 = 1 ,𝑡)

Compute 
𝑥𝑖,𝑠 =

1
𝛼𝑡|𝑠

𝑥𝑖,𝑡 ‒
𝜎 2

𝑡|𝑠

𝛼𝑡|𝑠𝜎𝑡

^
𝜖𝑖,𝑡 + 𝜎 '

𝑡|𝑠𝜖

Sample uniformly 𝐼𝑟𝑐𝑣, |𝐼𝑟𝑐𝑣|/𝑀 = (𝑇 ‒ 𝑡)/𝑇

If and then𝑖 ∈ 𝐼𝑟𝑐𝑣 ∩ 𝐼𝑚𝑜𝑙 𝑎𝑖,𝑡 = 𝐾 + 1 

Sample 𝑎𝑖,0 ∼ 𝐶𝑎𝑡(
^
𝑝𝑖,0)

end if

end for

output: 𝑀 = {(𝑎𝑖,0,𝑥𝑖,0)} 𝑁
𝑖 = 1

Binding Affinity
As in Pocket2Mol, the UFF refinement is not mentioned, so here we give the Binding 

Affinity of Pocket2Mol-without-UFF in Table S1.

Table S1. The Binding Affinity of Pocket2Mol-without-UFF.

Ratio MPBG ∆Binding

Small 36.62% 43.77% 3.96%

Medium 59.02% 28.62% 7.47%

Large 4.36% 12.82% 13.98%

Overall 33.47% 6.46%



Detailed drug properties
Since there is a high correlation between binding scores and molecule sizes, here we 

list the other score functions of drug properties to figure out their preferences in Table 

S2.

It shows that score functions of QED, SA and LPSK have their preference for 

molecule sizes. QED SA, and LPSK tend to give smaller molecules higher scores.

Table S2. Detailed drug properties split into groups by molecule size.
　 3DSBDD Pocket2Mol

　 Ratio QED SA SIM LPSK Ratio QED SA SIM LPSK

Small 41.45% 0.4271 0.5418 0.3537 0.7728 36.62% 0.5479 0.5745 0.4176 0.8929 

Medium 54.06% 0.3562 0.5089 0.3463 0.6126 59.02% 0.4923 0.5333 0.4463 0.7731 

Large 4.48% 0.2568 0.4207 0.3277 0.3639 4.36% 0.4443 0.4105 0.4033 0.6921 

Overall 　 0.3811 0.5185 0.3485 0.6678 　 0.5106 0.5430 0.4104 0.8134 

　 GraphBP DiffBP

　 Ratio QED SA SIM LPSK Ratio QED SA SIM LPSK

Small 27.72% 0.5092 0.5312 0.2757 0.8893 5.22% 0.5269 0.5676 0.3081 0.8335 

Medium 32.03% 0.4596 0.5183 0.2628 0.6931 75.19% 0.4663 0.5598 0.3297 0.7043 

Large 37.97% 0.2592 0.4467 0.2289 0.3360 19.59% 0.3317 0.4452 0.3318 0.6696 

Overall 　 0.3830 0.4828 0.2707 0.5961 　 0.4431 0.5377 0.3290 0.7042 

Atom type analysis
Expect the sub-structure, we give the ratio of different element types of atoms, for 

further comparison, as shown in Table S3. Note that we only count the percentage of 

heavy atoms, in line with the generative models. It shows that for the most common 

elements like ‘C’,‘O’,‘N’, DiffBP and Pocket2Mol generate the average ratio that most 

closely resembles the true distribution. However, for the uncommon elements, such as 

‘S’ and ‘Cl’, DiffBP generates more than reference.

Table S3. Atom type ratio of different methods.

Atom 

type
Train Test

3DSBD

D
Pocket2Mol GraphBP DiffBP

C 16.02 14.03 11.45 12.29 20.57 15.25

N 2.82 2.35 1.91 2.31 1.32 2.12

O 3.79 4.98 2.04 2.92 1.86 5.49



F 0.31 0.04 0.03 0.04 0.16 0.09

P 0.24 0.39 0.08 0.11 0.06 0.06

S 0.25 0.22 0.03 0.02 0.11 1.45

Cl 0.15 0.09 0 0 0.07 0.73

Br 0.05 0 0 0 0.04 0

Se 0 0 0 0 0.02 0.01

I 0.01 0 0 0 0.03 0

Other 0 0 0 0 0 0

Implementation details
Datasets. The training set includes 10,000 protein-ligand paired samples, of which 

99981 are valid molecules. 100 protein pockets are used for the test, and for each 

sample, 100 molecules are generated in each trial.

Hyperparameters. In practice, we found that GVP is more numerically stable than 

EGNN, so we chose 12-layer GVP for the pre-generation model and 9-layer GVP for 

Graph denoiser. The hidden dimensions of vertices are fixed as 256 and 64 for 

invariant node attributes (atom types) and equivariant geometry positions, 

respectively. In training, the batch size is set as 8, and the initial learning rate is set as 

10-4. AdamW optimizer is used, together with the Exponential Moving Average 

training trick.

Hardware. We use a single NVIDIA A100(81920MiB) GPU for a trial. The codes are 

implemented in Python 3.9 mainly with Pytorch 1.12, and run on Ubuntu Linux.


