Biosynthesis of a bacterial meroterpenoid reveals a non-canonical class II meroterpenoid cyclase

Zengyuan Wang,^a Tyler A. Alsup,^b Xingming Pan,^a Lu-Lu Li,^a Jupeng Tian,^a Ziyi Yang,^a Xiaoxu Lin,^a Hui-Min Xu,^c Jeffrey D. Rudolf,^b and Liao-Bin Dong^{*,a}

^aState Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China
 ^bDepartment of Chemistry, University of Florida, Gainesville, Florida 32611, United States
 ^cThe Public Laboratory Platform, China Pharmaceutical University, Nanjing 211198, China

Corresponding to: ldong@cpu.edu.cn (L.-B. D.)

This PDF file includes:

Supplementary Experimental Procedures Supplementary Tables S1 to S23 Supplementary Figures S1 to S134

Table of Contents

Experimental procedures: General experimental procedures. Culture conditions. Gene cloning and plasmid construction. Heterologous expression, extraction, and LC-MS analysis. Isolation of atolypene A, C and D (1-3) from the S. albus DLW1011 overexpressing atoABCDEF. Isolation of **4** and **5** from the *S. albus* DLW1005 overexpressing *atoCF*. Isolation of **6–10** from the *S. albus* DLW1008 overexpressing *atoCDF*. Isolation of atolypene E–G (**11–13**) from the *S. lividans* DLW1012 overexpressing *atoCDEF*. Synthesis of Mosher esters of **9**. Synthesis of Mosher esters of **10** Chemical synthesis of 10a. X-ray crystallographic analysis of 2 and 12. Expression of AtoE and AtoE-mutants in Streptomyces and purification. Expression and purification of AtoA. Expression and purification of AtoB and selected class II MTCs. In vitro enzymatic assay of AtoA. In vitro enzymatic assay of AtoB. In vitro enzymatic assay of AtoE, AtoE-mutants, and selected class II MTCs. Bioinformatics analysis. Supplementary tables: Table S1. Predicted gene functions and blast results of *ato* BGC. Table S2. Strains used in this study. Table S3. Plasmids used in this study. **Table S4**. Primers used in this study. **Table S5**. Summary of ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) data for atolypene C (**2**) in methanol- d_4 (δ in ppm, J in Hz). Table S6. Summary of ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) data for atolypene D (3) in methanol- d_4 (δ in ppm, J in Hz). Table S6. Summary of ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) data for atolypene D (3) in methanol- d_4 (δ in p Table S7. Summary of ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) data for **4** in methanol- d_4 (δ in ppm, J in Hz). Table S8. Summary of ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) data for **5** in methanol- d_4 (δ in ppm, J in Hz). Table S9. Summary of ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) data for **6** in methanol- d_4 (δ in ppm, J in Hz). Table S10. Summary of ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) data for **7** in methanol- d_4 (δ in ppm, J in Hz). Table S11. Summary of ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) data for **8** in methanol- d_4 (δ in ppm, J in Hz). Table S12. Summary of ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) data for **8** in methanol- d_4 (δ in ppm, J in Hz). Table S12. Summary of ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) data for **9** in methanol- d_4 (δ in ppm, J in Hz). Table S12. Summary of ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) data for **9** in methanol- d_4 (δ in ppm, J in Hz). **Table S13.** Summary of ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) data for **10** in methanol- d_4 (δ in ppm, J in Hz). **Table S14.** Summary of ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) data for **9a**, **9b**, and **9c** in methanol- d_4 (δ in ppm, J in Hz). Table S14. Summary of ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) data for **10b**, **10c**, and **9c** in methanol- d_4 (δ in ppm, J in Hz). **Table S16.** Summary of ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) data for atolypene E (**11**) in methanol- d_4 (δ in ppm, J in Hz). **Table S17.** Summary of ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) data for atolypene E (**12**) in methanol- d_4 (δ in ppm, J in Hz). **Table S18.** Summary of ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) data for atolypene G (**13**) in methanol- d_4 (δ in ppm, J in Hz). **Table S19.** Summary of ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) data for atolypene G (**13**) in methanol- d_4 (δ in ppm, J in Hz). **Table S19.** Summary of ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) data for atolypene G (**13**) in methanol- d_4 (δ in ppm, J in Hz). **Table S19.** Summary of ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) data for **14** in methanol- d_4 (δ in ppm, J in Hz). **Table S20**. Summary of ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) data for **10e** in methanol- d_4 (δ in ppm, J in Hz) **Table S21**. Summary of ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) data for **10e** in methanol- d_4 (δ in ppm, J in Hz) **Table S22.** AtoE-like MTCs used for phylogenetic analysis. **Table S23.** Summary of ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) data for atolypene H (**15**) in methanol- d_4 (δ in ppm, J in Hz). Supplementary figures: Figure S1. Biosynthetic pathway of pyripyropene A. Figure S2. Schematic representation of the *ato* cluster and its homologous gene clusters and BLASTp comparisons of each gene product. Figure S3. Proposed biosynthetic pathways of brasilicardin A, phenalinolactone A, tiancilactone A, and longestin. Figure S4. Amino acid sequence alignment of bacterial noncanonical class II MTCs. Figure S5. Reconstitution of the ato gene cluster. Figure S6. Analysis of metabolites from engineered *Streptomyces* strains. Figure S7. ¹H NMR spectrum of atolypene A (1) in methanol- d_4 (400 MHz). Figure S8. ¹³C NMR spectrum of atolypene A (1) in methanol- d_4 (100 MHz). Figure S9. ¹H NMR spectrum of atolypene C (2) in methanol- 4_4 (100 MHz). Figure S10. ¹³C NMR spectrum of atolypene C (2) in methanol- 4_4 (100 MHz). Figure S11. DEPT spectrum of atolypene C (2) in methanol-d4. Figure S12. ¹H-¹H COSY spectrum of atolypene C (2) in methanol-d₄. Figure S12. The Trees spectrum of atolypene C (2) in methanol- d_4 . Figure S13. HSQC spectrum of atolypene C (2) in methanol- d_4 . Figure S14. HMBC spectrum of atolypene C (2) in methanol- d_4 . Figure S15. ROESY spectrum of atolypene C (2) in methanol- d_4 . Figure S16. ¹H NMR spectrum of atolypene D (3) in methanol- d_4 (400 MHz). Figure S17. ¹³C NMR spectrum of atolypene D (3) in methanol- d_4 (100 MHz). Figure S18. 1H-1H COSY spectrum of atolypene D (3) in methanol-d4. Figure S19. HSQC spectrum of atolypene D (3) in methanol-d4. Figure S13. HMBC spectrum of atolypere D (3) in methanol- d_4 . Figure S21. ROESY spectrum of atolypene D (3) in methanol- d_4 . Figure S22. ¹H NMR spectrum of 4 in methanol- d_4 (400 MHz). Figure S23. ¹³C NMR spectrum of 4 in methanol- d_4 (100 MHz). Figure S24. 1H-1H COSY spectrum of 4 in methanol-d4. Figure S25. HSQC spectrum of 4 in methanol-d4. Figure S26. HMBC spectrum of 4 in methanol-d4 Figure S27. ROESY spectrum of 4 in methanol-d4. Figure S21. The NMR spectrum of 5 in methanol- d_4 (400 MHz). Figure S28. ¹H NMR spectrum of 5 in methanol- d_4 (400 MHz). Figure S30. ¹H-¹H COSY spectrum of 5 in methanol- d_4 . Figure S31. HSQC spectrum of 5 in methanol- d_4 . Figure S32. HMBC spectrum of 5 in methanol-d₄. Figure S33. ROESY spectrum of 5 in methanol-d4 Figure S34. ¹H NMR spectrum of 6 in methanol-d₄ (400 MHz). Figure S35. ¹³C NMR spectrum of **6** in methanol- d_4 (100 MHz). Figure S36. ¹H-¹H COSY spectrum of **6** in methanol- d_4 . Figure S37. HSQC spectrum of 6 in methanol-d4.

Figure S38. HMBC spectrum of 6 in methanol-d4 Figure S39. ROESY spectrum of 6 in methanol-d₄. Figure S40. Proposed biosynthetic pathway of atolypenes. Figure S41. ¹H NMR spectrum of 7 in methanol-d₄ (400 MHz). Figure S42. ¹³C NMR spectrum of **7** in methanol- d_4 (100 MHz). Figure S43. 1H-1H COSY spectrum of 7 in methanol-d4. Figure S44. HSQC spectrum of 7 in methanol-d4. Figure S45. HMBC spectrum of 7 in methanol-d4 Figure S46. ROESY spectrum of 7 in methanol-d₄. Figure S47. ¹H NMR spectrum of 8 in methanol-d₄ (400 MHz). Figure S48. ¹³C NMR spectrum of 8 in methanol- d_4 (100 MHz). **Figure S49.** ¹H-¹H COSY spectrum of **8** in methanol- d_4 . Figure S50. HSQC spectrum of 8 in methanol-d4. Figure S51. HMBC spectrum of 8 in methanol-d₄ Figure S52. ROESY spectrum of 8 in methanol-d4 Figure S52. NOEST spectrum of **9** in methanol- d_4 (400 MHz). Figure S54. ¹³C NMR spectrum of **9** in methanol- d_4 (100 MHz). Figure S55. ¹H-¹H COSY spectrum of **9** in methanol- d_4 . Figure S56. HSQC spectrum of **9** in methanol- d_4 . **Figure S57.** HMBC spectrum of **9** in methanol- d_4 Figure S58. ROESY spectrum of 9 in methanol-d4. Figure S59. ¹H NMR spectrum of 10 in methanol-d₄ (400 MHz). Figure S60. ¹³C NMR spectrum of 10 in methanol-d₄ (100 MHz). Figure S61. ¹H-¹H COSY spectrum of **10** in methanol-d₄. Figure S62. HSQC spectrum of **10** in methanol- d_4 . Figure S63. HMBC spectrum of **10** in methanol- d_4 . **Figure S64.** ROESY spectrum of **10** in methanol- d_4 . Figure S65. ¹H NMR spectrum of **9a** in methanol- d_4 (400 MHz). Figure S66. ¹³C NMR spectrum of 9a in methanol-d₄ (100 MHz). Figure S67. ¹H NMR spectrum of 10b in methanol-d₄ (400 MHz). Figure S68. ¹³C NMR spectrum of **10b** in methanol- d_4 (100 MHz). Figure S69. ¹H NMR spectrum of **9b** in methanol- d_4 (400 MHz). Figure S70. ¹³C NMR spectrum of **9b** in methanol- d_4 (100 MHz). **Figure S71.** HSQC spectrum of **9b** in methanol- d_4 . **Figure S72.** ¹H NMR spectrum of **9c** in methanol- d_4 (400 MHz). Figure S73. ¹³C NMR spectrum of 9c in methanol-d₄ (100 MHz). Figure S74. HSQC spectrum of 9c in methanol-d4. Figure S75. ¹H NMR spectrum of **10c** in methanol- d_4 (400 MHz). Figure S76. ¹³C NMR spectrum of **10c** in methanol- d_4 (100 MHz). Figure S77. HSQC spectrum of **10c** in methanol- d_4 . Figure S78. ¹H NMR spectrum of **10d** in methanol- d_4 (400 MHz). Figure S79. ¹³C NMR spectrum of **10d** in methanol- d_4 (100 MHz). Figure S80. Absolute stereochemical determination at C3 of 9 and 10 using the modified Mosher method. Figure S81. HPLC analysis of metabolites from S. lividans DLW1012 harboring the four genes atoCDEF. Figure S82. ¹H NMR spectrum of atolypene E (11) in methanol-d₄ (400 MHz). Figure S83. ¹³C NMR spectrum of atolypene E (11) in methanol-d₄ (100 MHz). Figure S84. ¹H-¹H COSY spectrum of atolypene E (11) in methanol-d₄. Figure S85. HSQC spectrum of atolypene E (11) in methanol- d_4 . Figure S86. HMBC spectrum of atolypene E (11) in methanol- d_4 . Figure S87. ROESY spectrum of atolypene E (11) in methanol- d_4 . Figure S88. ¹H NMR spectrum of atolypene F (12) in methanol- d_4 (400 MHz). Figure S89. ¹³C NMR spectrum of atolypene F (12) in methanol-d₄ (100 MHz). Figure S90. 1H-1H COSY spectrum of atolypene F (12) in methanol-d4. Figure S91. HSQC spectrum of atolypene F (12) in methanol- d_4 . Figure S92. HMBC spectrum of atolypene F (12) in methanol- d_4 . Figure S93. ROESY spectrum of atolypene F (12) in methanol- d_4 . Figure S94. ¹H NMR spectrum of atolypene G (13) in methanol- d_4 (400 MHz). Figure S95. ¹³C NMR spectrum of atolypene G (13) in methanol- d_4 (100 MHz). Figure S96. 1H-1H COSY spectrum of atolypene G (13) in methanol-d4. Figure S97. HSQC spectrum of atolypene G (13) in methanol- d_4 . Figure S98. HMBC spectrum of atolypene G (13) in methanol- d_4 Figure S99. ROESY spectrum of atolypene G (13) in methanol- d_4 . Figure S100. EIC analysis of wild-type *S. albus* that were supplemented with 11 and 12, respectively. Figure S101. Protein purification of AtoA and AtoB. Figure S102. LC-MS analysis of the in vitro reactions of AtoA with 11 and 12, respectively. Figure S103. LC-MS analysis of the in vitro reactions of AtoB with 6 and 14. Figure S104. ¹H NMR spectrum of 14 in methanol-d₄ (400 MHz). Figure S105. ¹³C NMR spectrum of 14 in methanol-d₄ (100 MHz). Figure S106. ¹H-¹H COSY spectrum of **14** in methanol-d₄. Figure S107. HSQC spectrum of 14 in methanol- d_4 . Figure S108. HMBC spectrum of 14 in methanol- d_4 . Figure S109. ROESY spectrum of 14 in methanol- d_4 Figure S110. Plasmid construction and protein purification of AtoE. Figure S111. ¹H NMR spectrum of 10e in methanol-d₄ (400 MHz). Figure S112. ¹³C NMR spectrum of 10e in methanol-d₄ (100 MHz). Figure S113. ¹H NMR spectrum of 10a in methanol-d₄ (400 MHz). Figure S114. ¹³C NMR spectrum of **10a** in methanol- d_4 (100 MHz). Figure S115. ¹H-¹H COSY spectrum of **10a** in methanol- d_4 . Figure S116. HSQC spectrum of **10a** in methanol- d_4 . Figure S117. HMBC spectrum of 10a in methanol- d_4 . Figure S118. ROESY spectrum of 10a in methanol-d₄. **Figure S119.** HPLC analysis of in vitro biochemical assay of AtoE with **10a** (λ_{max} = 210 nm). Figure S120. Structural model of AtoE with displaying key active site residues and a docking model of 10a. Figure S121. Protein purification of AtoE mutants. Figure S122. In vitro reactions of AtoE variants with the substrate 10a. Figure S123. LC-MS analysis of the in vitro reactions of AtoE and variants with 10a. Figure S124. Protein purification of selected class II MTCs.

Figure S124. Flocing profiles (λ_{max} = 210 nm) of the in vitro reactions of class II MTCs (UtaTC, SsyTC, SmaTC, SerTC, CcrTC, and AtoE) with **10a**. Figure S126. LC-MS analysis of the in vitro reactions of class II MTCs (UtaTC, SsyTC, SmaTC, SerTC, CcrTC, and AtoE) with **10a**.

Figure S127. Proposed catalytic processes of the class II MTCs involving substrate 10a to form 13 and 15.

Figure S128. ¹H NMR spectrum of atolypene H (**15**) in methanol- d_4 (400 MHz). **Figure S129.** ¹³C NMR spectrum of atolypene H (**15**) in methanol- d_4 (100 MHz). **Figure S130.** ¹H-¹H COSY spectrum of atolypene H (**15**) in methanol- d_4 . **Figure S131.** HSQC spectrum of atolypene H (**15**) in methanol- d_4 . **Figure S132.** HMBC spectrum of atolypene H (**15**) in methanol- d_4 . **Figure S133.** ROESY spectrum of atolypene H (**15**) in methanol- d_4 . **Figure S133.** ROESY spectrum of atolypene H (**15**) in methanol- d_4 . **Figure S134.** Analysis of selected *ato*-like BGCs.

Experimental Procedures

General experimental procedures.

All ¹H, ¹³C, and 2D NMR (¹H-¹H COSY, HSQC, HMBC, and ROESY) experiments were run on a Bruker AVANCE NEO at 400 MHz for ¹H and 100 MHz for ¹³C nuclei. Chemical shifts (δ) were given in parts per million (ppm) with reference to the solvent signals and coupling constants were expressed in hertz (Hz). Preparative HPLC was carried out on an Agilent 1260 Prep Infinity LC with a VWD detector equipped with an Agilent Eclipse XDB-C18 column (250 mm × 21.2 mm, 7 µm). LC-MS was performed on an Agilent 1260 Infinity LC coupled to an MSD IQ equipped with an Agilent Poroshell 120 EC-C18 column (50 mm × 4.6 mm, 2.7 µm). Optical rotations were obtained using an AUTOPOL IV automatic polarimeter (Rudolph Research Analytical). HRESIMS data were obtained using an Agilent G6230 Q-TOF mass instrument. UV spectra were acquired in MeOH with a Shimadzu UV-2600i UV-VIS spectrophotometer. X-ray crystal data were collected using a Bruker D8 VENTURE diffractometer. Fractions were analytically pure. Other chemicals, biochemical, and media components were purchased from standard commercial sources.

Culture conditions.

E. coli strains harboring plasmids were grown in lysogeny broth (LB) with appropriate antibiotic selection. Wild-type (*Streptomyces albus* J1074, *Streptomyces lividans* SBT18 and *Amycolatopsis tolypomycina* NRRL B-24205) and recombinant actinomycete strains were cultured in solid MS medium. *E. coli-Streptomyces* conjugations were plated onto solid ISP4 medium supplemented with 20 mM MgCl₂. Fermentation of wild-type and recombinant actinomycete strains were conducted using fermentation medium of PTMM.^[1–3] Briefly, fresh spores of actinomycete strains were inoculated into 250 mL baffled flasks containing 50 mL of Tryptone Soy Broth (TSB) sterile seed medium and cultivated for 2–3 days at 28 °C on a rotary shaker (230 rpm). After that, 4% (v/v) seed culture were transferred into 2.5 L baffled Erlenmeyer flasks filled with 500 mL of fermentation medium, and incubated at 28 °C and 230 rpm for 7 days.

MS medium: 20 g D-mannitol, 20 g soya flour, 3 g CaCO₃, and 20 g agar in 1 L of deionized water, pH 7.2.

ISP4 medium: 10 g starch soluble, 1 g K₂HPO₄, 1 g MgSO₄, 1 g NaCl, 2 g (NH₄)₂SO₄, 2 g CaCO₃, 1 mg FeSO₄, 1 mg MnCl₂, 1 mg ZnSO₄, and 20 g agar in 1 L of deionized water, pH 7.2.

PTMM medium: 40 g dextrin, 40 g lactose, 5 g yeast extract, 5 g MOPS, and 10 mL trace elements (40 mg ZnCl₂, 200 mg FeCl₃·6H₂O, 10 mg CuCl₂, 10 mg MnCl₂·4H₂O, 10 mg Na₂B₄O₇·10H₂O, and 10 mg (NH₄)₆Mo₇O₂₄·4H₂O in 1 L of deionized water) in 1 L of deionized water, pH 7.3.

Gene cloning and plasmid construction.

The sequences of synthetic promoters, ribosome binding sites (RBS), and terminators were designed based on a prior publication,^[4] and were synthesized by General Biosystems (Anhui, China). Combinations of promoters and RBSs were organized to ensure that no additional sequences were present between promoter and RBS sequences (P12R10, P3R5, P9R7, and P10R10). The synthetic promoter-RBS parts and terminator parts (T2, T9, T4, and T10) were assembled onto the pRSFDuet-1 plasmid by General biosystems (Anhui, China), resulting in the construction of plasmids pRSFDuet-P12R10, pRSFDuet-P3R5, pRSFDuet-P9R7, and pRSFDuet-P10R10. Genomic DNA from *A. tolypomycina* was extracted according to the protocol of DC103 kit (Vazyme).

