Supplementary Information (SI) for Chemical Science. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Unified Enantiospecific Synthesis of Drimane Meroterpenoids Enabled by Enzyme Catalysis and Transition Metal Catalysis

Yipeng You, ‡^a Xue-Jie Zhang, ^{‡b} Wen Xiao, ^b Thittaya Kunthic, ^b Zheng Xiang, ^{*b,c} and Chen Xu^{*a}

^aShenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen (P. R. China). E-mail: xuc@sustech.edu.cn

^bState Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, AI for Science (AI4S) Preferred Program, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, University Town of Shenzhen, Nanshan District, Shenzhen 518055 (P. R. China). E-mail: zxiang@pku.edu.cn

^cInstitute of Chemical Biology, Shenzhen Bay Laboratory, Gaoke Innovation Center, Guangqiao Road, Guangming District, Shenzhen 518132 (P.R. China).

‡ These authors contributed equally to this work.

Table of Contents

1. Supplementary figures and schemes	3
2. Materials and methods	4
3. Heterologous biosynthesis of drimenol	6
3.1 Strains and plasmids	6
3.2 Protein and codon-optimized nucleotide sequences of enzymes and multienzymes assembly modules used in this study.	7
3.3 Multienzymes assembly modules of top MVA pathway (MCS1 of pACYCDuet-1 plasmid)	13
3.4 Multienzymes assembly modules of cross-linking MVA-drimenol synthesis pathway (pETDuet-1)	16
3.5 Heterologous biosynthesis of drimenol in <i>E. coli</i>	18
4. Biocatalytic oxidation of drimenol catalyzed by P450 _{BM3} mutants	22
4.1 Expression and purification of cytochrome P450 $_{\text{BM3}}$ (F87A) and BmGDH	22
4.2 In vitro enzymatic assay of P450 _{вм3} (F87A)	25
4.3 Product identification	26
4.4 Docking drimenol into P450 _{BM3} (F87A)	28
4.5 Construction of the focus library of P450 _{BM3}	28
4.6 Screening of the P450 _{BM3} library	29
4.7 Optimization of the reaction conditions for drimenol oxidation	30
4.8 Gram-scale oxidation of drimenol with P450 _{BM3} (L75A/F87I)	30
5. Synthetic procedures	31
5.1 Optimization for the Ni-catalzyed reductive coupling reaction	31
5.2 Synthesis of drimane halides and aryl halides	33
5.3 Synthesis of (+)- <i>ent</i> -chromazonarol	39
5.4 Synthesis of (+)-8- <i>epi</i> -puupehenol	39
5.5 Synthesis of (-)-pelorol	45
5.6 Synthesis of (-)-mycoleptodiscin A	47
5.7 Synthesis of (+)-hongoquercin A	49
5.8 Synthesis of (+)-hongoquercin B	53
6. NMR comparisons	59
7. References	71
8. NMR spectra	71

1. Supplementary figures and schemes

Figure S1. GC-MS analysis of product profile of drimenol synthases from four species in *E. coli*. The main product drimenol and side product farnesol were shaded with red and blue background, respectively. The *E. coli* strain harboring pACYCDuet-T1B1 and pETDuet-ERG20 as control.

Figure S2. Schematic overview of the genetic design of multienzyme assembly for drimenol production.

Figure S3. *In vitro* enzymatic assay of P450_{BM3} (F87A) using 0.2 mM compound **12** (Rt. 13.63 min) as substrate. Compound **13** (Rt. 15.04 min) is observed after 16 h reaction.

Figure S4. Optimization of C3-hydroxylation of drimenol (11). A) Comparison of the yield of 12 between $P450_{BM3}$ (L75A/F87I) and P450_{BM3} (L75A/F87I/MERO1). B) Comparison of the yield of 12 catalyzed by optimal $P450_{BM3}$ (L75A/F87I) with various co-solvents in three different concentrations. C) Comparison of the yield of 12 in a range of concentrations of DMF.

2. Materials and methods

All reactions were carried out under an argon atmosphere with dry solvents under anhydrous conditions, unless otherwise noted. Anhydrous THF was distilled from sodium-benzophenone, dichloroethane and dichloromethane were distilled from calcium hydride. Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. The platinum catalysts were synthesized following the procedure outlined by our group recently.¹ Thin-layer chromatography (TLC) was conducted with 0.25 mm Tsingtao silica gel plates (60F-254) and visualized by exposure to UV light (254)

nm). Flash column chromatography was performed using Tsingtao silica gel (60, particle size 0.040–0.063 nm). ¹H NMR (400 MHz and 600 MHz), ¹³C NMR (101 MHz and 151 MHz) spectra were recorded on a Bruker AV III HD spectrometer, and were reported in terms of chemical shift relative to residual CDCl₃ (δ 7.26 and δ 77.16 ppm, respectively) and (CD₃)₂CO (δ 2.05 and δ 29.84 ppm, respectively). Data for ¹H NMR spectra are reported as follows: chemical shift (δ ppm) (multiplicity, coupling constant (Hz), integration). Abbreviations are used as follows: s = singlet, br = broad singlet, d = doublet, t = triplet, q = quartet, m = complex multiplet. Data for ¹³C NMR spectra are reported in terms of chemical shift. High-resolution mass spectra (HRMS) data was obtained by using Thermo ScientificTM Q ExactiveTM Quadrupole-Orbitrap Mass Spectrometer.

3. Heterologous biosynthesis of drimenol

3.1 Strains and plasmids

Escherichia coli DH5α cells were used for molecular cloning and site-directed mutagenesis. *E. coli* BL21(DE3) and MG1655(DE3) cells were used for protein expression and microbial production.

The previously reported plasmids pACYCDuet-T1B1 harboring the MVA pathway genes and pETDuet-ERG20 were used for producing C5 building blocks isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) and linear C15 precursor farnesyl diphosphate (FPP), respectively.² Four genes encoding drimenol synthase (*PhDS*, *VoDS*, *AsDMS* and *DrtB*) were codon-optimized and synthesized by GenScript (Nanjing, China) and cloned into the multiple cloning site 2 (MCS2) of pETDuet-ERG20 with NdeI/BgIII. Besides, the truncated form of DrtB with C' terminal 53 amino acid residues removal was constructed by using quick-change strategy to provide the plasmid pETDuet-ERG20-DrtB-CD53.

For metabolic engineering of drimenol production, a second copy of the *mvaA* and *idi* genes were cloned into pACYCDuet-T1B1 with EcoRI/SacI and pETDuet-ERG20-DrtB with BamHI/EcoRI restriction site, respectively. Briefly, the *mvaA* gene was amplified from pACYCDuet-T1B1 as template and cloned into pET28a(+) with NcoI/XhoI restriction site to provide pET28a-mvaA, from which the *mvaA* gene along with flanking T7 terminator was amplified and cloned into pACYCDuet-T1B1 with EcoRI/SacI restriction site to provide pACYCDuet-T1B1-mvaA. The *idi* gene from *E. coli* was codon-optimized and synthesized by GenScript (Nanjing, China) and cloned into the MCS1 of pETDuet-ERG20-DrtB with BamHI/EcoRI restriction site to provide pETDuet-ERG20-EcIDI-DrtB.

For multienzymes assembly, top MVA pathway enzymes (AtoB, mvaS and mvaA) were assembled by scaffold-free SpyTag/SpyCatcher and SnoopTag/SnoopCatcher pair with ratio of 1:2:2 assembly (namely T-ab). Cross-linking of MVA-drimenol pathway enzymes (ERG20, EcIDI and DrtB) were utilized an engineered caveolin-1 isoform beta (β-Cav1) as scaffold along with covalent conjugation via SnoopTag/SnoopCatcher pair and another covalent bonds and noncovalent interactions based on NGCatcher, NGTag and RK (Arginine/Lysine) tails (namely C-ab). The SpyTag-SpyTag-SnoopTag-SnoopTag, SpyCatcher, SnoopCatcher, NGCatcher-rbs-NGTag-SnoopTag-β-Cav1 fragments were codon-optimized and synthesized by GenScript (Nanjing, China). The atoB_tail-SpyTag-SpyTag-SnoopTag-SnoopTag-rbs-mvaS-SpyCatcher and rbs-mvaA-SnoopCatcher fragments were constructed by overlap-extension PCR and assembled with vector pACYCDuet-atoB-B1 by seamless joining to provide pACYCDuet-T-ab-B1. The

RK-ERG20-RK, rbs-EcIDI-NGCatcher, rbs-NGTag-SnoopTag-β-Cav1 and DrtB-SnoopCatcher fragments were constructed by overlap-extension PCR. The front three fragments were assembled by seamless joining and cloned into the MCS1 of pETDuet-1 with NcoI/SacI restriction site. The MCS2 of this resulting plasmid was inserted by the DrtB-SnoopCatcher fragment with NdeI/XhoI restriction site.

The sequence information of enzymes and multienzymes assembly modules used in this study are shown below. The primers used for heterologous biosynthesis of drimenol are listed in Table S1.

3.2 Protein and codon-optimized nucleotide sequences of enzymes and multienzymes assembly modules used in this study.

PhDS (559 aa, 1680 bp)

MSTAVNVPSAVRPADKRPIASFHPSPWGDYFLKYVPCDQVTQAKMEDEVKKVEEDVKKELRKLAKAVGKPLELLNFIDVVERL GVGYRLEQEIEDLVQAIFDNDKFGVDEFDLYHTSLWFRLLRQHGFHVSCDVFGKFKGRNGRFKDSLASDVKGILGLYEASHVR THGDDTLDEALVFTTTHLKAVVTNQPNHPLVPQVTHALMQPYHKGMPRLESRHFIAFYEKDPYHDKTLLKFGKLDFNLVQALH KKELKDLSRWWKDLDMHAKMPFPSRDRVPEGYFWTLGPFYEPQFALCRKFFLQVFKVTSIVDDIYDAYGTIDELTAFTKAAER WDRSCLDELPEYMKVSYASLIDTFEEFERDLAPQGRSWSVKYAREEMIQMCRVYYQEAKWCHEKYSPTCDEYLEKASIVSFGY NLGTVVCFLGMGDVATKEAFEWARGNPKVVRAAGIIGRLMDDIGSHHFEQGRDHVPSAVECYIRQHGVDEVTAQRELGKRVES SWKDINEMMLKPYMMPKPLLTRILNECRIVDVIYKGEDSYTFSNTTMKKNISHILTDPIPI

S7

VoDS (556 aa, 1671 bp)

MSTALNSEHETVRPLASFQPSTWGDLFISYSEDSQLKEVYGKEHECLKQQVKTMLLDVTNYRISEKIAFINTLERLGVSHEFE NEIEGLLHQMFDAHSKFQDGIQHFDLFTLGIYFRILRQHGYRIYCDVFNKLKDSNNEFKKELKEDAIGLLSLYEATQVRAHAE EILDEALIFTKAQLESIAATSSLSPFVEKQITHALVQALHKGIPRVESRHFISVYEEDPDKNDLLLRFSKIDYNIVQMLHKQE LCHISKWWRDSELETKLTYARNRVAECFLWTLCVYHEPKYSPARLLLGKLINIISCTDDTYDAYGTLEEVQIFTDVIQRLDRS SMEQLPDYMKILYKAVLDLFDEVEVQLSNQETNNTYRMAYAKEELKAIAKCYEKEHIWFRKCHVPPFEEYLENAVVSIGNRLA VTFSFLGMDQVAAVEAFEWAKTDPKMVKSCGKVLRLVDDVMSHEEEDVRGHVATGVECYMKEHGVSREEAVVEFYKRVEYAWK

S8

AsDMS (536 aa, 1611 bp)

MDFSSNVSPINQNNMKEVLTPELITSLQELSQILDRYDTIVFDLGDVLLHWDSVHFTSETKGIDDVRKMVKHPVWQDLEKGLI NQEFALTALSCELETPCSKLKEMLELSIASLQVNPLMVEVLRVLHKKDKQIYCLSNVDLESFSYLYKQFDFWKYFDGIYVSAL LQLRKPNPDIFQYLISSASINTKSTIFIDDKSENLQEAANFGISTLKYNKDNFEYTAIEGGWPIPLQNMTPEIHKKRTLGEDY LNLRLRKFPFCKSFVSNNVELIGGEDFSKEIFSTAVILHSYTSLPDDIIASMCHEILNHDGQNKLRWCFYKNEARPDNFPDDL DTTSMVLSFLLNHNKLTIEKIIPVAEQMIANRNEEGIIQVYFDDNRPRIDAIVAINVLYLMHQIGYGERKELKETEAFVFDFL ISKEYLKGTRYYPAPDVFLFFLSRLVVDFPDQFEKFHKPLTEMLITRVNCSTFPLERALRIIALKKLGIVNRVDFLKLLDTQL ADGGWPVYGLFIAPRSNTYFGSRELSTAFALEALHILS

atggatttttcaagtaatgtatctcccataaaccaaacaacatgaaagaagtcctcacgccggaactgatcacgagcctgca agagttgtcgcagatcctggatcgttatgataccatcgtattcgacctgggcgatgtgtgctgcattgggacagcgttcatt ttacctctgagaccaaaggtattgacgacgtgcgtaagatggtgaaacacccggtgtggcaggatctggagaagggcctgatt aaccaggagtttgccttgaccgcgttgagctgcgaactggaaacccgtgtagcaaattgaaagagatgctggaactgtctat tgcgagcctgcaagttaatccattaatggtcgaggtcctgcgcgtacttcacaaaaaggacaagcaaatttactgcctgtcca acgtggacttggagagcttttcatatctgtacaaacaattcgatttctggaaatactttgacggcatttacgtgtcagctttg ttacaactgcgcaagccgaatccggacatcttccagtatctgatcagcagcgcatccattaacacgaagtccacgatctcat cgatgacaaaagcgagaacctgcaagaagcagctaattcggtagcacggagatcataagaaacgtaccctgggtgaagatta ctgaacctgagagtggctggccgatcccgtttgcagagctcgttccattaacacgaagtcacctgggtgaagattta ctgaacctgagactgcgtaagttcccgtttgcaagagctcctctcgccggatgacatcatcatcgcgtctatgtgccatgaaa tcctgaaccacgatggtcagaataattgcgctggtgtttttataagaacgaagcgcgtccagataatttccggacacga

DrtB (528 aa, 1587 bp)

