
Supplementary Materials

Analysis on invariance in diffusion models
In the forward diffusion process for positions, which reads

(27)𝑥𝑖,𝑡 = 𝛼𝑡𝑥𝑖,0 + 𝜎𝑡𝜖𝑖,𝑡

If a translation is performed on the input positions and the added noise, then𝑡

(28)𝛼𝑡(𝑥𝑖,0 + 𝑡) + 𝜎𝑡(𝜖𝑖,𝑡 + 𝑡) = (𝑥𝑖,𝑡 + 𝑡) + (1 ‒ 𝛼𝑡)𝑡 + 𝜎𝑡𝑡.

It indicates that the intermediate diffusion states are not translational-equivariant.

Then, the translation equivariance in the reserve process is not meaningful. For this

reason, we fix the CoM of the input positions and each intermediate state, so will 𝑡

always equal .0

The zero-CoM trick circumvents the problem.

By contrast, for a rotation transformation,

(29)𝛼𝑡(𝑅𝑥𝑖,0) + 𝜎𝑡(𝑅𝜖𝑖,𝑡) = 𝑅𝑥𝑖,𝑡.

As , by this way 𝜖𝑖,𝑡 ∼ 𝑁(0,1)

(30)𝑝(𝑅𝜖𝑖,𝑡) = 𝑝(𝜖𝑖,𝑡),

and thus

(31)𝑞(𝑅𝑥𝑖,𝑡|𝑅𝑥𝑖,0) = 𝑁(𝛼𝑡(𝑅𝑥𝑖,0),𝜎𝑡𝐼)

For the true position distribution, 𝑞(𝑅𝑥𝑖,0) = 𝑞(𝑥𝑖,0)

(32)
𝑞(𝑅𝑥𝑖,𝑡) = 𝑞(𝑅𝑥𝑖,𝑡|𝑅𝑥𝑖,0)𝑞(𝑅𝑥𝑖,0)

= 𝑞(𝑥𝑖,𝑡)

In this way, the intermediate states diffusion process satisfies the rotation

invariance. And to learn the reverse process, we only require to be 𝑝(𝑅𝑥𝑖,0|𝑅𝑥𝑖,𝑡)

rotational-equivariant. By Eq. (25), the probability of each generated intermediate state

will also be rotation invariance.

Details in diffusion models

Diffusion Schedule. As and are two parameters changing gradually along -axis. 𝛼𝑡 𝜎𝑡 𝑡

Lots of noise schedules proposed, such as Linear27 and Cosine69, here we choose a

simple polynomial schedule

(33)𝛼2
𝑡 = (1 ‒ (𝑡/3)3)3,

and variance-preserving process as

Supplementary Information (SI) for Chemical Science.
This journal is © The Royal Society of Chemistry 2024

(34)𝜎2
𝑡 = 1 ‒ 𝛼2

𝑡.

Sampling Process. We give the detailed pseudo-codes of sampling algorithm of

DiffBP in Algorithm S1.

Algorithm S1 Sampling from DiffBP

Input: Zero-centered protein , pre-trained network and graph denoiser {𝑎𝑗,𝑥𝑗}
𝑀

𝑗 = 1 𝜑𝜔 𝜙𝜃

Compute
[𝑥𝑚𝑜𝑙

𝑐 ,𝑁𝑚𝑜𝑙] = 𝜑𝜔({𝑎𝑗,𝑥𝑗}𝑗 ∈ 𝐼𝑝𝑟𝑜
)

Subtract from , and set 𝑥𝑚𝑜𝑙
𝑐 {𝑎𝑗,𝑥𝑗}

𝑀
𝑗 = 1 𝑁: = 𝑁𝑚𝑜𝑙

Sample 𝑥𝑖,𝑇 ∼ 𝑁(0,𝐼)

For in where do𝑡 𝑇,𝑇 ‒ 1,…,1 𝑠 = 𝑡 ‒ 1

Sample 𝐼𝜖 ∼ 𝑁(0,)

Subtract center of mass from 𝜖

Compute [
^
𝜖𝑖,𝑡,

^
𝑝𝑖,0] = 𝜙𝜃({(𝑎𝑗,𝑡,𝑥𝑗,𝑡)}𝑁 + 𝑀

𝑗 = 1 ,𝑡)

Compute
𝑥𝑖,𝑠 =

1
𝛼𝑡|𝑠

𝑥𝑖,𝑡 ‒
𝜎 2

𝑡|𝑠

𝛼𝑡|𝑠𝜎𝑡

^
𝜖𝑖,𝑡 + 𝜎 '

𝑡|𝑠𝜖

Sample uniformly 𝐼𝑟𝑐𝑣, |𝐼𝑟𝑐𝑣|/𝑀 = (𝑇 ‒ 𝑡)/𝑇

If and then𝑖 ∈ 𝐼𝑟𝑐𝑣 ∩ 𝐼𝑚𝑜𝑙 𝑎𝑖,𝑡 = 𝐾 + 1

Sample 𝑎𝑖,0 ∼ 𝐶𝑎𝑡(
^
𝑝𝑖,0)

end if

end for

output: 𝑀 = {(𝑎𝑖,0,𝑥𝑖,0)} 𝑁
𝑖 = 1

Binding Affinity
As in Pocket2Mol, the UFF refinement is not mentioned, so here we give the Binding

Affinity of Pocket2Mol-without-UFF in Table S1.

