
S1

Supplementary Information

Double coordination shell modulation of nitrogen-free atomic manganese sites 

for enhancing oxygen reduction performance

Xue Bai,a Yin Wang,c Jingyi Han,a Siyu Chen,a Xiaodi Niub,* and Jingqi Guana,*

a Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang 

Road, Changchun 130021, P. R. China. *E–mail: guanjq@jlu.edu.cn (J.Q. Guan)

b College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. 

China. *E–mail: niuxd@jlu.edu.cn (X.D. Niu)

c Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute 

(NII), College of Chemistry and Materials Science, Inner Mongolia Minzu University, 

Tongliao 028000, China

Supplementary Information (SI) for Chemical Science.
This journal is © The Royal Society of Chemistry 2024



S2

1. Materials Synthesis

Graphene oxide (GO) was synthesized according to the method described in the 

literature.1 100 mg of GO and 28 mg of MnSO44H2O were dispersed into 50 mL of 

deionized water, and a uniformly dispersed suspension was obtained by ultrasound for 

45 min. After freeze drying the suspension, a brown solid MnSO4-GO was obtained. 

The target catalyst Mn-S1O4G-600 was obtained by annealing the mixture of MnSO4-

GO and sulfur powder in a tube furnace at 600 ℃ in a nitrogen atmosphere for 2 h, 

and the heating rate was 10 ℃/min. By changing the calcination temperature and 

doping amount, a series of catalysts were synthesized, namely X%-Mn-S1O4G-T, 

where X = 0.3, 0.5, 0.7, and 0.9, and T = 400, 500, 600, and 700 ℃. 

The synthesis of control sample Mn-OG-600 was as follows: MnCl2-GO was 

directly calcined in a tubular furnace at 600 ℃ for 2 h. Without the addition of 

MnSO44H2O precursor, the mixture of GO and sulfur powder was calcined in a 

tube furnace to obtain SG-600. Without adding both MnSO44H2O and sulfur 

powder, OG-600 was obtained under the same conditions.

2. Electrocatalytic characterization

The oxygen reduction performance was tested with a rotating ring-disc electrode 

(RRDE) and CHI 760E electrochemical workstation, in which the counter electrode is 

platinum wire, the reference electrode is calomel electrode, and the electrolyte is 0.1 

M KOH. Uniform catalyst ink was obtained by dispersing 4 mg catalyst in 400 μL 

0.25% nafion/ethanol solution with 30 min of ultrasound. The electrochemical test 
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was carried out by adding 6 μL of catalyst ink to a RRDE with a diameter of 4 mm. 

Linear sweep voltammetry (LSV) curve was performed at a sweep speed of 5 mV s-1 

at rotation rate of 1600 rpm. The cyclic voltammetry (V) curve was performed during 

the kinetic region (0.6 V-1 V) at a sweep speed of 50 mV s-1. The i-t stability test was 

performed at 0.6 V. 

According to the LSV curves collected at different rotation rates (900, 1225, 

1600, 2025, and 2500 rpm), the electron transfer number (n) was calculated from the 

slope of the K-L equation by their Koutecky-Levich (K-L) diagram (J-1 vs. w-1/2) 

linear fit line:2
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The hydrogen peroxide yield (H2O2) and electron transfer numbers (n) were 

obtained from the RRDE using the following equations:

𝑛= 4
𝐼𝐷

𝐼𝐷+ (𝐼𝑅 ∕ 𝑁)

𝐻2𝑂2 = 200
𝐼𝑅 ∕ 𝑁

𝐼𝐷+ (𝐼𝑅 ∕ 𝑁)

The oxygen evolution performance was tested under the same conditions with 

0.1 M KOH as electrolyte. Linear sweep voltammetry (LSV) curve was performed at 

a sweep speed of 5 mV s-1.