Each CDS (Coding sequence) in the *ato* gene cluster was amplified by polymerase chain reaction (PCR) from genomic DNA using the corresponding primers (Table S4). Genes *atoA*, *atoE*, *and atoF* were inserted into the *NdeI* restriction site within the pRSFDuet-P12R10 vector to construct plasmids pLDW1001, pLDW1002, and pLDW1003. Gene *atoB* was inserted into the *PstI* restriction site within the pRSFDuet-P9R7 vector to construct pLDW1004. Gene *atoC* was inserted into the *Hind*III restriction site within the pRSFDuet-P3R5 vector to afford pLDW1005. Subsequently, plasmid pLDW1006 was constructed by inserting gene *atoD* into the *Af*III restriction site of the pRSFDuet-P10R10 vector resulting in pRSFDuet-P10R10-*atoD*.

The PCR pruduct P3R5-*atoC*-T9, cloned from pLDW1005, was inserted into the *EcoR*V and *BamH*I sites of pSET152 vector to generate pLDW1007. Subsequently, the PCR pruducts P3R5-*atoC*-T9 and P10R10-*atoD*-T10 were cloned from pLDW1005 and pLDW1006, respectively, and inserted into the *EcoR*V and *BamH*I sites of pSET152 vector to afford pLDW1008. The PCR products of P3R5-*atoC*-T9 and P12R10-*atoE*-T2 were assembled into the linearized pSET152 vector, resulting in pLDW1009. The P3R5-*atoC*-T9 and P12R10-*atoF*-T2 fragments were cloned into the *EcoR*V and *BamH*I sites of pSET152 vector to create pLDW1010. The P3R5-*atoC*-T9 and P12R10-*atoF*-T2 fragments were cloned into the *EcoR*V and *BamH*I sites of pSET152 vector, resulting in pLDW1010. The P3R5-*atoC*-T9, P10R10-*atoD*-T10, and P12R10-*atoE*-T2 fragments were assembled into the linearized pSET152 vector, resulting in pLDW1011. The P3R5-*atoC*-T9, P12R10-*atoE*-T2, and P12R10-*atoF*-T2 fragments were assembled into the linearized pSET152 vector, resulting in pLDW1012. The P3R5-*atoC*-T9, P10R10-*atoD*-T10, and P12R10-*atoD*-T10, and P12R10-*atoF*-T2 fragments were assembled into the linearized pSET152 vector, resulting in pLDW1013. The P3R5-*atoC*-T9, P10R10-*atoD*-T10, P12R10-*atoE*-T2, and P12R10-*atoF*-T2 fragments were assembled into the linearized pSET152 vector, resulting in pLDW1013. The P3R5-*atoC*-T9, P10R10-*atoD*-T10, P12R10-*atoE*-T2, and P12R10-*atoD*-T10, P12R10-*atoE*-T2, P10R10-*atoD*-T10, P12R10-*atoE*-T2, P10R10-*atoD*-T10, P12R10-*atoE*-T2, P10R10-*atoD*-T10, P12R10-*atoE*-T2, and P12R10-*atoF*-T2 fragments were assembled into the linearized pSET152 vector, resulting in pLDW1015. The P12R10-*atoE*-T2, P9R7-atoB-T4, P3R5-*atoC*-T9, P10R10-*atoD*-T10, P12R10-*atoE*-T2, and P12R10-*atoF*-T2 fragments were assembled into the linearized pSET152 vector, resulting in pLDW1015. The

Genes atoA, atoB, atoE, and several class II meroterpenoid cyclase (MTC) genes (SerTC, SmaTC, UtaTC, CcrTC, SsyTC, AxyTC, and PshTC) were inserted into the NdeI and XhoI restriction sites within the pET-28a(+) vector, resulting in the construction of expression vectors pLDW1017–pLDW1019 and pLDW1021–pLDW1027.

Heterologous expression, extraction, and LC-MS analysis.

Plasmids pLDW1007–pLDW1016 were individually transformed into *E. coli* ET12567/pUZ8002 and introduced into *S. albus* J1074 by intergeneric conjugation according to the standard methods.^[5] Positive colonies were selected with 20 µg/mL nalidixic acid and 50

µq/mL apramycin after 5-7 days cultivation and subsequently identified through PCR with corresponding primers. Finally, recombinant strains were constructed and named S. albus DLW1002-DLW1011, respectively. Likewise, the recombinant plasmid pDLW1014 was transferred into S. lividans SBT18 in the same manner to obtain S. lividans DLW1012.

All recombinant Streptomyces strains were fermented in PTMM medium. The broth and mycelium were separated by centrifugation at 3750 rpm for 15 min. The broth was then extracted three times with ethyl acetate (EtOAc), while the mycelium was extracted with acetone. After removing the solvent, the residual solution was further extracted with EtOAc. The organic phase of broth and mycelium extracts were combined and evaporated. The resulting residues were dissolved in CH₃OH and filtered through a 0.22 µm filter for subsequent LC-MS analysis. LC-MS analysis was performed using an 18 min solvent gradient (0.8 mL/min) from 10%-100% CH₃CN in H₂O containing 0.1% formic acid.

Isolation of atolypene A, C and D (1-3) from the S.albus DLW1011 overexpressing atoABCDEF.

The heterologous strain of S. albus DLW1011 harboring gens atoABCDEF was fermented on a 7.5-L large scale in PTMM medium. After a 7-day fermentation, the broth and mycelium were separated by centrifugation at 3750 rpm for 20 min. The broth was then extracted three times with EtOAc, while the mycelium was extracted with acetone. After removing the solvent, the residual mycelium solution was further extracted with EtOAc. The extracts from broth and mycelium were combined after concentration in vacuo. The crude extracts were then adsorbed onto C18 reverse-phase resin and fractionated by MPLC, eluting with a gradient of CH₃OH-H₂O (60:40-100:0) to give six fractions (Fr.01-Fr.06). Fr.02, which contained atolypene A (1), was further purified by reverse-phase preparative HPLC (65% CH₃CN, 17 mL/min) to yield 14 mg (t_R = 22 min; Figures S7 and S8). Fr.04 was purified by preparative HPLC eluted with 30–100% CH₃CN at a flow rate of 17 mL/min for 35 min, affording atolypene C (2) (9 mg; t_R = 25 min; Figures S9–S15) and atolypene D (3) (16 mg; t_R = 27 min; Figures S16–S21).

Atolypene A (1): white powder; ¹H NMR (400 MHz, CD₃OD): δ_H 5.73 (1H, m), 5.16 (1H, t, *J* = 6.6 Hz), 3.55 (1H, m), 2.53 (1H, m), 2.36 (1H, m), 2.30 (1H, m), 2.14 (1H, m), 2.12 (1H, m), 2.06 (1H, m), 2.24 (1H, m), 2.19 (1H, m), 1.98 (1H, m), 1.97 (1H, m), 1.95 (1H, m), 1.95 (1H, m), 1.94 (1H, m), 1.90 (1H, m), 1.79 (1H, m), 1.67 (1H, m), 1.65 (3H, s), 1.60 (1H, m), 1.59 (1H, m), 1.49 (1H, m), 1.47 (1H, m), 1.45 (1H, m), 1.34 (1H, m), 1.24 (3H, s), 1.21 (3H, s), 1.13 (1H, m), 1.03 (3H, s), 0.98 (3H, d, J = 7.1 Hz), 0.90 (3H, s) ppm. 13 C NMR (100 MHz, CD₃OD): δ_{C} 217.8, 174.6, 144.1, 139.2, 123.3, 122.4, 56.1, 51.6, 51.3, 45.7, 39.8, 39.0, 38.3, 37.2, 36.5, 33.9, 33.5, 32.7, 29.4, 26.5, 25.0, 24.8, 24.7, 23.3, 21.4, 16.6, 15.7, 14.9 ppm. Atolypene C (**2**): white powder; $[\alpha]_D^{20}$ +22.5 (*c* 0.12, MeOH); UV (MeOH) λ_{max} nm (log ε): 208 (2.6); ¹H NMR (400 MHz) and ¹³C NMR

(100 MHz) data (CD₃OD), see **Table S5**; HRESIMS (negative mode) m/z 484.3438 [M – H]⁻ (calcd for C₃₀H₄₆NO₄⁻, 484.3432). Atolypene D (**3**): white powder; $[\alpha]_D^{20}$ +6.0 (*c* 0.04, MeOH); UV (MeOH) λ_{max} nm (log ε): 206 (2.9); ¹H NMR (400 MHz) and ¹³C NMR

(100 MHz) data (CD₃OD), see **Table S6**; HRESIMS (negative mode) *m*/z 443.3169 [M – H]⁻ (calcd for C₂₈H₄₃O₄⁻, 443.3167).

Isolation of 4 and 5 from the S.albus DLW1005 overexpressing atoCF.

The heterologous strain of S. albus DLW1005, harboring gens atoCF, was fermented on a 10-L scale in PTMM medium. Following the procedure described above, the EtOAc fraction was adsorbed onto C18 reverse-phase resin and fractionated by MPLC, eluting with a gradient of CH₃OH-H₂O (50:50-100:0) to give four fractions (Fr.01- Fr.04). Fr.02 was subjected to silica gel CC and eluted with petroleum ether-EtOAc (10:1–5:1) to yiled 4 (11 mg; Figures S22–S27) and 5 (7 mg; Figures S28–S33). Compound 4: colorless oil; $[\alpha]_D^{20}$ +7.0 (*c* 0.01, MeOH); UV (MeOH) λ_{max} nm (log ϵ): 203 (1.7); ¹H NMR (400 MHz) and ¹³C NMR (100

MHz) data (CD₃OD), see **Table S7**; HRESIMS (negative mode) m/z 405.3005 [M – H]⁻ (calcd for C₂₅H₄₁O₄⁻, 405.3010).

Compound 5: colorless oil; $[\alpha]_D^{20}$ +12.0 (c 0.03, MeOH); UV (MeOH) λ_{max} nm (log ε): 212 (2.8); ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) data (CD₃OD), see **Table S8**; HRESIMS (negative mode) *m/z* 415.3187 [M + Na]⁺ (calcd for C₂₅H₄₄NaO₃⁺, 415.3183).

Isolation of 6–10 from the S.albus DLW1008 overexpressing atoCDF.

The heterologous strain of S. albus DLW1008, harboring gens atoCDF, was fermented on a 40-L large scale in PTMM medium. Following the procedure described above, the crude extracts were adsorbed onto C18 reverse-phase resin and fractionated by MPLC, eluting with a gradient of CH₃OH-H₂O (40:60–100:0) to give five fractions (Fr.01–Fr.05). Fr.02 was purified by preparative HPLC that was eluted with 60% CH₃CN at the flow rate of 17 mL/min for 25 min to afford **6** (68 mg; t_R = 16 min; Figures S34–S39). Fr.03 was subjected to silica gel CC and eluted with petroleum ether-EtOAc (10:1-1:1) to yiled 7 (5 mg; Figures S41-S46), 8 (221 mg; Figures S47-S52) and 9 (450 mg; Figures S53-S58). Fr. 04 was subjected to silica gel CC, eluting with petroleum ether-EtOAc (5:1), and further purified by preparative HPLC (CH₃CN-H₂O, 85:15) to yield **10** (330 mg; t_{R} = 20 min; Figures S59–S64). Compound **6**: colorless oil; $[\alpha]_{D}^{2b}$ +8.0 (*c* 0.10, MeOH); UV (MeOH) λ_{max} nm (log ϵ): 210 (2.7); ¹H NMR (400 MHz) and ¹³C NMR (100

MHz) data (CD₃OD), see **Table S9**; HRESIMS (negative mode) m/z 462.3580 [M – H]⁻ (calcd for C₂₈H₄₈NO₄⁻, 462.3589). Compound **7**: colorless oil; $[\alpha]_D^{20}$ +7.0 (*c* 0.03, MeOH); UV (MeOH) λ_{max} nm (log ϵ): 204 (2.1); ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) data (CD₃OD), see **Table S10**; HRESIMS (negative mode) m/z 504.3673 [M – H]⁻ (calcd for C₃₀H₅₀NO₅⁻, 504.3694). Compound **8**: colorless oil; $[\alpha]_D^{20}$ +5.9 (*c* 0.22, MeOH); UV (MeOH) λ_{max} nm (log ϵ): 205 (2.6); ¹H NMR (400 MHz) and ¹³C NMR (100

MHz) data (CD₃OD), see **Table S11**; HRESIMS (negative mode) m/z 463.3425 [M – H]⁻ (calcd for C₂₈H₄₇O₅⁻, 463.3429). Compound **9**: colorless oil; $[\alpha]_D^{2D}$ +35.0 (*c* 0.04, MeOH); UV (MeOH) λ_{max} nm (log ϵ): 213 (3.0); ¹H NMR (400 MHz) and ¹³C NMR (100

MHz) data (CD₃OD), see **Table S12**; HRESIMS (negative mode) m/z 407.3161 [M – H]⁻ (calcd for C₂₅H₄₃O₄⁻, 407.3167). Compound **10**: colorless oil; $[\alpha]_D^{20}$ +15.0 (*c* 0.05, MeOH); UV (MeOH) λ_{max} nm (log ε): 212 (2.9); ¹H NMR (400 MHz) and ¹³C NMR

(100 MHz) data (CD₃OD), see **Table S13**; HRESIMS (negative mode) m/z 433.3313 [M – H]⁻ (calcd for C₂₇H₄₅O₄⁻, 433.3323).

Isolation of atolypene E-G (11-13) from the S.lividans DLW1012 overexpressing atoCDEF.

The heterologous strain of S. lividans DL1012, harboring gens atoCDEF, was fermented on a 7.5-L large scale in PTMM medium. Following the procedure described above, the crude extracts were adsorbed onto C18 reverse phase resin and fractionated by MPLC. eluting with a gradient of CH₃OH-H₂O (60:40–100:0) to give six fractions (Fr.01–Fr.06). Fr.02 was further purified by preparative HPLC eluted with 30–100% CH₃CN at the flow rate of 17 mL/min for 25 min to afford atolypene E (11) (6 mg; t_R = 15 min; Figures S82–S87). Fr.03 that contained atolypene F (12) was further purified by preparative HPLC (75% CH₃CN, 17 mL/min) to yield 5 mg ($t_{\rm R}$ = 22 min; Figures S88–S93). Fr.05 was subjected to silica gel CC and eluted with petroleum ether-EtOAc (5:1) to yiled atolypene E (13) (15 mg; Figures S94-S99).

Atolypene E (**11**): white powder; $\left[\alpha\right]_{D}^{20}$ +38.3 (*c* 0.06, MeOH); UV (MeOH) λ_{max} nm (log ε): 206 (2.6); ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) data (CD₃OD), see **Table S16**; HRESIMS (negative mode) *m*/z 444.3492 [M – H]⁻ (calcd for C₂₈H₄₆NO₃⁻, 444.3483).

Atolypene F (12): white powder; $[\alpha]_D^{20}$ +45.0 (c 0.06, MeOH); UV (MeOH) λ_{max} nm (log ϵ): 207 (2.4); ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) data (CD₃OD), see **Table S17**; HRESIMS (negative mode) m/z 486.3584 [M – H]- (calcd for C₃₀H₄₈NO₄-, 486.3589). Atolypene G (**13**): colorless waxy solid; $[\alpha]_{D}^{2}$ +54.6 (c 0.03, MeOH); UV (MeOH) λ_{max} nm (log ϵ): 209 (2.9); ¹H NMR (400 MHz) and

¹³C NMR (100 MHz) data (CD₃OD), see **Table S18**; HRESIMS (negative mode) *m*/z 415.3214 [M – H]⁻ (calcd for C₂₇H₄₃O₃⁻, 415.3218).

Synthesis of Mosher esters of 9.

To a stirred solution of 9 (61.4 mg, 0.150 mmol) and K₂CO₃ (104.0 mg, 0.750 mmol) in dry acetone (1 mL) was added Mel (93.4 µL, 1.500 mmol). The reaction mixture was stirred at room temperature for 6 h. After removing of acetone under reduced pressure, the reaction mixture was extracted with EtOAc (3 × 10 mL) and dried over anhydrous Na₂SO₄. The crude product was concentrated in vacuo and purified by silica gel CC, eluting with petroleum ether-EtOAc (4:1) to yiled 9a (55.0 mg; 87%; Figures S65 and S66).

The synthesis of Mosher esters of compound 9a was carried out using previously published methods.^[6]

A mixture of 9a (20.0 mg, 0.047 mmol), (S)-(-)-MTPA (44.0 mg, 0.188 mmol), DCC (39.0 mg, 0.189 mmol), and DMAP (17.0 mg, 0.139 mmol) was dissolved in anhydrous CH₂Cl₂ (1 mL), which was stirred under N₂ at room temperature for 12 h. After concentration in vacuo, the crude product was subjected to silica gel CC and eluted with petroleum ether-EtOAc (10:1) to yiled 9b (13 mg; 43%; Figures S69-S71).

Consistent with the above process, a mixture of 9a (25.0 mg, 0.059 mmol), (R)-(+)-MTPA (55.0 mg, 0.235 mmol), DCC (48.7 mg, 0.236 mmol), and DMAP (21.0 mg, 0.172 mmol) was dissolved in anhydrous CH₂Cl₂ (1 mL), which was stirred under N₂ at room temperature for 12 h. After concentration in vacuo, the crude product was subjected to silica gel CC and eluted with petroleum ether-EtOAc (10:1) to yiled 9c (19 mg; 50%; Figures S72–S74).

Compound **9a**: colorless oil; $[\alpha]_D^{20}$ +12.0 (*c* 0.13, MeOH); UV (MeOH) λ_{max} nm (log ϵ): 215 (3.1); ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) data (CD₃OD), see **Table S14**; HRESIMS (positive mode) *m/z* 445.3275 [M + Na]⁺ (calcd for C₂₆H₄₆NaO₄⁺, 445.3288). Compound **9b**: colorless oil; $\left[\alpha\right]_{D}^{2\circ}$ -12.4 (c 0.13, MeOH); UV (MeOH) λ_{max} nm (log ε): 218 (3.4); ¹H NMR (400 MHz) and ¹³C NMR

(100 MHz) data (CD₃OD), see **Table S14**; HRESIMS (positive mode) *m*/*z* 661.3680 [M + Na]⁺ (calcd for C₃₆H₅₃F₃NaO₆⁺, 661.3686). Compound **9c**: colorless oil; $\left[\alpha\right]_{D}^{20}$ +31.6 (c 0.18, MeOH); UV (MeOH) λ_{max} nm (log ε): 221 (3.6); ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) data (CD₃OD), see **Table S14**; HRESIMS (positive mode) *m/z* 661.3679 [M + Na]⁺ (calcd for C₃₆H₅₃F₃NaO₆⁺, 661.3686).

Synthesis of Mosher esters of 10.

To a stirred solution of 10 (30 mg, 0.069 mmol) and K₂CO₃ (47.8.0 mg, 0.346 mmol) in dry acetone (1 mL) was added MeI (22.0 µL, 0.345 mmol). The reaction mixture was stirred at room temperature for 6 h. After removing of acetone under reduced pressure, the reaction mixture was extracted with EtOAc (3 × 10 mL) and dried over anhydrous Na₂SO₄. The crude product was concentrated in vacuo and purified by silica gel CC, eluting with petroleum ether-EtOAc (5:1) to yiled 10b (26.0 mg; 84%; Figures S67 and S68).

A mixture of **10b** (13.0 mg, 0.029 mmol), (S)-(-)-MTPA (13.0 mg, 0.029 mmol), DCC (24.0 mg, 0.117 mmol), and DMAP (15.0 mg, 0.123 mmol) was dissolved in anhydrous CH_2Cl_2 (1 mL), which was stirred under N_2 at room temperature for 12 h. After concentration in vacuo, the crude product was subjected to silica gel CC and eluted with petroleum ether-EtOAc (11:1) to yiled **10c** (11.0 mg; 57%; Figures S75–S77).

A mixture of **10b** (13.0 mg, 0.029 mmol), (*R*)-(+)-MTPA (30.0 mg, 0.128 mmol), DCC (24.0 mg, 0.117 mmol), and DMAP (15.0 mg, 0.123 mmol) was dissolved in anhydrous CH_2Cl_2 (1 mL), which was stirred under N_2 at room temperature for 12 h. After concentration in vacuo, the crude product was subjected to silica gel CC and eluted with petroleum ether-EtOAc (11:1) to yiled **10d** (6.0 mg; 31%; Figures S78 and S79).