Table S1. The Binding Affinity of Pocket2Mol-without-UFF.

Ratio MPBG ∆Binding

Small 36.62% 43.77% 3.96%

Medium 59.02% 28.62% 7.47%

Large 4.36% 12.82% 13.98%

Overall 33.47% 6.46%

Detailed drug properties
Since there is a high correlation between binding scores and molecule sizes, here we

list the other score functions of drug properties to figure out their preferences in Table

S2.

It shows that score functions of QED, SA and LPSK have their preference for

molecule sizes. QED SA, and LPSK tend to give smaller molecules higher scores.

Table S2. Detailed drug properties split into groups by molecule size.
　 3DSBDD Pocket2Mol

　 Ratio QED SA SIM LPSK Ratio QED SA SIM LPSK

Small 41.45% 0.4271 0.5418 0.3537 0.7728 36.62% 0.5479 0.5745 0.4176 0.8929

Medium 54.06% 0.3562 0.5089 0.3463 0.6126 59.02% 0.4923 0.5333 0.4463 0.7731

Large 4.48% 0.2568 0.4207 0.3277 0.3639 4.36% 0.4443 0.4105 0.4033 0.6921

Overall 　 0.3811 0.5185 0.3485 0.6678 　 0.5106 0.5430 0.4104 0.8134

　 GraphBP DiffBP

　 Ratio QED SA SIM LPSK Ratio QED SA SIM LPSK

Small 27.72% 0.5092 0.5312 0.2757 0.8893 5.22% 0.5269 0.5676 0.3081 0.8335

Medium 32.03% 0.4596 0.5183 0.2628 0.6931 75.19% 0.4663 0.5598 0.3297 0.7043

Large 37.97% 0.2592 0.4467 0.2289 0.3360 19.59% 0.3317 0.4452 0.3318 0.6696

Overall 　 0.3830 0.4828 0.2707 0.5961 　 0.4431 0.5377 0.3290 0.7042

Atom type analysis
Expect the sub-structure, we give the ratio of different element types of atoms, for

further comparison, as shown in Table S3. Note that we only count the percentage of

heavy atoms, in line with the generative models. It shows that for the most common

elements like ‘C’,‘O’,‘N’, DiffBP and Pocket2Mol generate the average ratio that most

closely resembles the true distribution. However, for the uncommon elements, such as

‘S’ and ‘Cl’, DiffBP generates more than reference.

Table S3. Atom type ratio of different methods.

Atom

type
Train Test

3DSBD

D
Pocket2Mol GraphBP DiffBP

C 16.02 14.03 11.45 12.29 20.57 15.25

N 2.82 2.35 1.91 2.31 1.32 2.12

O 3.79 4.98 2.04 2.92 1.86 5.49

F 0.31 0.04 0.03 0.04 0.16 0.09

P 0.24 0.39 0.08 0.11 0.06 0.06

S 0.25 0.22 0.03 0.02 0.11 1.45

Cl 0.15 0.09 0 0 0.07 0.73

Br 0.05 0 0 0 0.04 0

Se 0 0 0 0 0.02 0.01

I 0.01 0 0 0 0.03 0

Other 0 0 0 0 0 0

Implementation details
Datasets. The training set includes 10,000 protein-ligand paired samples, of which

99981 are valid molecules. 100 protein pockets are used for the test, and for each

sample, 100 molecules are generated in each trial.

Hyperparameters. In practice, we found that GVP is more numerically stable than

EGNN, so we chose 12-layer GVP for the pre-generation model and 9-layer GVP for

Graph denoiser. The hidden dimensions of vertices are fixed as 256 and 64 for

invariant node attributes (atom types) and equivariant geometry positions,

respectively. In training, the batch size is set as 8, and the initial learning rate is set as

10-4. AdamW optimizer is used, together with the Exponential Moving Average

training trick.

Hardware. We use a single NVIDIA A100(81920MiB) GPU for a trial. The codes are

implemented in Python 3.9 mainly with Pytorch 1.12, and run on Ubuntu Linux.

