ELECTRONIC SUPPLEMENTARY INFORMATION

Stabilization of Reactive Rare Earth Alkyl Complexes through Mechanistic Studies

Elias Tanuhadi^{†,‡}, Anna S. Bair^{†,‡}, Mary Johnson^{†,‡}, Philip Fontaine^{II}, Jerzy Klosin^{II*}, Sudipta Pal^{II}, and Polly L. Arnold^{†,‡,*}

[†] Dept of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA. E-mail: pla@berkeley.edu

[‡] Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

^{II} Corporate R&D, The Dow Chemical Company, Midland, Michigan 48674, USA; E-mail: jklosin@dow.com

Content

1.	Ge	neral Information	4
2.	Ad	ditional Synthesis Procedures and Characterization	5
2.7	1.	Synthesis of d_2 -(chloromethyl)trimethylsilane (CICD ₂ Si(CH ₃) ₃)	5
2.2	2.	Synthesis of <i>d</i> ₂ -((trimethylsilyl)methyl)lithium (LiCD ₂ Si(CH ₃) ₃)	7
2.3	3.	$Sm(CH_2SiMe_3)_3(C_6H_{14}O_3)$ (Sm-G ₂)	9
2.4	4.	$Y(CH_2SiMe_3)_3(C_6H_{14}O_3)(Y-G_2)$	11
2.5	5.	$Lu(CH_2SiMe_3)_3(C_6H_{14}O_3) (Lu-G_2)$	12
2.6	δ.	$Sc(CH_2SiMe_3)_3(C_6H_{14}O_3)(Sc-G_2)$	13
2.7	7.	$Sm(CH_2SiMe_3)_3(CH_3(OCH_2CH_2)_3O) (Sm-G_3) \dots$	14
2.8	3.	$Y(CH_2SiMe_3)_3((OCH_2CH_2)_3O)(Y-G_3)$	15
2.9	9.	$Lu(CH_2SiMe_3)_3((OCH_2CH_2)_3O) (Lu-G_3)$	16
2.7	10.	$Sm(CH_2SiMe_3)_3(Me_2NCH_2CH_2NMe_2) (\textbf{Sm-TMEDA})$	17
2.7	11.	$Lu(CH_2SiMe_3)_3(Me_2NCH_2CH_2NMe_2) (Lu-TMEDA) \dots$	18
2.7	12.	$Sc(CH_2SiMe_3)_3(Me_2NCH_2CH_2NMe_2)$ (Sc-TMEDA)	19
2.7	13.	$Lu(CH_2SiMe_3)_3(C_6H_{16}P_2)(C_4H_8O) (Lu-DMPE)$	20
2.1	14.	$Sc(CH_2SiMe_3)_3(C_6H_{16}P_2)$ (Sc-DMPE)	21
2.1	15.	Synthesis of LiCl-free Y(CH ₂ SiMe ₃) ₃ (C ₄ H ₈ O) ₂ (Y-THF)	23
3.	Sin	gle-Crystal X-ray Diffraction Data (SXRD)	24
4.	The	ermal stability studies	36
4.′	1.	General procedure for thermolysis studies	36
5.	lso	tope labelling and speciation studies	42
5.′	1	Synthesis of Lu(CD ₂ SiMe ₃) ₃ (C ₄ H ₈ O) ₂ (d ₂ -Lu-THF)	45
5.2	2.	Synthesis of $Lu(CH_2Si(CD_3)_3)_3(C_4H_8O)_2 (d_9-Lu-THF)$	45
5.3	3.	Synthesis of $Lu(CH_2Si(CD_3)_3)_3(C_6H_{14}O_3)$ (d ₉ -Lu-G ₂)	45
5.4	4.	Synthesis of $Lu(CH_2Si(CD_3)_3)_3(C_6H_{16}P_2)(C_4H_8O)$ (d ₉ -Lu-DMPE)	45
5.5	5.	Synthesis of $Lu(CH_2Si(CD_3)_3)_3(Me_2NCH_2CH_2NMe_2) (d_9-Lu-TMEDA)$	45
5.6	5.	General procedure for alkyl crossover studies	47
6.	Imj	pact of LiCl on thermal stability of M(r) ₃ (THF) ₂ M = Y, Lu	48
6.1	1	General procedure for speciation studies	49
6.2	2.	General procedure for LiCI spiking experiments	52
7.	Re	ferences	57

Compound numbering

known:

 $M(r)_3(THF)_2$; M = Sm(III), Y(III), Lu(III), Sc(III) Y(r)_3(donor); donor = (DMPE)(THF), TMEDA

new:

$$\begin{split} \mathsf{M}(r)_{3}(\mathsf{C}_{6}\mathsf{H}_{14}\mathsf{O}_{3}) \; (\mathbf{M}\text{-}\mathbf{G}_{2}); \; \mathsf{M} &= \mathsf{Sm}(\mathsf{III}), \; \mathsf{Y}(\mathsf{III}), \; \mathsf{Lu}(\mathsf{III}), \; \mathsf{Sc}(\mathsf{III}); \\ \mathsf{M}(\mathsf{C}\mathsf{H}_{2}\mathsf{S}\mathsf{i}\mathsf{M}\mathsf{e}_{3})_{3}(\mathsf{C}_{8}\mathsf{H}_{18}\mathsf{O}_{4}) \; (\mathbf{M}\text{-}\mathbf{G}_{3}); \; \mathsf{M} &= \mathsf{Sm}(\mathsf{III}), \; \mathsf{Y}(\mathsf{III}), \; \mathsf{Lu}(\mathsf{III}); \\ \mathsf{M}(\mathsf{C}\mathsf{H}_{2}\mathsf{S}\mathsf{i}\mathsf{M}\mathsf{e}_{3})_{3}(\mathsf{M}\mathsf{e}_{2}\mathsf{N}\mathsf{C}\mathsf{H}_{2}\mathsf{C}\mathsf{H}_{2}\mathsf{N}\mathsf{M}\mathsf{e}_{2}) \; (\mathbf{M}\text{-}\mathsf{T}\mathsf{M}\mathsf{E}\mathsf{D}\mathsf{A}); \; \mathsf{M} &= \mathsf{Sm}(\mathsf{III}), \; \mathsf{Lu}(\mathsf{III}); \; \mathsf{Sc}(\mathsf{III}) \\ \mathsf{M}(\mathsf{C}\mathsf{H}_{2}\mathsf{S}\mathsf{i}\mathsf{M}\mathsf{e}_{3})_{3}(\mathsf{C}_{6}\mathsf{H}_{16}\mathsf{P}_{2})(\mathsf{C}_{4}\mathsf{H}_{8}\mathsf{O})_{\mathsf{n}} \; (\mathbf{M}\text{-}\mathsf{D}\mathsf{M}\mathsf{P}\mathsf{E}); \; \mathsf{M} &= \mathsf{Lu}(\mathsf{III}), \; \mathsf{n} = 1; \; \mathsf{Sc}(\mathsf{III}), \; \mathsf{n} = 0 \\ \mathsf{G}_{2} &= \mathsf{diglyme}, \; (\mathsf{C}\mathsf{H}_{3}(\mathsf{O}\mathsf{C}\mathsf{H}_{2}\mathsf{C}\mathsf{H}_{2})_{2}\mathsf{O}) \\ \mathsf{G}_{3} &= \mathsf{triglyme} \; (\mathsf{C}\mathsf{H}_{3}(\mathsf{O}\mathsf{C}\mathsf{H}_{2}\mathsf{C}\mathsf{H}_{2})_{3}\mathsf{O}) \end{split}$$

1. General Information

NMR spectra were recorded on Bruker AVQ 400 and 600 MHz spectrometers and are referenced to residual protio solvent for ¹H NMR spectroscopy. C_6D_6 was used as solvent for NMR spectroscopic experiments, and was referenced to added hexamethylbenzene (HMB) (2.12 ppm for both ¹H and ¹³C³ NMR spectroscopic experiments). Chemical shifts are quoted in ppm and coupling constants in Hz. NMR spectra were taken at 25°C. Quantitative ¹H NMR data were acquired with the delay time set to 5x the longest T₁ value present.

Elemental analysis: Elemental analyses were carried out by Dr Elena Kreimer at the microanalytic services in the College of Chemistry at the University of California, Berkeley.

Single crystal X-ray diffraction (SXRD): Single crystal X-ray diffraction data of LuG₃ were collected using a Rigaku XtaLab P200 diffractometer fitted with a Pilatus3 R 200K-A Shutterless Detector and using a MicroMax 007HF Dual Rotating Anode (MoK α radiation) at 150 K. X-ray diffraction data of all other compounds were collected using a Rigaku Xtalab Synergy-S diffractometer fitted with a HyPix-6000HE photon counting detector using MoK α ($\lambda = 0.71073$ Å) or CuK α ($\lambda = 0.1.5418$ Å) radiation. All structures were solved using SHELXT in Olex2 and refined using SHELXL in Olex2.^{6,7} Absorption corrections were completed using CrysAlis PRO (Rigaku Oxford Diffraction) software. Analytical numeric absorption corrections used a multifaceted crystal model based on expressions derived by Clark and Reid.⁸ Numerical absorption correction was based on a Gaussian integration over a multifaceted crystal model.