MVRALILDLGDVLFNWDAPASTPISRKTLGQMLHSEIWGEYERGHLTEDEAYNALAKRYSCEAKDVAHTFVLARESLRLDTKF KTFLQTLKQNANGSLRVYGMSNISKPDFEVLLGKADDWTLFDKIFPSGHVGMRKPDLAFFRYVLKDISTPVEDVVFVDDNLDN VTSARSLGMRSVLFHKKDEVQRQLTNIFGSPAERGLEYLSANKTNLQSATTTDIPIQDNFGQLLILEATEDPSLVRMEPGKRT WNFFIGSPSLTTDTFPDDLDTTSLALSIVPTSPDVVNSVIDEIISRRDKDGIVPTYFDNTRPRVDPIVCVNVLSMFAKYGREH DLPATVAWVRDVLYHRAYLGGTRYYGSAEAFLFFFTRFVRNLRPGTLKQDLHALLSERVRERLNTPVDALALSMRIQACHALG FDAPADIATLITMQDEDGGWPAAVIYKYGAGGLGITNRGVSTAFAVKAITGSPVKTETNIGGDGARAVSAMSSLEARRLQPIS SVGDWVRFIIASLHVHLAWLWNVLLLSKVV

S10

ccgaacgcgtgcgcgagcgcttaaataccccggttgatgcactggctttgtctatgcgtattcaggcatgtcatgcgctgggt tttgacgcgccagcggatatcgcgaccctgattaccatgcaggatgaggatggcggtggccggcggcagtcatctataagta cggcgcgggtggtctgggcatcaccaaccgtggtgtttctaccgcattcgcagttaaagcaattaccggttccccggtcaaga ccgaaaccaatatcggtggcgacggcgctcgtgcggtgagcgctatgagcagccttgaagctcgtcgtcttcaaccaattagc agcgtgggcgattgggtgcgcttcatcattgctagcctgcacgttcacctggcgtggcggtggtgtgtccaa ggtggtataa

EcIDI (182 aa, 549 bp)

MQTEHVILLNAQGVPTGTLEKYAAHTADTRLHLAFSSWLFNAKGQLLVTRRALSKKAWPGVWTNSVCGHPQLGESNEDAVIRR CRYELGVEITPPESIYPDFRYRATDPSGIVENEVCPVFAARTTSALQINDDEVMDYQWCDLADVLHGIDATPWAFSPWMVMQA TNREARKRLSAFTQLK

atgcagaccgagcacgtgatcctgctgaacgcgcaaggtgttccgaccggcaccctggaaaagtatgcggcgcacaccgcgga cacccgtctgcacctggcgttcagcagctggctgtttaacgcgaagggtcagctgctggtgacccgtcgtgcgctgagcaaga aagcgtggccgggcgtgtggaccaacagcgtttgcggtcacccgcaactgggcgagagcaacgaagatgcggtgatccgtcgt tgccgttacgagctgggtgttgaaatcaccccgccggagagcatttacccggacttccgttatcgtgcgaccgatccgagcgg catcgtggagaacgaagtgtgcccggtttttgcggcgcgtaccaccagcgcgctgcaaattaacgacgatgaggtgatggact atcaatggtgcgacctggcggatgttctgcacggtattgatgcgacccgtgggggtgtatgcagcg accaaccgtgaagcgcgtaagcgtctgagcgcgttacccaccagcgcgtcagccggtgatggttatgcaggcg accaaccgtgaagcgcgtaagcgtctgagcgcgtttacccaccagcgcgtcagaataa

RK-ERG20-RK (RKRKRK-CDS-RKRK)

MRKRKRKASEKEIRRERFLNVFPKLVEELNASLLAYGMPKEACDWYAHSLNYNTPGGKLNRGLSVVDTYAILSNKTVEQLGQE EYEKVAILGWCIELLQAYFLVADDMMDKSITRRGQPCWYKVPEVGEIAINDAFMLEAAIYKLLKSHFRNEKYYIDITELFHEV TFQTELGQLMDLITAPEDKVDLSKFSLKKHSFIVTFKTAYYSFYLPVALAMYVAGITDEKDLKQARDVLIPLGEYFQIQDDYL DCFGTPEQIGKIGTDIQDNKCSWVINKALELASAEQRKTLDENYGKKDSVAEAKCKKIFNDLKIEQLYHEYEESIAKDLKAKI SQVDESRGFKADVLTAFLNKVYKRSKRKRK

atgcgtaaacgtaaacgtaaagcgagcgagaaagaaatccgtcgtgagcgtttcctgaacgtgtttccgaagctggttgagga actgaacgcgagcctgctggcgtacggtatgccgaaagaagcgtgcgactggtacgcgcacagcctgaactataacaccccgg gtggcaagctgaaccgtggcctgagcgtggttgatacctacgcgattctgagcaacaaaaccgtggagcagctgggtcaagag gaatatgaaaaggttgcgatcctgggctggtgcattgagctgctgcaagcgtacttcctggtggcggacgatatgatggacaa aagcatcacccgtcgtggtcaaccgtgctggtataaggtgccggaagtgggcgaaatcgcgattaacgatgcgttcatgctgg

SpyTag

AHIVMVDAYKPTK

gcccatattgtcatggttgatgcatacaagccgacgaag

SpyCatcher

AMVDTLSGLSSEQGQSGDMTIEEDSATHIKFSKRDEDGKELAGATMELRDSSGKTISTWISDGQVKDFYLYPGKYTFVETAAP DGYEVATAITFTVNEQGQVTVNGKATKGDAHI

gccatggttgataccttatcaggtttatcaagtgagcaaggtcagtccggtgatatgacaattgaagaagatagtgctaccca tattaaattctcaaaacgtgatgaggacggcaaagagttagctggtgcaactatggagttgcgtgattcatctggtaaaacta ttagtacatggatttcagatggacaagtgaaagatttctacctgtatccaggaaaatatacatttgtcgaaaccgcagcacca gacggttatgaggtagcaactgctattacctttacagttaatgagcaaggtcaggttactgtaaatggcaaagcaactaaagg tgacgctcatatt

NGTag

RGAHIVMVDAYKPTK

 $\verb|cgcggcgcgcacatcgttatggtcgatgcatataaacccaccaaa||$

NGCatcher

AMVDTLSGLSSEQGQSGDMTIEEDDATHIEFSKRDEDGKELPGATMELRDSSGKTISTWISDGQVKDFYLEPGEYTFVETEAP DGYEVDDAITFTVNEDGQVTEEGKATKGDAHI

gcaatggtggatacactgagtggtctgagcagcgaacaggggcagagcggagatatgaccattgaagaagatgatgcaaccca

tattgaattcagcaaacgcgatgaggacggtaaagaactgccggggggcaaccatggaactgcgcgatagcagcggtaaaacaa ttagcacctggattagcgatggacaggtgaaagatttttacctggaaccaggagaatacacatttgtggaaaccgaagcacca gacggctatgaagttgatgatgcaattacctttaccgtaaacgaagatggacaggtgaccgaagaaggaaaagcaaccaaagg agatgcacatatc

SnoopTag

ASKLGDIEFIKVNK

gctagcaaactgggcgatattgaatttattaaagtgaacaaa

SnoopCatcher

ASKPLRGAVFSLQKQHPDYPDIYGAIDQNGTYQNVRTGEDGKLTFKNLSDGKYRLFENSEPAGYKPVQNKPIVAFQIVNGEVR DVTSIVPQDIPATYEFTNGKHYITNEPIPPK

gctagcaagccgctgcgtggtgccgtgtttagcctgcagaaacagcatcccgactatcccgatatctatggcgcgattgatca gaatgggacctatcaaaatgtgcgtaccggcgaagatggtaaactgacctttaagaatctgagcgatggcaaatatcgcctgt ttgaaaatagcgaacccgctggctataaaccggtgcagaataagccgattgtggcgtttcagattgtgaatggcgaagtgcgt gatgtgaccagcattgtgccgcaggatattccggctacatatgaatttaccaacggtaaacattatatcaccaatgaaccgat accgccgaaa

β-Cav1

MADELSEKQVYDAHTKEIDLVNRDPKHLNDDVVKIDFEDVIAEPEGTHSFDGIWKASFTTFTVTKYWFYRLLSALFGIPMALI WGIYFAILSFLHIWAVVPCIKSFLIEIQCISRVYSIYVHTVCDPLFEAVGKIFSNVRINLQKEI

atggcggatgaactgagcgagaaacaggtttatgatgcccacaccaaggagatcgacttggttaaccgtgacccaaagcacct gaatgatgacgtggtgaagatcgacttcgaggacgtcatcgccgaaccggaaggcactcatagcttcgacggcatttggaaag cgagcttcaccaccttcaccgttaccaaatactggttttatcgtcttctgagtgcattgttcggcatcccgatggcgttaatc tggggtatctattttgcaattctgtccttcctgcatatttgggcggtggttccgtgcatcaagtccttcttgatcgagatcca gtgtattagccgcgtgtacagcatttacgtgcaccacggtttgtgatccgctgtttgaagctgtgggtaaaatttttagcaatg ttcgtattaacctgcaaaaagagatctaa

3.3 Multienzymes assembly modules of top MVA pathway (MCS1 of pACYCDuet-1 plasmid)

AtoB-SpyTag-SpyTag-SnoopTag-SnoopTag-rbs-mvaS-SpyCatcher-rbs-mvaA-SnoopCatcher (linker)

TTCTGCAAGCGGGTCTGGGTCAAAAACCCGGCGCGTCAGGCGCTGCTGAAGAGCGGTCTGGCGGAGACCGTGTGCGGCTTTACC GGCGGGTGGCATGGAAAACATGAGCCTGGCGCCGTACCTGCTGGATGCGAAAGCGCGTAGCGGTTACCGTCTGGGCGACGGTC AAGTGTATGATGTTATTCTGCGTGATGGTCTGATGTGCGCGACCCACGGCTACCACATGGGTATCACCGCGGAGAACGTGGCG TGCGTTCACCGCGGAAATTGTGCCGGTTAACGTGGTTACCCGTAAGAAAACCTTCGTTTTTAGCCAGGACGAGTTCCCCGAAAG CGAACAGCACCGCGGAAGCGCTGGGTGCGCTGCGTCCGGCGTTTGATAAAGCGGGCACCGTTACCGCGGGCAACGCGAGCGGT GAGCTATGCGAGCGGTGGCGTGCCGCCGGCGCTGATGGGCATGGGTCCGGTCCGGCGACCCAGAAAGCGCTGCAACTGGCGG TTTGATAGCGAGAAAGTGAACGTTAACGGTGGCGCGCATTGCGCTGGGTCACCCGATTGGTGCGAGCGGTGCGCGCGTATCCTGGT GACCCTGCTGCACGCGATGCAAGCGCGTGACAAAACCCTGGGTCTGGCGACCCTGTGCATTGGTGGCGGTCAGGGCATCGCGA AAAATCAACTTCTACGTGCCGAAGTACTATGTTGACATGGCGAAACTGGCGGAAGCGCGTCAGGTGGACCCGAACAAGTTTCT GATCGGTATTGGCCAGACCGAGATGGCTGTGAGCCCGGTTAACCAAGACATTGTTAGCATGGGTGCGAACGCGGCGAAAGACA TCATTACCGACGAAGATAAGAAAAAGATCGGCATGGTGATTGTGGCGACCGAGAGCGCGGTGGATGCGCGGCGAAGGCGGCGGCGGCG GTGCAGATCCACAACCTGCTGGGTATTCAACCGTTCGCGCGTTGCTTTGAGATGAAAGAAGCGTGCTATGCGGCGACCCCGGC TGAACAGCGGTGGCGAGCCGAGCCCAGGGTGCGGGTGCGGTGGCGATGGTTATTGCGCACAACCCGAGCATTCTGGCGCTGAAC GAAGACGCGGTGGCGTACACCGAGGACGTTTATGATTTCTGGCGTCCGACCGGTCACAAGTACCCGCTGGTTGACGGCGCGCC GAGCAAAGATGCGTACATCCGTAGCTTCCAGCAAAGCTGGAACGAATATGCGAAACGTCAGGGCAAGAGCCTGGCGGATTTTG CGAGCCTGTGCTTCCACGTTCCCGTTTACCAAGATGGGGCAAAAAGGCGCTGGAAAGCATCATTGACAACGCGGATGAGACCACC CAAGAACGTCTGCGTAGCGGTTACGAGGACGCGGTGGATTACAACCGTTATGTTGGTAACATCTACACCGGCAGCCTGTATCT GAGCCTGATTAGCCTGCTGGAAAACCGTGACCTGCAAGCGGGCGAGACCATCGGCCTGTTCAGCTACGGTAGCGGCAGCGTGG TTGAGTTTTACAGCGCGACCCTGGTGGTTGGCTATAAGGACCACCTGGATCAAGCGGCGCACAAAGCGCTGCTGAACAACCGT ACCGAAGTGAGCGTTGACGCGTATGAGACCTTCTTTAAACGTTTCGACGATGTGGAATTTGACGAGGAACAAGATGCGGTTCA **GTGGTGGTGGTGGTGGTGGTGGTGGTGGTGGTGCCATGGTTGATACCTTATCAGGTTTATCAAGTGAGCAAGGTCAGTCCGGT** GATATGACAATTGAAGAAGATAGTGCTACCCATATTAAATTCTCAAAACGTGATGAGGACGGCAAAGAGTTAGCTGGTGCAAC TATGGAGTTGCGTGATTCATCTGGTAAAACTATTAGTACATGGATTTCAGATGGACAAGTGAAAGATTTCTACCTGTATCCAG GAAAATATACATTTGTCGAAACCGCAGCACCAGACGGTTATGAGGTAGCAACTGCTATTACCTTTACAGTTAATGAGCAAGGT ${\tt CAGGTTACTGTAAATGGCAAAGCAACTAAAGGTGACGCTCATATTTAAgaattcaggaggaaaacatcATGCAGAGCCTGGAC$ AAAAACTTCCGTCACCTGAGCCGTCAGCAAAAGCTGCAACAACTGGTTGATAAGCAGTGGCTGAGCGAGGACCAATTTGACAT ${\tt CCTGCTGAACCACCCGCTGATTGACGAGGAAGTGGCGAACAGCCTGATCGAAAACGTTATTGCGCAAGGTGCGCTGCCGGTGG$ GTCTGCCGCAACATCATTGTTGACGATAAGGCGTACGTGGTTCCGATGATGGTGGAGGAACCGAGCGTGGTTGCTGCGGCG TGACGGCGTTGACGATACCGAAAAACTGAGCGCGGATATTAAGGCGCTGGAGAAACAGATCCACAAGATTGCGGACGAAGCGT ACCCGAGCATCAAGGCGCGTGGTGGCGGTTATCAACGTATCGCGATTGATACCTTCCCGGAGCAGCAACTGCTGAGCCTGAAA GTGTTTGTTGACACCAAGGATGCGATGGGTGCGAACATGCTGAACACCATCCTGGAGGCGATTACCGCGTTCCTGAAAAACGA AAGCCCGCAGAGCGACATCCTGATGAGCATTCTGAGCAACCACGCGACCGCGAGCGTGGTTAAAGTGCAAGGCGAGATCGACG ATCCACCGTGCGGCGACCCACAACAAGGGTGTGATGAACGGCATTCACGCGGTGGTTCTGGCGACCGGTAACGATACCCGTGG ${\tt CGCGGAGGCGAGCGCGCATGCGTACGCGAGCCGTGACGGTCAATATCGTGGCATCGCGACCTGGCGTTACGATCAGAAACGTC}$ AACGTCTGATCGGCACCATTGAAGTTCCGATGACCCTGGCGATTGTGGGCGGTGGCACCAAAGTTCTGCCGATGCGAAGGCG AGCCTGGAGCTGCTGAACGTGGACAGCGCGCGCAGGAACTGGGTCATGTGGTTGCGGCGGTTGGTCTGGCGCCAAAACTTTGCGGC GTGCCGTGCGCTGGTTAGCGAGGGTATTCAGCAAGGCCACATGAGCCTGCAATATAAAAGCCTGGCGATCGTGGTGGTGCGA AGGGCGATGAAATTGCGCAGGTTGCGGAGGCGCTGAAGCAAGAGCCGCGTGCGAACACCCCAGGTGGCGGAGCGTATCCTGCAA TAGCCTGCAGAAACAGCATCCCGACTATCCCGATATCTATGGCGCGGATTGATCAGAATGGGACCTATCAAAATGTGCGTACCG GCGAAGATGGTAAACTGACCTTTAAGAATCTGAGCGATGGCAAATATCGCCTGTTTGAAAAATAGCGAACCCGCTGGCTATAAA CCGGTGCAGAATAAGCCGATTGTGGCGTTTCAGATTGTGAATGGCGAAGTGCGTGATGTGACCAGCATTGTGCCGCAGGATAT TCCGGCTACATATGAATTTACCAACGGTAAACATTATATCACCAATGAACCGATACCGCCGAAATAA