Compound **10b**: colorless oil; $[\alpha]_D^{20}$ +6.7 (*c* 0.03, MeOH); UV (MeOH) λ_{max} nm (log ε): 212 (2.8); ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) data (CD₃OD), see **Table S15**; HRESIMS (positive mode) *m*/*z* 471.3454 [M + Na]⁺ (calcd for C₂₈H₄₈NaO₄⁺, 471.3445). Compound **10c**: colorless oil; $[\alpha]_D^{20}$ –13.8 (*c* 0.15, MeOH); UV (MeOH) λ_{max} nm (log ε): 218 (3.2); ¹H NMR (400 MHz) and ¹³C NMR

(100 MHz) data (CD₃OD), see **Table S15**; HRESIMS (positive mode) m/z 687.3832 [M + Na]⁺ (calcd for C₃₈H₅₅F₃NaO₆⁺, 687.3843). Compound **10d**: colorless oil; $[\alpha]_D^{2D}$ +19.0 (*c* 0.04, MeOH); UV (MeOH) λ_{max} nm (log ε): 215 (3.1); ¹H NMR (400 MHz) and ¹³C NMR

(100 MHz) data (CD₃OD), see **Table S15**; HRESIMS (positive mode) m/z 687.3833 [M + Na]⁺ (calcd for C₃₈H₅₅F₃NaO₆⁺, 687.3843).

Chemical synthesis of 10a.

Compound 10a was synthesized with slight modifications from previously published methods.^[7,8]

To a solution of **10b** (35.1 mg, 0.078 mmol) and pyridine (94.5 μ L, 1.175 mmol) in dry CH₂Cl₂ (1 mL) at 0 °C, MsCl (30.2 μ L, 0.390 mmol) was added, and the reaction mixture was stirred at room temperature for 12 h. The solvent was then removed under reduced pressure, and the residue was purified by preparative HPLC, eluting with 90% CH₃CN for 30 min at a flow rate of 17 mL/min to afford **10e** (24.7 mg, 60%; *t*_R = 18 min; Figures S111 and S112).

A stirred solution of **10e** (24.7 mg, 0.047 mmol) and K₂CO₃ (64.9 mg, 0.470 mmol) in 1 mL MeOH at room temperature for overnight. Then, the solvent was removed under vacuum, and the residue was diluted with ice water (10 mL), followed by extraction with EtOAc (3 × 10 mL). The combined organic layer was dried over Na₂SO₄, and concentrated under vacuum, and the residue was purified by preparative HPLC, eluting with 95% CH₃CN for 30 min at a flow rate of 17 mL/min to afford **10a** (9.0 mg, 46%; t_R = 19 min; Figures S113–S118).

Compound **10e**: colorless oil; $[\alpha]_D^{20}$ –3.3 (*c* 0.03, MeOH); UV (MeOH) λ_{max} nm (log ε): 213 (2.9); ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) data (CD₃OD), see **Table**₂₀**S20**; HRESIMS (positive mode) *m/z* 549.3219 [M + Na]⁺ (calcd for C₂₉H₅₀NaO₆S⁺, 549.3220).

Compound **10a**: colorless oil; $[\alpha]_D^{\omega}$ -7.7 (*c* 0.03, MeOH); UV (MeOH) λ_{max} nm (log ε): 211 (2.8); ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) data (CD₃OD), see **Table S21**; HRESIMS (positive mode) *m/z* 417.3366 [M + H]⁺ (calcd for C₂₇H₄₅O₃⁺, 417.3363).

X-ray crystallographic analysis of 2 and 12.

Crystallographic data for **2**: $C_{31}H_{51}NO_5$, M = 517.72, *a* = 13.5566(3) Å, *b* = 6.1185(2) Å, *c* = 34.8632 (8) Å, *a* = 90°, β = 91.6810 (10)°, γ = 90°, *V* = 2890.52(13) Å3, *T* = 193.00 K, space group *C*2, *Z* = 4, λ (CuK α) = 1.54178, 42594 reflections collected, 5296 independent reflections (R_{int} = 0.0446, R_{sigma} =0.0263). The final *R*1 values were 0.0335 (*I* > 2 σ (*I*)). The final *wR*(*F*²) values were 0.0880 (*I* > 2 σ (*I*)). The final *R*1 values were 0.0347 (all data). The final *wR*(*F*²) values were 0.0892 (all data). The goodness of fit on *F*² was 1.068. Flack parameter = -0.03(5). Crystallographic data for **2** has been deposited into Cambridge Crystallographic Data Center as supplementary publications (number: CCDC 2309354).

Crystallographic data for **12**: $C_{30}H_{51}NO_5$, M = 505.71, *a* = 7.2412(2) Å, *b* = 12.2368(4) Å, *c* = 34.0916 (10) Å, α = 90°, β = 90°, γ = 90°, *V* = 3020.83(16) Å3, *T* = 200.00(10) K, space group P2₁2₁2₁ (no. 19), *Z* = 4, λ (CuK α) = 1.54178, 15374 reflections collected, 5945 independent reflections (R_{int} = 0.0398, R_{sigma} =0.0360). The final *R1* values were 0.0701 (*I* > 2 σ (*I*)). The final *wR*(*F*²) values were 0.1735 (*I* > 2 σ (*I*)). The final *R1* values were 0.0773 (all data). The final *wR*(*F*²) values were 0.1770 (all data). The goodness of fit on *F*² was 1.198. Flack parameter = -0.07(13). Crystallographic data for **12** has been deposited into Cambridge Crystallographic Data Center as supplementary publications (number: CCDC 2314937).

Expression of AtoE and AtoE-mutants in Streptomyces and purification.

AtoE was heterologously overproduced in S. albus J1074 for enzyme activity assays. Plasmid pUWL201PWT was used as an E. coli-Streptomyces expression shuttle vector to overexpress atoE in Streptomyces.^[2] The full-length atoE gene together with an N-terminal His₆-tag sequence was amplified by PCR from pLDW1019 using the *PWTatoE_F* and *PWTatoE_R* primers. Thus, *atoE* was cloned into the Ndel and HindIII sites of pUWL201PWT to afford pLDW1020. Plasmid pLDW1020 was transformed into E. coli ET12567/pUZ8002 and introduced into S. albus J1074 by intergeneric conjugation. Positive colonies were selected using 10 µg/mL thiostrepton and named S. albus DLW1016. Fresh spores of DLW1016 were inoculated into TSB seed medium supplemented with 10 µg/mL thiostrepton and cultured for 2 days. Seven liters of YEME medium (3 g yeast extract, 3 g malt extract, 5 g peptone and 10 g glucose in 1 L of deionized water, pH 7.2) was inoculated with 5% (v/v) seed culture supplemented with 10 µg/mL thiostrepton and incubated at 28 °C for 2 days. After harvesting the cells by centrifugation at 3750 rpm for 30 min at 4 °C, the pellet was resuspended in lysis buffer (50 mM Tris, 300 mM NaCl, 0.8 mM TCEP and 10% glycerol) and 1 mg/mL lysozyme and 0.5 mg/mL of phenylmethylsulfonyl fluoride (protease inhibitor) were added. After incubation on ice for 2 h, the pellet was lysed by sonication, and centrifuged at 15,000 rpm for 60 min at 4 °C. The supernatant containing AtoE was purified by nickel-affinity chromatography using an ÄKTAxpress system (GE Healthcare Life Sciences) equipped with a HisTrap column. The resultant protein with an N-terminal His6-tag was desalted using a HiPrep desalting column (GE Healthcare Biosciences) and concentrated using an Amicon Ultra-15 concentrator (Millipore) in 50 mM Tris, pH 7.5, containing 100 mM NaCl, and 10% glycerol. Fractions containing the target protein were pooled, concentrated, aliquoted, and flash-frozen for storage at -80 °C. Protein concentrations were determined from the absorbance at 280 nm using a molar absorptivity constant of each protein.

The protein purification of AtoE-mutants was performed according to the aforementioned procedure.

Expression and purification of AtoA.

Plasmid pLDW1017 was transformed into the BL21 (DE3) to generate *E. coli* strain DLW1013. An overnight culture of 5 mL of DLW1013 was used to incubate 1 L LB medium in 2 L non-beveled Erlenmeyer flask, supplemented with 50 µg/mL, kanamycin, and 1 mL/L trace element (aqueous solution of 50 mM FeCl₃, 20 mM CaCl₂, 10 mM MnSO₄, 10 mM ZnSO₄, 2 mM CoSO₄, 2 mM CuCl₂, 2 mM NiCl₂, 2 mM Na₂MoO₄, 2 mM H₃BO₃). The cultures were shaken at 230 rpm and 37 °C until an optical density (OD₆₀₀) of 0.6–0.8 was reached. The cultures were cooled to 4 °C, and the gene expression was induced with the addition of 0.25 mM IPTG, and the cells were grown around 18 h at 18 °C with shaking. After harvesting the cells by centrifugation at 3750 rpm for 20 min at 4 °C, the pellet was resuspended in lysis buffer (50 mM Tris, pH 8.0, containing 300 mM NaCl and 10% glycerol), lysed by sonication, and centrifuged at 15,000 rpm for 30 min at 4 °C. The supernatant was purified by nickel-affinity chromatography using an ÄKTAxpress system (GE Healthcare Life Sciences) equipped with a HisTrap column. The resultant protein with an N-terminal His₆-tag was desalted using a HiPrep desalting column (GE Healthcare Biosciences) and concentrated using an Amicon Ultra-15 concentrator (Millipore) in 50 mM Tris, pH 8.0, containing 100 mM NaCl, and 10% glycerol. Protein concentrations were determined from the absorbance at 280 nm using a molar absorptivity constant of each protein. Individual aliquots of each protein were stored at –80 °C until use.

Expression and purification of AtoB and selected class II MTCs.

Plasmids pLDW1018 and pLDW1021–pLDW1027 were transformed into the BL21 (DE3) to generate *E. coli* strain DLW1014 and DLW1017–DLW1023, respectively. These recombinant strains were inoculated into 5 mL of LB containing kanamycin. After overnight incubation, the cultures were scaled up by inoculating 5 mL into 1 L of LB medium and grown at 37 °C with shaking at 230 rpm until an OD₆₀₀ of 0.6–0.8 was reached. The cultures were then cooled to 4 °C, and gene expression was induced by adding 0.25 mM IPTG. The cells were further incubated for approximately 18 h at 18 °C with shaking. After harvesting the cells by centrifugation at 3750 rpm for 20 min at 4 °C, the pellet was resuspended in lysis buffer (50 mM Tris, pH 8.0, containing 300 mM NaCl and 10% glycerol), lysed by sonication, and centrifuged at 15,000 rpm for 30 min at 4 °C. The supernatant was purified by nickel-affinity chromatography using an ÄKTAxpress system (GE Healthcare Life Sciences) equipped with a HisTrap column. The resultant protein with an N-terminal His₆-tag was desalted using a HiPrep desalting column (GE Healthcare Biosciences) and concentrated using an Amicon Ultra-15 concentrator (Millipore) in 50 mM Tris, pH 8.0, containing 100 mM NaCl, and 10% glycerol. For the purification of SerTC, the concentration step was performed in a buffer containing 50 mM Tris, pH 8.0, 300 mM NaCl, and 10% glycerol. Protein concentrations were determined from the absorbance at 280 nm using a molar absorptivity constant of each protein. Individual aliquots of each protein were stored at –80 °C until use.

In vitro enzymatic assay of AtoA.

The in vitro reaction of AtoA were carried out in a 100 μ L reaction system containing 50 mM Tris, pH 8.0, 5 μ M Opt13, 10 mM Na₂HPO₃·5H₂O, 10 μ M AtoA, 500 μ M substrates **11** or **12**, 1 mM NADP⁺, and redox partners (i) 5 μ M CamA, 10 μ M CamB; (ii) 5 μ M Fdx, 5 μ M FdR; or (iii) 5 μ M RhfRed. After incubation at 30°C for 12 h, the reactions were extracted with 100 μ L EtOAc, which were then dried and directly subjected to LC-MS analysis.

In vitro enzymatic assay of AtoB.

The in vitro reactions of AtoB were conducted in a 100 μ L reaction system containing 50 mM Tris·HCl (pH 8.0) with 50 mM NaCl, 3 mM sodium pyruvate, 10 μ M pyridoxal phosphate (PLP), 10 μ M AtoB, and 500 μ M substrate **6**. After incubation at 30°C for 12 h, the reactions were extracted with 100 μ L EtOAc, which were then dried and directly subjected to LC-MS analysis.

Preparative scale assays of AtoB were performed using 10 mg **6**, followed by extraction with EtOAc (3 × 200 mL). The EtOAc layer was purified by preparative HPLC, eluting with 30–100% CH₃CN for 25 min at a flow rate of 17 mL/min to afford **14** (1.2 mg; t_R = 15 min; Figures S104–S109).

To determine the reversible activity of AtoB, the conversion of **14** into **6** was conducted in a 100 μ L reaction mixture containing 1 mM L-alanine (L-Ala), 10 μ M PLP, 10 μ M AtoB, 500 μ M substrate **14**, and 50 mM Tris·HCl (pH 8.0) with 50 mM NaCl.

Compound **14**: colorless oil; $[\alpha]_D^{20}$ +6.1 (*c* 0.01, MeOH); UV (MeOH) λ_{max} nm (log ε): 212 (2.9); ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) data (CD₃OD), see **Table S19**; HRESIMS (negative mode) *m/z* 461.3274 [M – H]⁻ (calcd for C₂₈H₄₈NO₄⁻, 461.3272).

In vitro enzymatic assay of AtoE, AtoE-mutants, and selected class II MTCs.

The in vitro reactions catalyzed by AtoE, AtoE-mutants, and selected class II MTCs were conducted out in a 100 μ L reaction system containing 50 mM Tris (pH 8.0), 10 μ M enzyme, and 0.5 mM substrate **10a**. After incubation at 30 °C for 12 h, the reactions were extracted with EtOAc (3 × 100 μ L), which were then dried and directly subjected to LC-MS analysis.

Preparative scale assays of SerTC were performed using 6 mg **10a**, followed by extraction with EtOAc (3 × 200 mL). The EtOAc layer was purified by preparative HPLC, eluting with 75% CH₃CN for 30 min at a flow rate of 17 mL/min to afford **15** (2.0 mg; t_R = 19 min; Figures S128–S133).

Atolypene H (**15**): white powder; $[\alpha]_D^{20}$ +9.7 (*c* 0.02, MeOH); UV (MeOH) λ_{max} nm (log ε): 206 (2.2); ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) data (CD₃OD), see **Table S23**; HRESIMS (negative mode) *m/z* 415.3218 [M – H]⁻ (calcd for C₂₇H₄₃O₃⁻, 415.3218).

Bioinformatics analysis.

The amino acid sequence of AtoE was used as the BLAST search query to identify putative AtoE-like MTCs in bacteria. The FASTA sequences of BLAST hits were collected and used to perform a multiple sequence alignment and phylogenetic reconstruction in MEGA X.^[9] An unrooted maximum-likelihood tree was assembled with 1000 bootstrap replicants and visualized and colored using iTOL.^[10] Analysis of catalytic motifs was performed by clade using MEME Suite (meme-suite.org/meme/). UniProt IDs of identified AtoE-like MTCs were used to generate a genome neighborhood diagram with EFI-GNT with a genome window of 20 genes.^[11] Homologous gene clusters were selected, and Clinker was used to visualize the percent identity of each gene between the clusters.^[12] A connectivity threshold of 0.3 (corresponding to 30% identity) was chosen, and connections were given for genes sharing at least 30% identity. Gene color was assigned based on predicted function.

Table S1. Predicted gene functions and blast results of ato BGC.

Protein	Accession numbers	Size (aa)	BlastP homologs	Identity/ Positives (%)	Proposed function
AtoA	WP_208613467	394	WP_229880587	52/68	Cytochrome P450
AtoB	WP_091316340	327	WP_141924886	47/59	Aminotransferase
AtoC	WP_091316341	327	WP_086885075	55/66	Polyprenyl synthetase
AtoD	WP_244170484	300	WP_014058158	55/62	UbiA family prenyltransferase
AtoE	WP_091316343	534	WP_202237234	49/59	Sesterterpene cyclase
AtoF	WP_091316344	432	WP_280882156	52/63	Epoxidase

Table S2. Strains used in this study.

Strains	Genotype, Description	Sources (Reference)
	Host strain for general slaving	General biosystems
E: COII DH3d	Host strain for general cioning	(Anhui, China)
	Heterologous heat for protein symposium	General biosystems
E. COILBEZT (DES)	Heterologous host for protein expression	(Anhui, China)
<i>E. coli</i> ET12567/pUZ8002	Methylation-deficient E. coli host for intergeneric conjugation	[13]
Amycolatopsis tolypomycina NRRL	Actinomycetes used to extract the geneme as a PCP template	[1/]
B-24205	Actinomycetes used to extract the genome as a POR template	ודין
Streptomyces albus J1074	Host strain for heterologous expression	[15]
Streptomyces lividans SBT18	Host strain for heterologous expression	[16]
S. albus DLW1001	S. albus J1074 integrated with empty pSET152 vector	This study
S. albus DLW1002	S. albus J1074 integrated with pLDW1007	This study
S. albus DLW1003	S. albus J1074 integrated with pLDW1008	This study
S. albus DLW1004	S. albus J1074 integrated with pLDW1009	This study
S. albus DLW1005	S. albus J1074 integrated with pLDW1010	This study
S. albus DLW1006	S. albus J1074 integrated with pLDW1011	This study
S. albus DLW1007	S. albus J1074 integrated with pLDW1012	This study
S. albus DLW1008	S. albus J1074 integrated with pLDW1013	This study
S. albus DLW1009	S. albus J1074 integrated with pLDW1014	This study
S. albus DLW1010	S. albus J1074 integrated with pLDW1015	This study
S. albus DLW1011	S. albus J1074 integrated with pLDW1016	This study
S. lividans DLW1012	S. lividans SBT18 integrated with pLDW1014	This study
E. coli DLW1013	E. coli BL21 harboring pLDW1017	This study
E. coli DLW1014	E. coli BL21 harboring pLDW1018	This study
E. coli DLW1015	E. coli BL21 harboring pLDW1019	This study
S albua DI W1016	S. albus J1074 containing pLDW1020 for AtoE protein	This study
S. albus DEW 1016	expression	This study
E. coli DLW1017	E. coli BL21 harboring pLDW1021	This study
E. coli DLW1018	E. coli BL21 harboring pLDW1022	This study
E. coli DLW1019	E. coli BL21 harboring pLDW1023	This study
E. coli DLW1020	E. coli BL21 harboring pLDW1024	This study
E. coli DLW1021	E. coli BL21 harboring pLDW1025	This study
E. coli DLW1022	E. coli BL21 harboring pLDW1026	This study
E. coli DLW1023	E. coli BL21 harboring pLDW1027	This study

Table S3. Plasmids used in this study.

Plasmid	Description	Source (Reference)
pSET152	E. coli-Streptomyces integrating vector, including the promoter ermE, Apr	[17]
pUWL201PWT	E. coli-Streptomyces expression shuttle vector, Tsr	[18]
pET-28a(+)	Protein co-expression vector used in <i>E. coli</i> , encoding N-terminal 6× His tag, Kan ^r	Novagen
pRSF-Duet-1	Protein co-expression vector used in E. coli, N-terminal 6× His tag, Kanr	Novagen
pLDW1001	pRSF-Duet-1 harboring atoA, P12R10, and T2, Kan ^r	This study
pLDW1002	pRSF-Duet-1 harboring atoE, P12R10, and T2, Kan ^r	This study
pLDW1003	pRSF-Duet-1 harboring atoF, P12R10, and T2, Kan ^r	This study
pLDW1004	pRSF-Duet-1 harboring atoB, P9R7, and T4, Kan ^r	This study
pLDW1005	pRSF-Duet-1 harboring atoC, P3R5, and T9, Kan ^r	This study
pLDW1006	pRSF-Duet-1 harboring atoD, P10R10, and T10, Kan ^r	This study
pLDW1007	pSET152 harboring P3R5-atoC-T9	This study
pLDW1008	pSET152 harboring <i>atoC</i> and <i>atoD</i> , along with their respective promoters, RBS, and terminators.	This study
pLDW1009	pSET152 harboring <i>atoC</i> and <i>atoE</i> , along with their respective promoters, RBS, and terminators.	This study
pLDW1010	pSET152 harboring <i>atoC</i> and <i>atoF</i> , along with their respective promoters, RBS, and terminators.	This study
pLDW1011	pSET152 harboring <i>atoC</i> , <i>atoD</i> , and <i>atoE</i> , along with their respective promoters, RBS, and terminators.	This study
pLDW1012	pSET152 harboring <i>atoC</i> , <i>atoE</i> , and <i>atoF</i> , along with their respective promoters, RBS, and terminators.	This study
pLDW1013	pSET152 harboring <i>atoC</i> , <i>atoD</i> , and <i>atoF</i> , along with their respective promoters, RBS, and terminators.	This study
pLDW1014	pSET152 harboring <i>atoC</i> , <i>atoD</i> , <i>atoE</i> , and <i>atoF</i> , along with their respective promoters, RBS, and terminators.	This study
pLDW1015	pSET152 harboring <i>atoB</i> , <i>atoC</i> , <i>atoD</i> , <i>atoE</i> , and <i>atoF</i> , along with their respective promoters, RBS, and terminators.	This study
pLDW1016	pSET152 harboring atoA, atoB, atoC, atoD, atoE, and atoF, along with their respective promoters, RBS, and terminators.	This study
pLDW1017	pET-28a(+) harboring <i>atoA</i>	This study
pLDW1018	pET-28a(+) harboring <i>atoB</i>	This study
pLDW1019	pET-28a(+) harboring <i>atoE</i>	This study
pLDW1020	pUWL201PWT harboring atoE gene together with an N-terminal His_{6} -tag	This study
pLDW1021	pET-28a(+) harboring <i>SerTC</i>	This study
pLDW1022	pET-28a(+) harboring <i>SmaTC</i>	This study
pLDW1023	pET-28a(+) harboring <i>UtaTC</i>	This study
pLDW1024	pET-28a(+) harboring <i>CcrTC</i>	This study
pLDW1025	pET-28a(+) harboring <i>SsyTC</i>	This study
pLDW1026	pET-28a(+) harboring AxyTC	This study
pLDW1027	pET-28a(+) harboring <i>PshTC</i>	This study

Table S4. Primers used in this study.