2. Additional Synthesis Procedures and Characterization

2.1. Synthesis of d_2 -(chloromethyl)trimethylsilane (CICD₂Si(CH₃)₃)

To a stirred solution of d_2 – chloroiodomethane (1 g, 5.6 mmol, 1 eq.) and chlorotrimethylsilane (TMSCI, 0.913 g; 8.4 mmol, 1.5 eq.) in THF (5 mL), methyllithium, CH₃Li (MeLi) [1.6 M in Et₂O] (7.9 mL, 12.6 mmol; 2.25 eq.) was added dropwise at -78°C. The resulting reaction mixture was stirred for 90 min. at -78°C followed by separation of the volatile product from any solids by vacuum transfer. Et₂O was removed under reduced pressure. Residual THF was removed by extraction of the product into hexanes (hexanes/H₂O). The combined hexanes extracts were distilled off P₂O₅ to yield the title compound CICD₂Si(CH₃)₃ as a colorless liquid in a hexanes solution 20% yield, based on d_2 – chloroiodomethane; determined by integration against internal HMB standard.

¹H NMR (700 MHz, C₆D₆) δ -0.04 (s, 9H). ²H NMR (92 MHz, C₆D₆) δ 2.37 (s, 2H).

Figure S 1 ¹H NMR spectrum (700 MHz) of CICD₂Si(CH₃)₃ in d_6 -benzene. The solvent residual resonance is marked with an asterisk, # shows the hexamethyl benzene (HMB) internal standard, hexanes from the extraction step, boxed for clarity.

Figure S 2 2 H NMR (92 MHz, C₆D₆) of CICD₂Si(CH₃)₃ in d₆-benzene.

2.2. Synthesis of d_2 -((trimethylsilyl)methyl)lithium (LiCD₂Si(CH₃)₃)

In an Ar-filled glovebox, a 20 mL scintillation vial was charged with 17 mL of $CICD_2Si(CH_3)_3$ (70.9 mM in hexanes, dried over P_2O_5) and lithium sand (138 mg, 19.88 mmol). The resulting reaction mixture was stirred at 60°C overnight and the purple suspension filtered followed by solvent removal under reduced pressure offering the title compound $LiCD_2Si(CH_3)_3$ as a white crystalline solid. Yield: 85%, 100 mg based on $CICD_2Si(CH_3)_3$.

¹H NMR (400 MHz, C₆D₆) δ 0.13 (s, 9H). ⁷Li NMR (156 MHz, C₆D₆) δ 2.63.

Figure S 3 ¹H NMR spectrum (400 MHz) of LiCD₂Si(CH₃)₃ in d_6 -benzene. The solvent residual resonance is marked with an asterisk, hexanes from the extraction step, boxed for clarity. o/n = overnight.

Figure S 4 ⁷Li NMR spectrum (156 MHz) of LiCD₂Si(CH₃)₃ in d₆-benzene. o/n = overnight.

2.3. $Sm(CH_2SiMe_3)_3(C_6H_{14}O_3)(Sm-G_2)$

 ^1H NMR (600 MHz, $C_6D_6)$ δ 5.46 (s, 6H), 5.29 (s, 6H), 0.44 (s, 27H), -0.14 (s, 4H), -1.53 (s, 4H). ^{13}C NMR (151 MHz, $C_6D_6)$ δ 131.79, 31.97, 23.05, 14.34, 2.84.

Anal. Calcd for SmC₁₈H₄₇Si₃O₃: C, 39.58, H, 8.67. Found: C, 39.29; H, 8.30.

Figure S 5 ¹H NMR spectrum (600 MHz) of **Sm-G**₂ in d_6 -benzene. The solvent residual resonance is marked with an asterisk, # shows TMS arising from the onset of decomposition, + shows the hexamethyl benzene (HMB) internal standard, hexanes from the recrystallization, boxed for clarity.

Figure S 6 ¹³C{¹H} NMR spectrum (151 MHz) of **Sm-G**₂ in d_6 -benzene.

2.4. $Y(CH_2SiMe_3)_3(C_6H_{14}O_3)(Y-G_2)$

¹H NMR (600 MHz, C_6D_6) δ 3.07 (s, 6H), 2.97 (s, 4H), 2.68 (s, 4H), 0.44 (s, 27H), -0.42 (d, *J* = 2.9 Hz, 6H). ¹³C NMR (151 MHz, C_6D_6) δ 69.18, 67.97, 60.68, 35.42 (d, *J* = 36.5 Hz), 4.78.

Anal. Calcd for $YC_{18}H_{47}Si_3O_3$: C, 44.60, H, 9.77. Found: C, 42.37; H, 9.16.

Figure S 7 ¹H NMR spectrum (600 MHz) of **Y-G**₂ in d_6 -benzene. The solvent residual resonance is marked with an asterisk, # shows TMS arising from the onset of decomposition. CH₂-doublet arising from ²J_{YH} coupling highlighted in inset.

Figure S 8 ¹³C{¹H} NMR spectrum (151 MHz) of **Y-G**₂ in d_6 -benzene.

2.5. $Lu(CH_2SiMe_3)_3(C_6H_{14}O_3)(Lu-G_2)$

¹H NMR (600 MHz, C_6D_6) δ 3.04 (s, 6H), 2.96 (t, *J* = 5.3 Hz, 4H), 2.61 (t, *J* = 5.3 Hz, 4H), 0.44 (s, 27H), -0.66 (s, 6H). ¹³C NMR (151 MHz, C_6D_6) δ 69.41, 68.43, 60.70, 41.60, 4.91.

Anal. Calcd for LuC₁₈H₄₇Si₃O₃: C, 37.88, H, 8.30. Found: C, 37.54; H, 8.13.

Figure S 9 ¹H NMR spectrum (600 MHz) of **Lu-G**₂ in d_6 -benzene. The solvent residual resonance is marked with an asterisk, # shows TMS arising from the onset of decomposition, hexanes from the recrystallization, boxed for clarity.

Figure S 10 ¹³C{¹H} NMR spectrum (151 MHz) of Lu-G₂ in d_6 -benzene.

2.6. $Sc(CH_2SiMe_3)_3(C_6H_{14}O_3)(Sc-G_2)$

¹H NMR (600 MHz, C_6D_6) δ 3.23 (t, J = 5.2 Hz, 3H), 3.02 (s, 6H), 2.76 (t, J = 5.3 Hz, 5H), 0.41 (s, 36H), 0.09 (s, 6H). ¹³C NMR (151 MHz, C_6D_6) δ 70.05, 69.71, 60.73, 4.33.

Anal. Calcd for ScC₁₈H₄₇Si₃O₃: C, 49.05, H, 10.75. Found: C, 48.97; H, 10.66.

Figure S 11 ¹H NMR spectrum (600 MHz) of **Sc-G**₂ in d_6 -benzene. The solvent residual resonance is marked with an asterisk, # shows TMS arising from the onset of decomposition.

Figure S 12 ¹³C{¹H} NMR spectrum (151 MHz) of **Sc-G**₂ in d_6 -benzene.

2.7. $\underline{Sm(CH_2SiMe_3)_3(CH_3(OCH_2CH_2)_3O)}(\underline{Sm-G_3})$

¹H NMR (600 MHz, C_6D_6) δ 10.25 (s, 1H), 6.00 (s, 1H), 1.39 (s, 6H), -1.80 (s, 1H), -3.79 (s, 1H). ¹³C NMR (151 MHz, C_6D_6) δ 152.17, 86.66, 72.19, 70.77, 69.74, 67.62, 58.73, 3.61.

Figure S 13 ¹H NMR spectrum (600 MHz) of **Sm-G**₃ in d_6 -benzene. The solvent residual resonance is marked with an asterisk, # shows TMS arising from the onset of decomposition, + for decomposition products resulting from G₃ decomposition.

Figure S 14 ${}^{13}C{}^{1}H$ NMR spectrum (151 MHz) of Sm-G₃ in d_6 -benzene.

2.8. $\underline{Y(CH_2SiMe_3)_3((OCH_2CH_2)_3O)}(\underline{Y-G_3})$

¹H NMR (400 MHz, C_6D_6) δ 3.47 (s, 6H), 3.09 (t, J = 4.8 Hz, 4H), 3.03 – 2.93 (m, 8H), 0.39 (s, 27H), - 1.00 – -1.15 (m, 6H). ¹³C NMR (151 MHz, C_6D_6) δ 72.32, 71.98, 69.51, 68.37, 5.27, 4.92.

Anal. Calcd for YC₂₀H₅₁Si₃O₄: C, 45.43, H, 9.72. Found: C, 45.38; H, 9.76.

Figure S 15 ¹H NMR spectrum (400 MHz) of **Y-G**₃ in d_6 -benzene. The solvent residual resonance is marked with an asterisk, # shows TMS arising from the onset of decomposition, hexanes from recrystallization boxed.

Figure S 16 ¹³C{¹H} NMR spectrum (151 MHz) of Y-G₃ in d_6 -benzene.