3.4 Multienzymes assembly modules of cross-linking MVA-drimenol synthesis pathway (pETDuet-1)

MCS1: RK-ERG20-RK-rbs-EcIDI-NGCatcher-rbs-NGTag-SnoopTag-β-Cav1 (linker)

ATGCGTAAACGTAAACGTAAAGCGAGCGAGAAAGAAATCCGTCGTGAGCGTTTCCTGAACGTGTTTCCGAAGCTGGTTGAGGA ACTGAACGCGAGCCTGCTGGCGTACGGTATGCCGAAAGAAGCGTGCGACTGGTACGCGCACAGCCTGAACTATAACACCCCCGG GTGGCAAGCTGAACCGTGGCCTGAGCGTGGTTGATACCTACGCGATTCTGAGCAACAAAACCGTGGAGCAGCTGGGTCAAGAG GAATATGAAAAGGTTGCGATCCTGGGCTGGTGGCTGCATTGAGCTGCTGCAAGCGTACTTCCTGGTGGCGGACGATATGATGGACAA AAGCATCACCCGTCGTCGTCAACCGTGCTGGTATAAGGTGCCCGGAAGTGGGCCGAAATCGCCGATTAACGATGCGTTCATGCTGG AGGCGGCGATTTACAAGCTGCTGAAAAGCCACTTCCGTAACGAAAAGTACTACATCGACATTACCGAGCTGTTCCACGAAGTT ACCTTTCAGACCGAGCTGGGTCAACTGATGGATCTGATCACCGCGCCGGAAGACAAAGTGGATCTGAGCAAGTTCAGCCTGAA TCACCGACGAGAAGGATCTGAAACAGGCGCGTGACGTGCTGATCCCGCTGGGTGAATACTTCCAGATTCAAGACGATTATCTG GATTGCTTTGGCACCCCGGAGCAGATCGGTAAAATTGGCACCGACATCCAAGATAACAAATGCAGCTGGGTGATTAACAAGGC AGAAAATCTTTAACGACCTGAAGATTGAGCAGCTGTACCACGAATATGAGGAAAGCATCGCGAAGGACCTGAAGGCGAAAATT AGCCAAGTTGACGAAAGCCGTGGCTTCAAGGCGGATGTGCTGACCGCGTTTCTGAACAAGGTTTACAAACGTAGCAAGCGTAA ACGTAAATAAggatcggatctaggaggtaatcataATGCAGACCGAGCACGTGATCCTGCAGCGCGAAGGTGTTCCGACC TCAGCTGCTGGTGACCCGTCGTGCGCTGAGCAAGAAAGCGTGGGCCGGGCGTGTGGACCAACAGCGTTTGCGGTCACCCGCAAC TGGGCCAAGACGAAGATGCGGTGATCCGTCGTTGCCGTTACGAGCTGGGTGTTGAAATCACCCCGCCGGAGAGCATTTAC ${\tt CCGGACTTCCGTTATCGTGCGACCGATCCGAGCGGCATCGTGGAGAACGAAGTGTGCCCGGTTTTTGCGGCGCGCGTACCACCAG}$ ${\tt CGCGCTGCAAATTAACGACGATGAGGTGATGGACTATCAATGGTGCGACCTGGCGGATGTTCTGCACGGTATTGATGCGACCC$ CGTGGGCGTTCAGCCCGTGGATGGTTATGCAGGCGACCAACCGTGAAGCGCGTAAGCGTCTGAGCGCGTTTACCCAACTGAAA ACAGGTGACCGAAGAAGGAAAAGCAACCAAAGGAGATGCACATATCTAAgaattcaggaggaaaacatcATGAGGGGGGGCTCA **CATAGTAATGGTTGATGCGTACAAGCCGACGAAGGGTGGTGGTGGCTCTGGTGGCGGGGGGCTGCGTGCTTCGAAACTGGGTGATA** TATGATGCCCACACCAAGGAGATCGACTTGGTTAACCGTGACCCAAAGCACCTGAATGATGACGTGGTGAAGATCGACTTCGA GGACGTCATCGCCGAACCGGAAGGCACTCATAGCTTCGACGGCGATTTGGAAAGCGAGCTTCACCACCTTCACCGTTACCAAAT ACTGGTTTTATCGTCTTCTGAGTGCATTGTTCGGCATCCCGATGGCGTTAATCTGGGGGTATCTATTTTGCAATTCTGTCCTTC CTGCATATTTGGGCGGTGGTTCCGTGCATCAAGTCCTTCTTGATCGAGATCCAGTGTATTAGCCGCGTGTACAGCATTTACGT GCACACGGTTTGTGATCCGCTGTTTGAAGCTGTGGGTAAAATTTTTAGCAATGTTCGTATTAACCTGCAAAAAGAGATCTAA

MCS2: DrtB-SnoopCatcher (linker)

ATGGTAAGGGCTCTAATATTGGACTTAGGAGATGTCCTCTTCAACTGGGATGCGCCGGCTAGCACCCCGATCAGCCGTAAAAC GCTGGGCCAGATGCTGCACTCCGAGATTTGGGGTGAATATGAACGTGGTCATCTGACCGAAGACGAGGCCTATAACGCGCTAG ${\tt CGAAGCGCTACAGCTGCGAAGCGAAGGACGTCGCACATACCTTCGTGTTGGCGCGCGAGAGCTTGCGCCTGGATACCAAATTT}$ AAAACCTTCCTGCAAACCTTAAAGCAAAACGCGAACGGTTCACTGCGCGTGTATGGCATGAGCAATATTTCGAAGCCGGACTT TGAAGTTTTGCTGGGCAAAGCTGATGACTGGACCTTGTTCGATAAAATCTTCCCGAGCGGTCACGTGGGCATGCGAAAGCCGG ACTTGGCGTTCTTTCGTTACGTCTTGAAAGACATCTCCACGCCGGTGGAAGACGTTGTTTTCGTAGACGATAACTTGGACAAC ${\tt GTGACGTCGGCCCGTAGCCTGGGTATGAGAAGCGTTCTTTTTCACAAGAAGATGAGGTTCAGCGTCAGTTGACGAATATTTT}$ TGGTAGCCCGGCAGAGCGCGGTCTGGAGTACCTGTCTGCGAATAAAACTAACCTTCAAAGCGCGACCACGACTGACATCCCGA TCCAGGACAATTTCGGCCAACTGCTGATCCTGGAGGCTACCGAGGACCCGTCTCTGGTTCGTATGGAACCGGGTAAAAGAACA ${\tt TGGAATTTTTTCATTGGCTCTCCGAGCCTGACCACCGATACTTTTCCGGATGACTTAGATACCACCAGTCTTGCGCTGTCCAT$ TGTTCCGACTTCGCCGGACGTGGTGAACAGCGTGATTGACGAGATCATCAGTCGTCGCGATAAAGACGGCATCGTGCCGACGT ACTTCGACAACACCCGTCCTCGTGTAGACCCGATTGTTTGCGTTAACGTGTTGAGCATGTTTGCGAAATACGGGCGTGAGCAC GATCTGCCGGCAACAGTTGCGTGGGTTCGTGATGTGCTGTATCATCGTGCCTACCTGGGCGGTACCCGCTACTATGGTTCCGC CGAAGCATTTCTGTTCTTCTTCACCCGTTTTGTTCGTAATCTGCGTCCAGGTACGCTGAAGCAGGATTTGCACGCCCTCCTGT ${\tt CCGAACGCGTGCGCGAGCGCTTAAATACCCCGGTTGATGCACTGGCTTTGTCTATGCGTATTCAGGCATGTCATGCGCTGGGT$ TTTGACGCGCCAGCGGATATCGCGACCCTGATTACCATGCAGGATGAGGATGGCGGTTGGCCGGCGGCAGTCATCTATAAGTA CGGCGCGGGTGGTCTGGGCATCACCAACCGTGGTGTTTCTACCGCATTCGCAGTTAAAGCAATTACCGGTTCCCCCGGTCAAGA ${\tt CCGAAACCAATATCGGTGGCGACGGCGCTCGTGCGGTGAGCGCTATGAGCAGCCTTGAAGCTCGTCGTCTTCAACCAATTAGC}$ AGCGTGGGCGATTGGGTGCGCTTCATCATTGCTAGCCTGCACGTTCACCTGGCGTGGCTGTGGAACGTGCTGTTGCTGTCCAA AGCACCCCGGACTATCCGGACATCTATGGTGCGATTGATCAAAACGGCACGTACCAAAACGTTCGTACCGGTGAAGATGGCAAG CTGACCTTTAAGAATTTGTCCGACGGCAAGTACCGCCTGTTCGAAAACAGCGAGCCGGCAGGTTATAAACCGGTCCAGAATAA

3.5 Heterologous biosynthesis of drimenol in E. coli

Recombinant plasmids were transformed into *E. coli* BL21(DE3) or MG1655(DE3) strain for drimenol production. A single colony was inoculated into LB medium (1 mL) containing chloramphenicol (34 mg/L) and carbenicillin (50 mg/L) and incubated at 37 °C and 220 rpm overnight. 180 μ L of seed culture was inoculated into 9 mL of AM mineral medium containing chloramphenicol (17 mg/L) and carbenicillin (100 mg/L) and incubated at 37 °C and 220 rpm until OD₆₀₀ reach 0.5–0.6. The culture was precooled at 4 °C before it was induced with isopropyl β-D-1-thiogalactopyranoside (IPTG, 0.1 mM) and overlaid with 20% (v/v) dodecane. After shaking at 25 °C and 180 rpm for 72 h, the final OD₆₀₀ of culture (50-fold dilution) was measured with ultraviolet-visible spectrophotometer and the culture was centrifuged at 48,000g for 10 min. 1 μ L of organic layer was diluted to 400-fold with dodecane, and the resulting sample was analyzed by GC-MS. The quantification of product was determined by the external standard method. All assays were performed with three biological replicates.

For large-scale flask fermentation, the optimal recombinant strain (MG1655(DE3) harboring pACYCDuet-T1B1 and pETDuet-ERG20-DrtB) was cultured and enlarged to 1 L AM mineral medium, and the process was same as mentioned above. After 72 h fermentation, the culture was centrifuged at 9,000*g* for 30 min. The organic phase was separated, and the aqueous phase was extract with ethyl acetate for three times. The resulting samples were dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by flash chromatography (silica gel) and eluted with hexane/ethyl acetate (50:1) to afford 1.1 g drimenol as a white powder.

GC-MS analysis

GC-MS was performed on a Shimadzu Nexis GC-2030 series GC system equipped with an SH-Rxi-5Sil column (30 m \times 0.25 mm \times 0.25 µm; Shimadzu) and coupled with a QP2020 NX mass spectrometer. For drimenol, the carrier gas was helium at a constant linear velocity of 40 cm/sec. Injection (1 µL) was in splitless mode with the injector temperature set at 250 °C and the oven temperature was programmed from 80 °C to 170 °C at 20 °C/min (2 min hold), followed by an 8 °C/min ramp to 210 °C, then a 15 °C/min ramp to 300 °C (2 min hold). The identity of the drimenol was confirmed based on the concordance of mass spectrum

with the National Institute of Standards and Technology (NIST) Standard Reference Database (version 2017). For oxidated product of drimenol by P450_{BM3} enzyme, the oven temperature program was set from 65 °C to 160 °C at 25°C/min (1 min hold), followed by a 6 °C/min ramp to 230 °C (2 min hold), then a 50 °C/min ramp to 310 °C (2 min hold).

Primer	Sequence (5'-3')	Purpose		
DrtB-CD53-F	ACCGAAACCAATATCTAAAGATCTCAAT	A plasmid pETDuet-		
	TGG	ERG20-DrtB-CD53		
DrtB-CD53-R	CTTTAGATATTGGTTTCGGTCTTGACCG	construction		
	GG			
flank-IDI-F	AAACGTAGCAAGTAAGGATCCGGATCT	One more copy of EcIDI		
	AGGAGGTAATC	gene insertion into		
flank-IDI-R	AGGCGCGCCGAGCTCGAATTC	pETDuet-ERG20-DrtB plasmid		
28a-rbs-mvaA-F	TAAGAAGGAGATATACCATGGAGGAGG	<i>mvaA</i> gene insertion into		
	AAAACATCATGCAG	pET28a(+)		
28a-rbs-mvaA-R	GTGGTGGTGGTGGTGGTGCTCGAGTTATTGC			
	TGACGAATTTCTTG			
T1-mvaA-ter-F	ATTCGTCAGCAATAAGAATTCAGGAGG	One more copy of mvaA		
	AAAACATCATGCAGAG	gene with T7 terminator		
T1-mvaA-ter-R	GACCTGCAGGCGCGCCGAGCTCCAGCA	insertion into pACYCDuet-		
	AAAAACCCCTCAAGACCC	T1B1		
RK-ERG20-F	TAAGAAGGAGATATACCATGCGTAAAC	RK-ERG20-RK, EcIDI-		
	GTAAACGTAAAGCGAGCGAGAAAGAAA	NGCatcher and NGTag-		
	TCCG	SnoopTag-β-Cav1		
RK-ERG20-R	TTATTTACGTTTACGCTTGCTACGTTTGT	fragments assembly		
	AAACCTTG			
RK tail-IDI-F	CGTAAACGTAAATAAGGATCCGGATCT			
	AGGAGGTAATC	-		
linker-IDI-R	CTGAACCACCACCACCTTTCAGTTGGGT			
	AAACGCGCTC	-		
linker-NGCatcher-F	GGTGGTGGTGGTTCAGGTG	-		
β-Cav1-R	AAGCTTGTCGACCTGCAG			
DrtB-F	TAAGAAGGAGATATACATATGGTAAGG	DrtB-SnoopCatcher		
	G	fragment assembly		
DrtB-R	TACCACCTTGGACAGCAACAG	-		
DrtB tail-F	CTGTTGCTGTCCAAGGTGGTA	-		
Duet-R	GGTTTCTTTACCAGACTCGAG			
rev-atoB-B1-F	GAGCTCGGCGCGCCTGCAGGTC	pACYCDuet-atoB-B1		
rev-atoB-B1-R	GTTCAGACGTTCAATAACCATCGCGATG	vector linearization		
	CCCTGAC			

Table S1. The primers used for heterologous biosynthesis of drimenol.