Primers	Nucleotide Sequence (5'-3')		
For construction of pLDW1001			
pRSFDuet-atoA-F	AGAAGGAGGTTAACACATATGATGTCCCTGCCTGCCTTCC		
pRSFDuet-atoA-R	GAATTTGGTACCGAGCATATGctaccaggtgatcggtagctcg		
For construction of pLDW1002			
pRSFDuet-atoE-F	AGAAGGAGGTTAACACATATGATGCCTGAGACGGATCTGCTCGACG		
pRSFDuet-atoE-R	GAATTTGGTACCGAGCATATGTCATCGCGCCGCCTCCCG		
For construction of pLDW1003			
pRSFDuet-atoF-F	AGAAGGAGGTTAACACATATGATGACCGACGTACTCGTGTGC		
pRSFDuet-atoF-R	GAATTTGGTACCGAGCATATGTCACACGCCGGAGGACCA		
For construction of pLDW1004			
pRSFDuet-atoB-F	AGAAGGAGGTACCAACTGCAGATGGACACAGAACGGCTGCG		
pRSFDuet-atoB-R	GATTTTTTTATCTGCTGCAGTCATGCGGGGAACTCCGC		
For construction of pLDW1005			
pRSFDuet-atoC-F	CAGAAGGAGATTATAAAGCTTATGAGCATCGCCCTGGAAC		
pRSFDuet-atoC-R	TTTTTTGGTACCGAGAAGCTTTCACCGCTCCCGATCGAC		
For construction of pLDW1006			
pRSFDuet-atoD-F	AGAAGGAGGTTAACACTTAAGATGCTGTCGGCACACGTGC		
pRSFDuet-atoD-R	TTCCTGACTCATAACCTTAAGTCAGGCATGGCGTCCCTC		
For construction of pLDW1007			
pSET-atoC-F	GGTATCGATAAGCTTAGTGGAGGCTACCTCACAATGG		
pSET-atoC-R	CAGGTCGACTCTAGAGGACCAAAAAAAAAAAAAAGACGC		
For construction of pLDW1008			
152-AtoCDup-F	GGTATCGATAAGCTTGATATCAGTGGAGGCTACCTCACAATGG		
152-AtoCDup-R	AGCCCTGCTAGGACCAAAAAAAAAAAAAGACGC		
152-AtoCDdown-F	TTTTTGGTCCTAGCAGGGCTCCAAAACTAACG		
152-AtoCDdown-R	CAGGTCGACTCTAGAGGATCCAAAGCAAGCAAAGAAAAAAGGC		
For construction of pLDW1009			
152-AtoCDup-F	GGTATCGATAAGCTTGATATCAGTGGAGGCTACCTCACAATGG		
152-ProsAtoCEUP-R	CCCGCACAGGACCAAAAAAAAAAAAAAGACGC		
152-ProsAtoCEDown-F	TTTTTTGGTCCTGTGCGGGCTCTAACACGTC		
152-ProsAtoCEDown-R	CAGGTCGACTCTAGAGGACCAAAACGAAAAAGACGC		
For construction of pLDW1011			
152-AtoCDup-F	GGTATCGATAAGCTTGATATCAGTGGAGGCTACCTCACAATGG		
152-ProsAtoCEDown-R	CAGGTCGACTCTAGAGGACCAAAACGAAAAAGACGC		
For construction of pLDW1012			
152-AtoCDup-F	GGTATCGATAAGCTTGATATCAGTGGAGGCTACCTCACAATGG		
152-ProsAtoCEUP-R	CCCGCACAGGACCAAAAAAAAAAAAAGACGC		
152-ProsAtoCEDown-F	TTTTTTGGTCCTGTGCGGGCTCTAACACGTC		
152-ProsAtoCEDown-R	CAGGTCGACTCTAGAGGACCAAAACGAAAAAGACGC		
For construction of pLDW1013			
152-AtoCDup-F	GGTATCGATAAGCTTGATATCAGTGGAGGCTACCTCACAATGG		
152-ProsAtoCDF-R	GTTAGAGCCCGCACAAAAGCAAAGCAAAGAAAAAAGGC		
152-ProsAtoCDF-F	GCTTTTGTGCGGGCTCTAACACGTCC		
152-ProsAtoCEDown-R	CAGGTCGACTCTAGAGGACCAAAACGAAAAAGACGC		
For construction of pLDW1014			
152-AtoCDup-F	GGTATCGATAAGCTTGATATCAGTGGAGGCTACCTCACAATGG		
152-ProsAtoCDEF-R	CCGCACAGGACCAAAACGAAAAAAGACGCTTTTC		
152-ProsAtoCDEF-F	TTCGTTTTGGTCCTGTGCGGGCTCTAACACGTCC		
152-ProsAtoCEDown-R	CAGGTCGACTCTAGAGGACCAAAACGAAAAAGACGC		
For construction of pLDW1015			
152-AtoBCDEF-1F	GGTATCGATAAGCTTGATATCCAGGTCGGCTGGTTGGCT		
152-ProsAtoCDEF-R			
152-ProsAtoCDEF-F	TICGITTTGGTCCTGTGCGGGCTCTAACACGTCC		
152-ProsAtoCEDown-R	CAGGTCGACTCTAGAGGACCAAAACGAAAAAGACGC		
For construction of pLDW1016			
152-AtoABCDEFup-F	GGIAICGATAAGCTTGATATCTGTGCGGGCTCTAACACGTC		
152-AtoABCDEFup-R			
152-AtoBCDEFdown-F	IIICGTTTTGGTCCCAGGTCGGCTGGTTGGCT		

152-ProsAtoCEDown-R For construction of pLDW1017 28a-atoA-F 28a-atoA-R For construction of pLDW1018 28a-atoB-F 28a-atoB-R For construction of pLDW1019 28a-AtoE-F 28a-AtoE-R For construction of pLDW1020 pUWLNdeI-AtoE-F pUWLHindIII-AtoE-R For construction of pLDW1021 28a-SerTC-F 28a-SerTC-R For construction of pLDW1022 28a-SmaTC-F 28a-SmaTC-R For construction of pLDW1023 28a-UtaTC-F 28a-UtaTC-R For construction of pLDW1024 28a-CcrTC-F 28a-CcrTC-R For construction of pLDW1025 28a-SsyTC-F 28a-SsyTC-R For construction of pLDW1026 28a-AxyTC-F 28a-AxyTC-R For construction of pLDW1027 28a-PshTC-F 28a-PshTC-R

CAGGTCGACTCTAGAGGACCAAAACGAAAAAAGACGC

GTGCCGCGCGCAGCATGTCCCTGCCTGCCTTCC GTGGTGGTGGTGGTGCTACCAGGTGATCGGTAGCTCG

GTGCCGCGCGGCAGCATGGACACAGAACGGCTGCG GTGGTGGTGGTGGTGTCATGCGGGGAACTCCGC

GTGCCGCGCGGCAGCATGCCTGAGACGGATCTGCTC GTGGTGGTGGTGGTGTCATCGCGCCGCCTCCCG

AAAGAGGAGAAATTACATATGATGGGCAGCAGCCATCATC GGACCAAAACGAAAAAAGACGCTCATCGCGCCGCCTCCCG

GTGCCGCGCGGCAGCATGACCTTCCTACGCGCGG GTGGTGGTGGTGGTGTCATCGCGCCACCGCCTT

GTGCCGCGCGCAGCATGCCCCCTTCCGCCTTG GTGGTGGTGGTGGTGTGGCCTGCCTCCTTCGCC

GTGCCGCGCGGCAGCATGACTTCGGTGCACGTCGA GTGGTGGTGGTGGTGCGAAGTCGTGTCCCGCCG

GTGCCGCGCGCAGCGTGAATTCCACGGAGCTGACCG GTGGTGGTGGTGGTGTGTCCGCTCGGCCTGCCG

GTGCCGCGCGCAGCATGACAGCCGTGTCCGACG GTGGTGGTGGTGGTGTCAGGCGACCATACCCGG

GTGCCGCGCGGCAGCATGACGGAACTCGCACTCGA GTGGTGGTGGTGGTGTCACTCATGGCCCGCTCC

GTGCCGCGCGCAGCGTGACCAGGGCCGGGGAA GTGGTGGTGGTGGTGTCATCGGCACCCGGCCTC

Table S5. Summary of ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) data for atolypene C (2) in methanol-d₄ (δ in ppm, J in Hz).

Chemical structure of 2 and $^{1}H^{-1}H$ COSY (----), key HMBC correlations (-----), and key ROESY correlations (------).

No.	δ _c , type	δ _H , mult. (<i>J</i> , Hz)
1a	23.1, CH ₂	1.95, m
1b		1.58, m
2a	38.9, CH ₂	2.52, m
2b		2.35, m
3	217.8, C	
4	51.1, C	
5	143.8, C	
6	122.3, CH	5.73, m
7a	24.6, CH ₂	2.05, m
7b		1.95, overlapped
8	45.5, CH	1.47, m
9	37.1, C	
10	51.4, CH	2.29, m
11a	33.4, CH ₂	1.58, overlapped
11b		1.47, overlapped
12a	26.4, CH ₂	1.97, overlapped
12b		1.34, m
13	36.4, CH	1.68, m
14	38.2, C	
15a	39.7, CH ₂	1.47, overlapped
15b		1.13, m
16a	33.8, CH ₂	1.95, 2H, overlapped
16b		
17	139.0, C	
18	123.4, CH	5.14, t (7.2)
19a	25.3, CH ₂	2.08, m
19b		1.96, overlapped
20a	32.7, CH ₂	1.85, m
206	50 4 011	1.69, overlapped
21	53.4, CH	4.33, q (4.6)
22	176.1, C	1.01
23	29.2, CH ₃	1.24, s
24	24.6, CH ₃	1.21, s
25	15.6, CH ₃	0.90, s
26	14.7, CH ₃	U.99, d (7.U)
27	21.2, CH ₃	1.03, S
28	16.3, CH ₃	1.01, S
29	173.4, C	1.00 -
30	22.4, CH ₃	1.99, S

Table S6. Summary of ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) data for atolypene D (3) in methanol- d_4 (δ in ppm, J in Hz).

-

Chemical structure of **3** and ¹H-¹H COSY (—), key HMBC correlations (—), and key ROESY correlations (– >).

No.	$\delta_{\rm C}$, type	$\delta_{\rm H}$, mult. (<i>J</i> , Hz)
1a	23.1, CH ₂	1.95, m
1b	· _	1.60, m
2a	38.9, CH ₂	2.53, m
2b	· _	2.36, m
3	217.8, C	
4	51.1, C	
5	143.8, C	
6	122.3, CH	5.73, m
7a	24.6, CH ₂	2.12, m
7b		1.95, overlapped
8	45.5, CH	1.46, m
9	37.1, C	
10	51.4, CH	2.29, m
11a	33.4, CH ₂	1.59, overlapped
11b		1.49, overlapped
12a	26.4, CH ₂	1.97, overlapped
12b		1.34, m
13	36.4, CH	1.67, m
14	38.1, C	
15a	39.7, CH ₂	1.47, overlapped
15b		1.13, m
16a	33.9, CH ₂	1.48, 2H, overlapped
16b		
17	138.3, C	
18	124.0, CH	5.16, t (7.2)
19a	24.6, CH ₂	2.12, overlapped
19b		1.95, overlapped
20a	35.6, CH ₂	1.77, m
20b		1.66, overlapped
21	71.2, CH	4.07, q (4.0)
22	178.5, C	
23	29.2, CH ₃	1.24, s
24	24.6, CH ₃	1.21, s
25	15.6, CH₃	0.90, s
26	14.7, CH ₃	0.99, d (7.0)
27	21.2, CH ₃	1.03, s
28	16.3, CH₃	1.64, s

Table S7. Summary of ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) data for **4** in methanol- d_4 (δ in ppm, J in Hz).

Chemical structure of 4 and ¹H-¹H COSY (—), and key HMBC correlations (— >).

No.	$\delta_{\rm C}$, type	$\delta_{\rm H}$, mult. (<i>J</i> , Hz)
1	24.9, CH ₃	1.13, s
2	73.8, C	
3	79.1, CH	3.23, dd (10.5, 1.6)
4a	30.8, CH ₂	1.71, m
4b		1.34, m
5a	37.9, CH ₂	2.25, m
5b		2.00, m
6	136.2, C	
7	125.5, CH	5.18, m
8a	27.4, CH ₂	2.09, 2H, m
8b		
9a	40.9, CH ₂	2.09, overlapped
9b		2.00, overlapped
10	136.0, C	
11	125.5, CH	5.12, m
12a	27.6, CH ₂	2.09, overlapped
12b		2.00, overlapped
13a	40.9, CH ₂	2.09, overlapped
13b		2.00, overlapped
14	135.9, C	
15	125.5, CH	5.12, overlapped
16a	27.7, CH ₂	2.09, overlapped
16b		2.00, overlapped
17a	40.8, CH ₂	2.09, 2H, overlapped
17b		
18	139.5, C	
19	124.6, CH	5.36, m
20a	59.4, CH ₂	4.08, 2H, d (6.8)
20b		
21	25.7, CH ₃	1.16, s
22	16.2, CH ₃	1.62, s
23	16.1, CH ₃	1.61, s
24	16.0, CH ₃	1.60, s
25	16.3, CH ₃	1.67, s

Table S8. Summary of ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) data for 5 in methanol- d_4 (δ in ppm, J in Hz).

Chemical structure of **5** and ¹H-¹H COSY (—), and key HMBC correlations (—).

No	δ type	δ mult (1 Hz)	_
1		0 _H , muit. (0, mz)	
1	25.U, CH ₃	1.13, 5	
2	73.8, C		
3	79.1, CH	3.24, dd (10.5, 1.4)	
4a	30.9, CH ₂	1.70, m	
4b		1.34, m	
5a	37.9, CH ₂	2.25, m	
5b		2.00, m	
6	136.0, C		
7	125.6, CH	5.18, t (6.8)	
8a	27.4, CH ₂	2.09, m	
8b		2.00, overlapped	
9a	40.8, CH ₂	2.09, overlapped	
9b		2.00, overlapped	
10	136.0, C		
11	125.4, CH	5.12, m	
12a	27.1, CH ₂	2.19, 2H, m	
12b			
13a	40.8, CH ₂	2.09, overlapped	
13b		2.00, overlapped	
14	137.0, C		
15	124.4, CH	5.12, overlapped	
16a	27.7, CH ₂	2.09, overlapped	
16b		2.00, overlapped	
17a	41.9, CH ₂	2.19, 2H, overlapped	
17b			
18	159.8, C		
19	118.0, CH	4.87, overlapped	
20	171.3, C		
21	25.6, CH ₃	1.16, s	
22	16.1, CH ₃	1.62, s	
23	16.1, CH ₃	1.61, s	
24	16.2, CH ₃	1.60, s	
25	18.9, CH ₃	2.12. s	

Table S9. Summary of ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) data for **6** in methanol- d_4 (δ in ppm, J in Hz).

Chemical structure of **6** and $^{1}H^{-1}H$ COSY (—), and key HMBC correlations (— >).

No.	$\delta_{\rm C}$, type	$\delta_{\rm H}$, mult. (<i>J</i> , Hz)
1	24.9, CH ₃	1.13, s
2	73.8, C	
3	79.1, CH	3.24, dd (10.5, 1.6)
4a	30.9, CH ₂	1.71, m
4b		1.34, m
5a	37.9, CH ₂	2.25, m
5b		2.00, m
6	135.9, C	
7	125.6, CH	5.17, m
8a	27.6, CH ₂	2.00, 2H, overlapped
8b		
9a	40.8, CH ₂	2.09, overlapped
9b		2.00, overlapped
10	136.1, C	
11	125.4, CH	5.12, m
12a	27.7, CH ₂	2.09, overlapped
12b		2.00, overlapped
13a	40.9, CH ₂	2.09, overlapped
13b		2.00, overlapped
14	136.1, C	
15	125.5, CH	5.12, overlapped
16a	27.7, CH ₂	2.09, overlapped
16b		2.00, overlapped
17a	40.9, CH ₂	2.19, 2H, overlapped
1/b	107.0.0	
18	137.9, C	
19	123.8, CH	5.17, overlapped
20a	25.0, CH ₂	2.14, 2H, m
200		1.00
21a	32.7, CH ₂	1.89, m
210	50.4.011	1.82, m
22	56.1, CH	3.53, dd (6.8, 5,2)
23	174.5, C	4.40 -
24	25.0, CH ₃	1.10, S
25	10.2, CH ₃	1.02, S
20 27	10.2, CH ₃	1.60, overlapped
21	10.2, CH ₃	1.00, overlapped
28	16.2, CH ₃	1.00, S

Table S10. Summary of ¹H NMR (4

400 MHz) and ¹³ C NMR	(100 MHz) data for 7 ii	n methanol- d_4 (δ in ppm, J in Hz).
$HO_{124}^{4} = 1$	7 18 19 21 22 23 OH 28 HN 0 30	ноности на страната страна
Chemical structure of	f 7 and ¹ H- ¹ H COSY (), and key HMBC correlations (\longrightarrow).
No.	$\delta_{\rm C}$, type	$\delta_{\rm H}$, mult. (<i>J</i> , Hz)
1	25.0, CH ₃	1.12, s
2	73.8, C	
3	79.1, CH	3.23, d (10.5)
4a	30.9, CH ₂	1.70, m
4b		1.34, m
5a	38.0, CH ₂	2.25, m
5b	, <u>-</u>	2.00, m
6	135.8, C	,
7	125.6. CH	5.18. m
8a	27.7. CH ₂	2.09. m
8b	, - <u>2</u>	2.00, overlapped
9a	40.9. CH ₂	2.09. overlapped
9b	·····	2 00 overlapped
10	136 0 C	2.00, 010110000
11	125.4 CH	5.12 m
122	27.6 CH.	2.00 overlapped
128	$21.0, 011_2$	2.00, overlapped
120		2.00, overlapped
134	40.9, CH ₂	2.09, overlapped
130	436.0.0	2.00, overlapped
14	130.0, C	5.40 available a
15	125.5, CH	5.12, overlapped
16a	27.7, CH ₂	2.09, overlapped
16b	10.0.011	2.00, overlapped
1/a	40.9, CH ₂	2.09, overlapped
17b		2.00, overlapped
18	137.6, C	5.40
19	124.1, CH	5.13, overlapped
20a	25.3, CH ₂	2.09, 2H, overlapped
20b		
21a	32.8, CH ₂	1.85, m
21b		1.71, m
22	53.7, CH	4.32, q (4.4)
23	ND	
24	25.7, CH ₃	1.16, s
25	16.2, CH₃	1.62, s
26	16.1, CH₃	1.60, s
27	16.1, CH ₃	1.60, s
28	16.1, CH₃	1.60, s
29	173.3, C	
30	22.4, CH ₃	1.99, s

30 ND: Not detected Table S11. Summary of ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) data for 8 in methanol- d_4 (δ in ppm, J in Hz).

Chemical structure of 8 and $^{1}\text{H-}^{1}\text{H}$ COSY (—), and key HMBC correlations (— \blacktriangleright).