3. Zinc–air battery testing
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Zn-air battery performances were assessed in 6 M KOH + 0.2 M Zn(Ac)2 on a 

battery test system (LANHE CT2001A). The anode comprised of a polished zinc 

plate (0.5 mm in thickness), whereas the cathode was crafted by applying the catalyst 

ink onto a 1 cm² composite carbon substrates surface, achieving a loading of 1 mg 

cm⁻². Catalyst ink was prepared by mixing 100 μL of 1 % Nafion/ethanol solution, 

500 μL of ethanol and 2 mg catalyst. The polarization curve was measured at a scan 

rate of 10 mV s-1. The galvanostatic recharge/discharge cycling measurements were 

collected at a current density of 5 mA cm-2 with each charge and discharge cycle 

lasting 20 minutes. 

4. Computational methods

We employed the Vienna Ab initio Simulation Package (VASP) to investigate 

the catalytic reaction mechanism of Mn-SxOyG models using DFT. The Perdew-

Burke-Ernzerhof (PBE) functional was utilized to describe the electronic exchange-

correlation interactions during the calculation. A cutoff energy of 300 eV was applied 

for the plane-wave basis set. To sample the Brillouin zone, we employed a 

Monkhorst-Pack k-points grid with a 2 × 2 × 1 mesh. Additionally, a sufficiently large 

vacuum space of 15 Å was included along the z-axis in the supercell configuration. 

By employing DFT, we computed the Gibbs free energies and determined the 3D 

structures of *OOH, *O, and *OH species on the surface of the Mn-SxOyG models.
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Fig. S1 XRD pattern of Mn-S1O4G-600.
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Fig. S2 CV curves of SG-600, OG-600, Mn-OG-600 and Mn-S1O4G-600 in N2- and 

O2-saturated 0.1 M KOH (dashed lines: N2; solid lines: O2)
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Fig. S3 Cyclic voltammogram curves of the Mn-S1O4G-600 at different scan rates for 

the ORR.

Fig. S4 Cyclic voltammogram curves of the Mn-OG-600 at different scan rates for the 

ORR.
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Fig. S5 Cyclic voltammogram curves of the SG-600 at different scan rates for the 

ORR.

Fig. S6 Cyclic voltammogram curves of the OG-600 at different scan rates for the 

ORR.
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Fig. S7 Electrochemical impedance spectra (EIS) curves of different catalysts at 0.8 V 

vs. RHE.
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Fig. S8 (a) LSV curves of Mn-OG-600 at the different revolving speed from 900 rpm 

to 2500 rpm. (b) Koutecky-Levich plots and electron transfer number (n).

Fig. S9 (a) LSV curves of Pt/C at the different revolving speeds from 900 rpm to 

2500 rpm. (b) Koutecky-Levich plots and electron transfer number (n).
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Fig. S10 (a) LSV curves of OG-600 at the different revolving speeds from 900 rpm to 

2500 rpm. (b) Koutecky-Levich plots and electron transfer number (n).

Fig. S11 (a) LSV curves of SG-600 at the different revolving speeds from 900 rpm to 

2500 rpm. (b) Koutecky-Levich plots and electron transfer number (n).
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Fig. S12 The record ring and disk current of Pt/C and Mn-S1O4G-600.

Fig. S13 (a) LSV curves and (b) Tafel plots for Mn-S1O4G-400, Mn-S1O4G-500, Mn-

S1O4G-600, Mn-S1O4G-700, Mn-S1O4G-800, and Mn-S1O4G-900.
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Fig. S14 (a) LSV curves and (b) Tafel plots for 0.3%-Mn-S1O4G-600, 0.5%-Mn-

S1O4G-600, 0.7%-Mn-S1O4G-600, and 0.9%-Mn-S1O4G-600.
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Fig. S15 Chronoamperometric (i-t) response of Mn-S1O4G-600 and Pt/C at 0.6 V.
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Fig. S16 In-situ Raman spectra of Mn-S1O4G-600 during the ORR process in 0.1 M 

KOH.
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Fig. S17 XRD pattern of Mn-S1O4G-600 after ORR.