2.9. $\underline{Lu(CH_2SiMe_3)_3((OCH_2CH_2)_3O)}(\underline{Lu-G_3})$

¹H NMR (600 MHz, C_6D_6) δ 3.23 (t, *J* = 4.9 Hz, 4H), 3.13 (d, *J* = 8.5 Hz, 10H), 2.97 (t, *J* = 5.2 Hz, 4H), 0.42 (s, 27H), -0.82 (s, 6H). ¹³C NMR (151 MHz, C_6D_6) δ 71.53, 69.69, 69.26, 60.51, 38.44, 34.45, 22.73, 14.27, 5.06.

Anal. Calcd for LuC₂₀H₅₁Si₃O₄: C, 39.07, H, 8.36. Found: C, 38.69; H, 8.11.

Figure S 17 ¹H NMR spectrum (600 MHz) of **Lu-G**₃ in d_6 -benzene. The solvent residual resonance is marked with an asterisk, # shows TMS arising from the onset of decomposition, + shows the hexamethyl benzene (HMB) internal standard, hexanes from the recrystallization, boxed for clarity.

Figure S 18 $^{13}C{^{1}H}$ NMR spectrum (151 MHz) of Lu-G₃ in d_6 -benzene.

2.10. $\frac{Sm(CH_2SiMe_3)_3(Me_2NCH_2CH_2NMe_2)}{(Sm-TMEDA)}$ ¹H NMR (600 MHz, C₆D₆) δ 4.50 (s, 6H), 2.10 (s, 12H), 0.21 (s, 27H), -2.68 (s, 4H). ¹³C NMR (151 MHz, C₆D₆) δ 58.45, 46.03.

Figure S 19 ¹H NMR spectrum (600 MHz) of Sm-TMEDA in d_6 -benzene.

Figure S 20 ¹³C{¹H} NMR spectrum (151 MHz) of Sm-TMEDA in d₆-benzene

2.11. <u>Lu(CH₂SiMe₃)₃(Me₂NCH₂CH₂NMe₂) (Lu-TMEDA)</u>

¹H NMR (600 MHz, C_6D_6) δ 1.82 (s, 12H), 1.48 (s, 4H), 0.41 (s, 27H), -0.61 (s, 6H). ¹³C NMR (151 MHz, C_6D_6) δ 56.60, 46.23, 45.51, 4.87.

Anal. Calcd for LuC₁₈H₄₉Si₃N₂: C, 39.11, H, 8.93; N, 5.07. Found: C, 39.11; H, 8.97; N, 4.99.

Figure S 21 ¹H NMR spectrum (600 MHz) of Lu-TMEDA in d_6 -benzene.

Figure S 22 ¹³C{¹H} NMR spectrum (151 MHz) of Lu-TMEDA in *d*₆-benzene

2.12. $\underline{Sc(CH_2SiMe_3)_3(Me_2NCH_2CH_2NMe_2)}(\underline{Sc-TMEDA})$

¹H NMR (600 MHz, C_6D_6) δ 1.91 (s, 12H), 1.57 (s, 4H), 0.40 (s, 27H), 0.10 (s, 6H). ¹³C NMR (151 MHz, C_6D_6) δ 56.85, 46.69, 16.93, 4.41.

Figure S 23 ¹H NMR spectrum (600 MHz) of Sc-TMEDA in d_6 -benzene.

Figure S 24 ¹³C{¹H} NMR spectrum (151 MHz) of **Sc-TMEDA** in d_6 -benzene

2.13. $Lu(CH_2SiMe_3)_3(C_6H_{16}P_2)(C_4H_8O)$ (Lu-DMPE)

¹H NMR (600 MHz, C_6D_6) δ 3.91 (s, 4H), 1.36 – 1.28 (m, 4H), 1.12 (t, *J* = 7.0 Hz, 4H), 0.78 (s, 12H), 0.36 (s, 27H), -0.63 (s, 6H). ¹³C NMR (151 MHz, C_6D_6) δ 25.13, 12.30, 4.77. ³¹P NMR (243 MHz, C_6D_6) δ -38.88.

Anal. Calcd for LuC₂₂H₅₇Si₃P₂O: C,40.1; H, 8.72. Found: C, 39.89; H, 8.62.

Figure S 25 ¹H NMR spectrum (600 MHz) of Lu-DMPE in *d*₆-benzene.

Figure S 26 ¹³C{¹H} NMR spectrum (151 MHz) of Lu-DMPE in *d*₆-benzene

Figure S 27 ³¹P NMR spectrum (243 MHz, C_6D_6) of Lu-DMPE in d_6 -benzene.

2.14. <u>Sc(CH₂SiMe₃)₃(C₆H₁₆P₂) (Sc-DMPE)</u>

¹H NMR (600 MHz, C_6D_6) δ 0.92 (s, 4H), 0.76 (t, *J* = 1.6 Hz, 12H), 0.40 (s, 27H), 0.26 (s, 6H). ¹³C NMR (151 MHz, C_6D_6) δ 28.15, 14.04, 14.01, 13.97, 13.94. ³¹P NMR (243 MHz, C_6D_6) δ -36.30.

Anal. Calcd for $ScC_{18}H_{49}Si_3P_2$: C,47.33; H, 10.81. Found: C, 46.95; H, 10.56.

Figure S 28 ¹H NMR spectrum (600 MHz) of **Sc-DMPE** in d_6 -benzene.

Figure S 29 ¹³C{¹H} NMR spectrum (151 MHz) of Sc-DMPE in d_6 -benzene.

Figure S 30 ³¹P NMR spectrum (243 MHz, C₆D₆) of Sc-DMPE in *d*₆-benzene.

2.15. Synthesis of LiCl-free Y(CH₂SiMe₃)₃(C₄H₈O)₂ (Y-THF)

In an Ar-filled glovebox, anhydrous YCl₃ (26 mg, 0.133 mmol) was suspended in 260 μ L THF and 2.6 mL Et₂O/pentane (1/1). The resulting white suspension was cooled to -78°C and NaCH₂SiMe₃ (44 mg, 0.4 mmol, 3 eq.) was added portionwise as a solid. After stirring the resulting white suspension for 1 h at -78°C, it was warmed to room temperature for 15 min. Filtration and removal of the solvent at -40°C yielded the title compound as a white crystalline solid. Yield: 28 mg, 44% based on YCl₃.

¹H NMR (600 MHz, C_6D_6) δ 3.88 (s, 8H), 1.34 – 1.32 (m, 8H), 0.30 (s, 27H), -0.68 (d, *J* = 2.7 Hz, 6H). ¹³C NMR (151 MHz, C_6D_6) δ 65.90, 25.15, 15.55, 4.63.

Anal. Calcd for YC₂₀H₄₉Si₃O₂: C, 48.55; H, 9.98. Found: C, 48.43; H, 9.81.

3. Single-Crystal X-ray Diffraction Data (SXRD)

CCDC submission summary for codes 2351142-2351150, 2369795

Summary of Data - Deposition Number 2351142 _____ Compound Name: Data Block Name: data_pla23171_auto Unit Cell Parameters: a 9.9283(3) b 32.1189(7) c 10.3633(3) P21/n _____ Summary of Data - Deposition Number 2351143 _____ Compound Name: Data Block Name: data lug3 abair arnold Unit Cell Parameters: a 10.6318(3) b 9.5844(3) c 29.2885(7) P21/c _____ Summary of Data - Deposition Number 2351144 -----Compound Name: Data Block Name: data pla25059 refinalized Unit Cell Parameters: a 10.26960(10) b 15.03040(10) c 17.60830(10) P212121 _____ _____ Summary of Data - Deposition Number 2351145 _____ Compound Name: Data Block Name: data pla24006 refinalized Unit Cell Parameters: a 9.48680(10) b 15.77720(10) c 18.69720(10) P21/n · · · _____ Summary of Data - Deposition Number 2351146 _____ Compound Name: Data Block Name: data pla24028 refinalized Unit Cell Parameters: a 19.06420(10) b 15.98610(10) c 19.10330(10) P21/n _____ Summary of Data - Deposition Number 2351147 _____ Compound Name: Data Block Name: data pla23043 refinalized Unit Cell Parameters: a 11.1358(2) b 18.3119(3) c 13.4974(2) P21/n _____ Summary of Data - Deposition Number 2351148

Compound Name: Data Block Name: data_pla23105_refinalized Unit Cell Parameters: a 10.49690(10) b 18.04320(10) c 18.05330(10) P212121

Summary of Data - Deposition Number 2351149

Compound Name: Data Block Name: data_pla24060_refinalized Unit Cell Parameters: a 16.9327(2) b 9.51690(10) c 18.2023(2) Pna21

Summary of Data - Deposition Number 2351150

Compound Name: Data Block Name: data_pla23157_auto Unit Cell Parameters: a 9.76140(10) b 16.1956(2) c 17.1923(2) P212121

Summary of Data - Deposition Number 2369795

Compound Name:

Data Block Name: data_pla24134_refinalized

Unit Cell Parameters: a 9.87370(10) b 16.22530(10) c 17.35450(10) P212121

Fig. S31 Molecular structure of Sm-**TMEDA** with thermal ellipsoids at 50% probability with hydrogen atoms are omitted for the clarity. Sm: turquoise, C: grey, N: blue, Si: yellow.