No.	$\delta_{ m C}$, type	δ _H , mult. (<i>J</i> , Hz)
1	25.0, CH ₃	1.13, s
2	73.8, C	
3	79.1, CH	3.23, dd (10.6, 1.6)
4a	30.9, CH ₂	1.71, m
4b		1.33, m
5a	37.9, CH ₂	2.25, m
5b		2.00, m
6	135.8, C	
7	125.6, CH	5.18, m
8a	27.8, CH ₂	2.09, m
8b		2.00, overlapped
9a	40.9, CH ₂	2.09, overlapped
9b		2.00, overlapped
10	135.9, C	
11	125.5, CH	5.12, m
12a	27.7, CH ₂	2.09, overlapped
12b		2.00, overlapped
13a	40.9, CH ₂	2.09, overlapped
13b		2.00, overlapped
14	136.0, C	
15	125.4, CH	5.12, overlapped
16a	27.6, CH ₂	2.09, overlapped
16b		2.00, overlapped
17a	40.9, CH ₂	2.09, overlapped
17b		2.00, overlapped
18	137.2, C	
19	124.6, CH	5.15, m
20a	24.6, CH ₂	2.14, 2H, m
20b		
21a	35.6, CH ₂	1.77, m
21b		1.67, m
22	70.9, CH	4.09, q (4.1)
23	178.1, C	
24	25.6, CH₃	1.16, s
25	16.1, CH₃	1.62, s
26	16.1, CH ₃	1.61, s
27	16.1, CH ₃	1.61, s
28	16.2, CH₃	1.63, s

Table S12. Summary of ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) data for **9** in methanol- d_4 (δ in ppm, J in Hz).

17 18 19 20 OH ,OH ö HON

Chemical structure of **9** and ${}^{1}\text{H}{}^{-1}\text{H}$ COSY (—), and key HMBC correlations (— >).

No.	$\delta_{\rm C}$, type	δ _H , mult. (<i>J</i> , Hz)
1	25.2, CH ₃	1.13, s
2	73.9, C	
3	79.2, CH	3.24, dd (10.5, 1.5)
4a	31.0, CH ₂	1.70, m
4b		1.34, m
5a	38.1, CH ₂	2.27, m
5b		2.00, m
6	136.2, C	
7	125.6, CH	5.18, t (7.0)
8a	27.9, CH ₂	2.09, m
8b		1.99, m
9a	41.0, CH ₂	2.09, overlapped
9b		1.99, overlapped
10	136.1, C	
11	125.7, CH	5.12, m
12a	27.7, CH ₂	2.09, overlapped
12b		2.00, overlapped
13a	41.0, CH ₂	2.09, overlapped
13b		1.99, overlapped
14	136.0, C	
15	125.7, CH	5.12, overlapped
16a	26.5, CH ₂	2.03, 2H, m
16b		
17a	38.0, CH ₂	1.37, m
17b		1.24, m
18	31.3, CH	1.93, m
19a	42.9, CH ₂	2.27, overlapped
19b		2.08, overlapped
20	177.5, C	
21	25.7, CH ₃	1.16, s
22	16.3, CH ₃	1.60, s
23	16.4, CH₃	1.62, s
24	16.4, CH ₃	1.62, s
25	20.2, CH ₃	0.96, d (6.6)

Table S13. Summary of ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) data for **10** in methanol- d_4 (δ in ppm, J in Hz).

Chemical structure of 10 and $^{1}H^{-1}H$ COSY (—), and key HMBC correlations (\longrightarrow).

No.	$\delta_{\rm C}$, type	δ _H , mult. (<i>J</i> , Hz)
1	25.0, CH ₃	1.13, s
2	73.8, C	
3	79.1, CH	3.24, dd (10.6, 1.6)
4a	30.8, CH ₂	1.71, m
4b		1.34, m
5a	37.9, CH ₂	2.24, m
5b		1.99, m
6	135.8, C	
7	125.5, CH	5.18, m
8a	27.7, CH ₂	2.08, m
8b		1.99, m
9a	40.9, CH ₂	2.08, overlapped
9b		1.99, overlapped
10	135.9, C	
11	125.5, CH	5.11, m
12a	27.6, CH ₂	2.08, overlapped
12b		1.99, overlapped
13a	40.8, CH ₂	2.08, overlapped
13b		1.99, overlapped
14	136.0, C	
15	125.4, CH	5.11, overlapped
16a	27.6, CH ₂	2.08, overlapped
16b		1.99, overlapped
17a	40.8, CH ₂	2.08, overlapped
17b		1.99, overlapped
18	137.4, C	
19	124.0, CH	5.14, overlapped
20a	24.7, CH ₂	2.29, 2H, m
20b		
21a	35.5, CH ₂	2.29, 2H, overlapped
21b		
22	177.8, C	
23	25.6, CH₃	1.16, s
24	16.2, CH₃	1.62, s
25	16.1, CH₃	1.61, s
26	16.1, CH₃	1.61, s
27	16.2, CH ₃	1.64, s

Table S14. Summary of ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) data for 9a, 9b, and 9c in methanol-d₄ (δ in ppm, J in Hz).

	9a			9b		9c	
No.	δ _C , type	δ _H , mult. (<i>J</i> , Hz)	δ _C , type	δ _H , mult. (<i>J</i> , Hz)	δ _C , type	$\delta_{\rm H}$, mult. (<i>J</i> , Hz)	
1	25.0, CH ₃	1.13, s	26.1, CH₃	1.08, s	25.0, CH ₃	1.16, s	
2	73.8, C		72.5, C		72.7, C		
3	79.1, CH	3.24, dd (10.6, 1.6)	83.4, CH	4.99, d (10.6)	83.3, CH	5.02, m	
4a	30.9, CH ₂	1.70, m	30.9, CH ₂	1.98, m	30.9, CH ₂	1.82, m	
4b		1.34, m		1.62, m		1.49, m	
5a	37.8, CH ₂	2.25, m	37.5, CH ₂	1.99, 2H, m	37.2, CH ₂	1.82, 2H, overlapped	
5b		2.01, m					
6	136.1, C		136.1, C		136.1, C		
7	125.4, CH	5.18, td (7.0, 0.9)	125.5, CH	5.12, m	126.3, CH	5.03, m	
8a	27.8, CH ₂	2.09, m	27.8, CH ₂	2.09, m	27.6, CH ₂	2.07, m	
8b		2.01, overlapped		2.00, m		1.99, m	
9a	40.9, CH ₂	2.09, overlapped	40.7, CH ₂	2.09, 2H, overlapped	40.7, CH ₂	2.07, 2H, m	
9b		2.01, overlapped					
10	136.0, C		135.7, C		135.7, C		
11	125.5, CH	5.11, m	125.6, CH	5.12, overlapped	125.6, CH	5.12, m	
12a	27.6, CH ₂	2.09, overlapped	27.6, CH ₂	2.09, overlapped	27.6, CH ₂	2.07, overlapped	
12b		2.01, overlapped		2.00, overlapped		1.99, overlapped	
13a	40.9, CH ₂	2.09, overlapped	40.9, CH ₂	1.99, 2H, overlapped	40.9, CH ₂	1.99, 2H, overlapped	
13b		2.01, overlapped					
14	135.9, C		134.9, C		134.8, C		
15	125.5, CH	5.11, overlapped	126.4, CH	5.12, overlapped	125.5, CH	5.12, overlapped	
16a	26.3, CH ₂	2.01, 2H, overlapped	26.3, CH ₂	2.02, 2H, overlapped	26.3, CH ₂	2.02, 2H, m	
16b							
17a	38.0, CH ₂	1.35, overlapped	37.8, CH ₂	1.35, m	37.8, CH ₂	1.35, m	
17b		1.24, m		1.23, m		1.23, m	
18	31.2, CH	1.93, m	31.1, CH	1.93, m	31.1, CH	1.93, m	
19a	42.3, CH ₂	2.33, dd (14.8, 6.1)	42.3, CH ₂	2.32, dd (14.8, 6.1)	42.3, CH ₂	2.32, dd (14.8, 6.0)	
19b		2.14, m		2.13, m		2.13, m	
20	175.4, C		175.4, C		175.3, C		
21	25.6, CH ₃	1.16, s	25.2, CH ₃	1.12, s	26.3, CH ₃	1.20, s	
22	16.1, CH₃	1.61, s	16.0, CH ₃	1.59, s	16.0, CH ₃	1.52, s	
23	16.2, CH₃	1.61, s	16.1, CH₃	1.60, s	16.1, CH₃	1.60, s	
24	16.2, CH₃	1.62, s	16.1, CH ₃	1.60, s	16.1, CH₃	1.60, s	
25	20.0, CH ₃	0.94, d (6.7)	20.0, CH ₃	0.93, d (6.7)	20.0, CH ₃	0.93, d (6.7)	
26	51.9, CH₃	3.65, s	51.9, CH₃	3.64, s	51.9, CH₃	3.64, s	

Table S15. Summary of ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) data for 10b, 10c, and 10d in methanol- d_4 (δ in ppm, J in Hz).

	10b			10c		10d	
No.	δ _c , type	$\delta_{\rm H}$, mult. (<i>J</i> , Hz)	$\delta_{\rm C}$, type	δ _H , mult. (<i>J</i> , Hz)	$\delta_{\rm C}$, type	$\delta_{\rm H}$, mult. (<i>J</i> , Hz)	
1	25.0, CH ₃	1.13, s	26.1, CH ₃	1.08, s	26.3, CH ₃	1.16, s	
2	73.8, C		72.5, C		72.7, C		
3	79.1, CH	3.24, d (10.5)	83.4, CH	4.99, d (10.0)	83.3, CH	5.02, m	
4a	30.9, CH ₂	1.71, m	29.6, CH ₂	1.93, m	29.8, CH ₂	1.83, m	
4b		1.34, m		1.61, m		1.48, m	
5a	38.0, CH ₂	2.25, m	37.5, CH ₂	1.99, 2H, m	37.2, CH ₂	1.83, 2H, overlapped	
5b		1.99, m					
6	135.9, C		134.9, C		134.9, C		
7	125.5, CH	5.18, t (6.9)	126.4, CH	5.11, m	126.3, CH	5.03, m	
8a	27.8, CH ₂	2.08, m	27.7, CH ₂	2.08, m	27.7, CH ₂	2.08, m	
8b		1.99, overlapped		1.99, m		1.99, m	
9a	40.9, CH ₂	2.08, overlapped	40.9, CH ₂	2.08, overlapped	40.9, CH ₂	2.08, overlapped	
9b		1.99, overlapped		1.99, overlapped		1.98, overlapped	
10	136.0, C		135.7, C		135.7, C		
11	125.5, CH	5.11, m	125.6, CH	5.11, m	125.6, CH	5.11, m	
12a	27.7, CH ₂	2.08, overlapped	27.6, CH ₂	2.08, overlapped	27.6, CH ₂	2.08, overlapped	
12b		1.99, overlapped		1.99, overlapped		1.99, overlapped	
13a	40.9, CH ₂	2.08, overlapped	40.8, CH ₂	2.08, overlapped	40.8, CH ₂	2.08, overlapped	
13b		1.99, overlapped		1.99, overlapped		1.99, overlapped	
14	136.1, C		136.0, C		136.0, C		
15	125.5, CH	5.11, overlapped	125.3, CH	5.11, overlapped	125.3, CH	5.11, overlapped	
16a	27.5, CH ₂	2.08, overlapped	27.5, CH ₂	2.08, overlapped	27.5, CH ₂	2.08, overlapped	
16b		1.99, overlapped		1.99, overlapped		1.99, overlapped	
17a	40.8, CH ₂	2.08, overlapped	40.7, CH ₂	2.08, overlapped	40.7, CH ₂	2.08, overlapped	
17b		1.99, overlapped		1.99, overlapped		1.99, overlapped	
18	137.6, C		137.7, C		137.7, C		
19	123.7, CH	5.11, overlapped	123.7, CH	5.11, overlapped	123.7, CH	5.11, overlapped	
20a	24.5, CH ₂	2.29, 2H, m	24.5, CH ₂	2.31, 2H, m	24.5, CH ₂	2.32, 2H, m	
20b							
21a	35.1, CH ₂	2.29, 2H, overlapped	35.1, CH ₂	2.31, 2H, overlapped	35.1, CH ₂	2.32, 2H, overlapped	
21b							
22	175.5, C		175.5, C		175.5, C		
23	25.6, CH ₃	1.16, s	25.2, CH ₃	1.12, s	25.1, CH ₃	1.20, s	
24	16.2, CH ₃	1.62, s	16.1, CH₃	1.60, s	16.1, CH₃	1.52, s	
25	16.1, CH ₃	1.60, s	16.1, CH₃	1.59, s	16.1, CH₃	1.60, s	
26	16.1, CH ₃	1.60, s	16.0, CH ₃	1.59, s	16.0, CH ₃	1.60, s	
27	16.2, CH ₃	1.63, s	16.1, CH ₃	1.62, s	16.1, CH ₃	1.63, s	
28	52.0, CH ₃	3.65, s	52.0, CH ₃	3.64, s	52.0, CH ₃	3.64, s	

Table S16. Summary of ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) data for atolypene E (**11**) in methanol- d_4 (δ in ppm, J in Hz).

Chemical structure of **11** and ¹H-¹H COSY (--), key HMBC correlations (--), and key ROESY correlations (--).

No.	$\delta_{ m C}$, type	$\delta_{\rm H}$, mult. (<i>J</i> , Hz)
1a	19.7, CH ₂	1.62, m
1b		1.47, m
2a	29.4, CH ₂	1.86, m
2b		1.66, m
3	77.0, CH	3.44, t (2.7)
4	41.4, C	
5	143.7, C	
6	121.1, CH	5.57, br s
7a	24.5, CH ₂	1.93, 2H, m
7b		
8	45.9, CH	1.28, m
9	37.0, C	
10	51.0, CH	2.02, m
11a	34.0, CH ₂	1.55, m
11b		1.41, m
12a	26.5, CH ₂	1.93, overlapped
12b		1.30, m
13	36.3, CH	1.64, overlapped
14	38.0, C	
15a	39.8, CH ₂	1.49, overlapped
15b		1.10, m
16a	33.7, CH ₂	1.93, 2H, overlapped
16b		
17	139.2, C	
18	123.3, CH	5.12, t (6.4)
19a	24.8, CH ₂	2.13, 2H, m
19b		
20a	32.6, CH ₂	1.99, m
20b		1.81, m
21	56.0, CH	3.53, m
22	173.1, C	
23	29.8, CH ₃	1.02, s
24	26.0, CH ₃	1.12, s
25	16.3, CH ₃	0.92, s
26	14.8, CH ₃	U.95, d (7.1)
27	21.5, CH ₃	1.02, s
28	16.4, CH ₃	1.65, s

Table S17. Summary of ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) data for atolypene F (12) in methanol-d₄ (δ in ppm, J in Hz).

Chemical structure of 12 and ¹H-¹H COSY (—), key HMBC correlations (—), and key ROESY correlations (<- >).

No.	$\delta_{\rm C}$, type $\delta_{\rm H}$, mult. (<i>J</i> , Hz)	
1a	19.7, CH ₂	1.62, m
1b		1.47, m
2a	29.3, CH ₂	1.89, m
2b		1.67, m
3	77.0, CH	3.44, t (2.6)
4	41.4, C	
5	143.6, C	
6	121.7, CH	5.58, br s
7a	24.5, CH ₂	1.93, 2H, m
7b		
8	45.9, CH	1.46, overlapped
9	37.0, C	
10	50.9, CH	2.01, m
11a	34.0, CH ₂	1.55, m
11b		1.40, m
12a	26.5, CH ₂	1.93, m
12b		1.30, m
13	36.3, CH	1.63, overlapped
14	38.1, C	
15a	39.8, CH ₂	1.48, overlapped
15b		1.13, m
16a	33.9, CH ₂	1.93, 2H, overlapped
16b		
17	139.0, C	
18	123.3, CH	5.13, t (7.2)
19a	25.3, CH ₂	2.09, 2H, m
19b		
20a	32.7, CH ₂	1.85, overlapped
20b	/ /	1.71, m
21	53.4, CH	4.32, q (4.6)
22	175.9, C	
23	29.8, CH ₃	1.02, s
24	26.0, CH ₃	1.12, s
25	16.3, CH ₃	0.92, s
26	14.8, CH ₃	0.96, d (7.1)
27	21.5, CH ₃	1.02, s
28	16.3, CH ₃	1.60, s
29	173.4, C	
30	22.4, CH ₃	1.99, s

Table S18. Summary of ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) data for atolypene G (13) in methanol- d_4 (δ in ppm, J in Hz).

Chemical structure of **13** and ¹H-¹H COSY (—), key HMBC correlations (—), and key ROESY correlations (< - >).

No.	$\delta_{\rm C}$, type $\delta_{\rm H}$, mult. (<i>J</i> , Hz)	
1a	19.7, CH ₂	1.62, m
1b		1.47, m
2a	29.4, CH ₂	1.90, m
2b		1.67, overlapped
3	77.0, CH	3.44, t (2.7)
4	41.4, C	
5	143.7, C	
6	121.1, CH	5.57, br s
7a	24.5, CH ₂	1.92, 2H, m
7b		
8	45.9, CH	1.29, m
9	37.0, C	
10	51.0, CH	2.01, m
11a	34.0, CH ₂	1.55, m
11b		1.40, m
12a	26.5, CH ₂	1.93, overlapped
12b		1.30, m
13	36.3, CH	1.64, overlapped
14	38.0, C	
15a	39.8, CH ₂	1.47, overlapped
15b		1.09, m
16a	33.8, CH ₂	1.92, 2H, overlapped
16b		
17	138.8, C	
18	123.2, CH	5.14, t (6.6)
19a	24.7, CH ₂	2.29, 2H, m
19b		
20a	35.4, CH ₂	2.29, 2H, overlapped
20b		
21	177.6, C	
22	29.8, CH ₃	1.02, s
23	26.0, CH ₃	1.12, s
24	16.3, CH ₃	0.92, s
25	14.8, CH ₃	0.95, d (7.1)
26	21.5, CH ₃	1.02, s
27	16.5, CH₃	1.64, s

Table S19. Summary of ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) data for **14** in methanol- d_4 (δ in ppm, J in Hz).

Chemical structure of 14 and $^{1}H^{-1}H$ COSY (—), and key HMBC correlations (—).

No.	$\delta_{\rm C}$, type	$\delta_{\rm H}$, mult. (<i>J</i> , Hz)
1	25.0, CH ₃	1.13, s
2	73.8, C	
3	79.1, CH	3.24, dd (10.6, 1.6)
4a	30.9, CH ₂	1.71, m
4b		1.33, m
5a	37.9, CH ₂	2.27, m
5b		1.99, m
6	135.8, C	
7	125.6, CH	5.18, m
8a	27.6, CH ₂	2.08, m
8b		1.99, m
9a	40.8, CH ₂	1.99, 2H, overlapped
9b		
10	135.9, C	
11	125.5, CH	5.11, m
12a	27.7, CH ₂	2.08, overlapped
12b		1.99, overlapped
13a	40.9, CH ₂	1.99, 2H, overlapped
13b		
14	135.9, C	
15	125.5, CH	5.11, overlapped
16a	27.8, CH ₂	2.08, 2H, overlapped
16b		
17a	40.9, CH ₂	1.99, 2H, overlapped
17b		
18	137.0, C	
19	124.2, CH	5.16, overlapped
20a	22.9, CH ₂	2.71, t (7.4)
20b		2.28, overlapped
21a	40.7, CH ₂	2,71, overlapped
21b		2.08, overlapped
22	206.0, C	
23	ND	
24	25.6, CH ₃	1.16, s
25	16.1, CH ₃	1.62, s
26	16.1, CH ₃	1.60, overlapped
27	16.1, CH ₃	1.60, overlapped
28	16.2, CH ₃	1.63, s

ND: Not detected

Table S20. Summary of ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) data for **10e** in methanol- d_4 (δ in ppm, J in Hz).

