Supplementary Information

Experimental details

Materials and chemicals:

Lithium bis((trifluoromethyl)sulfonyl)azanide (LiTFSI) were purchased from Sigma-Aldrich. Tetraethylene glycol dimethyl ether (TEGDME) and dimethylsulfoxide (DMSO) were purchased from Macklin. Super P carbon (SP) and polytetrafluoroethylene (PTFE) was purchased from Dodochem. The quartz crystal electrode was purchased from CH Instruments. Its thickness is 0.21 mm, its area is 0.22 cm², and its resonant frequency is 7.995 MHz. Before use, LiTFSI was vacuum-dried at 120°C for 24 hours, and TEGDME and DMSO were dehydrated using 4 Å molecular sieves. All materials were stored in an argon-filled glove box with a moisture content of less than 0.1 ppm. No further purification of the materials was performed before use. The electrolyte used in this study is 1 M LiTFSI in TEGDME/DMSO.

Characterization:

The morphology of the products was observed using a scanning electron microscope (SEM, JEOL S-4800). The types of discharge products were characterized using Raman spectroscopy (Raman, Horiba XploRA Plus). The yield of Li₂O₂ was quantified using ultraviolet-visible spectroscopy (UV-vis, SDPTOP-756PC). The vibrating frequency of the crystal electrode was in situ recorded using the quartz crystal microbalance (QCM) function of an electrochemical workstation (CHI 440) $1, 2$.

Electrochemical testing:

The electrochemical deposition-dissolution experiments were conducted using a custom-made QCM mold, as shown in Figure 1a. During the electrochemical testing, the QCM functionality was used simultaneously. Perform cyclic voltammetry (CV) on the crystal electrode in a 10 mM AgNO₃ and 0.1 M KNO₃ aqueous solution with a scan rate of 10 mV $s⁻¹$. Simultaneously use the QCM functionality of the electrochemical workstation to establish the relationship between the vibration frequency and mass of the crystal electrode.

 $Li₂O₂$ deposition experiments: The deposition of $Li₂O₂$ on the crystal electrode was achieved by performing linear sweep voltammetry (LSV) in the O₂-saturated electrolyte with a scan rate of 2 mV s⁻¹. The electrolyte used was 1 M LITFSI in TEGDME. For experiments at different angles, the electrode was positioned at 0°, 45°, 90°, and 135° in the electrolyte. A custom-made QCM mold enabled testing at these different angles. The working electrode, reference electrode, and counter electrode were quartz crystal electrode (Au), Ag/AgCl electrode, and Li foil, respectively. The effects of different electrode materials were studied by replacing the working electrode with Pt or C crystal electrodes.

 $Li₂O₂$ dissolution experiments: To measure the dissolution rate of Li₂O₂, we removed the discharge current after the deposition process and recorded the mass change of the electrode surface using QCM functionality. When measuring the intrinsic dissolution rate of Li₂O₂, we applied a small reduction current (2 nA, eq. 9 nA cm⁻², two orders of magnitude smaller than the actual discharge current) to maintain the discharge state of the electrode surface and the adsorption state of the Li₂O₂, while recording the mass change of the electrode surface. A tiny discharge current of 2 nA is equivalent to Li₂O₂ depositing rate of 0.12 ng cm⁻² min⁻¹, two orders of magnitude smaller than the dissolving rate. To study the effect of the solvent on the dissolution process, we replaced the electrolyte with 1 M LiTFSI in DMSO and used the same testing method.

The discharge experiments with vertical and upward electrodes were conducted in the same $O₂$ -saturated electrolyte. The electrolyte was 1 M LiTFSI in TEGDME. The working electrode, reference electrode, and counter electrode were Au plate electrode (at 0° and 90°), Ag/AgCl electrode, and Li foil, respectively. The testing conditions involved constant current discharge at a current density of 1.5 and 3 μ A cm⁻².

The intermittent discharge experiments were conducted in a lithium-oxygen mold cell. The positive electrode was a porous electrode exposed to O_2 . The porous electrode was made by uniformly mixing SP and PTFE in a 4:1 ratio and coating it onto carbon paper. The active material loading was approximately 3 mg cm⁻². The negative electrode was Li. The electrolyte was 1 M LiTFSI in TEGDME. The Glass Fiber GF/F was used as separator. The intermittent discharge involved discharging the cell at a constant current density of 0.22 mA cm⁻² for 10 minutes, then stopping, and holding the cell voltage at 2.9 V for 3 minutes before repeating the cycle. The control group involved continuous discharge of the cell at a constant current density of 0.22 mA cm⁻² until the cut-off voltage was reached.