Chemical formula	$SmC_{18}H_{49}Si_3N_2$	Crystal system	orthorhombic	
Formula weight [g/mol]	528.21	Space group	P	212121
Temperature [K]	99.9(4)	Z		1
Measurement method	ϕ and ω scans	Volume [ų]	278	30.26(4)
Radiation (Wavelength [Å])	Cu Kα (λ = 1.54184)	Unit cell dimensions [Å] and [°]	9.87370(10)	90
Crystal size / [mm ³]	0.216 × 0.159 × 0.074		16.22530(10)	90
Crystal habit	clear yellow block		17.35450(10)	90
Density (calculated) / [g/cm³]	1.262	Absorption coefficient / [mm ⁻¹]	17.107	
Abs. correction Tmin	0.119	Abs. correction Tmax	0.364	
Abs. correction type	multi-scan	F(000) [e ⁻]	1	100.0
Index ranges	-12 ≤ h ≤ 12, -20 ≤ k ≤ 20, -22 ≤ l ≤ 20	Theta range for data collection [°]	7.458 to 159.862	
Reflections number	58576	Data / restraints / parameters	6043/0/230	
Refinement method	Least squares	Final P indiana	all data R ₁ = 0.0313, 0.0856	
Function minimized	$\Sigma w(F_o^2 - F_c^2)^2$	Fillal R Indices	l>2σ(l)	R ₁ = 0.0311, wR ₂ = 0.0855
Goodness-of-fit on F ²	1.111	Weighting	$w=1/[\sigma^2(F_o^2)+(0)]$).0552P) ² +2.6302P]
Largest diff. peak and hole [e Å ⁻³]	1.32/-1.14	scheme	where $P=(F_o^2+2F_c^2)/3$	

Table S1. Sample and crystal data of Sm-TMEDA

Fig. S32 Molecular structure of Y- G_3 with thermal ellipsoids at 50% probability with hydrogen atoms are omitted for the clarity. Y: turquoise, C: grey, O: red, Si: yellow.

Table S2. Sample and crystal data of Y-G₃

Chemical formula	Y(CH ₂ SiMe ₃) ₃ (C ₈ H ₁₈ O ₄)	Crystal system	monoclinic	
Formula weight [g/mol]	528.78	Space group		$P2_{1}/n$
Temperature [K]	199.99(10)	Z		1
Measurement method	ϕ and ω scans	Volume [Å ³]	30	952.23(17)
Radiation (Wavelength [Å])	Cu Kα (λ = 1.54184)	Unit cell dimensions [Å] and [°]	9.9283(3) 90	
Crystal size / [mm ³]	$0.16 \times 0.11 \times 0.1$		32.1189(7)	112.542(4)
Crystal habit	clear colorless block		10.3633(3)	90
Density (calculated) / [g/cm³]	1.151	Absorption coefficient / [mm ⁻¹]	3.965	
Abs. correction Tmin	0.569	Abs. correction Tmax	Abs. correction 0.693 Tmax	
Abs. correction type	multi-scan	F(000) [e ⁻]		1136.0
Index ranges	$\begin{array}{c} \text{-12} \leq h \leq 12, \text{-21} \leq k \leq \\ 40, \text{-13} \leq l \leq 13 \end{array}$	Theta range for data collection [°]	5.502 to 160.098	
Reflections number	18955	Data / restraints / parameters	6475/0/272	
Refinement method	Least squares	Einal P indicas	s all data $R_1 = 0.0563, wF_{0.1499}$ $I > 2\sigma(I)$ $R_1 = 0.0490, wF_{0.1440}$	
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$			
Goodness-of-fit on F ²	1.070	Weighting	$w=1/[\sigma^2(F_o^2)+$	-(0.0873P) ² +0.9693P]
Largest diff. peak and hole [e Å ⁻³]	0.63/-0.72	scheme	where $P=(F_o^2+2F_c^2)/3$	

Fig. S33 Molecular structure of Y- G_2 with thermal ellipsoids at 50% probability with hydrogen atoms are omitted for the clarity. Y: turquoise, C: grey, O: red, Si: yellow.

Table S3	. Sample	and	crystal	data	of	Y-G ₂
----------	----------	-----	---------	------	----	------------------

Chemical formula	Y(CH ₂ SiMe ₃) ₃ (C ₆ H ₁₄ O ₃)	Crystal system	monoclinic	
Formula weight [g/mol]	484.73	Space group	Р	$22_{1}/n$
Temperature [K]	99.99(11)	Z		1
Measurement method	ϕ and ω scans	Volume [Å ³]	275	0.13(8)
Radiation (Wavelength [Å])	Mo Kα ($\lambda = 0.71073$)	Unit cell dimensions [Å] and [°]	11.1358(2)	90
Crystal size / [mm³]	$0.428 \times 0.112 \times 0.109$		18.3119(3)	92.304(2)
Crystal habit	clear colorless block		13.4974(2)	90
Density (calculated) / [g/cm³]	1.171	Absorption coefficient / [mm ⁻¹]	2.264	
Abs. correction Tmin	0.444	Abs. correction Tmax	0.790	
Abs. correction type	multi-scan	F(000) [e ⁻]	10	040.0
Index ranges	$\begin{array}{l} \text{-15} \leq h \leq 16, \text{-26} \leq k \leq 26, \\ \text{-20} \leq l \leq 19 \end{array}$	Theta range for data collection [°]	3.75 to 64.742	
Reflections number	74421	Data / restraints / parameters	8757/0/237	
Refinement method	Least squares	Final R	all data	$R_1 = 0.0389,$ w $R_2 = 0.0547$
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$	indices	l>2σ(l)	$R_1 = 0.0302,$ w $R_2 = 0.0531$
Goodness-of-fit on F ²	1.099	Woighting	$w=1/[\sigma^2(F_o^2)+(0$.0199P) ² +0.9981P]
Largest diff. peak and hole [e Å ⁻³]	0.46/-0.29	scheme	where $P = (F_0^2 + 2F_c^2)/3$	

Fig. S34 Molecular structure of Lu- G_3 with thermal ellipsoids at 50% probability with hydrogen atoms are omitted for the clarity. Lu: green, C: grey, O: red, Si: yellow.

Table S4. Sample and crystal data of Lu-G₃

Chemical formula	Lu(CH ₂ SiMe ₃) ₃ (C ₈ H ₁₈ O ₄)	Crystal system	monoclinic	
Formula weight [g/mol]	614.84	Space group	P2	₁ /c
Temperature [K]	293(2)	Z	1	
Measurement method	ϕ and ω scans	Volume [ų]	2984.4	10(14)
Radiation (Wavelength [Å])	MoKa ($\lambda = 0.71073$)	Unit cell dimensions [Å] and [°]	10.6318(3) 90	
Crystal size / [mm ³]	$0.32 \times 0.25 \times 0.21$		9.5844(3)	90.415(2)
Crystal habit	clear colorless block		29.2885(7)	90
Density (calculated) / [g/cm³]	1.368	Absorption coefficient / [mm ⁻¹]	3.448	
Abs. correction Tmin	0.405	Abs. correction Tmax	0.531	
Abs. correction type	multi-scan	F(000) [e ⁻]	126	4.0
Index ranges	$-13 \le h \le 13, -11 \le k \le 11,$ $-36 \le 1 \le 36$	Theta range for data collection [°]	5.882 to 52.74	
Reflections number	44266	Data / restraints / parameters	6086/0/265	
Refinement method	Least squares	Final R	all data	$R_1 = 0.0253,$ w $R_2 = 0.0566$
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$	indices	l>2σ(l)	$R_1 = 0.0240,$ $wR_2 = 0.0558$
Goodness-of-fit on F ²	1.090	Weighting	$w=1/[\sigma^2(F_o^2)+(0.0161P)^2+9.2682P]$	
Largest diff. peak and hole [e Å ⁻³]	1.87/-1.17	scheme	where $P=(F_o^2+2F_c^2)/3$	

Fig. S35 Molecular structure of Lu- G_2 with thermal ellipsoids at 50% probability with hydrogen atoms are omitted for the clarity. Lu: green, C: grey, O: red, Si: yellow. Bonds at the suppressed positions (45.4% occupancy) in the disordered molecule are omitted for clarity.