No. δ_{c} , type δ_{H} , mult. (J, Hz) 1 24.5, CH ₃ 1.21, s 2 72.9, C 1.80, m 3 91.2, CH 4.47, dd (9.7, 2.3) 4a 30.5, CH ₂ 1.80, m 5a 37.2, CH 2.22, m 5b 2.00, m 6 135.9, C 7 125.5, CH 5.21, t (6.7) 8a 27.7, CH ₂ 2.08, m 8b 2.00, overlapped 9a 40.9, CH ₂ 2.08, overlapped 9b 2.00, overlapped 10 136.0, C 11 125.5, CH 5.11, m 12a 27.7, CH ₂ 2.08, overlapped 13a 40.8, CH ₂ 2.08, overlapped 13b 2.00, overlapped 2.00, overlapped 14 136.1, C 11 15 125.5, CH 5.11, overlapped 16a 27.5, CH ₂ 2.08, overlapped 17b 2.00, overlapped 2.00, overlapped 17a		25 1		
1 24.5, CH ₃ 1.21, s 2 72.9, C	No.	$\delta_{\rm C}$, type	δ _H , mult. (<i>J</i> , Hz)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	24.5, CH ₃	1.21, s	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	72.9, C		
4a $30.5, CH_2$ $1.80, m$ 4b $1.32, m$ 5a $37.2, CH_2$ $2.22, m$ 5b $2.00, m$ 6 $135.9, C$ 7 $125.5, CH$ $5.21, t$ (6.7) 8a $27.7, CH_2$ $2.08, m$ $2.00, overlapped$ $2.00, overlapped$ 9a $40.9, CH_2$ $2.08, overlapped$ $2.00, overlapped$ $2.00, overlapped$ 9b $2.00, overlapped$ 10 $136.0, C$ 11 $125.5, CH$ $5.11, m$ 12a $27.7, CH_2$ $2.08, overlapped$ $2.00, overlapped$ $2.00, overlapped$ 13b $2.00, overlapped$ $13a$ $40.8, CH_2$ $2.08, overlapped$ $13b$ $2.00, overlapped$ 14 $136.1, C$ $2.00, overlapped$ 15 $125.5, CH$ $5.11, overlapped$ $17a$ $40.7, CH_2$ $2.08, overlapped$ $17a$ $40.7, CH_2$ $2.32, 2H, m$ $20a$ $24.7, CH_2$ $2.32, 2H, m$ $20b$ $216, CH_3$ <td>3</td> <td>91.2, CH</td> <td>4.47, dd (9.7, 2.3)</td> <td></td>	3	91.2, CH	4.47, dd (9.7, 2.3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4a	30.5, CH ₂	1.80, m	
5a $37.2, CH_2$ $2.22, m$ 5b $2.00, m$ 6 $135.9, C$ 7 $125.5, CH$ $5.21, t (6.7)$ 8a $27.7, CH_2$ $2.08, m$ 8b $2.00, overlapped$ 9a $40.9, CH_2$ $2.08, overlapped$ 9b $2.00, overlapped$ 10 $136.0, C$ 11 $125.5, CH$ $5.11, m$ 12a $27.7, CH_2$ $2.08, overlapped$ 12b $2.00, overlapped$ 13a $40.8, CH_2$ $2.08, overlapped$ 13b $2.00, overlapped$ 13b $2.00, overlapped$ 13b $2.00, overlapped$ 14 $136.1, C$ 15 $125.5, CH$ 5 $125.5, CH$ 2.00, overlapped 16b $2.00, overlapped$ 17a $40.7, CH_2$ $2.08, overlapped$ 17b $2.00, overlapped$ 17c $2.00, overlapped$ 17a $40.7, CH_2$ $2.32, 2H, m$ 20a $24.7, CH_2$ $2.32, 2H, m$ <tr< td=""><td>4b</td><td></td><td>1.32, m</td><td></td></tr<>	4b		1.32, m	
5b 2.00, m 6 135.9, C 7 125.5, CH 5.21, t (6.7) 8a 27.7, CH2 2.08, m 8b 2.00, overlapped 9a 40.9, CH2 2.08, overlapped 9b 2.00, overlapped 9b 2.00, overlapped 10 136.0, C 11 125.5, CH 5.11, m 12a 27.7, CH2 2.08, overlapped 12b 2.00, overlapped 13a 40.8, CH2 2.08, overlapped 13b 2.00, overlapped 14 136.1, C 15 125.5, CH 5.11, overlapped 16a 27.5, CH2 2.08, overlapped 17b 2.00, overlapped 2.00, overlapped 17a 40.7, CH2 2.08, overlapped 17b 2.00, overlapped 2.00, overlapped 17b 2.00, overlapped 2.00, overlapped 17b 2.01, overlapped 2.02, overlapped 17b 2.02, overlapped 2.03, 2.2 H, m 20a 24.7, CH2 2.32, 2.1, m <t< td=""><td>5a</td><td>37.2, CH₂</td><td>2.22, m</td><td></td></t<>	5a	37.2, CH ₂	2.22, m	
	5b		2.00, m	
7 125.5, CH 5.21, t (6.7) 8a 27.7, CH2 2.08, m 8b 2.00, overlapped 9a 40.9, CH2 2.08, overlapped 9b 2.00, overlapped 10 136.0, C 11 125.5, CH 5.11, m 12a 27.7, CH2 2.08, overlapped 12b 2.00, overlapped 13a 40.8, CH2 2.08, overlapped 13b 2.00, overlapped 13b 2.00, overlapped 14 136.1, C 15 125.5, CH 5.11, overlapped 16a 27.5, CH2 2.08, overlapped 17b 2.00, overlapped 2.00, overlapped 17b 2.00, overlapped 2.00, overlapped 17a 40.7, CH2 2.08, overlapped 17b 2.00, overlapped 2.00, overlapped 17b 2.00, overlapped 2.00, overlapped 17b 2.03, 2.2 H, overlapped 2.01 18 137.6, C 2.32, 2.4, m 20b 2.2 2.32, 2.4, overlapped 21a 35.1, CH2	6	135.9, C		
8a 27.7, CH2 2.08, m 8b 2.00, overlapped 9a 40.9, CH2 2.08, overlapped 9b 2.00, overlapped 10 136.0, C 11 125.5, CH 5.11, m 12a 27.7, CH2 2.08, overlapped 12b 2.00, overlapped 13a 40.8, CH2 2.08, overlapped 13b 2.00, overlapped 13b 2.00, overlapped 14 136.1, C 15 125.5, CH 5.11, overlapped 16a 27.5, CH2 2.00, overlapped 17a 40.7, CH2 2.00, overlapped 17b 2.00, overlapped 17a 40.7, CH2 2.00, overlapped 17b 2.00, overlapped 17a 40.7, CH2 2.32, 2H, m 20b 21a 35.1, CH2 2.32, 2H, m 20b 22 175.5, C 23 26.8, CH3 1.22, s 22 175.5, C 23 26.8, CH3 1.62, s 25 16.1,	7	125.5, CH	5.21, t (6.7)	
8b 2.00, overlapped 9a 40.9, CH ₂ 2.08, overlapped 9b 2.00, overlapped 10 136.0, C 11 125.5, CH 5.11, m 12a 27.7, CH ₂ 2.08, overlapped 12b 2.00, overlapped 13a 40.8, CH ₂ 2.08, overlapped 13b 2.00, overlapped 14 136.1, C 15 125.5, CH 5.11, overlapped 16a 27.5, CH ₂ 2.08, overlapped 17a 40.7, CH ₂ 2.08, overlapped 17b 2.00, overlapped 17b 2.00, overlapped 17b 2.00, overlapped 17b 2.00, overlapped 17a 40.7, CH ₂ 2.32, 2H, overlapped 17b 2.00, overlapped 17b 2.01, overlapped 20a 24.7, CH ₂ 2.32, 2H, m 20b 21a 35.1, CH ₂ 2.32, 2H, overlapped 21b 22 175.5, C 23 26.8, CH ₃	8a	27.7, CH ₂	2.08, m	
9a $40.9, CH_2$ $2.08, overlapped$ 9b $2.00, overlapped$ 10 136.0, C 11 125.5, CH $5.11, m$ 12a $27.7, CH_2$ $2.08, overlapped$ 12b $2.00, overlapped$ 13a $40.8, CH_2$ $2.08, overlapped$ 13b $2.00, overlapped$ 14 $136.1, C$ 15 $125.5, CH$ $5.11, overlapped$ 16a $27.5, CH_2$ $2.08, overlapped$ 17a $40.7, CH_2$ $2.08, overlapped$ 17b $2.00, overlapped$ 17b $2.03, 2H, m$ 20a $24.7, CH_2$ $2.32, 2H, m$ 20b $2.32, 2H, overlapped$ 21a $35.1, CH_2$ $2.32, 2H, overlapped$ 21b $2.32, 2H, overlapped$ <	8b		2.00, overlapped	
9b 2.00, overlapped 10 136.0, C 11 125.5, CH 5.11, m 12a 27.7, CH ₂ 2.08, overlapped 12b 2.00, overlapped 13a 40.8, CH ₂ 2.08, overlapped 13b 2.00, overlapped 13b 2.00, overlapped 14 136.1, C 15 125.5, CH 5.11, overlapped 16a 27.5, CH ₂ 2.08, overlapped 16b 2.00, overlapped 17a 40.7, CH ₂ 2.08, overlapped 17b 2.00, overlapped 18 137.6, C 19 123.7, CH 5.11, overlapped 20a 24.7, CH ₂ 2.32, 2H, m 20b 2.232, 2H, overlapped 21a 35.1, CH ₂ 2.32, 2S 23 26.8, CH ₃ 1.62, s 25	9a	40.9, CH ₂	2.08, overlapped	
10 136.0, C 11 125.5, CH 5.11, m 12a 27.7, CH ₂ 2.08, overlapped 12b 2.00, overlapped 13a 40.8, CH ₂ 2.08, overlapped 13b 2.00, overlapped 13b 2.00, overlapped 14 136.1, C 15 125.5, CH 5.11, overlapped 16a 27.5, CH ₂ 2.08, overlapped 16b 2.00, overlapped 17a 40.7, CH ₂ 2.08, overlapped 17b 2.00, overlapped 18 137.6, C 19 123.7, CH 5.11, overlapped 20a 24.7, CH ₂ 2.32, 2H, m 20b 2.32, 2H, overlapped 21a 35.1, CH ₂ 2.32, 2H, overlapped 21b 22 175.5, C 23 26.8, CH ₃ 1.22, s 24 16.2, CH ₃ 1.60, s 25 16.1, CH ₃ 1.60, s 26 16.1, CH ₃ 1.60, s 27 16.1, CH ₃ 1.63, s 28 52.0, CH ₃	9b		2.00, overlapped	
11 125.5, CH 5.11, m 12a 27.7, CH2 2.08, overlapped 12b 2.00, overlapped 13a 40.8, CH2 2.08, overlapped 13b 2.00, overlapped 13b 2.00, overlapped 13b 2.00, overlapped 14 136.1, C 15 125.5, CH 5.11, overlapped 16a 27.5, CH2 2.08, overlapped 17a 40.7, CH2 2.08, overlapped 17b 2.00, overlapped 17a 40.7, CH2 2.08, overlapped 17b 2.00, overlapped 18 137.6, C 19 123.7, CH 5.11, overlapped 20a 24.7, CH2 2.32, 2H, m 20b 21a 35.1, CH2 2.32, 2H, overlapped 21b 22 175.5, C 23 26.8, CH3 1.22, s 24 16.2, CH3 1.60, s 25 1.61, CH3 1.60, s 25 16.1, CH3 1.60, s 26 16.1, CH3 1.63, s 26 16.1, CH3 1.63, s 3.	10	136.0, C		
12a 27.7, CH2 2.08, overlapped 12b 2.00, overlapped 13a 40.8, CH2 2.08, overlapped 13b 2.00, overlapped 14 136.1, C 15 125.5, CH 5.11, overlapped 16a 27.5, CH2 2.08, overlapped 16b 2.00, overlapped 17a 40.7, CH2 2.08, overlapped 17b 2.00, overlapped 17b 2.00, overlapped 18 137.6, C 19 123.7, CH 5.11, overlapped 20a 24.7, CH2 2.32, 2H, m 20b 21a 35.1, CH2 2.32, 2H, overlapped 21b 175.5, C 23 26.8, CH3 1.22, s 24 16.2, CH3 1.62, s 25 25 16.1, CH3 1.60, s 26 26 16.1, CH3 1.60, s 27 27 16.1, CH3 1.63, s 28 28 52.0, CH3 3.65, s 3 29 39.1 CH2 3.14 s 3.14 s	11	125.5, CH	5.11, m	
12b 2.00, overlapped 13a 40.8, CH ₂ 2.08, overlapped 13b 2.00, overlapped 14 136.1, C 15 125.5, CH 5.11, overlapped 16a 27.5, CH ₂ 2.08, overlapped 16b 2.00, overlapped 17a 40.7, CH ₂ 2.08, overlapped 17b 2.00, overlapped 18 137.6, C 19 123.7, CH 5.11, overlapped 20a 24.7, CH ₂ 2.32, 2H, m 20b 21a 35.1, CH ₂ 2.32, 2H, overlapped 21a 35.1, CH ₂ 2.32, 2H, overlapped 21b 22 175.5, C 23 26.8, CH ₃ 1.22, s 24 16.2, CH ₃ 1.62, s 25 16.1, CH ₃ 1.60, s 26 16.1, CH ₃ 1.60, s 27 16.1, CH ₃ 1.63, s 28 52.0, CH ₃ 3.65, s 29 39 1 CH ₂ 3 14 s	12a	27.7, CH ₂	2.08, overlapped	
13a $40.8, CH_2$ $2.08, overlapped$ 13b $2.00, overlapped$ 14 136.1, C 15 125.5, CH 16a $27.5, CH_2$ 2.00, overlapped 16b $2.00, overlapped$ 17a $40.7, CH_2$ $2.08, overlapped$ 17b $2.00, overlapped$ 17b $2.00, overlapped$ 17b $2.00, overlapped$ 18 137.6, C 19 123.7, CH $5.11, overlapped$ 20a $24.7, CH_2$ $2.32, 2H, m$ 20b $21a$ $35.1, CH_2$ $2.32, 2H, overlapped$ 21a $35.1, CH_2$ $2.32, 2H, overlapped$ 21b 22 $175.5, C$ 23 $26.8, CH_3$ $1.22, s$ 24 $16.2, CH_3$ $1.60, s$ 25 $16.1, CH_3$ $1.60, s$ 26 $16.1, CH_3$ $1.63, s$ 27 $16.1, CH_3$ $1.63, s$ 28 $52.0, CH_3$ $3.65, s$ 29 $39.1 CH_2$ 3.14	12b		2.00, overlapped	
13b 2.00, overlapped 14 136.1, C 15 125.5, CH 5.11, overlapped 16a 27.5, CH ₂ 2.08, overlapped 16b 2.00, overlapped 17a 40.7, CH ₂ 2.08, overlapped 17b 2.00, overlapped 17b 2.00, overlapped 18 137.6, C 19 123.7, CH 5.11, overlapped 20a 24.7, CH ₂ 2.32, 2H, m 20b 21a 35.1, CH ₂ 2.32, 2H, overlapped 21a 35.1, CH ₂ 2.32, 2H, overlapped 21b 22 175.5, C 23 26.8, CH ₃ 1.22, s 24 16.2, CH ₃ 1.62, s 25 16.1, CH ₃ 1.60, s 26 16.1, CH ₃ 1.60, s 27 16.1, CH ₃ 1.63, s 28 52.0, CH ₃ 3.65, s 29 39.1 CH ₂ 3.14, s	13a	40.8, CH ₂	2.08, overlapped	
14 136.1, C 15 125.5, CH 5.11, overlapped 16a 27.5, CH ₂ 2.08, overlapped 16b 2.00, overlapped 17a 40.7, CH ₂ 2.08, overlapped 17b 2.00, overlapped 17b 2.00, overlapped 17b 2.00, overlapped 18 137.6, C 19 123.7, CH 20a 24.7, CH ₂ 20b 2.32, 2H, overlapped 21a 35.1, CH ₂ 22 175.5, C 23 26.8, CH ₃ 1.22, s 24 162, CH ₃ 1.60, s 25 16.1, CH ₃ 1.60, s 26 16.1, CH ₃ 1.63, s 27 16.1, CH ₃ 3.65, s 28 52.0, CH ₃ 3.65, s 29 39.1 CH ₂ 3.14 s	13b		2.00, overlapped	
15 125.5, CH 5.11, overlapped 16a 27.5, CH ₂ 2.08, overlapped 16b 2.00, overlapped 17a 40.7, CH ₂ 2.08, overlapped 17b 2.00, overlapped 17b 2.00, overlapped 17b 2.00, overlapped 18 137.6, C 19 123.7, CH 20a 24.7, CH ₂ 20b 20b 21a 35.1, CH ₂ 22 175.5, C 23 26.8, CH ₃ 24 16.2, CH ₃ 1.62, s 25 16.1, CH ₃ 26 16.1, CH ₃ 27 16.1, CH ₃ 28 52.0, CH ₃ 29 39.1 CH ₂ 314 s	14	136.1, C		
16a $27.5, CH_2$ $2.08, overlapped$ 16b $2.00, overlapped$ 17a $40.7, CH_2$ $2.08, overlapped$ 17b $2.00, overlapped$ 17b $2.00, overlapped$ 18 137.6, C 19 123.7, CH 20a $24.7, CH_2$ 20b 21a $35.1, CH_2$ 22 175.5, C 23 $26.8, CH_3$ 244 $16.2, CH_3$ 1.62, s 25 $16.1, CH_3$ 26 $16.1, CH_3$ 27. $16.1, CH_3$ 28 $52.0, CH_3$ 39.1, CH_2 3.14 s	15	125.5, CH	5.11, overlapped	
16b 2.00, overlapped 17a 40.7, CH ₂ 2.08, overlapped 17b 2.00, overlapped 17b 2.00, overlapped 18 137.6, C 19 123.7, CH 5.11, overlapped 20a 24.7, CH ₂ 2.32, 2H, m 20b 21a 35.1, CH ₂ 2.32, 2H, overlapped 21b 22 175.5, C 23 22 175.5, C 23 26.8, CH ₃ 1.62, s 25 16.1, CH ₃ 1.60, s 25 26 16.1, CH ₃ 1.60, s 26 27 16.1, CH ₃ 1.63, s 28 28 52.0, CH ₃ 3.65, s 3 29 39.1, CH ₂ 3.14, s	16a	27.5, CH ₂	2.08, overlapped	
$17a$ $40.7, CH_2$ $2.08, overlapped$ $17b$ $2.00, overlapped$ $17b$ $2.00, overlapped$ 18 $137.6, C$ 19 $123.7, CH$ $5.11, overlapped$ $20a$ $24.7, CH_2$ $2.32, 2H, m$ $20b$ $2.32, 2H, overlapped$ $21a$ $35.1, CH_2$ $2.32, 2H, overlapped$ $21b$ 22 $175.5, C$ 23 $26.8, CH_3$ $1.22, s$ 24 $16.2, CH_3$ $1.62, s$ 25 $16.1, CH_3$ $1.60, s$ 26 $16.1, CH_3$ $1.60, s$ 27 $16.1, CH_3$ $1.63, s$ 28 $52.0, CH_3$ $3.65, s$ 29 $39.1 CH_2$ $3.14, s$	16b		2.00, overlapped	
17b 2.00, overlapped 18 137.6 , C 19 123.7 , CH 5.11 , overlapped $20a$ 24.7 , CH ₂ 2.32 , 2H, m $20b$ $21a$ 35.1 , CH ₂ 2.32 , 2H, overlapped $21a$ 35.1 , CH ₂ 2.32 , 2H, overlapped $21b$ 22 175.5 , C 22 175.5 , C 233 26.8 , CH ₃ 1.22 , s 24 16.2 , CH ₃ 1.62 , s 25 25 16.1 , CH ₃ 1.60 , s 26 16.1 , CH ₃ 1.60 , s 27 16.1 , CH ₃ 1.63 , s 28 52.0 , CH ₃ 3.65 , s 29 391 CH ₂ 314	1/a	40.7, CH ₂	2.08, overlapped	
18 $137.6, C$ 19 $123.7, CH$ $5.11, overlapped$ 20a $24.7, CH_2$ $2.32, 2H, m$ 20b 21a $35.1, CH_2$ $2.32, 2H, overlapped$ 21b 22 $175.5, C$ 23 $26.8, CH_3$ $1.22, s$ 24 $16.2, CH_3$ $1.62, s$ 25 $16.1, CH_3$ $1.60, s$ 26 $16.1, CH_3$ $1.60, s$ 26 $16.1, CH_3$ $1.63, s$ 27 $16.1, CH_3$ $1.63, s$ 28 $52.0, CH_3$ $3.65, s$ 29 391 CH $_2$ 314 s 514 s 514 s	1/b	107.0.0	2.00, overlapped	
19 123.7 , CH 5.11, overlapped 20a 24.7 , CH ₂ 2.32 , 2H, m 20b $21a$ 35.1 , CH ₂ 2.32 , 2H, overlapped 21a 35.1 , CH ₂ 2.32 , 2H, overlapped 21b 22 175.5 , C 23 26.8 , CH ₃ 1.22 , s 24 16.2 , CH ₃ 1.62 , s 25 16.1 , CH ₃ 1.60 , s 26 16.1 , CH ₃ 1.63 , s 27 16.1 , CH ₃ 1.63 , s 28 52.0 , CH ₃ 3.65 , s 29 39.1 CH ₂ 3.14 s	18	137.6, C		
20a $24.7, CH_2$ $2.32, 2H, m$ 20b $21a$ $35.1, CH_2$ $2.32, 2H, overlapped$ 21a $35.1, CH_2$ $2.32, 2H, overlapped$ 21b 22 $175.5, C$ 23 $26.8, CH_3$ $1.22, s$ 24 $16.2, CH_3$ $1.62, s$ 25 $16.1, CH_3$ $1.60, s$ 26 $16.1, CH_3$ $1.63, s$ 27 $16.1, CH_3$ $1.63, s$ 28 $52.0, CH_3$ $3.65, s$ 29 391 CH $_2$ 314 s	19	123.7, CH	5.11, overlapped	
200 $21a$ 35.1 , CH_2 2.32 , 2H, overlapped 21b 22 175.5 , C 23 26.8 , CH_3 1.22 , s 24 16.2 , CH_3 1.62 , s 25 16.1 , CH_3 1.60 , s 26 16.1 , CH_3 1.60 , s 27 16.1 , CH_3 1.63 , s 28 52.0 , CH_3 3.65 , s 29 391 , CH_2 314 , s	20a	24.7, CH ₂	2.32, 2H, M	
21a $35.1, CH_2$ $2.32, 2H, overlapped$ 21b 22 $175.5, C$ 23 $26.8, CH_3$ $1.22, s$ 24 $16.2, CH_3$ $1.62, s$ 25 $16.1, CH_3$ $1.60, s$ 26 $16.1, CH_3$ $1.60, s$ 27 $16.1, CH_3$ $1.63, s$ 28 $52.0, CH_3$ $3.65, s$ 29 $391 CH_2$ $314 s$	20D	25.1 CU	0.20 Oll everlenned	
210 175.5, C 23 26.8, CH ₃ 1.22, s 24 16.2, CH ₃ 1.62, s 25 16.1, CH ₃ 1.60, s 26 16.1, CH ₃ 1.60, s 27 16.1, CH ₃ 1.63, s 28 52.0, CH ₃ 3.65, s 29 39.1 CH ₂ 3.14 s	218	35.1, CH ₂	2.32, 2H, ovenapped	
22 $173.3, 6$ 23 $26.8, CH_3$ $1.22, s$ 24 $16.2, CH_3$ $1.62, s$ 25 $16.1, CH_3$ $1.60, s$ 26 $16.1, CH_3$ $1.60, s$ 27 $16.1, CH_3$ $1.63, s$ 28 $52.0, CH_3$ $3.65, s$ 29 391 CH ₂ 314 s	210	175 5 C		
23 20.6, CH_3 1.22, S 24 16.2, CH_3 1.62, S 25 16.1, CH_3 1.60, S 26 16.1, CH_3 1.60, S 27 16.1, CH_3 1.63, S 28 52.0, CH_3 3.65, S 29 39.1 CH_2 3.14 S	22		1.00 0	
24 $10.2, S11_3$ $1.62, s$ 25 $16.1, CH_3$ $1.60, s$ 26 $16.1, CH_3$ $1.60, s$ 27 $16.1, CH_3$ $1.63, s$ 28 $52.0, CH_3$ $3.65, s$ 29 391 CH ₂ 314 s	23		1.22, 5	
26 16.1, CH ₃ 1.60, s 27 16.1, CH ₃ 1.63, s 28 52.0, CH ₃ 3.65, s 29 39.1 CH ₂ 3.14, s	24	16.1 CH	1.02, S	
26 16.1, CH ₃ 1.60, S 27 16.1, CH ₃ 1.63, S 28 52.0, CH ₃ 3.65, S 29 39.1 CH ₂ 3.14 S	26	16.1, CH ₃	1.00, 3 1.60, e	
28 52.0, CH ₃ 3.65, s 29 39.1 CH ₂ 3.14 s	20	16.1, CH ₃	1.63 s	
29 39.1 CH ₂ 3.14 s	28	52.0 CH	3.65 s	
	29	39.1. CH ₂	3.14. s	