AtoB tail-F	GCGATGGTTATTGAACGTC	AtoB_tail-SpyTag-SpyTag-
mvaS-head-R	GATTTTGTCAATACCGATGG	SnoopTag-SnoopTag,
mvaS-head-F	ACCATCGGTATTGACAAAATC	mvaS-SpyCatcher and
mvaS-R	CTCCGGACGGTGATATTCAC	mvaA-SnoopCatcher
mvaS-tail-F	GTGAATATCACCGTCCGGAG	fragments assembly
mvaA-head-R	GAAGTTTTTGTCCAGGCTCTG	
mvaA-head-F	AGAGCCTGGACAAAAACTTC	
mvaA-R	TTGCTGACGAATTTCTTGCAG	
mvaA-tail-F	ATCCTGCAAGAAATTCGTCAGC	
ACYC-R	ACCTGCAGGCGCGCCGAGC	

¹**H NMR (400 MHz, CDCl₃):** δ 5.54 (m, 1H), 3.86 (dd, *J* = 11.3, 3.4 Hz, 1H), 3.74 (dd, *J* = 11.3, 4.9 Hz, 1H), 1.93 – 2.05 (m, 2H), 1.83 – 1.92 (m, 2H), 1.77 – 1.79 (m, 3H), 1.55 (m, 1H), 1.39 – 1.49 (m, 2H), 1.13 – 1.22 (m, 2H), 1.07 (td, *J* = 13.1, 3.9 Hz, 1H), 0.89 (s, 3H), 0.86 (s, 3H), 0.86 (s, 3H).

¹³C NMR (151 MHz, CDCl₃): δ 133.0, 124.2, 61.0, 57.4, 50.0, 42.3, 40.0, 36.2, 33.5, 33.0, 23.7, 22.2, 22.1, 18.9, 15.0.

 $[\alpha]_{D}^{23} = -43.30 \text{ (c} = 1.00, \text{CHCl}_3).$

HRMS (ESI+): calculated for C₁₅H₂₅O₂ [M+H-H₂O]⁺: 205.1951, found 205.1950.

The racemic drimenol was synthesized according to the literature.³

Synthesis of racemic benzyl-substituted drimenol derivative (\pm) -S8:

A solution of (*E*,*E*)-farnesol (44.4 mg, 0.20 mmol, 1.0 equiv.) was treated with fluorosulfonic acid (400 mg, 4.0 mmol, 20 equiv.) in 2-nitropropane (2 mL) at -78 °C for 2 hours. The reaction mixture was neutralized with Et₃N, washed with H₂O (10 mL) and extracted with Et₂O (10 mL × 3). The combined organic phase was washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography (hexane/ethyl acetate = 30:1) to give (±)-Drimenol (26.6 mg, 60%)

yield) as white solid.

A solution of (\pm)-Drimenol (22.2 mg, 0.10 mmol, 1.0 equiv.) in DMF (1 mL) was treated with NaH (60% dispersion in mineral oil, 6 mg, 0.15 mmol, 1.5 equiv.) and BnBr (25.7 mg, 0.15 mmol, 1.5 equiv.). The reaction mixture was stirred at 23 °C for 10 hours before it was quenched with H₂O (10 mL) and extracted with EtOAc (10 mL × 3). The combined organic phase was washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography (hexane/ethyl acetate = 70:1) to give (\pm)-**S8** (29.6 mg, 95% yield) as colorless oil.

¹H NMR (600 MHz, CDCl₃): δ 7.33 (d, J = 4.4 Hz, 4H), 7.29 – 7.23 (m, 1H), 5.41 – 5.51 (m, 1H), 4.46 (dd, J = 12.0, 2.8 Hz, 2H), 3.61 (dd, J = 9.7, 2.9 Hz, 1H), 3.42 (dd, J = 9.7, 6.2 Hz, 1H), 1.95 – 2.02 (m, 2H), 1.81 – 1.94 (m, 2H), 1.74 (s, 3H), 1.48 – 1.56 (m, 1H), 1.35 – 1.46 (m, 2H), 1.19 (dd, J = 12.3, 4.5 Hz, 1H), 1.15 (dd, J = 13.3, 3.7 Hz, 1H), 1.08 (td, J = 13.1, 3.7 Hz, 1H), 0.88 (s, 3H), 0.86 (s, 3H), 0.80 (s, 3H)..
¹³C NMR (151 MHz, CDCl₃): δ 138.7, 134.1, 128.4, 127.8, 127.5, 122.9, 73.1, 69.3, 54.8, 50.1, 42.4, 39.7, 36.0, 33.5, 33.1, 23.8, 22.1, 22.1, 19.0, 14.7.

(-)-Drimenol was derivated with benzyl group to determine the ee value (>99% ee).

HPLC (OD-H, 0.46*25 cm, 5 μ m, hexane / 2-propanol = 99.5/0.5, flow 1 mL/min, detection at 210 nm) retention time = 9.122 min (>99% *ee*).

4. Biocatalytic oxidation of drimenol catalyzed by P450_{BM3} mutants

4.1 Expression and purification of cytochrome $P450_{BM3}$ (F87A) and BmGDH

P450_{BM3} (F87A) was codon-optimized and synthesized by GenScript (Nanjing, China) and cloned into the multiple cloning site of pET28a(+) with NdeI/XhoI restriction site. Recombinant plasmid was transformed into E. coli BL21(DE3) strain for P450_{BM3} (F87A) expression. A single colony was inoculated into LB medium (20 mL) containing kanamycin (50 µg/mL) and incubated at 37 °C and 220 rpm overnight as the seed culture. Then the seed culture was inoculated into 1 L modified P450 expression medium, of which the saturated glutamate was removed in power mix.⁴ The culture was incubated at 37 °C and 220 rpm until OD_{600} arrived ~0.8. After cooling on ice for 30 min, the culture was induced with 0.1 mM IPTG and incubated at 30 °C, 200 rpm for 20 h. After expression, the cells were harvested by centrifugation at 4 °C and 9,000g for 15 min. The pellets were stored at -80 °C until further processing. For cell lysis, the pellet was thawed by adding 50 mL of lysis buffer (50 mM Kpi buffer, pH 7.4, 0.1 M KCl, 5 mM MgCl₂, 5 mM imidazole, 2 mM PMSF, 5% glycerol, 0.05% Triton X-100, and 20 mg/L DNAse I, 1 mg/mL lysozyme, room temperature) per liter of initial culture and resuspended by vortexing. Cells were lysed by high pressure homogenizer. The collected lysate was centrifuged at 4 °C and 48,000g for 30 min. The resulted brownishred supernatant was combined with 15 mL of Ni-NTA Beads pre-equilibrated with wash buffer (50 mM Kpi buffer, pH 7.4, 0.1 M KCl, 5 mM imidazole, 5% glycerol) at 4 °C for 30 min. After washing with 3 column volumes of wash buffer, $P450_{BM3}$ (F87A) was eluted with 3 column volumes of the elution buffer A (50 mM Kpi buffer, pH 7.4, 0.1 M KCl, 100 mM imidazole, 5% glycerol) and 1 column volume of the elution buffer B (50 mM Kpi buffer, pH 7.4, 0.1 M KCl, 250 mM imidazole, 5% glycerol). The purified protein was exchanged with stock buffer (50 mM Kpi buffer, pH 7.4, 0.1 M KCl, 5% glycerol) and concentrated by ultrafiltration. The concentration of $P450_{BM3}$ (F87A) was measured by A_{280} of $P450_{BM3}$. The purified P450_{BM3} (F87A) was frozen in stock buffer at -80 °C until further usage.

The plasmid pET22b-BmGDH was kindly provided by Pingkai Ouyang lab from Nanjing Tech University and utilized as template to construct a BmGDH C' terminal 6xhis tag fused plasmid pET22b-**BmGDH-His** Gibson Assembly with primers GDH-F (5'by GTGGTGGTGGTGGTGGTGGTGCTCGAGGCCTCTTCCTGCTTGGAAAGAAG-3') and GDH-R 5'-CTTTAAGAAGGAGATATACATATGTATACAGATTTAAAAGATAAAGTAG-3') and NdeI/XhoI restriction site. The plasmid pET22b-BmGDH-His was transformed into E. coli BL21(DE3) cells. A single

S22

colony was inoculated in 20 mL of LB medium containing ampicillin (100 μ g/mL). After shaking at 37 °C and 220 rpm overnight, the culture was added to 1 L of LB medium containing ampicillin (100 μ g/mL). The cultures were incubated at 37 °C and 220 rpm until OD₆₀₀ reached 0.8–0.9. The culture was pre-cooled to 4 °C, and induced with IPTG (0.1 mM). After shaking at 25 °C and 180 rpm for 16h, the cells were harvested by centrifugation at 20 °C and 9,000*g* for 15 min. The pellets were stored at –80 °C until further processing. The purification of BmGDH was the same as P450_{BM3} (F87A).

Р450_{вмз} (F87A) (1049 аа, 3150 bp)

MTIKEMPQPKTFGELKNLPLLNTDKPVQALMKIADELGEIFKFEAPGRVTRYLSSQRLIKEACDESRFDKNLSQALKFVRDFA GDGLATSWTHEKNWKKAHNILLPSFSQQAMKGYHAMMVDIAVQLVQKWERLNADEHIEVPEDMTRLTLDTIGLCGFNYRFNSF YRDQPHPFITSMVRALDEAMNKLQRANPDDPAYDENKRQFQEDIKVMNDLVDKIIADRKASGEQSDDLLTHMLNGKDPETGEP LDDENIRYQIITFLIAGHETTSGLLSFALYFLVKNPHVLQKAAEEAARVLVDPVPSYKQVKQLKYVGMVLNEALRLWPTAPAF SLYAKEDTVLGGEYPLEKGDELMVLIPQLHRDKTIWGDDVEEFRPERFENPSAIPQHAFKPFGNGQRACIGQQFALHEATLVL GMMLKHFDFEDHTNYELDIKETLTLKPEGFVVKAKSKKIPLGGIPSPSTEQSAKKVRKKAENAHNTPLLVLYGSNMGTAEGTA RDLADIAMSKGFAPQVATLDSHAGNLPREGAVLIVTASYNGHPPDNAKQFVDWLDQASADEVKGVRYSVFGCGDKNWATTYQK VPAFIDETLAAKGAENIADRGEADASDDFEGTYEEWREHMWSDVAAYFNLDIENSEDNKSTLSLQFVDSAADMPLAKMHGAFS TNVVASKELQQPGSARSTRHLEIELPKEASYQEGDHLGVIPRNYEGIVNRVTARFGLDASQQIRLEAEEEKLAHLPLAKTVSV EELLQYVELQDPVTRTQLRAMAAKTVCPPHKVELEALLEKQAYKEQVLAKRLTMLELLEKYPACEMKFSEFIALLPSIRPRYY SISSSPRVDEKQASITVSVVSGEAWSGYGEYKGIASNYLAELQEGDTITCFISTPQSEFTLPKDPETPLIMVGPGTGVAPFRG FVQARKQLKEQGQSLGEAHLYFGCRSPHEDYLYQEELENAQSEGIITLHTAFSRMPNQPKTYVQHVMEQDGKKLIELLDQGAH FYICGDGSQMAPAVEATLMKSYADVHQVSEADARLWLQQLEEKGRYAKDVWAG

cggaccgtaaagcgagcggcgagcagagcgacgatctgctgacccacatgctgaacggtaaagatccggagaccggcgaaccg $\tt ctggacgatgaaaacatccgttaccaaatcattacctttctgattgcgggtcatgagaccaccagcggcctgctgagcttcgc$ $\verb+gctgtattttctggtgaagaacccgcacgttctgcaaaaggcggcggaggaagcggcgcgtgtgctggtcgacccggtgccga$ gctacaagcaggttaaacaactgaagtatgtgggtatggttctgaacgaagcgctgcgtctgtggccgaccgcgcggcgttcagcctgtacgcgaaagaggacaccgtgctgggtggcgagtatccgctggaaaaaggtgacgagctgatggttctgatcccgcaggcatgatgctgaagcacttcgactttgaggatcacaccaactacgaactggacatcaaggagaccctgaccctgaaaccggagggttttgtggttaaggcgaaaagcaagaaaatcccgctgggtggcattccgagccccgagcaccgaacagagcgcgaagaaagtgcgtaagaaagcggagaacgcgcacaacaccccgctgctggttctgtacggcagcaacatgggcaccgcggagggcaccgcg cgtgacctggcggacatcgcgatgagcaaaggttttgcgccgcaagtggcgaccctggacagccatgcgggtaacctgccgcgaagcgagcgcggacgaagtgaaaggcgttcgttacagcgtgttcggttgcggcgataagaactgggcgaccacctatcagaaa $\tt tttcgaaggcacctacgaggaatggcgtgagcacatgtggagcgatgtgggcgcgtattttaacctggacatcgagaacagcg$ aagataacaaaagcaccctgagcctgcaattcgttgacagcgcgggatatgccgctggcgaagatgcacggtgcgtttagcaccaacgtggttgcgagcaaagagctgcaacaaccgggcagcgcgcgtagcacccgtcacctggaaatcgagctgccgaaaga agcgagctaccaagagggtgaccacctgggcgtgatcccgcgtaactatgaaggtattgtgaaccgtgttaccgcgcgttttggtctggatgcgagccagcaaattcgtctggaggcggaggaagaagatggcgcacctgccgctggcgaaaaccgtgagcgtt gccgcacaaagttgaactggaggcgctgctggaaaaacaggcgtacaaggagcaagttctggcgaagcgtctgaccatgctgg agctgctggaaaagtatccggcgtgcgaaatgaaattcagcgagtttatcgcgctgctgccgagcattcgtccgcgttactat agcatcagcagcagcccgcgtgtggacgaaaagcaggcgagcattaccgttagcgtggttagcggtgaagcgtggagcggttacggcgagtataaaggcatcgcgagcaactatctggcggagctgcaagagggtgacaccatcacctgcttcattagcaccccgc $\tt tttgtgcaggcgcgtaaacaactgaaggaacagggtcaaagcctgggcgaggcgcacctgtacttcggttgccgtagcccgca$ cgaggactacctgtatcaggaagagctggaaaacgcgcaaagcgagggcatcattaccctgcacaccgcgtttagccgtatgc cgaaccagccgaagacctatgtgcagcacgttatggaacaagacggtaagaaactgatcgagctgctggatcagggcgcgcac