Table S5. Sample and crystal data of $Lu-G_2$

Chemical formula	Lu(CH ₂ SiMe ₃) ₃ (C ₆ H ₁₄ O ₃)	Crystal system	mono	oclinic
Formula weight [g/mol]	4562.31	Space group	P2	$2_{1}/n$
Temperature [K]	100.00(10)	Z		2
Measurement method	ϕ and ω scans	Volume [ų]	5562	.61(6)
Radiation (Wavelength [Å])	Cu Kα (λ = 1.54184)	Unit cell dimensions [Å] and [°]	19.06420(10)	90
Crystal size / [mm ³]	$0.246\times0.179\times0.127$		15.98610(10)	107.1660(10)
Crystal habit	clear colorless block		19.10330(10)	90
Density (calculated) / [g/cm³]	1.362	Absorption coefficient / [mm ⁻¹]	8.121	
Abs. correction Tmin	0.240	Abs. correction Tmax	0.425	
Abs. correction type	multi-scan	F(000) [e ⁻]	233	32.0
Index ranges	$\begin{array}{l} -24 \leq h \leq 24, -20 \leq k \leq 14, \\ -24 \leq l \leq 24 \end{array}$	Theta range for data collection [°]	5.754 to 160.398	
Reflections number	123523	Data / restraints / parameters	12072/0/665	
Refinement method	Least squares	Final R	all data	R ₁ = 0.0386, wR ₂ = 0.0971
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$	indices	l>2σ(l)	$R_1 = 0.0363,$ w $R_2 = 0.0950$
Goodness-of-fit on F ²	1.079		$w=1/[\sigma^2(F_o^2)+(0.0)]$	458P) ² +12.7298P]
Largest diff. peak and hole [e Å ⁻³]	1.77/-2.15	scheme	where $P=(F_o^2+2F_c^2)/3$	

Fig. S36 Molecular structure of Lu-**TMEDA** with thermal ellipsoids at 50% probability with hydrogen atoms are omitted for the clarity. Lu: green, C: grey, N: blue, Si: yellow.

Table S6. Sample and crystal data of Lu-TI	MEDA
--	------

Chemical formula	$LuC_{18}H_{49}Si_3N_2$	Crystal system	orthorhombic	
Formula weight [g/mol]	552.83	Space group	P2	2121
Temperature [K]	99.97(11)	Z		1
Measurement method	ϕ and ω scans	Volume [ų]	2717	.96(5)
Radiation (Wavelength [Å])	Cu Ka (λ = 1.54184)	Unit cell dimensions [Å] and [°]	9.76140(10)	90
Crystal size / [mm ³]	$0.12 \times 0.06 \times 0.05$		16.1956(2)	90
Crystal habit	clear colorless block		17.1923(2)	90
Density (calculated) / [g/cm³]	1.351	Absorption coefficient / [mm ⁻¹]	8.228	
Abs. correction Tmin	0.438	Abs. correction Tmax	0.0	684
Abs. correction type	multi-scan	F(000) [e ⁻]	11.	36.0
Index ranges	$\begin{array}{c} -12 \leq h \leq 12, -20 \leq k \leq 18, -\\ 21 \leq l \leq 21 \end{array}$	Theta range for data collection [°]	7.5 to 159.812	
Reflections number	59230	Data / restraints / parameters	5898/0/246	
Refinement method	Least squares	Final R	all data $R_1 = 0.0397,$ $wR_2 = 0.0909$ $R_1 = 0.0389,$ $wR_2 = 0.0907$	
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$	indices		
Goodness-of-fit on F ²	1.049		$w=1/[\sigma^2(F_o^2)+(0.1)]$	0264) ² +18.3519P]
Largest diff. peak and hole [e Å ⁻³]	1.22/-1.30	scheme	where $P=(F_o^2+2F_c^2)/3$	

Fig. S37 Molecular structure of Lu-**DMPE** with thermal ellipsoids at 50% probability with hydrogen atoms are omitted for the clarity. Lu: green, C: grey, P: orange, Si: yellow, O: red.

Chemical formula	LuC ₂₂ H ₅₇ Si ₃ P ₂ O	Crystal system	orthorhombic	
Formula weight [ɡ/mol]	658.85	Space group	P2	212121
Temperature [K]	99.98(13)	Z		1
Measurement method	ϕ and ω scans	Volume [ų]	341	9.25(4)
Radiation (Wavelength [Å])	Cu Kα (λ = 1.54184)	Unit cell dimensions [Å] and [°]	10.49690(10)	90
Crystal size / [mm ³]	$0.23 \times 0.1 \times 0.08$		18.04320(10)	90
Crystal habit	clear colorless block		18.05330(10)	90
Density (calculated) / [g/cm³]	1.268	Absorption coefficient / [mm ⁻¹]	7.485	
Abs. correction Tmin	0.278	Abs. correction Tmax	0.586	
Abs. correction type	multi-scan	F(000) [e ⁻]	1336.0	
Index ranges	$\begin{array}{c} \text{-13} \leq h \leq 13, \text{-22} \leq k \leq \\ 23, \text{-23} \leq l \leq 22 \end{array}$	Theta range for data collection [°]	6.926 to 161.3	
Reflections number	229465	Data / restraints / parameters	7472/6/293	
Refinement method	Least squares	all data		$R_1 = 0.0314,$ w $R_2 = 0.0861$
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$		l>2σ(l)	$R_1 = 0.0308,$ w $R_2 = 0.0855$
Goodness-of-fit on F ²	1.054	Mainhtin r	$w=1/[\sigma^2(F_o^2)+(0)]$.0516P) ² +2.9340P]
Largest diff. peak and hole [e Å ⁻³]	1.17/-0.64	scheme	where $P=(F_o^2+2F_c^2)/3$	

Fig. S38 Molecular structure of $Sc-G_2$ with thermal ellipsoids at 50% probability with hydrogen atoms are omitted for the clarity. Sc: grey, C: grey, Si: yellow, O: red.

Chemical formula	ScC ₁₈ H ₄₇ Si ₃ O ₃	Crystal system	moi	noclinic
Formula weight [g/mol]	440.78	Space group	I	$22_{1}/n$
Temperature [K]	99.98(10)	Z		1
Measurement method	ϕ and ω scans	Volume [ų]	273	7.80(4)
Radiation (Wavelength [Å])	Cu Kα (λ = 1.54184)	Unit cell dimensions [Å] and [°]	9.48680(10)	90
Crystal size / [mm ³]	$0.2\times0.15\times0.09$		15.77720(10)	101.9560(10)
Crystal habit	clear colorless block		18.69720(10)	90
Density (calculated) / [g/cm³]	1.069	Absorption coefficient / [mm ⁻¹]	3.648	
Abs. correction Tmin	0.529	Abs. correction Tmax	0. 735	
Abs. correction type	multi-scan	F(000) [e ⁻]	9	068.0
Index ranges	$\begin{array}{c} \text{-10} \leq h \leq 12, \text{-20} \leq k \leq \\ 20, \text{-23} \leq l \leq 23 \end{array}$	Theta range for data collection [°]	7.4 to 160.086	
Reflections number	61454	Data / restraints / parameters	5972/0/253	
Refinement method	Least squares	all data		R1 = 0.0315, wR2 = 0.0851
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$		l>2σ(l)	R1 = 0.0303, wR2 = 0.0841
Goodness-of-fit on F ²	1.110		$w=1/[\sigma^2(F_o^2)+(0)]$	0.0495P) ² +0.6268P]
Largest diff. peak and hole [e Å ⁻³]	0.66/-0.31	scheme	where $P=(F_o^2+2F_c^2)/3$	

Table S8. Sample and crystal data of Sc-G₂

Fig. S39 Molecular structure of Sc-**TMEDA** with thermal ellipsoids at 50% probability with hydrogen atoms are omitted for the clarity. Sc: grey, C: grey, Si: yellow, N: blue.

Table S9. Sample and crystal data of Sc-TMEDA

Chemical formula	$ScC_{18}H_{49}Si_3N_2$	Crystal system	orthorhombic	
Formula weight [g/mol]	422.82	Space group	P2	12121
Temperature [K]	100.00(11)	Z		1
Measurement method	ϕ and ω scans	Volume [ų]	2717.95(4)	
Radiation (Wavelength [Å])	Cu Ka ($\lambda = 1.54184$)	Unit cell dimensions [Å] and [°]	10.26960(10)	90
Crystal size / [mm ³]	$0.252 \times 0.143 \times 0.098$		15.03040(10)	90
Crystal habit	clear colorless block		17.60830(10)	90
Density (calculated) / [g/cm³]	1.033	Absorption coefficient / [mm ⁻¹]	3.	592
Abs. correction Tmin	0.465	Abs. correction Tmax	0.	720
Abs. correction type	multi-scan	F(000) [e ⁻]	93	36.0
Index ranges	$\begin{array}{c} \text{-13} \leq h \leq 13, \text{-11} \leq k \leq 18, \\ \text{-22} \leq l \leq 22 \end{array}$	Theta range for data collection [°]	7.734 to 160.12	
Reflections number	63925	Data / restraints / parameters	5902/0/272	
Refinement method	Least squares	Final R indices	all data	$R_1 = 0.0260,$ $wR_2 = 0.0682$
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$		l>2σ(l)	$R_1 = 0.0258,$ w $R_2 = 0.0680$
Goodness-of-fit on F ²	1.070	Weighting	$w=1/[\sigma^2(F_o^2)+(0.0380P)^2+0.6975P]$	
Largest diff. peak and hole [e Å ⁻³]	0.24/-0.31	scheme	where $P = (F_0^2 + 2F_c^2)/3$	

Fig. S40 Molecular structure of Sc-**DMPE** with thermal ellipsoids at 50% probability with hydrogen atoms are omitted for the clarity. Sc: grey, C: grey, Si: yellow, P: orange.