Table S21. Summary of ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) data for **10a** in methanol- d_4 (δ in ppm, J in Hz).

No.	$\delta_{\rm C}$, type	δ _H , mult. (<i>J</i> , Hz)
1	18.9, CH₃	1.26, s
2	60.2, C	
3	65.8, CH	2.75, t (6.3)
4a	28.5, CH ₂	1.61, 2H, m
4b		
5a	37.4, CH ₂	2.12, 2H, m
5b		
6	135.1, C	
7	126.1, CH	5.18, t (6.9)
8a	27.6, CH ₂	2.10, m
8b		2.00, m
9a	40.8, CH ₂	2.10, overlapped
9b		2.00, overlapped
10	135.9, C	
11	125.4, CH	5.11, m
12a	27.6, CH ₂	2.10, overlapped
12b		2.00, overlapped
13a	40.8, CH ₂	2.10, overlapped
13b		2.00, overlapped
14	135.7, C	
15	125.6, CH	5.11, overlapped
16a	27.6, CH ₂	2.10, overlapped
16b		2.00, overlapped
1/a	40.8, CH ₂	2.10, overlapped
17b		2.00, overlapped
18	137.4, C	
19	124.0, CH	5.14, m
20a	24.7, CH ₂	2.29, 2H, m
200	25 4 011	
21a	35.4, CH ₂	2.29, 2H, overlapped
210	177.1 0	
22	177.1, C	4.00 -
23	25.1, CH ₃	1.28, S
24 25		1.00, 8
20		1.00, S
20 27	16.1, CH ₃	1.00, 5
<u>∠1</u>	IU. I, UH ₃	1.00, 5

Protein	Strain	UniProt ID	Length (AA)	Clade
AtoE	Amycolatopsis tolypomycina NRRL B-24205	A0A1H4ZTV5	534	Ш
Bra4	Nocardia brasiliensis	B1Q2P4	556	IV
PlaT2	Streptomyces sp. Tü6071	Q2I762	571	VI
TnIT2	Streptomyces sp. CB03234	A0A1Q5LS56	604	VI
TnIT2	Streptomyces sp. CB03238	A0A1X1NCL8	584	VI
Lon15	Streptomyces argenteolus A2	A9ZNV5	545	VII
	Actinobacteria bacterium OK074	A0A0N0MUW6	555	I
	Actinokineospora bangkokensis	A0A1Q9LNM5	551	I
	Actinosynnema mirum ATCC 29888	C6WK21	560	I
	Actinosynnema pretiosum	A0A290Z9G3	560	I
	Amycolatopsis panacis	A0A419HYZ8	555	I
	Amycolatopsis sp. WAC 04169	A0A429C6Z9	554	I
	Amycolatopsis sulphurea	A0A2A9G0G6	555	I
	Amycolatopsis thailandensis	A0A229S526	554	I
	Lentzea fradiae	A0A1G7K5R4	555	I
	Lentzea xinjiangensis	A0A1H9UYX0	555	I
	Nocardia sp. NRRL S-836	A0A0M8WFT9	555	I
	Pseudonocardia sp. Ae706_Ps2	A0A1Q8LD59	558	I
	Pseudonocardia sp. Ae717_Ps2	A0A1Q8LWS8	558	I
	Pseudonocardia sp. EV170527-09	A0A5B0HY15	558	I
	Pseudonocardia sp. HH130630-07	A0A1B1ZIR2	558	I
	Saccharopolyspora dendranthemae	A0A561V877	566	I
	Saccharopolyspora elongata	A0A4R4ZCL0	558	I
	Saccharopolyspora erythraea	A4FIP2	553	1
	Saccharopolyspora karakumensis	A0A4R5BC21	554	I
	Saccharopolyspora kobensis	A0A1H6ACW3	558	I
	Saccharopolyspora shandongensis	A0A1H3R7G8	558	I
	Saccharopolyspora sp. ASAGF58	A0A6H1RFA4	553	I
	Saccharopolyspora spinosa	A0A2N3Y4X7	553	I
	Saccharopolyspora terrae	A0A4R4VEZ1	554	I
	Umezawaea tangerina	A0A2T0STH2	563	1
	Streptomyces griseoaurantiacus	A0A7W2DXP5	546	II
	Streptomyces griseoaurantiacus M045	F3NDC3	503	П
	Streptomyces jietaisiensis	A0A1G7VIK1	594	II
	Streptomyces sp. WAC 01420	A0A429AHL0	546	II
	Streptomyces sp. WAC 01438	A0A3Q8VBC2	546	II
	Streptomyces antimycoticus	A0A499UX71	581	111
	Streptomyces autolyticus	A0A1P8XPB9	574	111
	Streptomyces hygroscopicus	A0A1S6R8W9	587	111
	Streptomyces iranensis	A0A061A395	715	111
	Streptomyces malaysiensis	A0A515GD19	575	Ш
	Streptomyces melanosporofaciens	A0A1H5BU00	568	111
	Streptomyces rapamycinicus ATCC 29253	A0A3L8QYP9	594	111
	Streptomyces sp. 11-1-2	A0A222SNY9	587	III
	Streptomyces sp. Amel2xB2	A0A327UPB0	618	111
	Streptomyces sp. M56	A0A2K8RH60	574	Ш
	Streptomyces sp. PRh5	A0A014LBY2	640	Ш
	Streptomyces sp. Z26	A0A498DR72	595	Ш
	Streptomyces violaceusniger	A0A4D4KW08	582	Ш
	Streptomyces violaceusniger Tü4113	G2P3W2	587	Ш
	Streptomycetaceae bacterium MP113-05	V6L1S5	477	Ш
	Nocardia arthritidis	A0A6G9YGF3	553	IV
	Nocardia terpenica	A0A164MNL0	556	IV

Nocardia terpenica	A0A291RHW6	556	IV
Nocardia terpenica	A0A6G9Z1W4	556	IV
Actinoplanes derwentensis	A0A1H1W8Y1	557	V
Labedaea rhizosphaerae	A0A4R6S0L8	567	V
Micromonospora aurantiaca DSM 43813	D9SZA3	566	V
Micromonospora ferruginea	A0A7L6B3A3	566	V
Micromonospora humi	A0A1C5GJ27	566	V
Micromonospora marina	A0A1C4VJH9	566	V
Micromonospora matsumotoense	A0A1C5AJ72	566	V
Micromonospora mirobrigensis	A0A1C4WX72	566	V
Micromonospora pisi	A0A495JV02	559	V
Micromonospora polyrhachis	A0A7W7WMV2	556	V
Micromonospora rifamycinica	A0A109IME3	566	V
Micromonospora sp. AMSO1212t	A0A6H9XDP7	566	V
<i>Micromonospora</i> sp. B006	A0A385AT49	566	V
Micromonospora sp. HM134	A0A518WDL6	566	V
Micromonospora sp. M42	W7VR86	565	V
Micromonospora sp. RP3T	A0A2T3VPR7	566	V
Micromonospora sp. TSRI0369	A0A1Q5HKX0	566	V
Micromonospora sp. XM-20-01	A0A505HSM1	566	V
Micromonospora tulbaghiae	A0A1C4UU69	566	V
Micromonospora wenchangensis	A0A246RSK5	566	V
Saccharothrix sp. NRRL B-16348	A0A0M8Y906	552	V
Saccharothrix svringae	A0A5Q0H4Q7	566	V
Saccharothrix texasensis	A0A3N1HHK0	552	V
Actinomadura litoris	A0A7K1KVG6	572	VI
Frankia sp. KB5	A0A1X1MKK4	571	VI
Saccharopolyspora antimicrobica	A0A1I5KZN7	558	VI
Saccharopolyspora elongata	A0A4R4Y7E8	588	VI
Streptacidiphilus jiangxiensis	A0A1H7KKC5	584	VI
Streptomyces broussonetiae	A0A6I6MUP5	571	VI
Streptomyces harbinensis	A0A1I6VN40	562	VI
Streptomyces olivaceus	A0A1D8SWY0	571	VI
Streptomyces paludis	A0A345HS54	552	VI
Streptomyces xiamenensis	A0A0F7G043	567	VI
Alloactinosynnema sp. L-07	A0A0H5DAM2	536	VII
Amycolatopsis coloradensis	A0A1R0KUQ2	572	VII
Amycolatopsis xvlanica	A0A1H3CQ58	546	VII
Crossiella cryophila	A0A7W7FUZ7	564	VII
Kibdelosporangium aridum	A0A428ZRL1	645	VII
Kitasatospora viridis	A0A561UCI7	619	VII
Nonomuraea terrae	A0A4R47AM5	569	VII
Prauserella shuiinwangii		554	VII
Saccharomonospora vinijancensis	A0A4P7CC09	568	VII
Saccharopolyspora sp. ASAGE58	A0A6H1R8U3	570	VII
Sphaerisnorangium rubeum		561	VII
		583	VII
Amycolatonsis antarctica	AUAJUJUAJ4	557	VII
		571	
Saccinal upolyspora giol 10588		571	
		371	

a The proteins AtoE (Uniprot ID: A0A1H4ZTV5), SerTC (Uniprot ID: A4FIP2), SmaTC (Uniprot ID: A0A515GD19), UtaTC (Uniprot ID: A0A2T0STH2), CcrTC (Uniprot ID: A0A7W7FUZ7), SsyTC (Uniprot ID: A0A5Q0H4Q7), AxyTC (Uniprot ID: A0A1H3CQ58) and PshTC (Uniprot ID: A0A2T0LSJ8), which were characterized in this study, are highlighted in blue text.

Table S23. Summary of ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) data for atolypene H (15) in methanol-d₄ (δ in ppm, J in Hz).

Chemical structure of **15** and ¹H-¹H COSY (—), key HMBC correlations (—), and key ROESY correlations (<- >).

No.	$\delta_{\rm C}$, type	$\delta_{\rm H}$, mult. (<i>J</i> , Hz)
1a	40.6, CH ₂	1.95, m
1b		1.32, m
2a	28.9, CH ₂	1.70, m
2b		1.63, m
3	79.8, CH	3.13, dd (11.4, 4.7)
4	40.3, C	
5	45.6, CH	1.32, overlapped
6a	19.7, CH ₂	1.71, m
6b		1.31, overlapped
7a	30.3, CH ₂	1.32, 2H, overlapped
7b		
8	39.7, CH	2.02, m
9	151.3, C	
10	39.0, C	
11	115.9, CH	5.37, m
12a	31.4, CH ₂	2.23, m
12b		1.71, overlapped
13	33.7, CH	1.61, m
14	36.6, C	
15a	38.0, CH ₂	1.50, td (12.3, 4.3)
15b		1.33, overlapped
16a	34.3, CH ₂	1.95, m
16b		1.85, td (12.7, 4.2)
17	138.7, C	
18	123.3, CH	5.15, t (6.7)
19a	24.8, CH ₂	2.30, 2H, d (3.2)
19b		
20a	35.4, CH ₂	2.30, 2H, overlapped
20b		
21	177.7, C	
22	15.8, CH₃	0.86, s
23	28.2, CH ₃	0.95, s
24	25.8, CH₃	1.09, s
25	15.2, CH₃	0.81, d (7.0)
26	20.3, CH ₃	0.73
27	16.3, CH₃	1.65, s

Figure S1. Biosynthetic pathway of pyripyropene A. The biosynthesis of pyripyropene A start with the assembly of the polyketide moiety, which is followed by prenylation of the polyketide, stereospecific epoxidation of the olefin of the prenyl chain, and cyclization of the terpenoid moiety to generate the core scaffold.^[19]

	i	ıo		20	зо	40	50
AtoE Bra4 PlaT2 TnlT2 Lon15	MPETDI MTTRI MCSDVDSF MCSAVDGF	LLDDGIER. IDTALET. RVDSSVAR. RVEKSVARSV	GAAAL GAEAV AAQAL VAKAAEAL MSISC	FAAVRPDO LRHRAADO FAIQRPEO FEVQRPDO TRASTTDO	VIRTDADWS LFDYDSGVC SWP.NRRP SWP.NRRP SWC.DRLAS	SSTVS TA AA GATLA TA GA CAVLG TA GA CAVLG TA GA SSAVS <mark>TA</mark> LS	VLTLSLV TLVLHLH VVALHLA LAALHVA VLALHEV
		eò	7 <u>0</u>	80	2	٥.	100
AtoE Bra4 PlaT2 TnlT2 Lon15	DDD.AEDI DPVGSRAY DPERSRDI DRERSNDI EPAVYRDE	LVSAGTSWI YVTGGVAHI LIERGAQWI LIERGAAWI LIERGAAWI EIEAGLLWI	RKAQRPDG SRTQNGDG /AAQNADG AGAQNADG HDHQRADG	GWGTVS.G GWGSVP.G GWGGVP.F GWGGVA.G GWSDADED	SVDSEVLPT SQPTEAVTT RAASQLVPT SASTQLVPT SPPSSKSGT	/MSAVALDV AIAAAVLHI /VTASALTI /IAAASLHI AFAIAAMHA	A G R R D A D V D A D G S G T A P R T A G V S P H T S R D P D R S A
	110	120		130	14	10	150
AtoE Bra4 PlaT2 TnlT2 Lon15	PA <mark>VR</mark> AGRA DR <mark>VR</mark> AGRA EP <mark>AR</mark> RALI EPVQRALI GR <mark>IR</mark> QGMI	AWLDRY <mark>GGL</mark> AALDRL GGL DLIRSL <mark>GG</mark> VI DLVKSY GG TI DFLEAA <mark>GGV</mark> I	DAVPSR GIADP SLADP CALTDP HRIPGMRG	AIRI ALSA GMVH GMAH PGPKSWPA	LGTFFCSLA VCHRFHAMA MATTFLALA MATTFLALA AAATAWAL	GWVEPRAV GWAPP.AP GLRSLHGS GLQDQQAS /GLRQFHEQ	PRIPSVV VRVPLWV RRIPLEL RRIPLEL PROPIEV
	16	50 :	170	180		190	1
AtoE Bra4 PlaT2 TnlT2 Lon15	FLFP FALPR.LF LLPRRLV LLPQRLV MLLPQ.VI	ARARRMFAVI RTRMSFRS NRPRLSFRA NRRLSFRV LRNKVSVAL	ALPVAAAL SVLAATAL APFVAMAF APFVAMAF SVLGIGL	SLKP.GAF AQAR.AEF IQAHDAAF IQARHSPF MQTR.LLF	IG GGLLRRLI KG.VGGLL EARLQRLL AGRLRRFL	PAARRAV HAATPAAI HRLARPTAI RLARPAGI VRFAEPRAI	SVIRQMH RVLYGIH RLLQEME RTLARVE AWLRDVQ
	200	210	220	23	so 2	240	250
AtoE Bra4 PlaT2 TnlT2 Lon15	DHEGGTGE RDEGGTGA RGENDRGG RGENARGG	ELGGDPWPAS AFGADAWAA GYGGDNWLA GYGGDNWLA GIEECPMLG	MICLGLH MTGLGLV VVCIGLC VVCLGLT LILIALH	RAGQAPEV RSGAAPDI RTGAPAHN CAGAPRRA RAGMAEDV	TGAIRQRL TEAIADFL IAATVDYL VLDAVGYL QKGCLSYL	ATVNPDGS RSVFADGS SNVRPDGS ANAHPDGS LETRRPDGS	WDMMP.L WTIVE.I WHIMQGL WHIMQGL WAVDRDL
	260	o :	270	280	290	300	1
AtoE Bra4 PlaT2 TnlT2 Lon15	DITWSVFA RLTYTGFA DLIGGSYV DLIGGSYV EISVTRYA	AAAGLAEAG AATGLCDAG VARGLADAG VARGLADAG AVTALAECVI	FGTDPRL YGADPRL YRDDPRL YRADPRL VASEPRL	APTLAMLE AVTADGVE ARARQWLE VRARQWLE RRTRDWLI	ARQGNRPF AAQLTRPF GCQQDQAF GCQQEEAF JDAQWRKPF	AFGSPPG MLDCPPG LYDAPPG VYGAPPG PLRIPGC	WSYGTGH WSYSGPD WGWEGPH WGWEGPR WGWAMPS
	310	320					330
AtoE Bra4 PlaT2 TnlT2 Lon15	GWPMALET GWPVTLES GWPNFLDS GWPNFLDS GWPEPDDT	FAEVTALLA SAELLSALA SANVLAALT SANVLAALT SANVLAALA FAGVLEALA	VTPG MPGAD ASREE AGGGEAGT LDRGR	GDGDGDVI	TGEAGTGD	GDGDVDTGE	DAPAA . RDPHVA . PAEHLR . AGDAHLR . LDLPAR
	340	350	2	360	370	380	_
AtoE Bra4 PlaT2 TnlT2 Lon15	RGVEWLSE RGARWLAG TGLDWLVS RGLRWLVS VGLRWLTV	RQQDRRGSW GRQDTRGSW SRQDGRGSW SRQDRKGSW VRQDSRGSW	SLCVPETI SLWVRDTA STFVPDTT STFVPDTT CGWVRNAS	APNIGADE LANDGPCE LANDGPCE LPNDGPCE ILNDKPCE	FMTAQAVC YLTAQAVD YTTAQCVES YVTAQSVE AVTSQVVTZ	ALLDS <mark>G</mark> VAG ALLDAGIPP SLLDG <mark>G</mark> LSR /LLDS <mark>G</mark> VSR AMHRY <mark>G</mark> LTD	A.DRRVR E.DNGIR G.DPRIA R.HPAVR LPGSPIR
:	390	400	410	420	4 3	зọ	
AtoE Bra4 PlaT2 TnlT2 Lon15	RAAGWLRF RAARWLAG KALDWLLA KALDWLLA RALDWLLA RALDYVAJ	RQQDDEGRFI GVQRPDGSFI AAQRPDGTYI AHQRADGTYI IVQTPEGAFI	AMWYRNH SLWYRGH ALWYRGL ALWYRGL SLWFRKH	TSG TA VVI TAG TA QVI TAA TA TAI TPG TA MVI VFG TA RVI	EALARAGDO GALARITDE VALARGG.V VALGRAG.I ETYALLG.I	AER ATDPTVRG /GDHPAARR AGHPVARR AHTPSARR	AKQWLIG GVRWLIA AREALIA ARDALIR AHRWLID
4	4 <u>0</u>	450		460	470	480	
AtoE Bra4 PlaT2 TnlT2 Lon15	TQHPDGSV TQHSDGSV GQLADGSV NQLADGSV NQRDDGSV	WSDGRAGTPO WGPG.DGRAO WGPGDTGTPO WGPGETGTPO WPAGADHTEO		VEETAWAV VEETAWAI VEETAWAI VEETAWAI AEETAWAI	YRALLHAGL RALLEAGI RGLLAAGL RALLACGV YALLASGL	R P G D P A A R R A P G T A E I D R P A Q D D R L R R P A D D P R L R R P A D D P R L R R P P S D P R A V R	AVRWLLD AADWLLA AAEWIVS AAEWIMT GIQWLAT
4	9 <u>0</u>	50 <u>0</u>	510	520	530	2	
AtoE Bra4 PlaT2 TnlT2 Lon15	VQHRDGTW RQQPDGHW AQGDDGLW AQRPDGRW AQHG.GTW	WPAAPVSEW WPEAPVSAY WDANPVCLH WDASAVCVH WRPSPVGLYI	RNCYR Y F RHCVH Y P RRLAY Y A RGFAY Y V DDLR. Y N	N TAI TNGI NGAI TAGI DGLIGNGI DGLIVDGI SDLIAHTE	ALRALGCYH ALRALAAYH VLRALGAYH ALKALGDYH ALRALGSWI	EAAR RGLGRKDD SALAAGPV GAVAALPY RRTRVD	DG ARREAS EGQEAS