BmGDH (261 aa, 789 bp)

MYTDLKDKVVVITGGSTGLGRAMAVRFGQEEAKVVINYYNNEEEALDAKKEVEEAGGQAIIVQGDVTKEEDVVNLVQTATKEF GTLDVMINNAGVENPVPSHELSLDNWNKVIDTNLTGAFLGSREAIKYFVENDIKGNVINMSSVHEMIPWPLFVHYAASKGGMK LMTETLALEYAPKGIRVNNIGPGAMNTPINAEKFADPEQRADVESMIPMGYIGKPEEVAAVAAFLASSQASYVTGITLFADGG MTKYPSFQAGRG

4.2 In vitro enzymatic assay of P450_{BM3} (F87A)

The 100 μ L reaction mixture contained 100 mM Kpi buffer, pH 7.4, 100 mM glucose (1 M stock solution in 100 mM Kpi buffer, pH 7.4), 1 mM NADP⁺ (100 mM stock solution in 100 mM Kpi buffer, pH 7.4), 10 μ M P450_{BM3} (F87A), 45 μ M BmGDH in 2 mL tube. And the reaction was started by addition of 2 μ L drimenol stock solution (50 mM, 100 mM in DMF, respectively). Then the tubes were shaken at 25 °C, 200 rpm for 16 h. The reaction was quenched by adding 200 μ L ethyl acetate and extracted twice by vortexing. The mixture was centrifuged at 21,000g for 1 min. The collected organic phase was transferred into a new tube and concentrated with N₂ stream. The residual sample was dissolved with 100 μ L ethyl acetate for the following GC-MS analysis. To verify that **11** was produced through selective epoxidation of **10**, 2 μ L **10** stock solution (10 mM) was added to start the reaction instead of drimenol. The reaction condition and extraction method were the same as mentioned above. The sample was analyzed by GC-MS (Figure S3).

4.3 Product identification

In vitro enzymatic assay indicated that purified P450_{BM3} (F87A) enzyme catalyzed the oxidation from drimenol to **12** with higher drimenol concentration and to **13** with lower drimenol concentration. To identify the structure of **12**, 100 mg drimenol dissolved in 4.5 mL DMF was added into the reaction mixture (100 mM Kpi buffer, pH 7.4, 100 mM glucose, 1 mM NADP⁺, 10 μ M P450_{BM3} (F87A), 45 μ M BmGDH). The total reaction volume was 225 mL and the final concentration of drimenol was 2 mM. The reaction was incubated at 25 °C, 200 rpm. During the reaction process, 100 μ L reaction mixture was sampled and monitored by GC-MS analysis. After 32 h, the reaction mixture was extracted with equal volume ethyl acetate in three times. The organic phase was dried over Na₂SO₄ and removed at the rotary evaporator. After purification by column chromatography on silica gel, 65.4 mg **12** was obtained. **12** was confirmed by ¹H, ¹³C, and X-ray crystallography (Table S2). To identify the structure of **13**, 20 mg drimenol dissolved in 4.5 mL DMF was added into the reaction mixture (100 mM Kpi buffer, pH 7.4, 200 mM glucose, 2 mM NADP⁺, 20 μ M P450_{BM3} (F87A), 90 μ M BmGDH). The total reaction volume was 225 mL and the final concentration of drimenol was 0.4 mM. The reaction was incubated for 22 h before extraction and the post-treatment was similar to mentioned above. Compound **13** was confirmed by ¹H, ¹³C according to the previous report.⁵

¹**H NMR (400 MHz, CDCl₃):** δ 5.32 – 5.65 (m, 1H), 3.84 (dd, *J* = 11.3, 3.5 Hz, 1H), 3.73 (dd, *J* = 11.3, 5.1 Hz, 1H), 3.17 – 3.29 (m, 1H), 1.93 – 2.10 (m, 3H), 1.84 (bs, 1H), 1.74 – 1.80 (m, 3H), 1.54 – 1.69 (m, 2H), 1.27 – 1.29 (m, 1H), 1.23 – 1.26 (m, 1H), 1.19 (dd, *J* = 11.0, 5.7 Hz, 1H), 0.98 (s, 3H), 0.86 (s, 3H), 0.85 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 132.9, 124.0, 79.1, 60.9, 57.2, 49.5, 38.8, 38.0, 36.0, 28.2, 27.4, 23.4, 21.9, 15.5, 15.0.

 $[\alpha]_{D}^{22} = -20.00 \text{ (c} = 0.50, \text{CHCl}_3).$

Melting Point: 135-136 °C.

HRMS (**ESI**+): calculated for C₁₅H₂₆O₂Na [M+Na]⁺: 261.1825, found 261.1824.

¹**H NMR (400 MHz, CDCl₃)** : δ 3.99 (dd, *J* = 11.4, 4.0 Hz, 1H), 3.95 (dd, *J* = 11.3, 4.0 Hz, 1H), 3.15 – 3.24 (m, 1H), 3.04 (d, *J* = 6.4 Hz, 1H), 1.91 – 2.06 (m, 2H), 1.76 – 1.88 (m, 2H), 1.63 – 1.55 (m, 2H), 1.43 (t, *J* = 4.0 Hz, 1H), 1.39 (s, 3H), 1.04 – 1.13 (m, 1H), 1.00 (s, 3H), 0.97 (dd, *J* = 13.3, 4.8 Hz, 1H), 0.92 (s, 3H), 0.80 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 78.9, 60.7, 60.6, 59.4, 55.1, 49.2, 39.0, 38.7, 36.1, 28.2, 27.0, 22.9, 21.7, 16.0, 15.3.

HRMS (ESI+): calculated for C ₁₅ H ₂₆ O ₃ Na	a [M+Na] ⁺ : 277.1780, found 277.1773
---	--

5	
CCDC Number	2307775
Empirical formula	$C_{15}H_{26}O_2$
Formula weight	238.36
Temperature/K	100.0(2)
Crystal system	orthorhombic
Space group	P212121
a/Å	9.9809(8)
b/Å	12.4367(11)
c/Å	21.6963(18)
$lpha/^{\circ}$	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	2693.1(4)
Ζ	8
$ ho_{calc}g/cm^3$	1.176
µ/mm⁻¹	0.374
F(000)	1056.0
Crystal size/mm ³	$0.21\times0.19\times0.16$
Radiation	$GaK\alpha \ (\lambda = 1.34138)$
2Θ range for data collection/°	7.09 to 147.078
Index ranges	$-14 \leqslant h \leqslant 13, -17 \leqslant k \leqslant 17, -31 \leqslant l \leqslant 31$
Reflections collected	126855

Table S2. Crystal data and structure refinement for 3-(OH)-drimenol (12).

Independent reflections	8233 [Rint = 0.0637, Rsigma = 0.0234]
Data/restraints/parameters	8233/0/319
Goodness-of-fit on F ²	1.060
Final R indexes [I>= 2σ (I)]	R1 = 0.0282, wR2 = 0.0760
Final R indexes [all data]	R1 = 0.0289, wR2 = 0.0767
Largest diff. peak/hole / e Å-3	0.29/-0.16
Flack parameter	-0.03(4)

4.4 Docking drimenol into P450_{BM3} (F87A)

_

The haem domain of P450_{BM3} (F87A) was used as receptor structure for docking study, which was performed in Autodock Vina. Mutation of F87A was added to the wild-type P450_{BM3} crystal structure (PDB code, 6K24) via Pymol. Simultaneously, the ligand, N-Abietoyl-L-Tryptophan, and all water molecules were removed from the structure prior to the docking calculation, and both receptor and substrate **9**, were treated as rigid entities. In Vina, the docking site was defined as a 22.5 Å × 22.5 Å × 22.5 Å box centered on the 87A, and poses were ranked using the Autodock Vina scoring function. The best pose of nine poses was selected according to the closest distance between C-3 of **11** and haem iron.

4.5 Construction of the focus library of P450_{BM3}

The P450_{BM3} L75/F87 library was created by Quik-change PCR for site mutation. The annealing temperature was 72 °C. The sequences of primers are shown in Table S3. The L75 mutagenetic primers were firstly applied to obtained nine L75 mutants with P450_{BM3} (F87A) as template. Subsequently, those mutants were utilized as templates for generating remaining 72 mutants with F87 mutagenetic primers.

Primer	Sequence (5'-3')
L75A-F	CGATAAGAACCTGAGCCAAGCGgcgAAATTCGTG
L75A-R	GCAAAGTCACGCACGAATTTcgcCGCTTGGCTC
L75F-F	AAGAACCTGAGCCAAGCGtttAAATTCGTG
L75F-R	aaaCGCTTGGCTCAGGTTCTTATCGAAACGG
L75I-F	AAGAACCTGAGCCAAGCGattAAATTCGTG
L75I-R	aatCGCTTGGCTCAGGTTCTTATCGAAACGG
L75M-F	AAGAACCTGAGCCAAGCGatgAAATTCGTG
L75M-R	catCGCTTGGCTCAGGTTCTTATCGAAACGG

Table S3. The primers used for L75/F87 mutant library.

L75V-F	AAGAACCTGAGCCAAGCGgtgAAATTCGTG
L75V-R	cacCGCTTGGCTCAGGTTCTTATCGAAACGG
L75T-F	AAGAACCTGAGCCAAGCGaccAAATTCGTG
L75T-R	ggtCGCTTGGCTCAGGTTCTTATCGAAACGG
L75S-F	AAGAACCTGAGCCAAGCGagcAAATTCGTG
L75S-R	gctCGCTTGGCTCAGGTTCTTATCGAAACGG
L75G-F	AAGAACCTGAGCCAAGCGggcAAATTCGTG
L75G-R	gccCGCTTGGCTCAGGTTCTTATCGAAACGG
A87F-F	CTTTGCGGGTGATGGTCTGtttACCAGCTGGA
A87F-R	aaaCAGACCATCACCCGCAAAGTCACGCACG
F87L-F	CTTTGCGGGTGATGGTCTGctgACCAGCTGGA
F87L-R	cagCAGACCATCACCCGCAAAGTCACGCACG
F87I-F	CTTTGCGGGTGATGGTCTGattACCAGCTGGA
F87I-R	aatCAGACCATCACCCGCAAAGTCACGCACG
F87M-F	CTTTGCGGGTGATGGTCTGatgACCAGCTGGA
F87M-R	catCAGACCATCACCCGCAAAGTCACGCACG
F87V-F	CTTTGCGGGTGATGGTCTGgtgACCAGCTGGA
F87V-R	cacCAGACCATCACCCGCAAAGTCACGCACG
F87T-F	CTTTGCGGGTGATGGTCTGaccACCAGCTGGA
F87T-R	ggtCAGACCATCACCCGCAAAGTCACGCACG
F87S-F	CTTTGCGGGTGATGGTCTGagcACCAGCTGGA
F87S-R	gctCAGACCATCACCCGCAAAGTCACGCACG
F87G-F	CTTTGCGGGTGATGGTCTGggcACCAGCTGGA
F87G-R	gccCAGACCATCACCCGCAAAGTCACGCACG

4.6 Screening of the P450_{BM3} library

Each pET28a-P450_{BM3} mutant was co-transformed with pET22b-BmGDH into *E. coli* BL21(DE3). Three colonies or glycerol stocks were inoculated into a 96 deep wells plate, which was filled with 500 μ L LB medium contained 50 μ g/mL kanamycin and 100 μ g/mL ampicillin. The cultures were grown at 37 °C, 500 rpm for 16 h. The expression and cell harvest methods were according to the previous report.⁴ Briefly, 100 μ L of seed culture was inoculated into 800 μ L modified P450 expression medium (containing appropriate antibiotics and 0.1 mM IPTG) in another 96 deep wells plate and incubated at 25 °C, 200 rpm for 8 h. The cell pellets were harvested and washed with 600 μ L 100 mM Kpi buffer, pH 7.4. After

centrifugation at 3,000g for 5 min, the cell pellets were frozen in liquid nitrogen for 15 min and thawed at room temperature. The 100 μ L reaction mixture containing 100 mM Kpi buffer, pH 7.4, 100 mM glucose, 1 mM NADP⁺, and 1 mM drimenol (50 mM stock solution in DMF) was added in each well. Then the deep wells plate was shaken at 25 °C, 200 rpm for 16 h. The reaction was stopped by adding 200 μ L ethyl acetate. Then the extraction was completed by mixing with pipette. The mixture was centrifuged at 3,000g for 10 min. The 100 μ L organic phase was transferred into the interior tube of GC vial followed by GC-MS analysis.

P450_{BM3} (L75A/F87I) and P450_{BM3} (L75G/F87I) were re-cultured in 96 deep wells plate for whole cell and cell lysate catalysis in triplicate. The concentration of cells was around 14 OD/mL measured by UV spectrophotometer. The whole cell catalysis experiments were the same as above. For the cell lysate catalysis, the cells were removed from wells and resuspended with 87 μ L 100 mM Kpi buffer, pH 7.4 in new tubes, followed by ultrasonication (30% power, 1 s on, 3 s off). The lysate was centrifuged at 4 °C and 21,000*g* for 2 min. The brownish-red supernatant was transferred into a new 2 mL tube. The reaction was started by adding 100 mM glucose, 1 mM NADP⁺, and 1 mM drimenol (50 mM stock solution in DMF) in the lysate solution and incubated at 25 °C, 200 rpm for 16 h. The reaction was stopped by adding 200 μ L ethyl acetate and extracted by vortexing. The mixture was centrifuged at 21,000*g* for 1 min. The organic phase was used for GC-MS analysis.

4.7 Optimization of the reaction conditions for drimenol oxidation

To screen the appropriate co-solvent and its concentration, 3 mM drimenol was added with the concentration of DMF, DMSO, MeOH ranging from 2% to 6%. Besides, the reaction mixture contained 28 OD/mL cell lysate (in 100 mM Kpi buffer, pH 7.4), 100 mM glucose and 1 mM NADP⁺. Then, the reaction was incubated at 25 °C, 200 rpm for 16 h. The post-treatment was same as library screening procedure (Figure S4B, S4C).