Table S10. Sample and crystal data of Sc-DMPE

Chemical formula	$ScC_{18}H_{49}Si_3P_2$	Crystal system	orthorhombic	
Formula weight [g/mol]	456.74	Space group		$Pna2_1$
Temperature [K]	100.00(10)	Z		1
Measurement method	ϕ and ω scans	Volume [ų]	2933.24(6)	
Radiation (Wavelength [Å])	Cu Kα (λ = 1.54184)	Unit cell dimensions [Å] and [°]	16.9327(2)	90
Crystal size / [mm ³]	$0.257\times0.218\times0.129$		9.51690(10)	90
Crystal habit	clear colorless block		18.2023(2)	90
Density (calculated) / [g/cm³]	1.034	Absorption coefficient / [mm ⁻¹]		4.339
Abs. correction Tmin	0.402	Abs. correction Tmax	0.604	
Abs. correction type	multi-scan	F(000) [e ⁻]		1000.0
Index ranges	$\begin{array}{c} \text{-}21 \leq h \leq 21, \text{-}12 \leq k \leq \\ 12, \text{-}23 \leq l \leq 21 \end{array}$	Theta range for data collection [°]	9.718 to 160.89	
Reflections number	62263	Data / restraints / parameters	5912/7/238	
Refinement method	Least squares	Final R indices	all data	R ₁ = 0.0604, wR ₂ = 0.1435
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$		l>2σ(l)	R ₁ = 0.0598, wR ₂ = 0.1431
Goodness-of-fit on F ²	1.080		$w=1/[\sigma^2(F_o^2)+(0.0459P)^2+4.6572P]$	
Largest diff. peak and hole [e Å ⁻³]	0.64/-0.36	scheme	where $P=(F_{o}^{2}+2F_{c}^{2})/3$	

4. Thermal stability studies

4.1. General procedure for thermolysis studies

In an Ar-filled glovebox, a 9.1 mM solution of the corresponding M complex was prepared in C_6D_6 with hexamethylbenzene as an internal standard, in a YT NMR tube. The NMR sample was incubated at 30°C in an oil bath with a thermocouple. The thermolysis process was monitored by ¹H NMR spectroscopy for at least two half-lives.

Figure S 41 Thermal stability, defined as half-life of a solution of $M(r)_3(\text{donor})$ (**M-donor**) in benzene solution, for a range of rare earth neosilyl organized in increasing metal ionic radius, Sc (green), Lu (pink), Y (yellow), Sm (rust), and coordinated donor ligand(s), donor for donor = (THF)₂, TMEDA, G₂ = diglyme, (CH₃(OCH₂CH₂)₂O). Plots with additional data for selected metals are included in the SI.

Figure S 42 Thermal stability of **A**) **Sm-G**₃, **B**) **Sm-THF**, **C**) **Sm-G**₂, and **D**) **Sm-TMEDA** expressed by the decrease of **Sm-donor** concentration as a function of time using the logarithmic **Sm-donor** concentration values obtained from the NMR integration values after incubation in C_6D_6 , room temperature (30°C).

Figure S 43 Thermalstability of **A) Y-DMPE**, **B) Y-G**₃, **C) Y-G**₂, and **D) Y-TMEDA** expressed by the decrease of **Y-donor** concentration as a function of time using the logarithmic **Y-donor** concentration values obtained from the NMR integration values after incubation in C_6D_6 , room temperature (30°C).

Figure S 44 Thermalstability of A) Lu-DMPE, B) Lu-G₃, C) Lu-G₂, and D) Lu-TMEDA expressed by the decrease of Lu-donor concentration as a function of time using the logarithmic Lu-donor concentration values obtained from the NMR integration values after incubation in C_6D_6 , room temperature (30°C).

Figure S 45 Thermal stability of A) Sc-DMPE, B) Sc-THF, C) Sc-TMEDA, and D) Sc-G₂ expressed by the decrease of Sc-donor concentration as a function of time using the logarithmic Sc-donor concentration values obtained from the NMR integration values after incubation in C_6D_6 , room temperature (30°C).

Figure S 46 ¹H NMR spectrum (600 MHz) of **Y-G**₂ in d_6 -benzene (t = 33 h) showing increasing resonances that can be assigned to CH₂=CHOMe vinyl methyl ether, VME (inset).

Figure S 47 ¹H NMR spectrum (600 MHz) of **Sc-G**₂ in d_6 -benzene (t = 134 h) showing negligible amount of vinyl methyl ether, VME.

5. Isotope labelling and speciation studies

Figure S 48 Stacked ¹H NMR spectra (600 MHz) of $Lu(d_2-r)_3(THF)_2$ (red), $Lu(r)_3(d_8-THF)_2$ (green), and $Lu(d_9-r)_3(THF)_2$ (blue) in $[d_6]$ - benzene. (9.1 mM, 30°C).

Figure S 49 ¹H NMR spectrum shows metalacyclic CH_2 – resonance (black box and circle) (t = 0 to 165h) growing in overlaps with -CH₂ resonance from r (lavender). 30°C in [D₆] - benzene.

Figure S 50 ¹H NMR (600 MHz, C₆D₆) of Lu(CH₂Si(CD₃)₃)₃(C₆H₁₄O₃) showing CDH₂Si(CD₃)₃ as a 1:1:1 triplet at δ 0.02. δ 3.04 (s, 6H), 2.97 (t, J = 5.4 Hz, 4H), 2.62 (t, J = 5.4 Hz, 4H), -0.67 (s, 6H).

Figure S 51 ¹H NMR (600 MHz, C_6D_6) of Lu(CH₂Si(CD₃)₃)₃($C_6H_{16}P_2$)(C₄H₈O) showing CDH₂Si(CD₃)₃ as a 1:1:1 triplet at δ 0.02. δ 4.03 – 3.79 (m, 4H), 1.37 – 1.27 (m, 4H), 1.03 (t, *J* = 5.2 Hz, 4H), 0.76 (s, 12H), -0.59 (s, 6H).

Figure S 52 ¹H NMR (600 MHz, C_6D_6) of Lu(CH₂Si(CD₃)₃)₃(Me₂NCH₂CH₂NMe₂) showing CDH₂Si(CD₃)₃ as a 1:1:1 triplet at δ 0.02. δ 1.81 (s, 12H), 1.47 (s, 4H), -0.63 (s, 6H).

5.1 Synthesis of $Lu(CD_2SiMe_3)_3(C_4H_8O)_2$ (d₂-Lu-THF)

In an Ar-filled glovebox, anhydrous LuCl₃ (25 mg, 0.09 mmol) was suspended in 1.5 mL THF. To the resulting coloress solution a solution of $d_{2^{-}}$ ((trimethylsilyl)methyl)lithium (LiCD₂Si(CH₃)₃) (25.7 mg, 0.27 mmol, 3 eq.) in 250 µL THF was added dropwise. The colorless reaction mixture was stirred at room temperature for 40 min. The solvent was removed under reduced pressure followed by extraction with hexane (3 × 2 mL). The filtered extracts were combined and the solvent was removed under reduced pressure yielding the title compound Lu(CD₂SiMe₃)₃(C₄H₈O)₂ as a white solid. Yield: 26 mg, 49% based on LuCl₃.

¹H NMR (600 MHz, C_6D_6) δ 3.97 - 3.94(s, 8H), 1.31 – 1.28 (m, 8H), 0.29 (s, 27H).). ²H NMR (92 MHz, C_6D_6) δ -0.94 (s, 6H). ¹³C NMR (151 MHz, C_6D_6) δ 71.01, 40.79, 25.06, 4.77.

5.2. Synthesis of $Lu(CH_2Si(CD_3)_3)_3(C_4H_8O)_2$ (d₉-Lu-THF)

In an Ar-filled glovebox, anhydrous LuCl₃ (25 mg, 0.09 mmol) was suspended in 1.5 mL THF. To the resulting coloress solution a solution of d₉-((trimethylsilyl)methyl)lithium (LiCH₂Si(CD₃)₃) synthesized according to a previously reported procedure⁹ (25.7 mg, 0.27 mmol, 3 eq.) in 250 μ L THF was added dropwise. The colorless reaction mixture was stirred at room temperature for 40 min. The solvent was removed under reduced pressure followed by extraction with hexane (3 × 2 mL). The filtered extracts were combined and the solvent was removed under reduced pressure yielding the title compound Lu(CH₂Si(CD₃)₃)₃(C₄H₈O)₂ as a white solid. Yield: 21 mg, 45% based on LuCl₃.

 ^1H NMR (600 MHz, $C_6D_6)$ δ 3.98 - 3.95 (s, 8H), 1.32 – 1.29 (m, 8H), δ -0.89 (s, 6H). ^2H NMR (92 MHz, $C_6D_6)$ δ 0.27 (s, 27H). ^{13}C NMR (151 MHz, $C_6D_6)$ δ 71.01, 41.79, 25.07, 3.73.