Calculation of the $Li₂O₂$ thickness on Au-90°:

$$
H = \frac{m}{S \cdot \rho}
$$

In this context, H represents the thickness of Li₂O₂ (cm), m denotes the mass of Li₂O₂ (g), ρ signifies the density of Li₂O₂ (g cm⁻³), and S indicates the electrode area (cm²). The calculations in the text use a density of 1.2 g cm⁻³ and an electrode area of 0.22 cm².

Calculation of the Li2O² yield:

The yield of Li₂O₂ is quantified using UV-Vis spectroscopy. The Li₂O₂ forms a pale yellow complex $[Ti(O_2)]^{2+}$ in the titration solution (2% TiOSO₄ dissolved in 1 M H₂SO₄). This complex has an absorption peak at $\lambda_{\text{max}} = 405$ nm. The intensity of this absorption peak can be used to calculate the content of Li₂O₂³. By directly adding a known quantity of Li₂O₂ to the titration solution, an absorbance of A=1 is obtained at λ_{max} = 405 nm for a discharge amount of 0.225 mAh. Therefore, with a known discharge capacity, the yield of Li_2O_2 can be determined by diluting the Li₂O₂ on the electrode to the same extent and measuring the absorbance at λ_{max} = 405 nm. A trace amount of Li₂O₂ was titrated using N, N-diethyl-1,4-phenylenediamine (DPD). The samples were placed in tubes containing 0.4 mL buffer solution, 3 mL H₂O, 0.05 mL DPD, and 0.05 mL hydrogen peroxidase, and the resulting solution was tested by UV-Vis spectroscopy. The buffer solution was prepared by mixing 1 M potassium dihydrogen phosphate and 1 M dipotassium phosphate in a volume ratio of 7:1. The yield of Li₂CO₃ was quantified using DEMS. An excess of phosphoric acid was added to the sample, and the $CO₂$ produced during the reaction was detected by DEMS.

Estimating the Charging Current:

$$
Changing Current = \frac{actual dissolution rate \times F}{M_{Li_2O_2}}
$$

actual dissolution rate = measured dissolution rate \times effective exposure area

effective exposure area = $Q \times M_{Li_2O_2}$ F $m_{Li_2O_2}$ - torus × S_{Li₂O₂-torus} × effective coefficient

 $m_{Li_2O_2}$ -torus = $\rho_{Li_2O_2} \times V_{Li_2O_2}$ -torus

$$
V_{Li_2O_2 \text{-torus}} = \frac{1}{4} \pi^2 r_{Li_2O_2}^3
$$

Supplementary Figures

Figure S1. The deposition results on the Au crystal electrode at 45° and 135°.

Figure S2. The product deposition rate corresponding to the 2 nA reduction current is 0.12 ng cm⁻² min⁻¹. The amount of Li₂O₂ generated in this electrochemical process is much lower than the amount of Li₂O₂ dissolved from the electrode surface, so it can be neglected.

Figure S3. The dissolution rate of products on the electrode (Au-0°) with 2 nA reduction current applied, when the initial Li₂O₂ amount was 176 ng. It demonstrates that the initial amount of products on the electrode surface does not affect the dissolution rate.

Figure S4. The dissolution rate of products on the Au electrode (Au-0°) surface in DMSO-based electrolyte. The initial $Li₂O₂$ amount was 387 ng.

Figure S5. Discharge curves of intermittent-desorption discharge lithium-oxygen battery. Current density: 0.22 mA $cm⁻²$.

References

- 1. Y. Ji, Z.-W. Yin, Z. Yang, Y.-P. Deng, H. Chen, C. Lin, L. Yang, K. Yang, M. Zhang, Q. Xiao, J.-T. Li, Z. Chen, S.-G. Sun and F. Pan, *Chem. Soc. Rev.*, 2021, **50**, 10743-10763.
- 2. G. Vanhoutte, S. Schaltin, M. Wu, F. Bardé and J. Fransaer, *ECS Meeting Abstracts*, 2015, **MA2015-03**, 454.
- 3. Y. J. Lee, W.-J. Kwak, Y.-K. Sun and Y. J. Lee, *ACS Appl. Mater. Interfaces*, 2018, **10**, 526-533.