4.8 Gram-scale oxidation of drimenol with P450_{BM3} (L75A/F87I)

E. coli BL21(DE3) harboring pET28a-P450_{BM3} (L75A/F87I) and pET22b-BmGDH was cultured in 13 L modified P450 expression medium at 37 °C, 220 rpm until OD₆₀₀ reached 0.8–0.9. The culture was precooled on ice, and induced with 0.1 mM IPTG. After expression at 25 °C, 180 rpm for 16 h, the concentration of cells is about 8300 OD/L measured by UV spectrophotometer. The cells were harvested by centrifugation at 20 °C and 9,000g for 15 min. The cell pellets were collected in 50 mL tube per 0.76 L initial medium and stored at -80 °C until further processing. For cell lysis, the cell pellet was thawed and resuspended by 200 mL Kpi buffer (100 mM, pH 7.4) per 0.76 L of initial culture. Cells were broken by high pressure homogenizer. The collected lysate was centrifuged at 4 °C and 36,000*g* for 30 min. Then the obtained brownish-red supernatant was added into the 2.8 L flask which contained freshly pre-dissolved 335 mg NADP⁺ and 7.6 g glucose in 200 mL Kpi buffer (100 mM, pH 7.4). The reaction was started by addition of 140 mg drimenol dissolved in 21 mL DMF. Then seventeen flasks contained 2.38 g drimenol in total were shaken at 25 °C, 200 rpm for 16 h. The reaction mixtures were extracted with 1/2 volume ethyl acetate in three times. The resulting sample was dried over Na₂SO₄ and concentrated by the rotary evaporator under reduced pressure. After purification by column chromatography on silica gel, 1.55 g of compound **12** was obtained.

5. Synthetic procedures

5.1 Optimization for the Ni-catalzyed reductive coupling reaction

X X H 1 equiv.	+ Y OMC OMC OMC 1 equiv.	DM red ado DM	Nil ₂ (10 mol%) dtbpy (5 mol%) dppbe (5 mol%) luctant (2.0 equiv.) ditive, 55 °C, DMPU 16 h	OMOM OMOM OMOM I5	+	+ OMON OMON	1 момо	-омом омос омос
Entries	x	Y	reductant	additive	yield of 15 ^b	yield of B ^b	yield of \mathbf{C}^c	yield of D ^c
1	I	I	Mn	pyridine (12 mol%)	6%	71%	32%	12%
2	Br	I	Mn	pyridine (12 mol%)	40%	38%	16%	18%
3	I	Br	Mn	pyridine (12 mol%)	3%	75%	30%	10%
4	Br	Br	Mn	pyridine (12 mol%)	49%	35%	5%	13%
5	Br	Br	Mn	pyridine (12 mol%) + Co ^{ll} Pc (5 mo%)	57%	25%	5%	8%
6	Br	I	Mn	pyridine (12 mol%) + Co ^{ll} Pc (5 mo%)	62%	20%	8%	7%
7	Br	I	Zn	pyridine (12 mol%) + Co ^{ll} Pc (5 mo%)	26%	46%	15%	12%
8	Br	I	TDAE	pyridine (12 mol%) + Co ^{ll} Pc (5 mo%)	35%	40%	12%	-

Table S4. Optimization for the Ni-catalzyed reductive coupling reaction

^{*a*} dtbpy = 4,4-Di-tert-butyl bipyridine, dppbe = 1,2-bis(diphenylphosphino)benzene, DMPU = 1,3-Dimethyl-3,4,5,6tetrahydro-2(1H)-pyrimidinone, TDAE = Tetrakis(dimethylamino)ethylene, Co^{II}Pc = Cobalt phthalocyanin. The yields of isolated products were given. ^{*b*} Yield of **15** and yield of **B** were calculated based on the drimane moiety. ^{*c*} Yield of C and D were calculated based on the aryl halide moiety.

General Procedure for the Ni-catalyzed reductive coupling reaction:

A solution of drimane halide (0.10 mmol, 1.0 equiv.) and aryl halide (0.10 mmol, 1.0 equiv.) in DMPU (0.3

mL) was treated with NiI₂ (3.1 mg, 0.01 mmol, 10 mol%), 1,2-bis(diphenylphosphino)benzene (2.2 mg, 0.005 mmol, 5 mol%), 4,4'-di-*tert*-butyl-2,2'-dipyridyl (if needed, 1.3 mg, 0.005 mmol, 5 mol%), cobalt phthalocyanin (if needed, 2.9 mg, 0.005mmol, 5 mol%), reductant (0.20 mmol, 2.0 equiv.), and pyridine (if need, 1 μ L, 0.012 mmol, 12 mol%). The reaction mixture was heated to 55 °C and stirred at the same temperature for 16 hours. The reaction was quenched with saturated aq. Na₂S₂O₃ solution (5 mL), and extracted with EtOAc (10 mL × 3). The combined organic phase was washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography to yield elimination product **B** (hexane), desired product **13** (hexane/ethyl acetate = 20:1), reduced aryl compound **C** (hexane/ethyl acetate = 20:1) and homocoupling product **D** (hexane/ethyl acetate = 10:1).

¹**H NMR (400 MHz, CDCl₃):** δ 6.92 – 7.01 (m, 2H), 6.80 (dd, *J* = 8.9, 3.0 Hz, 1H), 5.38 (m, 1H), 5.13 (s, 2H), 5.11 (s, 2H), 3.48 (s, 3H), 3.47 (s, 3H), 2.73 (dd, *J* = 15.4, 9.3 Hz, 1H), 2.59 (dd, *J* = 15.3, 2.6 Hz, 1H), 2.31 – 2.41 (m, 1H), 1.83 – 2.04 (m, 3H), 1.49 – 1.56 (m, 1H), 1.46 (s, 3H), 1.39 – 1.46 (m, 2H), 1.29 (dd, *J* = 11.9, 4.9 Hz, 1H), 1.16 – 1.25 (m, 1H), 1.05 – 1.15 (m, 1H), 0.91 (s, 3H), 0.90 (s, 3H), 0.88 (s, 3H). ¹³**C NMR (151 MHz, CDCl₃):** δ 152.0, 150.3, 135.9, 134.6, 122.3, 118.4, 115.4, 113.7, 95.4, 95.3, 56.1, 56.0, 54.5, 50.5, 42.4, 39.7, 37.0, 33.4, 33.2, 26.5, 23.9, 22.5, 22.1, 19.1, 14.1. [α]²³_{*D*} = -16.09 (c = 1.10, CHCl₃).

HRMS (ESI+): calculated for $C_{25}H_{39}O_4 [M+H]^+: 403.2843$, found 403.2840.

¹**H NMR (600 MHz, CDCl₃):** δ 5.63 – 5.69 (m, 1H), 4.83 (s, 1H), 4.79 (s, 1H), 2.11 – 2.18 (m, 1H), 1.98 – 2.06 (m, 1H), 1.84 – 1.90 (m, 1H), 1.78 – 1.81 (m, 3H), 1.63 (dt, *J* = 13.7, 3.2 Hz, 1H), 1.59 – 1.61 (m, 1H),

1.52 – 1.57 (m, 1H), 1.39 – 1.42 (m, 1H), 1.29 (dd, *J* = 11.8, 4.6 Hz, 1H), 1.14 – 1.21 (m, 1H), 0.97 (s, 3H), 0.93 (s, 3H), 0.86 (s, 3H).

¹³C NMR (151 MHz, CDCl₃): δ 158.3, 131.3, 126.7, 103.9, 48.8, 42.3, 37.9, 37.8, 33.5, 33.1, 24.4, 22.3, 21.2, 20.7, 19.2.

 $[\alpha]_D^{24} = -9.40 \ (c = 1.00, CHCl_3).$

The NMR data was consistent with literature report.6

¹H NMR (600 MHz, CDCl₃): δ 6.97 (s, 4H), 5.12 (s, 4H), 3.48 (s, 6H).

¹³C NMR (151 MHz, CDCl₃): δ 152.4, 117.6, 95.3, 56.0.

HRMS (ESI+): calculated for C₁₀H₁₅O₄ [M+H]⁺: 199.0965, found 199.0966.

The NMR data was consistent with literature report.⁷

¹**H NMR (600 MHz, CDCl₃):** δ 7.13 (d, *J* = 8.6 Hz, 1H), 6.95 – 7.00 (m, 2H), 5.13 (s, 2H), 4.99 (s, 2H), 3.48 (s, 3H), 3.33 (s, 3H).

¹³C NMR (151 MHz, CDCl₃): δ 152.2, 150.0, 130.2, 119.8, 117.4, 116.6, 96.2, 95.3, 56.0, 56.0.

HRMS (**ESI**+): calculated for C₂₀H₂₇O₈ [M+H]⁺: 395.1700, found 395.1705.

5.2 Synthesis of drimane halides and aryl halides

A solution of **11** (222 mg, 1.0 mmol, 1.0 equiv.) and carbon tetrabromide (830 mg, 2.5 mmol, 2.5 equiv.) in dry THF (4 mL) was treated with PPh₃ (655 mg, 2.5 mmol, 2.5 equiv.) in THF (4 mL) dropwise at 0 °C. The reaction mixture was stirred at 0 °C for 2 hours then quenched with MeOH (5 mL). The solution was

concentrated in vacuo. The crude product was purified by flash column chromatography (hexane) to yield **9** (228 mg, 80% yield) as a colorless oil.

¹**H NMR (400 MHz, CDCl₃):** δ 5.48 (m, 1H), 3.65 (dd, *J* = 10.8, 2.2 Hz, 1H), 3.28 (dd, *J* = 10.8, 6.7 Hz, 1H), 2.34 – 2.40 (m, 1H), 1.90 – 2.04 (m, 2H), 1.86 (s, 1H), 1.78 – 1.84 (m, 1H), 1.52 – 1.55 (m, 1H), 1.47 – 1.52 (m, 1H), 1.15 – 1.24 (m, 2H), 1.12 (dd, *J* = 13.1, 4.4 Hz, 1H), 0.88 (s, 3H), 0.86 (s, 3H), 0.81 (s, 3H). ¹³**C NMR (101 MHz, CDCl₃):** δ 132.7, 124.1, 57.8, 50.1, 42.1, 39.4, 37.9, 33.3, 33.2, 31.6, 23.7, 22.0, 21.9, 18.8, 14.1.

 $[\alpha]_D^{24} = -10.40 \text{ (c} = 0.50, \text{CHCl}_3).$

A solution of **11** (222 mg, 1.0 mmol, 1.0 equiv.), imidazole (170 mg, 2.5 mmol, 2.5 equiv.) and iodine (635 mg, 2.5 mmol, 2.5 equiv.) in dry THF (4 mL) was treated with PPh₃ (655 mg, 2.5 mmol, 2.5 equiv.) in THF (4 mL) dropwise at 0 °C. After stirring at 0 °C for 2 hours, the reaction was quenched with saturated aq. $Na_2S_2O_3$ solution (10 mL) and extracted with EtOAc (10 mL × 3). The combined organic phase was washed with brine, dried over anhydrous Na_2SO_4 , filtered, and concentrated in vacuo. The residue was purified by flash column chromatography (hexane) to yield **S1** (199 mg, 60% yield) as faint yellow oil.

¹**H NMR (600 MHz, CDCl₃):** δ 5.37 – 5.47 (m, 1H), 3.50 (dd, *J* = 10.6, 2.0 Hz, 1H), 2.96 (dd, *J* = 10.6, 7.0 Hz, 1H), 2.44 – 2.51 (m, 1H), 1.90 – 2.01 (m, 5H), 1.77 – 1.87 (m, 1H), 1.52 – 1.56 (m, 1H), 1.45 – 1.52 (m, 1H), 1.38 – 1.44 (m, 1H), 1.11 – 1.21 (m, 4H), 0.87 (s, 3H), 0.85 (s, 3H), 0.79 (s, 3H).

¹³C NMR (151 MHz, CDCl₃): δ 133.1, 123.9, 58.5, 50.2, 42.1, 39.2, 38.7, 33.2, 33.2, 23.7, 22.0, 21.9, 18.9, 13.4.

 $[\alpha]_D^{24} = -45.80 \text{ (c} = 0.50, \text{CHCl}_3).$

A solution of S2 (1.66 g, 10 mmol, 1.0 equiv.) in dry THF (10 mL) was treated with n-BuLi (2.0 M in n-

hexane, 5.5 mL, 1.1 equiv.) in dropwise at -78 °C. The resulting mixture was warm to room temperature and stir for 2 hours. Add a solution of iodine (2.79 g, 11 mmol, 1.1 equiv.) in THF (10 mL) to the mixture at -78 °C. The resulting mixture was stirred for 2 hours at room temperature. The solvents were evaporated and CH₂Cl₂ (30 mL) was added. The organic layer was washed with aqueous NaHSO₃ (20%), aqueous saturated NaHCO₃ and aqueous saturated brine, and the layer was dried with Na₂SO₄ and concentrated. The residue was purified by flash column chromatography (hexane / dichloromethane = 10:1) to afford **21** (2.57 g, 88% yield) as yellow oil.

¹**H NMR (400 MHz, CDCl₃):** δ 7.18 (d, *J* = 1.9 Hz, 1H), 6.71 (d, *J* = 1.9 Hz, 1H), 3.84 (s, 3H), 3.80 (s, 3H), 2.56 (q, *J* = 7.6 Hz, 2H), 1.21 (t, *J* = 7.6 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 152.4, 146.9, 142.4, 129.5, 112.7, 92.3, 60.4, 56.0, 28.3, 15.6. HRMS (ESI+): calculated for C₁₀H₁₃IO₂Na [M+Na]⁺: 314.9852, found 314.9852.

A solution of **S3** (1.47 g, 10 mmol, 1.0 equiv.) in dry DMF (10 mL) was treated with KOH (1.40 g, 25 mmol, 2.5 equiv.) and iodine (2.79 g, 11 mmol,1.1 equiv.), The mixture was stirred for 2 hours at room temperature and was quenched by a saturated aqueous solution of $Na_2S_2O_3$ (20 mL), the aqueous phase was extracted with EtOAc (20 mL× 3). The organic layer was washed with water and aqueous saturated brine, and the layer was dried with Na_2SO_4 and concentrated. The 3-iodo-indole derivative was not isolated and directly engaged in the protection step without any purification. The flask containing the crude product was flushed with Ar, then DMF (15 mL) was introduced and the mixture was stirred and cool to 0 °C using an ice bath. NaH (60% in oil, 1.2 equiv.) in added by portions and the mixture was stirred for an additional 20 minutes. Then, PhSO₂Cl was introduced dropwise, the reaction was stirred at 0 °C for 30 minutes then the ice bath was removed and allowed to heat up to room temperature. The mixture was stirred for 3 hours at room temperature and was quenched by distillated water and a same volume of EtOAc. The layers were separated and the aqueous phase is extracted with two additional volumes of EtOAc. The organic phase was washed with water and brine, dried over Na_2SO_4 , filtered and concentrated. The residue was purified by flash column chromatography (hexane / dichloromethane = 10:1) to afford **24** (3.10 g, 75% yield) as beige powder.