5.3. Synthesis of $Lu(CH_2Si(CD_3)_3)_3(C_6H_{14}O_3)$ (d₉-Lu-G₂)

In an Ar-filled glovebox, $Lu(CH_2Si(CD_3)_3)_3(C_4H_8O)_2$ (10.05 mg, 0.017 mmol) was dissolved in 1.5 mL hexane. The colorless solution was cooled down to -78°C followed by addition of diglyme $((CH_3OCH_2CH_2)_2O, G_2)$ (9.9 mg, 0.132 mmol, 8 eq.) resulting in white precipitates which were extracted with hexane (3 x 1 mL). The combined hexanes extracts were concentrated under reduced pressure and cooled down to -40°C offering Lu(CH_2Si(CD_3)_3)_3(C_6H_{14}O_3) (d₉-Lu-G₂) as a white solid. Yield: 4.2 mg, 41%, based on Lu(CH_2Si(CD_3)_3)_3(C_4H_8O)_2.

¹H NMR (600 MHz, C_6D_6) δ 3.04 (s, 6H), 2.97 (t, J = 5.4 Hz, 4H), 2.62 (t, J = 5.4 Hz, 4H), -0.67 (s, 6H).

5.4. Synthesis of $Lu(CH_2Si(CD_3)_3)_3(C_6H_{16}P_2)(C_4H_8O)$ (d₉-Lu-DMPE)

In an Ar-filled glovebox, $Lu(CH_2Si(CD_3)_3)_3(C_4H_8O)_2$ (20 mg, 0.033 mmol) was dissolved in 1.6 mL toluene and cooled to -40°C in the glovebox freezer. To the resulting cold clear yellow solution 1,2-Bis(dimethylphosphino)ethane ($C_6H_{16}P_2$, DMPE) (4.9 mg, 0.033 mmol, 1 eq.) in 1 mL toluene was added dropwise. The resulting clear colorless mixture was stirred for 1h at room temperature. Toluene was removed under reduced pressure at room temperature resulting in a white solid that was recrystallized from a 1:1 Et₂O/hexane mixture to yield Lu(CH₂Si(CD₃)₃)₃(C₆H₁₆P₂)(C₄H₈O) as a white crystalline solid. Yield: 12.5 mg, 55% based on Lu(CH₂SiMe₃)₃(C₄H₈O)₂.

¹H NMR (600 MHz, C_6D_6) δ 4.03 – 3.79 (m, 4H), 1.37 – 1.27 (m, 4H), 1.03 (t, *J* = 5.2 Hz, 4H), 0.76 (s, 12H), -0.59 (s, 6H).

5.5. Synthesis of $Lu(CH_2Si(CD_3)_3)_3(Me_2NCH_2CH_2NMe_2)$ (d₉-Lu-TMEDA)

In an Ar-filled glovebox, $Lu(CH_2Si(CD_3)_3)_3(C_4H_8O)_2$ (20 mg, 0.033 mmol) were dissolved in 1.6 mL toluene and cooled to -40°C in the glovebox freezer. To the cold clear yellow solution TMEDA (3.8 mg, 0.033 mmol, 1 eq.) in 1 mL toluene was added dropwise. Toluene was removed under reduced pressure at room temperature resulting in a white solid that was recrystallized from a 1:1 Et₂O/hexane mixture to

yield Lu(CH₂Si(CD₃)₃)₃(Me₂NCH₂CH₂NMe₂) as a white solid in 18% yield, 3.5 mg based on Lu(CH₂Si(CD₃)₃)₃(C₄H₈O)₂.

¹H NMR (600 MHz, C₆D₆) δ 1.81 (s, 12H), 1.47 (s, 4H), -0.63 (s, 6H).

Figure S 53 Thermalstability of Lu(CH₂Si(CD₃)₃)₃(THF)₂ (Lu(H₉-r)₃(THF)₂) and Lu(CH₂SiMe₃)₃(THF)₂ (Lu(H₉-r)₃(THF)₂) expressed by the decrease of Lu(r)₃(THF)₂ concentration as a function of time using the logarithmic Lu(r)₃(THF)₂ concentration values obtained from the NMR integration values after incubation in C₆D₆, room temperature (30°C). The functions are described by the linear fits (R² = 0.98): In ([Lu(d₉-r)₃(THF)₂]) = -6.61 (±0.5) × 10⁻⁴ x + 2.2 and (R² = 0.97): In ([Lu(H₉-r)₃(THF)₂]) = -13.8 (±1.0) × 10⁻⁴ x + 2.17, respectively, with x being the incubation time in h. The slope of the linear fit gives the rate constants k_D = -6.61 (±0.5) × 10⁻⁴ h and k_H = -13.8 (±1.0) × 10⁻⁴ and a primary KIE k_H/k_D = 2.09.

5.6. General procedure for alkyl crossover studies

In an Ar-filled glovebox, 18.2 mM solutions of Li[YCI(CD₂SiMe₃)₃(THF)₂] and Li[YCI(CH₂Si(CD₃)₃(THF)₂] in C₆D₆ (310 μ L per sample) were prepared. 300 μ L per sample were combined in a YT NMR tube to yield a 600 μ L solution containing 9.1 mM of equimolar Li[YCI(CD₂SiMe₃)₃(THF)₂] and Li[YCI(CH₂Si(CD₃)₃(THF)₂], respectively. The NMR sample was incubated at 30°C in an oil bath with a thermocouple. The thermolysis process was monitored by ¹H NMR spectroscopy.

Intermolecular:

 $(thf)_{2}(d_{2}-r)_{2}CIY \xrightarrow{\mathsf{D}}_{SiMe_{3}} + \underbrace{(thf)_{2}(d_{9}-r)_{2}CIY}_{Si} \xrightarrow{\mathsf{CD}_{3}}_{CD_{3}} \longrightarrow Me_{3}Si-CD_{3} + (D_{3}C)_{3}Si-CH_{3}$

Intramolecular:

$$(thf)_{2}(d_{2}-r)_{2}CIY \xrightarrow{D}_{SiMe_{3}} + (thf)_{2}(d_{9}-r)_{2}CIY \xrightarrow{CD_{3}}_{Si} \xrightarrow{CD_{3}}_{CD_{3}} \longrightarrow Me_{3}Si-CD_{2}H + (D_{3}C)_{3}Si-CH_{2}D$$

Scheme S1. Schematic representation of crossover reaction featuring of $Li[YCl(d_2-r)_3(THF)_2]$ and $Li[YCl(d_9-r)_3(THF)_2]$ and the corresponding crossover products according to inter- or intramolecular decomposition.

Figure S 54 Superimposed ¹H NMR spectra (600 MHz) of an equimolar reaction mixture containing Li[YCl(d₂-r)₃(THF)₂] and Li[YCl(d₉-r)₃(THF)₂] in C₆D₆ (30°C) recorded at t = 0 min (red), 185 min (yellow), 354 min (teal), 1425 min (lavender), 1627 min (purple). The inset shows singlet resonances at δ = 0.001 ppm and δ = -0.002 ppm, respectively, which can be assigned to the crossover products *d*₃-TMS and *d*₉-TMS of the intermolecular decomposition process. The different TMS shifts are a result of isotopic effect.¹⁰

6. Impact of LiCl on thermal stability of $M(r)_3(THF)_2 M = Y$, Lu

Figure S 55 ¹H NMR spectrum (600 MHz) of **Y-THF** prepared starting from Nar (this work) in d_{6} -benzene.

Figure S 56 ¹³C NMR (151 MHz, C_6D_6) of **Y-THF** in *d*₆-benzene.

6.1 General procedure for speciation studies

In an Ar-filled glovebox, 18.2 mM stock solutions of Lu(CH₂SiMe₃)₃(THF)₂ or Li[YCI(CH₂SiMe₃)₃(THF)₂] (synthesized according to previously published procedures^{2, 11, 12}) and 12-crown-4 ether (C₈H₁₆O₄) were prepared in C₆D₆. 300 μ L of the 12-crown-4 ether (C₈H₁₆O₄) stock solution were mixed with 300 μ L of Lu(CH₂SiMe₃)₃(THF)₂ or Li[YCI(CH₂SiMe₃)₃(THF)₂] in J Young teflon-valved equipped NMR tubes to yield equimolar mixtures of the corresponding complex and 12-crown-4 ether.