Fig. S18 (a) LSV curves of Mn-S1O4G-600 in 0.1 M KOH with 10 ppm KSCN. 

Poison experiment by (b) CH3OH and (c) CO for Mn-S1O4G-600 and Pt/C.
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Fig. S19 The LSV curves of Mn-S1O4G-600 and Pt/C in 0.1 M KOH. The ΔE was the 

difference between η10 and E1/2.
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Fig. S20 The optimized structures of Mn-S4G and the reaction intermediates.

Fig. S21 The optimized structures of Mn-S3OG and the reaction intermediates.
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Fig. S22 The optimized structures of Mn-S2O2G and the reaction intermediates.

Fig. S23 The optimized structures of Mn-SO3G and the reaction intermediates.
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Fig. S24 The optimized structures of Mn-S3G and the reaction intermediates.

Fig. S25 The optimized structures of Mn-S2OG and the reaction intermediates.
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Fig. S26 The optimized structures of Mn-SO2G and the reaction intermediates.
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Table Sl. Curve fit parameters of Mn K-edge EXAFS for the Mn-S1O4G

Samplea Path Nb R/Åc σ2 (10-3Å2)d ΔE0/eV R-factor

Mn-O 3.79±0.23 1.970±0.082 0.00455Mn-S1O4G

Mn-S 1.13±0.15 2.140±0.12 0.00236

1.987±1.58 0.018

a S0
2 was fixed as 0.9. b N is the coordination number. c R is the distance between 

absorber and backscatter atoms. d σ2 is the Debye-Waller factor. R-factor is residual 

factor.
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Table S2 ORR performance comparison of Mn-S1O4G-600 with other reported 

catalysts

catalysts active site Eonset E1/2 Tafel Ref.

Mn-S1O4G-600 Mn-S1O4 0.98 0.86 46 This work

MSN200/CB - 0.90 0.75 75 3

MnOx@AC-S NPs 0.914 0.82 - 4

MnO/N-rGO-800 NPs 0.90 0.81 - 5

MnO/N-rGO NPs 0.85 0.77 - 5

Mn-NC-SA-950 Mn-N5 - 0.852 49 6

Se@NC-1000 Se-C2 0.95 0.85 52 7

Fe SA-NSC-900 Fe-N3S 0.92 0.86 59 8

Cu-NSDC Cu-S1N3 0.96 0.84 56 9
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Cu-SA/NPSC Cu-S1N3 0.90 0.84 57 10

Cu-N-CNFs CuN4 0.93 0.81 - 11

Co-N3C1-SAC Co-N3C1 0.904 0.824 46 12

Cu/Zn-NC ZnN4 & CuN4 0.98 0.83 54.8 13

FeNi SAs/NC Fe-Ni-N6 0.98 0.84 - 14
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Table S3 ZAB performance comparison of Mn-S1O4G-600 with other reported 

catalysts.

Catalyst

Open-circuit 

voltage 

(V)

Maximum powder 

density 

(mW cm–2)

Specific 

capacity 

(mAh g–1)

Ref.

Mn-S1O4G-600 1.46 199 750
This 

work

Co3Fe7@Co/Fe-SAC 1.45 161 763 15

Fe-Co/N-HCS-x 1.019 244.6 804 16

Fe3C|-N-C 1.414 63 - 17

PtFeNC 1.492 148  807 18

FeNi-NC 1.56 135.78 726.9 19

FeCo-NCNT - 27.07 881.8 20

Co SA/NCFs 1.53 154.5 796 21

FePtNC 1.51 191.83 713 22

FeCo(a)-ACM - 159.92 775.91 23

Ru–Cl–N SAC 1.455 205 804.26 24

Co@C-CoNC - 162.80  810 25

ZnCo-PNC 1.49 142.6 793 26

IE-SAC(PA+MA) 1.42 62 690.3 27
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