¹H NMR (400 MHz, CDCl₃): δ 7.97 (s, 1H), 7.81 – 7.89 (m, 2H), 7.53 – 7.62 (m, 1H), 7.45 – 7.51 (m, 2H),
7.21 (t, *J* = 7.9 Hz, 1H), 7.03 (dd, *J* = 8.0, 1.0 Hz, 1H), 6.74 (dd, *J* = 7.9, 0.9 Hz, 1H), 3.66 (s, 3H).
¹³C NMR (101 MHz, CDCl₃): δ 147.1, 140.0, 135.3, 133.6, 132.1, 129.0, 127.5, 124.8, 124.3, 114.7, 107.8,
64.8, 55.7.

HRMS (ESI+): calculated for C₁₅H₁₂INO₃SNa [M+Na]⁺: 435.9475, found 435.9475.

A solution of S4 (2.0 g, 5.74 mmol, 1.0 equiv.) in CH₃CN (30 mL) was treated with CF₃COOH (196 mg, 1.72 mmol, 0.3 equiv.) and *N*-iodosuccinimide (1.42 g, 6.31 mmol, 1.1 equiv.) in CH₃CN (10 mL) dropwise at room temperature. The reaction mixture was stirred at 40 °C for 2 hours and quenched with H₂O (20 mL). The mixture was extracted with EtOAc (20 mL \times 3). The combined organic phase was washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography (hexane/ dichloromethane = 1:1) to give **17** (2.2 g, 81% yield) as white solid.

¹H NMR (400 MHz, CDCl₃): δ 7.29 – 7.50 (m, 11H), 6.74 (s, 1H), 5.10 (d, *J* = 3.4 Hz, 1H), 2.33 (s, 3H).
¹³C NMR (101 MHz, CDCl₃): δ 169.0, 150.1, 147.8, 145.7, 136.7, 136.5, 128.7, 128.7, 128.7, 128.2, 128.2, 127.5, 127.5, 127.4, 124.4, 109.6, 78.7, 72.1, 71.5, 21.3.

HRMS (ESI+): calculated for C₂₂H₁₉IO₄Na [M+Na]⁺: 497.0220, found 497.0219.

A solution of **S5** (1.69 g, 5.80 mmol, 1.0 equiv.) in dichloromethane (30 mL) was treated with DIPEA (897 mg, 6.95 mmol, 1.2 equiv.). Methoxybromomethane (868 g, 6.95 mmol, 1.2 equiv.) was added to the reaction mixture at room temperature. The reaction mixture was stirred at room temperature for 5 hours before it was quenched with H₂O (20 mL). The mixture was extracted with EtOAc (20 mL \times 3). The combined organic phase was washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography (hexane/ EtOAc = 10:1) to give **30** (1.83 g, 94% yield) as white solid.
¹**H NMR (600 MHz, CDCl₃):** δ 8.34 (s, 1H), 6.87 (s, 1H), 5.26 (s, 2H), 3.84 (s, 3H), 3.49 (s, 3H), 2.55 (s, 3H).

¹³C NMR (151 MHz, CDCl₃): δ 166.1, 158.6, 143.3, 142.1, 124.5, 116.9, 94.7, 82.6, 56.6, 51.9, 22.2.
 HRMS (ESI+): calculated for C₁₁H₁₄IO₄ [M+H]⁺: 336.9931, found 336.9931.

A solution of **12** (23.8 mg, 0.10 mmol, 1.0 equiv.) in DMF (2 mL) was treated with imidazole (6.8 mg, 0.10 mmol, 1.0 equiv.) and TBSCl (15.1 mg, 0.10 mmol, 1.0 equiv.). After stirring at 23 °C for 5 hours. The reaction was quenched with H₂O (10 mL) and extracted with EtOAc (10 mL \times 3). The combined organic phase was washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography (hexane/ethyl acetate = 10:1) to give **27** (31.8 mg, 90% yield) as colorless oil.

¹**H NMR (400 MHz, CDCl₃):** δ 5.33 – 5.52 (m, 1H), 3.75 (dd, *J* = 10.5, 3.5 Hz, 1H), 3.62 (dd, *J* = 10.5, 5.8 Hz, 1H), 3.19 – 3.30 (m, 1H), 1.92 – 2.04 (m, 3H), 1.78 – 1.83 (m, 1H), 1.72 (s, 3H), 1.59 – 1.66 (m, 2H), 1.23 – 1.29 (m, 1H), 1.14 – 1.21 (m, 1H), 0.97 (s, 3H), 0.86 – 0.90 (m, 10H), 0.85 (s, 3H), 0.81 (s, 3H), 0.03 (s, 6H).

¹³C NMR (101 MHz, CDCl₃): δ 134.3, 122.5, 79.2, 61.0, 56.9, 49.7, 38.8, 38.0, 35.9, 28.2, 27.6, 26.0, 26.0, 23.4, 22.0, 18.2, 15.4, 14.9, -5.3, -5.4.

 $[\alpha]_D^{22} = +2.20$ (c = 0.50, CHCl₃).

HRMS (ESI+): calculated for C₂₁H₄₁O₂Si [M+H]⁺: 353.2870, found 353.2870.

A solution of **27** (35.3 mg, 0.10 mmol, 1.0 equiv.) in DMF (2 mL) was treated with NaH (60% dispersion in mineral oil, 6 mg, 0.15 mmol, 1.5 equiv.) and BnBr (25.7 mg, 0.15 mmol, 1.5 equiv.). The reaction mixture was stirred at 23 °C for 10 hours before it was quenched with H₂O (10 mL) and extracted with EtOAc (10

mL × 3). The combined organic phase was washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The residue was dissolved in THF (4 mL) and was treated with tetrabutylammonium fluoride xhydrate (85%, 65.8 mg, 0.20 mmol, 0.2 equiv.). The reaction mixture was stirred at 60 °C for 12 hours then quenched with H₂O (10 mL) and extracted with EtOAc (10 mL × 3). The combined organic phase was washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography (hexane/ethyl acetate = 10:1) to give **28** (30.2 mg, 92% yield) as white solid.

¹**H NMR (400 MHz, CDCl₃):** δ 7.28 – 7.39 (m, 4H), 7.27 (m, 1H), 5.50 – 5.59 (m, 1H), 4.68 (d, *J* = 11.9 Hz, 1H), 4.44 (d, *J* = 11.9 Hz, 1H), 3.86 (dd, *J* = 11.3, 3.5 Hz, 1H), 3.74 (dd, *J* = 11.3, 5.2 Hz, 1H), 2.96 (dd, *J* = 11.7, 3.9 Hz, 1H), 2.05 (dt, *J* = 13.3, 3.5 Hz, 1H), 1.93 – 2.02 (m, 2H), 1.81 – 1.89 (m, 2H), 1.78 (s, 3H), 1.49 – 1.63 (m, 2H), 1.16 – 1.22 (m, 2H), 0.99 (s, 3H), 0.92 (s, 3H), 0.87 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 139.5, 132.9, 128.3, 127.5, 127.4, 124.2, 86.7, 71.6, 61.0, 57.2, 50.0, 38.9, 38.0, 36.0, 28.5, 23.3, 23.0, 21.9, 16.5, 15.1.

 $[\alpha]_D^{22} = +29.80 \text{ (c} = 0.50, \text{CHCl}_3).$

HRMS (ESI+): calculated for C₂₂H₃₂O₂Na [M+Na]⁺: 351.2295, found 351.2294.

A solution of **28** (32.8 mg, 0.1 mmol, 1.0 equiv.) and carbon tetrabromide (83 mg, 0.25 mmol, 2.5 equiv.) in dry THF (2 mL) was treated with PPh₃ (65.5 mg, 0.25 mmol, 2.5 equiv.) in THF (2 mL) dropwise at 0 °C. The reaction mixture was stirred at 0 °C for 2 hours before it was quenched with MeOH (5 mL). The solution was concentrated in vacuo. The residue was purified by flash column chromatography (hexane/ethyl acetate = 100:1) to yield **10** (24.2 mg, 62% yield) as a colorless oil.

¹**H NMR (400 MHz, CDCl₃):** δ 7.31 – 7.39 (m, 4H), 7.24 – 7.30 (m, 1H), 5.36 – 5.64 (m, 1H), 4.68 (d, *J* = 11.8 Hz, 1H), 4.45 (d, *J* = 11.9 Hz, 1H), 3.65 (dd, *J* = 10.8, 2.2 Hz, 1H), 3.29 (dd, *J* = 10.8, 6.7 Hz, 1H), 2.96 (dd, *J* = 11.7, 3.8 Hz, 1H), 2.30 – 2.39 (m, 1H), 2.07 – 1.93 (m, 3H), 1.89 – 1.92 (m, 1H), 1.87 (s, 3H), 1.49 – 1.61 (m, 1H), 1.16 – 1.31 (m, 2H), 0.99 (s, 3H), 0.92 (s, 3H), 0.84 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 139.4, 132.5, 128.3, 127.6, 127.4, 124.0, 86.4, 71.6, 57.8, 50.0, 39.0, 37.6,

37.4, 31.2, 28.3, 23.3, 22.9, 21.7, 16.4, 14.1.

 $[\alpha]_D^{25} = +32.71$ (c = 1.33, CHCl₃).

HRMS (ESI+): calculated for C₂₂H₃₂BrO [M+H]⁺: 391.1631, found 391.1633.

5.3 Synthesis of (+)-ent-chromazonarol

Figure S5. Synthetic route of (+)-ent-chromazonarol

A solution of **9** (28.5 mg, 0.10 mmol, 1.0 equiv.) and **14** (27.7 mg, 0.10 mmol, 1.0 equiv.) in DMPU (0.3 mL) was treated with NiI₂ (3.1 mg, 0.01 mmol, 10 mol%), 1,2-bis(diphenylphosphino)benzene (2.2 mg, 0.005 mmol, 5 mol%), 4,4'-di-*tert*-butyl-2,2'-dipyridyl (1.3 mg, 0.005 mmol, 5 mol%), Co^{II}(Pc) (2.9 mg, 0.005 mmol, 5 mol%), manganese powder (11.0 mg, 0.20 mmol, 2.0 equiv.), and pyridine (1 μ L, 0.012 mmol, 12 mol%). The reaction mixture was heated to 55 °C and stirred at the same temperature for 16 hours. The reaction was quenched with saturated aq. Na₂S₂O₃ solution (5 mL) and extracted with EtOAc (10 mL × 3). The combined organic phase was washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography (hexane/ethyl acetate = 20:1) to yield **15** (22.9 mg, 57% yield) as colorless oil.

¹H NMR (400 MHz, CDCl₃): δ 6.92 – 7.01 (m, 2H), 6.80 (dd, J = 8.9, 3.0 Hz, 1H), 5.38 (m, 1H), 5.13 (s,

2H), 5.11 (s, 2H), 3.48 (s, 3H), 3.47 (s, 3H), 2.73 (dd, *J* = 15.4, 9.3 Hz, 1H), 2.59 (dd, *J* = 15.3, 2.6 Hz, 1H), 2.31 – 2.41 (m, 1H), 1.83 – 2.04 (m, 3H), 1.49 – 1.56 (m, 1H), 1.46 (s, 3H), 1.39 – 1.46 (m, 2H), 1.29 (dd, *J* = 11.9, 4.9 Hz, 1H), 1.16 – 1.25 (m, 1H), 1.05 – 1.15 (m, 1H), 0.91 (s, 3H), 0.90 (s, 3H), 0.88 (s, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 152.0, 150.3, 135.9, 134.6, 122.3, 118.4, 115.4, 113.7, 95.4, 95.3, 56.1, 56.0, 54.5, 50.5, 42.4, 39.7, 37.0, 33.4, 33.2, 26.5, 23.9, 22.5, 22.1, 19.1, 14.1.

 $[\alpha]_D^{23} = -16.09$ (c = 1.10, CHCl₃).

HRMS (ESI+): calculated for C₂₅H₃₉O₄ [M+H]⁺: 403.2843, found 403.2840.

A solution of **15** (40.2 mg, 0.10 mmol, 1.0 equiv.) in ⁱPrOH (2 mL) was treated with two drops of concentrated hydrochloric acid. The reaction mixture was stirred at 55 °C for 1 hour before it was quenched with H₂O (10 mL) and extracted with EtOAc (10 mL \times 3). The combined organic phase was washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography (hexane/ethyl acetate = 5:1) to give **16** (29.8 mg, 95% yield) as white solid.

¹**H NMR (600 MHz, CDCl₃):** δ 6.74 (d, *J* = 2.9 Hz, 1H), 6.60 (d, *J* = 8.5 Hz, 1H), 6.51 (dd, *J* = 8.5, 3.0 Hz, 1H), 5.38 (m, 1H), 4.63 (br, 2H), 2.55 – 2.63 (m, 2H), 2.31 – 2.37 (m, 1H), 1.96 – 2.04 (m, 1H), 1.84 – 1.94 (m, 2H), 1.51 – 1.60 (m, 1H), 1.47 (s, 3H), 1.40 – 1.46 (m, 2H), 1.28 (dd, *J* = 12.1, 4.8 Hz, 1H), 1.16 – 1.23 (m, 1H), 1.07 – 1.13 (m, 1H), 0.91 (s, 3H), 0.89 (s, 3H), 0.88 (s, 3H).

¹³C NMR (151 MHz, CDCl₃): δ 149.4, 147.2, 135.5, 131.5, 122.5, 116.7, 116.2, 112.95, 54.4, 50.5, 42.4, 39.7, 37.0, 33.4, 33.2, 26.3, 23.9, 22.4, 22.1, 19.1, 14.1.

 $[\alpha]_D^{23} = -17.25$ (c = 0.80, CHCl₃).

HRMS (**ESI**+): calculated for C₂₁H₂₉O₂ [M-H]⁻: 313.2162, found 313.2170.

In an argon filled glovebox, to a 4 mL vial with a magnetic stir bar were added the Pt-catalyst¹ (4.9 mg, 3 mol%), silver trifluoromethanesulfonate (1.5 mg, 6 mol%), the substrate **16** (31.4 mg, 0.1 mmol, 1.0 equiv.), and ClCH₂CH₂Cl (1 mL). The resulting mixture was stirred at room temperature (23 °C) for 15 h. The reaction mixture was diluted with CH₂Cl₂, filtered through a pad of celite and concentrated. The residue was purified with flash column chromatography (hexane/ethyl acetate = 10:1, silica gel) to yield **3** (28.3 mg, 90% yield) as colorless oil.

¹**H NMR (400 MHz, CDCl₃):** δ 6.63 (d, *J* = 8.4 Hz, 1H), 6.52 – 6.59 (m, 2H), 4.43 (br, 1H, OH), 2.54 – 2.60 (m, 2H), 2.04 (dt, *J* = 12.5, 3.2 Hz, 1H), 1.72 - 1.78 (m, 1H), 1.61 – 1.71 (m, 4H), 1.36 – 1.50 (m, 3H), 1.15 – 1.21 (m, 4H), 1.02 (dd, *J* = 12.2, 2.3 Hz, 1H), 0.94 – 0.98 (m, 1H), 0.90 (s, 3H), 0.88 (s, 3H), 0.84 (s, 3H).