Figure S 57 Stacked ⁷Li NMR spectra (156 MHz, C_6D_6) of Lu(CH₂SiMe₃)₃(THF)₂ and Li[YCl(CH₂SiMe₃)₃(THF)₂] (prepared according to previously published procedures^{2, 11, 12}) in the absence and in the presence of and equimolar amount of 12-crown-4 ether. Li[YCl(CH₂SiMe₃)₃(THF)₂] does not show a visible ⁷Li resonance in absence of 12-crown-4 ether which can be attributed to the quadrupolar nature of ⁷Li. Addition of 12-crown-4 ether provides a symmetric coordination environment for ⁷Li which can be observed as a resonance in the ⁷Li NMR spectrum.

ent	ry Citation	¹³ C{ ¹ H} NMR frequency and chemical shifts ^a	¹ H NMR NMR frequency and chemical shifts ^b	
1	Organometallics 2017, 36, 3677	cites Catal. Sci. Technol. 2016, 6 (16), 6339–6353.		
2	Inorg. Chem. 2020, 59, 5835	No NMR resonances reported; reports SXRD + EA		
3	Organometallic Chem.2018, 875, 5	cites 5		
4	J. Am. Chem. Soc. 2001, 123, 7711	cites 9 & 5		
5	J. Chem. Soc., Chem. Commun. 1973,126	N/A	2.73 (s, 2H), N/A (m, 2H), 0.30 (s, 27H), -0.65 (d, <i>J</i> = 2.5 Hz, 1H).	
6	Chem. Commun. 2016 , 52, 5425	N/A	(400 MHz, toluene-d ₈) 4.09 (t, J = 6.4 Hz, 8H), 1.61-1.33 (m, 8H), 0.18 (s, 27H), -0.38 (s, 6H).	
7	Macromolecules 2022, 55, 7488	N/A	(400 MHz) 3.95 (t, 8H), 1.31 (t, 8H), 0.29 (s, 27H), -0.69 (s, 6H).	
8	Macromolecules 2019, 52, 7073	(126 MHz) 69.8, 33.8, 25.2, 4.5	(400 MHz) 4.01 - 3.87 (m, 8H), 1.36 - 1.21 (m, 8H), 0.31 (s, 27H), -0.67 (d, 6H).	
9	Organometallics 2000, 19, 228	(101 MHz) 70.8, 35.7, 33.7, 25.0, 4.6	(400 MHz) 3.93 (s, 9H), 1.30 (m, 10H), 0.27 (s, 27H), -0.71 (d, <i>J</i> = 2.3 Hz, 6H).	
10	Y-THF + LiCl (1 equiv.)	(151 MHz) 70.60, 33.88, 33.65, 25.13, 4.63	(600 MHz) 3.85 (s, 1H), 1.37 – 1.31 (m, 2H), 0.28 (s, 27H), -0.70 (d, <i>J</i> = 2.8 Hz, 1H).	
11	this work (NaY-THF)	(151 MHz) 65.90, 33.99, 33.75, 25.15, 4.63	(600 MHz) 3.87 (s, 9H), 1.35 – 1.31 (m, 10H), 0.30 (s, 27H), -0.68 (d, <i>J</i> = 2.7 Hz, 6H).	

Table S11. Summary of reports on characterization of Y(CH₂SiMe₃)₃(THF) synthesized from

LiCH₂SiMe₃. (CSDS & Scifinder August, 28 2024).

a. all reported as δ in C₆D₆ solution. b. all reported as δ in C₆D₆ solution except as noted for entries 5 and 6. The H resonances for entry 5 have been converted from τ (tau) (in the original report) to δ by subtraction from 10; the THF resonances were not reported.

Figure S 58 Li[YCl(r)₃(THF)₂] in C₆D₆ after addition of an equimolar amount of 12-crown-4 ether. ¹H NMR (400 MHz, C₆D₆) of δ 2.13 (s, 28H), 1.80 (s, 12H), 1.45 (s, 4H), 0.42 (s, 27H), -0.61 (s, 6H).

Figure S 59 $Y(r)_3(12$ -crown-4) synthesized according to the literature (Okuda *et al.*)¹³ ¹H NMR (600 MHz, C₆D₆) δ 3.32 (tt, J = 7.1, 3.7 Hz, 8H), 2.46 (tt, J = 6.8, 3.7 Hz, 8H), 0.47 (s, 27H), -0.26 (d, J = 3.2 Hz, 6H).

Figure S 60 Thermalstability of Li[YCl(r)₃(THF)₂] (prepared according to previously published procedures², upper figure) and Y(r)₃(THF)₂ prepared from Nar (this work, bottom figure) expressed by the decrease of **Y-donor** concentration as a function of time using the logarithmic **Y-donor** concentration values obtained from the NMR integration values after incubation in C₆D₆, room temperature (30°C).

6.2. General procedure for LiCl spiking experiments

In an Ar-filled glovebox, five 4 mL vials were charged with $Lu(CH_2SiMe_3)_3(THF)_2$ (3.2 mg, 0.006 mmol) and dissolved in varying amounts of THF (833.3 µL to 1 mL). To each stirred THF solution, varying amounts (0 µL to 166.7 µL) of a 33.3 mM LiCl solution in THF were added to yield 1 mL solutions of Lu(CH_2SiMe_3)_3(THF)_2 with LiCl concentrations ranging from 0% to 100% (0 to 1 equivalent). After stirring the solutions for five minutes at room temperature, the volatiles were removed under reduced pressure, and the residues were redissolved in C₆D₆.

Figure S 61 Impact of LiCl concentration on the ¹H NMR shifts of the β- & γ-CH₂ resonances in THF.

Figure S 62 Superimposed ¹³C NMR spectra of Lu(CH₂Si(CH₃)₃)₃(THF)₂ in the absence (red) and presence of 1eq. LiCl (cyan) showing impact of LiCl concentration on the ¹³C NMR shifts of the β - & γ - CH₂ resonances in THF.

Figure S 63 Thermal stability of Lu(CH₂Si(CH₃)₃)₃(THF)₂ (**Lu-THF**) in the absence (black) and in the presence of 1 equivalent LiCl (red) expressed by the decrease of Lu(r)₃(THF)₂ concentration as a function of time using the logarithmic Lu(r)₃(THF)₂ concentration values obtained from the NMR integration values after incubation in C₆D₆, room temperature (30°C). The functions are described by the linear fits (R² = 0.96): ln ([Lu(r)₃(THF)₂]) = -1.5 (±0.2) × 10⁻³ x + 2.18 and (R² = 0.95): ln ([Lu(r)₃(THF)₂] + 1 eq. LiCl) = -6.1 (±0.7) × 10⁻⁴ x + 2.19, respectively, with x being the incubation time in h. The slope of the linear fit gives the rate constants k₁ = -1.5 (±0.2) × 10⁻³ and k₂ = -6.1 (±0.7) × 10⁻⁴.

Figure S 64 Stacked ⁷Li NMR spectra (156 MHz, C_6D_6) of $Y(r)_3(THF)_2$ prepared from Nar (this work) in the absence (red) and in the presence (cyan) of an equimolar amount of 12-crown-4 ether demonstrating the complex bulk is lithium free.

Figure S 65 Qualitative Cl⁻ test showing no AgCl formation in the case of H_2O (**1**, as a blank acidified with conc. HNO_3), $Y(r)_3(THF)_2$ (**2**, prepared starting from Nar after digestion with H_2O acidified with conc. HNO_3), and AgCl precipitates for Li[YCl(r)₃(THF)₂] (**3**, after digestion with H_2O acidified with conc. HNO_3).

Figure S 66 Quantitative Cl⁻ test using Mohr's method showing an aqueous solution of **Y-THF** prepared from Li(r) (**Li[YCI(r)₃(THF)₂]**) in the presence of K₂CrO₄ (**1**). Dropwise addition of an aqueous AgNO₃ solution results in gradual AgCl precipitation (**2**) followed by formation of red Ag₂CrO₄ at the endpoint of the titration (**3**).

7. References

- 1. H. Schumann, D. M. Freckmann and S. Dechert, *Zeitschrift für anorganische und allgemeine Chemie*, 2002, **628**, 2422-2426.
- 2. S.-M. Chen, Y.-Q. Zhang, J. Xiong, B.-W. Wang and S. Gao, *Inorganic Chemistry*, 2020, **59**, 5835-5844.
- 3. K. A. Rufanov, D. M. M. Freckmann, H.-J. Kroth, S. Schutte and H. Schumann, *Zeitschrift für Naturforschung B*, 2005, **60**, 533-537.
- 4. A. G. B. Getsoian, B. Hu, J. T. Miller and A. S. Hock, *Organometallics*, 2017, **36**, 3677-3685.
- 5. A. Mortis, C. Maichle-Mössmer and R. Anwander, *Dalton Transactions*, 2022, **51**, 1070-1085.
- 6. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. Howard and H. Puschmann, *Journal of applied crystallography*, 2009, **42**, 339-341.
- 7. G. M. Sheldrick, *Acta Crystallographica Section A: Foundations and Advances*, 2015, **71**, 3-8.
- 8. R. Clark and J. Reid, *Acta Crystallographica Section A: Foundations of Crystallography*, 1995, **51**, 887-897.
- 9. J. W. Bruno, G. M. Smith, T. J. Marks, C. K. Fair, A. J. Schultz and J. M. Williams, *Journal Of The American Chemical Society*, 1986, **108**, 40-56.
- 10. P. E. Hansen, *Progress in Nuclear Magnetic Resonance Spectroscopy*, 1988, **20**, 207-255.
- 11. S. C. Kosloski-Oh, K. D. Knight and M. E. Fieser, *Inorganic Chemistry*, 2023, DOI: 10.1021/acs.inorgchem.3c03161.
- 12. G. Cai, Y. Huang, T. Du, S. Zhang, B. Yao and X. Li, *Chemical Communications*, 2016, **52**, 5425-5427.
- 13. S. Arndt, P. M. Zeimentz, T. P. Spaniol, J. Okuda, M. Honda and K. Tatsumi, *Dalton Transactions*, 2003, 3622-3627.