Figure S4. Amino acid sequence alignment of bacterial noncanonical class II MTCs. Alignment of amino acid sequences was conducted for bacterial noncanonical class II MTCs, including AtoE, Bra4, PlaT2, TnIT2, and Lon15. All these MTCs contain the noncanonical sequence motifs xxx(E/D)(T/S)xE, which are marked with red triangle symbols. The sequence alignment was generated by Clustal Omega and the figure drawn in EsPript 3.0.

Figure S5. Reconstitution of the *ato* gene cluster. A bottom-up strategy was adopted for the comprehensive reconstruction of the *ato* genes, with all gene combinations meticulously constructed and integrated into the pSET152 vector.

Figure S6. Analysis of metabolites from engineered *Streptomyces* strains. A) HPLC results (λ_{max} = 210 nm). *S. albus* J1074 with empty pSET152 was used as a control. B) Structures of the metabolites isolated in this study (1–13).

Figure S7. ¹H NMR spectrum of atolypene A (1) in methanol-*d*₄ (400 MHz).

Figure S10. ¹³C NMR spectrum of atolypene C (2) in methanol-*d*₄ (100 MHz).

Figure S11. DEPT spectrum of atolypene C (2) in methanol-d₄.

Figure S12. ¹H-¹H COSY spectrum of atolypene C (2) in methanol-d₄.

Figure S13. HSQC spectrum of atolypene C (2) in methanol-d₄.

Figure S14. HMBC spectrum of atolypene C (2) in methanol-d₄.

Figure S15. ROESY spectrum of atolypene C (2) in methanol-d₄.

Figure S16. ¹H NMR spectrum of atolypene D (3) in methanol-d₄ (400 MHz).

Figure S17. ¹³C NMR spectrum of atolypene D (3) in methanol-*d*₄ (100 MHz).

Figure S18. ¹H-¹H COSY spectrum of atolypene D (3) in methanol-*d*₄.

Figure S19. HSQC spectrum of atolypene D (3) in methanol-d₄.

Figure S20. HMBC spectrum of atolypene D (3) in methanol-d₄.

Figure S21. ROESY spectrum of atolypene D (3) in methanol-d₄.

Figure S22. ¹H NMR spectrum of 4 in methanol-*d*₄ (400 MHz).

Figure S23. ¹³C NMR spectrum of 4 in methanol-d₄ (100 MHz).

Figure S24. ¹H-¹H COSY spectrum of 4 in methanol-d₄.

Figure S25. HSQC spectrum of 4 in methanol-d₄.

Figure S26. HMBC spectrum of 4 in methanol-d₄.

Figure S27. ROESY spectrum of 4 in methanol-d₄.

Figure S28. ¹H NMR spectrum of 5 in methanol- d_4 (400 MHz).

Figure S29. ¹³C NMR spectrum of 5 in methanol-d₄ (100 MHz).

Figure S30. ¹H-¹H COSY spectrum of 5 in methanol-d₄.

Figure S31. HSQC spectrum of 5 in methanol-d₄.

Figure S32. HMBC spectrum of 5 in methanol-d₄.

Figure S33. ROESY spectrum of 5 in methanol-d₄.

Figure S34. ¹H NMR spectrum of 6 in methanol-*d*₄ (400 MHz).

Figure S35. ¹³C NMR spectrum of 6 in methanol-d₄ (100 MHz).

Figure S36. ¹H-¹H COSY spectrum of 6 in methanol-d₄.

Figure S37. HSQC spectrum of 6 in methanol-d₄.

Figure S38. HMBC spectrum of 6 in methanol-d₄.

Figure S39. ROESY spectrum of 6 in methanol-d₄.

Figure S40. Proposed biosynthetic pathway of atolypenes. Compounds 6'-8' and 14' are the epoxide forms of 6-8 and 14, respectively. 3a*: Not isolated.

Figure S41. ¹H NMR spectrum of 7 in methanol-d₄ (400 MHz).

Figure S42. ¹³C NMR spectrum of 7 in methanol-d₄ (100 MHz).

Figure S43. ¹H-¹H COSY spectrum of 7 in methanol-d₄.

Figure S44. HSQC spectrum of 7 in methanol-d₄.

Figure S45. HMBC spectrum of 7 in methanol-d₄.

Figure S46. ROESY spectrum of 7 in methanol-d₄.

Figure S49. ¹H-¹H COSY spectrum of 8 in methanol-d₄.

Figure S50. HSQC spectrum of 8 in methanol-d₄.

Figure S51. HMBC spectrum of 8 in methanol-d₄.

Figure S52. ROESY spectrum of 8 in methanol-d₄.

Figure S54. ¹³C NMR spectrum of **9** in methanol-*d*₄ (100 MHz).

Figure S55. ¹H-¹H COSY spectrum of **9** in methanol-*d*₄.

Figure S56. HSQC spectrum of 9 in methanol-d₄.

Figure S57. HMBC spectrum of 9 in methanol-d₄.

Figure S58. ROESY spectrum of 9 in methanol-d₄.

Figure S59. ¹H NMR spectrum of **10** in methanol-*d*₄ (400 MHz).

Figure S60. ¹³C NMR spectrum of **10** in methanol-*d*₄ (100 MHz).

Figure S61. ¹H-¹H COSY spectrum of **10** in methanol-*d*₄.

Figure S62. HSQC spectrum of 10 in methanol-d₄.

Figure S63. HMBC spectrum of 10 in methanol-d₄.

Figure S64. ROESY spectrum of 10 in methanol-d₄.

Figure S67. ¹H NMR spectrum of **10b** in methanol-*d*₄ (400 MHz).

Figure S70. ¹³C NMR spectrum of 9b in methanol-*d*₄ (100 MHz).

Figure S71. HSQC spectrum of 9b in methanol-d₄.

Figure S72. ¹H NMR spectrum of **9c** in methanol-*d*₄ (400 MHz).

Figure S73. ¹³C NMR spectrum of **9c** in methanol-*d*₄ (100 MHz).

Figure S74. HSQC spectrum of 9c in methanol-d₄.

Figure S77. HSQC spectrum of 10c in methanol-d₄.

Figure S79. ¹³C NMR spectrum of **10d** in methanol- d_4 (100 MHz).

Figure S80. Absolute stereochemical determination at C3 of 9 and 10 using the modified Mosher method.

Figure S81. HPLC analysis of metabolites from S. lividans DLW1012 harboring the four genes atoCDEF. S. lividans SBT18 with empty pSET152 was used as a control.

Figure S82. ¹H NMR spectrum of atolypene E (**11**) in methanol-*d*₄ (400 MHz).

Figure S83. ¹³C NMR spectrum of atolypene E (11) in methanol-*d*₄ (100 MHz).

Figure S84. ¹H-¹H COSY spectrum of atolypene E (11) in methanol-*d*₄.

Figure S85. HSQC spectrum of atolypene E (11) in methanol-d₄.

Figure S86. HMBC spectrum of atolypene E (11) in methanol-d₄.

Figure S87. ROESY spectrum of atolypene E (11) in methanol-d₄.

Figure S90. ¹H-¹H COSY spectrum of atolypene F (12) in methanol-d₄.

Figure S91. HSQC spectrum of atolypene F (12) in methanol-d₄.

Figure S92. HMBC spectrum of atolypene F (12) in methanol-d₄.

Figure S93. ROESY spectrum of atolypene F (12) in methanol-d₄.

Figure S94. ¹H NMR spectrum of atolypene G (**13**) in methanol-*d*₄ (400 MHz).

Figure S95. ¹³C NMR spectrum of atolypene G (13) in methanol-*d*₄ (100 MHz).

Figure S96. ¹H-¹H COSY spectrum of atolypene G (13) in methanol-d₄.

Figure S97. HSQC spectrum of atolypene G (13) in methanol-d4.

Figure S98. HMBC spectrum of atolypene G (13) in methanol-d₄.

Figure S99. ROESY spectrum of atolypene G (13) in methanol- d_4 .

Figure S100. EIC analysis of wild-type S. albus that were supplemented with 11 and 12, respectively.

Figure S101. Protein purification of AtoA and AtoB. A) SDS-PAGE gel of purified AtoA. B) SDS-PAGE gel of purified AtoB. M, Prestained Protein Marker (Vazyme); lane 1, purified N-His₆-tagged AtoA (413 amino acids, ~45.0 KDa); lane 2, purified N-His₆-tagged AtoB (346 amino acids, ~36.8 KDa).

Figure S102. LC-MS analysis of the in vitro reactions of AtoA with 11 and 12, respectively.

Figure S103. LC-MS analysis of the in vitro reactions of AtoB with 6 and 14. PLP: pyridoxal phosphate; L-Ala: L-alanine.

Figure S104. ¹H NMR spectrum of 14 in methanol-*d*₄ (400 MHz).

Figure S105. ¹³C NMR spectrum of **14** in methanol- d_4 (100 MHz).

Figure S106. ¹H-¹H COSY spectrum of **14** in methanol-*d*₄.

Figure S107. HSQC spectrum of 14 in methanol-d₄.

Figure S108. HMBC spectrum of 14 in methanol-d₄.

Figure S109. ROESY spectrum of 14 in methanol-d₄.

Figure S110. Plasmid construction and protein purification of AtoE. A) Plasmid map, gene *atoE* with His₆-tag were inserted into the *Nde*I and *EcoR*I restriction sites within the pUWL201PWT vector to construct the pUWL201PWT-AtoE. B) SDS-PAGE gel of purified AtoE. Lane 1, Prestained Protein Marker (Vazyme); lane 2-4, purified N-His₆-tagged AtoE (553 amino acids, ~59.3 KDa).

Figure S112. ¹³C NMR spectrum of **10e** in methanol-*d*₄ (100 MHz).

Figure S113. ¹H NMR spectrum of **10a** in methanol-*d*₄ (400 MHz).

Figure S114. ¹³C NMR spectrum of **10a** in methanol-*d*₄ (100 MHz).

Figure S115. ¹H-¹H COSY spectrum of **10a** in methanol-*d*₄.

Figure S116. HSQC spectrum of 10a in methanol-d4.

Figure S117. HMBC spectrum of 10a in methanol-d₄.

Figure S118. ROESY spectrum of 10a in methanol-d₄.

Figure S119. HPLC analysis of in vitro biochemical assay of AtoE with 10a (λ_{max} = 210 nm).

Figure S120. Structural model of AtoE with displaying key active site residues and a docking model of 10a.

Figure S121. Protein purification of AtoE mutants. Each AtoE mutant was fermented in 4L cultures, and the resultant proteins were purified, yielding E314A, E317A, Y303A, M168A, C352A, W408A, M311A, W211A, W309A, and W505A. Lane M, Prestained Color Protein Ladder (Beyotime).

Figure S122. In vitro reactions of AtoE variants with the substrate **10a**. A) Cyclization of **10a** by MTC AtoE catalyzes the formation of **13**; B) HPLC profiles ($\lambda_{max} = 210 \text{ nm}$) of the in vitro reactions of AtoE and its variants (C352A, M311A, W309A, W211A, W408A, E314A, M168A, and W505A) with the substrate **10a**; C) HPLC analysis of the in vitro reactions of variants (Y303A and E317A) with the substrate **10a**.

EIC [M-H]⁻: -m/z 415 (for 13), -m/z 415 (for 10a), -m/z 415 (unidentified)

Figure S123. LC-MS analysis of the in vitro reactions of AtoE and variants with 10a.

Figure S124. Protein purification of selected class II MTCs. M, Prestained Protein Marker (Vazyme); Purified N-His₆-tagged SerTC (572 amino acids, ~61.3 KDa); Purified N-His₆-tagged SmaTC (600 amino acids, ~63.7 KDa); Purified N-His₆-tagged UtaTC (588 amino acids, ~63.6 KDa); Purified N-His₆-tagged CcrTC (589 amino acids, ~65.3 KDa); Purified N-His₆-tagged SsyTC (585 amino acids, ~61.0 KDa). SerTC (Uniprot ID: A4FIP2); SmaTC (Uniprot ID: A0A515GD19); UtaTC (Uniprot ID: A0A2T0STH2); CcrTC (Uniprot ID: A0A7W7FUZ7); SsyTC (Uniprot ID: A0A5Q0H4Q7).

Figure S125. HPLC profiles (λ_{max} = 210 nm) of the in vitro reactions of class II MTCs (UtaTC, SsyTC, SmaTC, SerTC, CcrTC, and AtoE) with 10a.

Figure S126. LC-MS analysis of the in vitro reactions of class II MTCs (UtaTC, SsyTC, SmaTC, SerTC, CcrTC and AtoE) with 10a.

Figure S127. Proposed catalytic processes of the class II MTCs involving substrate 10a to form 13 and 15.

Figure S129. ¹³C NMR spectrum of atolypene H (15) in methanol-d₄ (100 MHz).

Figure S130. ¹H-¹H COSY spectrum of atolypene H (15) in methanol-d₄.

Figure S131. HSQC spectrum of atolypene H (15) in methanol-d₄.

Figure S132. HMBC spectrum of atolypene H (15) in methanol-d₄.

Figure S133. ROESY spectrum of atolypene H (15) in methanol-d₄.

U.tangerina		
Saccharopolyspora sp. ASAGF58		
Amycolatopsis sulphurea		
Nocardia sp. NRRL S-836		
Nocardia arthritidis		
Amycolatopsis tolypomycina (Ato)		
Streptomyces sp. Z26		
Streptomyces xiamenensis		1
	tity (%) 100	
Terpene synthase	Sulfotransferase Non-ribosomal peptide synthetase	
Flavin-dependent me	ooxygenase Aminotransferase Methyltransferase Transport	
Polyprenyl synthase	Cytochrome P450 Acyltransferase Regulation	ı
UbiA prenyltransfera	e Hypothetical α-ketoglutarate dependent dioxygenase	

Figure S134. Analysis of selected *ato*-like BGCs. Links are drawn between genes if they share at least 30% identity. Genes are colored based on putative function.

References

- [1] L.-B. Dong, X. Zhang, J. D. Rudolf, M.-R. Deng, E. Kalkreuter, A. J. Cepeda, H. Renata and B. Shen, J. Am. Chem. Soc., 2019, 141, 4043–4050.
- [2] L.-B. Dong, J. D. Rudolf, D. Kang, N. Wang, C. Q. He, Y. Deng, Y. Huang, K. N. Houk, Y. Duan and B. Shen, Nat. Commun., 2018, 9, 2362.
- [3] L.-B. Dong, J. D. Rudolf, M.-R. Deng, X. Yan and B. Shen, ChemBioChem, 2018, 19, 1727–1733.
- [4] S. Y. Hsu, D. Perusse, T. Hougard and M. J. Smanski, ACS Synth. Biol., 2019, 8, 2397–2403.
- [5] P. Mazodier, R. Petter and C. Thompson, J. Bacteriol., 1989, 171, 3583–3585.
- [6] L.-B. Dong, J. He, Y.-Y. Wang, X.-D. Wu, X. Deng, Z.-H. Pan, G. Xu, L.-Y. Peng, Y. Zhao, Y. Li, X. Gong and Q.-S. Zhao, J. Nat. Prod., 2011, 74, 234–239.
- [7] X. T. Liang, J. H. Chen and Z. Yang, J. Am. Chem. Soc., 2020, 142, 8116–8121.
- [8] E.J. Corey, M. C. Noe and W.-C. Shieh, Tetrahedron Lett., 1993, 34, 5995–5998.
- [9] S. Kumar, G. Stecher, M. Li, C. Knyaz and K. Tamura, *Mol. Biol. Evol.*, 2018, 35, 1547–1549.
- [10] I. Letunic and P. Bork, *Nucleic Acids Res.*, 2021, 49, 293–296.
- [11] R. Zallot, N. Oberg and J. A. Gerlt, *Biochemistry*, 2019, **58**, 4169–4182.
- [12] C. L. M. Gilchrist and Y.-H. Chooi, Bioinformatics, 2021, 37, 2473–2475.
- [13] M. S. Paget, L. Chamberlin, A. Atrih, S. J. Foster and M. J. Buttner, J. Bacteriol., 1999, 181, 204–211.
- [14] S.-H. Kim, W. Lu, M. K. Ahmadi, D. Montiel, M. A. Ternei and S. F. Brady, ACS Synth. Biol., 2019, 8, 109–118.
- [15] S. C. Chang, W. C. Yang and Y. H. Lee, Biochim. Biophys. Acta., 1992, 1129, 219–222.
- [16] J. P. Gomez-Escribano and M. J. Bibb, *Methods Enzymol.* 2012, **517**, 279–300.
- [17] M. Bierman, R. Logan, K. O'Brien, E. T. Seno, R. N. Rao and B. E. Schoner, Gene, 1992, 116, 43–49.
- [18] J. D. Rudolf, L.-B. Dong, T. Huang and B. Shen, *Mol. Biosyst.*, 2015, 11, 2717–2726.
- [19] T. Itoh, K. Tokunaga, Y. Matsuda, I. Fujii, I. Abe, Y. Ebizuka and T. Kushiro, Nat. Chem., 2010, 2, 858–864.
- [20] Y. Hayashi, N. Matsuura, H. Toshima, N. Itoh, J. Ishikawa, Y. Mikami and T. Dairi, J. Antibiot., 2008, 61, 164–174.
- [21] C. Dürr, H. J. Schnell, A. Luzhetskyy, R. Murillo, M. Weber, K. Welzel, A. Vente and A. Bechthold, Chem. Biol., 2006, 13, 365–377.
- [22] T. A. Alsup, Z. Li, C. A. McCadden, A. Jagels, D. Łomowska-Keehner, E. Marshall, L.-B. Dong, S. Loesgen and J. D. Rudolf, RSC Chem. Biol., 2024, 5, 1010-1016.
- [22] Y. Hayashi, H. Onaka, N. Itoh, H. Seto and T. Dairi, Biosci. Biotech. Bioch., 2007, 71, 3072–3081.