¹³C NMR (151 MHz, CDCl₃): δ 148.6, 147.3, 123.4, 117.7, 115.9, 114.4, 76.8, 56.3, 52.2, 42.0, 41.3, 39.4, 36.9, 33.6, 33.3, 22.6, 21.8, 20.8, 19.9, 18.7, 15.0.

 $[\alpha]_D^{22} = +42.00 \text{ (c} = 0.35, \text{CHCl}_3).$

HRMS (**ESI**+): calculated for C₂₁H₂₉O₂ [M-H]⁻: 313.2162, found 313.2169.

5.4 Synthesis of (+)-8-epi-puupehenol

Figure S6. Synthetic route of (+)-8-*epi*-puupehenol

A solution of **9** (28.5 mg, 0.10 mmol, 1.0 equiv.) and **17** (47.4 mg, 0.10 mmol, 1.0 equiv.) in DMPU (0.3 mL) was treated with NiI₂ (3.1 mg, 0.01 mmol, 10 mol%), 1,2-bis(diphenylphosphino)benzene (2.2 mg, 0.005 mmol, 5 mol%), 4,4'-di-*tert*-butyl-2,2'-dipyridyl (1.3 mg, 0.005 mmol, 5 mol%), Co^{II}(Pc) (2.9 mg, 0.005 mmol, 5 mol%), manganese powder (11.0 mg, 0.20 mmol, 2.0 equiv.) and pyridine (1 μ L, 0.012 mmol, 12 mol%). The reaction mixture was heated to 55 °C for 16 hours then quenched with saturated aq. Na₂S₂O₃ solution (5 mL). The mixture was extracted with EtOAc (10 mL × 3). The combined organic phase was washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography (hexane/ethyl acetate = 10:1) to yield **18** (26.5 mg, 48% yield) as colorless oil.

¹**H NMR (400 MHz, CDCl₃):** δ 7.26 – 7.49 (m, 10H), 6.83 (s, 1H), 6.62 (s, 1H), 5.31 – 5.42 (m, 1H), 5.13 (s, 2H), 5.09 (s, 2H), 2.45 (dd, *J* = 15.5, 3.1 Hz, 1H), 2.28 (m, 4H), 2.08 – 2.17 (m, 1H), 1.92 – 2.04 (m, 1H), 1.79 – 1.91 (m, 1H), 1.74 (d, *J* = 12.9 Hz, 1H), 1.40 – 1.53 (m, 3H), 1.37 (s, 3H), 1.13 – 1.24 (m, 2H), 0.86

-0.96 (m, 7H), 0.81 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 169.8, 147.5, 146.6, 142.4, 137.5, 137.0, 135.2, 128.6, 128.0, 127.9, 127.6, 122.6, 117.0, 109.2, 72.3, 71.5, 54.6, 50.4, 42.3, 39.7, 36.9, 33.4, 33.2, 26.4, 23.8, 22.5, 22.1, 21.1, 19.0, 14.0.

 $[\alpha]_D^{23} = -14.67 (c = 0.90, CHCl_3).$

HRMS (ESI+): calculated for C₃₇H₄₄O₄Na [M+Na]⁺: 575.3132, found 575.3128.

A solution of **18** (55.3 mg, 0.10 mmol, 1.0 equiv.) in MeOH (2 mL) was treated with K_2CO_3 (27.6 mg, 0.2 mmol, 2.0 equiv.). The reaction mixture was stirred at 23 °C for 5 hours before it was quenched with H₂O (10 mL) and extracted with EtOAc (10 mL × 3). The combined organic phase was washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography (hexane/ethyl acetate = 5:1) to give **19** (48.5 mg, 95% yield) as colorless oil.

¹**H NMR (400 MHz, CDCl₃):** δ 7.39 – 7.48 (m,4H), 7.27 – 7.38 (m,6H), 6.76 (s, 1H), 6.39 (s, 1H), 5.34 – 5.39 (m, 1H), 5.07 (s, 4H), 4.67 (s, 1H), 2.51 (dd, *J* = 15.3, 3.2 Hz, 1H), 2.44 (dd, *J* = 15.2, 8.7 Hz, 1H), 2.13 – 2.22 (m, 1H), 1.93 – 2.06 (m, 1H), 1.79 – 1.93 (m, 2H), 1.48 – 1.57 (m, 1H), 1.37 – 1.48 (m, 5H), 1.19 – 1.26 (m, 2H), 0.94 – 1.03 (m, 1H), 0.91 (s, 3H), 0.90 (s, 3H), 0.85 (s, 3H).

¹³C NMR (151 MHz, CDCl₃): δ 148.0, 147.9, 142.5, 137.8, 137.3, 135.5, 128.6, 128.5, 127.9, 127.9, 127.9, 127.5, 127.5, 122.4, 121.8, 119.4, 103.8, 73.3, 71.5, 54.4, 50.4, 42.4, 39.7, 37.0, 33.4, 33.2, 25.9, 23.9, 22.4, 22.1, 19.1, 14.0.

 $[\alpha]_D^{22} = -16.91$ (c = 0.55, CHCl₃).

HRMS (**ESI**+): calculated for C₃₅H₄₁O₃ [M-H]⁻: 509.3050, found 509.3053.

In an argon filled glovebox, to a 4 mL vial with a magnetic stir bar were added the Pt-catalyst (4.9 mg, 3 mol%), silver trifluoromethanesulfonate (1.5 mg, 6 mol%), **19** (51.1 mg, 0.1 mmol, 1.0 equiv.), and ClCH₂CH₂Cl (1 mL). After stirring at room temperature (23 °C) for 12 h, the reaction mixture was diluted with CH₂Cl₂, filtered through a pad of celite and concentrated. The residue was purified by flash column chromatography (hexane/ethyl acetate = 10:1) to yield **20** (48.0 mg, 94% yield) as colorless oil.

¹**H NMR (600 MHz, CDCl₃):** δ 7.44 (d, *J* = 7.5 Hz, 4H), 7.35 (q, *J* = 6.9 Hz, 4H),7.27 – 7.32 (m, 2H), 6.67 (s, 1H), 6.44 (s, 1H), 5.02 – 5.09 (m, 4H), 2.50 (d, *J* = 9.1 Hz, 2H), 2.00 – 2.07 (m, 1H), 1.73 – 1.79 (m, 1H), 1.64 – 1.71 (m, 2H), 1.58 – 1.63 (m, 2H), 1.44 – 1.51 (m, 1H), 1.30 – 1.42 (m, 2H), 1.18 (s, 3H), 1.10 – 1.15 (m, 1H), 0.94 – 1.06 (m, 2H), 0.91 (s, 3H), 0.88 (s, 3H), 0.85 (s, 3H).

¹³C NMR (151 MHz, CDCl₃): δ 148.9, 148.0, 142.5, 138.1, 137.5, 128.5, 128.5, 127.8, 127.7, 127.7, 127.5, 117.9, 114.0, 103.8, 77.0, 73.0, 71.1, 56.3, 52.4, 42.0, 41.2, 39.4, 37.0, 33.6, 33.3, 22.0, 21.7, 20.9, 19.9, 18.7, 15.0.

 $[\alpha]_D^{21} = +27.20 (c = 1.00, CHCl_3).$

HRMS (ESI+): calculated for C₃₅H₄₃O₃ [M+H]⁺: 511.3207, found 511.3206.

A solution of **20** (51.1 mg, 0.10 mmol, 1.0 equiv.) in MeOH (2 mL) was treated with Pd (10% on carbon, 32 mg, 0.03 mmol, 0.3 equiv.). The reaction mixture was stirred at 23 °C under hydrogen atmosphere (1 atm) for 3 hours then filtered, and concentrated in vacuo. The residue was purified by flash column chromatography (hexane/ethyl acetate = 3:1) to give **4** (31.3 mg, 95% yield) as colorless oil.

¹**H NMR (600 MHz, Acetone-***d*₆**):** δ 7.61 (s, 1H), 7.20 (s, 1H), 6.50 (s, 1H), 6.19 (s, 1H), 2.40 – 2.51 (m, 2H), 1.96 (dt, *J* = 12.5, 3.2 Hz, 1H), 1.64 – 1.76 (m, 3H), 1.59 (dd, *J* = 13.0, 4.4 Hz, 1H), 1.53 (dd, *J* = 11.4, 7.0 Hz, 1H), 1.43 – 1.47 (m, 1H), 1.38 – 1.42 (m, 2H), 1.18 – 1.23 (m, 1H), 1.13 (s, 3H), 1.06 (dd, *J* = 12.4, 2.5 Hz, 1H), 0.98 – 1.02 (m, 1H), 0.90 (s, 6H), 0.86 (s, 3H).

¹³C NMR (151 MHz, Acetone-*d*₆): δ 147.1, 144.9, 139.3, 116.3, 113.3, 104.5, 76.6, 56.9, 53.5, 42.6, 42.0, 39.9, 37.5, 33.8, 33.8, 22.3, 21.9, 21.0, 20.4, 19.2, 15.2.

 $[\alpha]_D^{25} = +43.83 \text{ (c} = 0.60, \text{CHCl}_3\text{)}.$

HRMS (ESI+): calculated for C₂₁H₂₉O₃ [M-H]⁻: 329.2111, found 329.2115.

5.5 Synthesis of (-)-pelorol

Figure S7. Synthetic route of (-)-pelorol⁸

A solution of **9** (28.5 mg, 0.10 mmol, 1.0 equiv.) and **21** (29.2 mg, 0.10 mmol, 1.0 equiv.) in DMPU (0.3 mL) was treated with NiI₂ (3.1 mg, 0.01 mmol, 10 mol%), 1,2-bis(diphenylphosphino)benzene (2.2 mg, 0.005 mmol, 5 mol%), 4,4'-di-tert-butyl-2,2'-dipyridyl (1.3 mg, 0.005 mmol, 5 mol%), Co^{II}(Pc) (2.9 mg, 0.005 mmol, 5 mol%), manganese powder (11.0 mg, 0.20 mmol, 2.0 equiv.) and pyridine (1 μ L, 0.012 mmol, 12 mol%). The reaction mixture was heated to 55 °C for 16 hours then quenched with saturated aq. Na₂S₂O₃ solution (5 mL) and extracted with EtOAc (10 mL × 3). The combined organic extracts were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography (hexane/ethyl acetate = 10:1) to yield **22** (21.1 mg, 57% yield) as colorless oil. **¹H NMR (400 MHz, CDCl₃):** δ 6.69 (d, *J* = 2.0 Hz, 1H), 6.57 (d, *J* = 1.9 Hz, 1H), 5.29 – 5.48 (m, 1H), 3.85

(s, 3H), 3.77 (s, 3H), 2.71 (dd, *J* = 15.1, 9.2 Hz, 1H), 2.64 (d, *J* = 2.8 Hz, 1H), 2.59 (q, *J* = 7.5 Hz, 2H), 2.31 – 2.43 (m, 1H), 1.83 – 2.06 (m, 3H), 1.52 – 1.59 (m, 1H), 1.40 – 1.51 (m, 5H), 1.30 (dd, *J* = 11.9, 4.9 Hz, 1H), 1.23 (t, *J* = 7.6 Hz, 3H), 1.18 (dd, *J* = 8.1, 3.7 Hz, 1H), 1.12 (dd, *J* = 13.1, 3.8 Hz, 1H), 0.92 (s, 3H), 0.91 (s, 3H), 0.89 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 152.5, 144.9, 139.6, 137.4, 136.1, 122.0, 120.6, 109.1, 60.5, 55.7, 54.6, 50.4, 42.4, 39.6, 37.0, 33.4, 33.2, 29.1, 26.3, 23.9, 22.6, 22.2, 19.1, 16.0, 14.1.

 $[\alpha]_D^{24} = -10.87 (c = 3.10, CHCl_3).$

HRMS (ESI+): calculated for C₂₅H₃₈O₂Na [M+Na]⁺: 393.2764, found 393.2761.

A solution of **22** (37.1 mg, 0.10 mmol, 1.0 equiv.) in CH₂Cl₂ (2 mL) was stirred at 0 °C for 0.5 hours, trimethylsilyl triflate (44.4 mg, 0.2 mmol, 2.0 equiv.) was added. Then the reaction mixture was stirred at 25 °C for 2.5 h. After completion of the reaction, the reaction mixture was quenched with sat. NaHCO₃ solution (10 ml). Then it was extracted with CH₂Cl₂ (15 ml x 3). The combined organic extracts were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography (hexane/ethyl acetate = 10:1) to yield **23** (27.1 mg, 73% yield) as colorless oil.

¹H NMR (400 MHz, CDCl₃): δ 6.51 (s, 1H), 3.83 (s, 3H), 3.82 (s, 3H), 2.73 (dd, J = 6.8, 4.6 Hz, 1H), 2.69 (dd, J = 6.8, 4.4 Hz, 1H), 2.56 – 2.63 (m, 1H), 2.51 (dd, J = 14.8, 12.8 Hz, 1H), 2.38 (dt, J = 12.0, 3.2 Hz, 1H), 1.80 (dd, J = 12.6, 3.9 Hz, 1H), 1.68 – 1.76 (m, 3H), 1.54 – 1.60 (m, 2H), 1.37 – 1.46 (m, 2H), 1.24 (t, J = 7.6 Hz, 3H), 1.17 (dd, J = 13.1, 4.2 Hz, 1H), 1.11 (s, 3H), 1.04 (s, 3H), 0.95 – 1.02 (m, 2H), 0.88 (s, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 150.5, 145.0, 143.7, 136.0, 133.9, 111.2, 64.4, 60.5, 57.2, 56.1, 48.0, 42.7, 40.3, 39.4, 37.2, 33.5, 33.2, 25.4, 24.8, 21.5, 21.3, 19.8, 18.5, 16.3, 16.2.

 $[\alpha]_D^{24} = +8.50 \ (c = 1.60, \ CHCl_3).$

HRMS (ESI+): calculated for C₂₅H₃₈O₂Na [M+Na]⁺: 393.2764, found 393.2760.

5.6 Synthesis of (-)-mycoleptodiscin A

Figure S8. Synthetic route of (-)-mycoleptodiscin A⁹

A solution of **9** (28.5 mg, 0.10 mmol, 1.0 equiv.) and **24** (41.3 mg, 0.10 mmol, 1.0 equiv.) in DMPU (0.3 mL) was treated with NiI₂ (3.1 mg, 0.01 mmol, 10 mol%), 1,2-bis(diphenylphosphino)benzene (2.2 mg, 0.005 mmol, 5 mol%), 4,4'-di-tert-butyl-2,2'-dipyridyl (1.3 mg, 0.005 mmol, 5 mol%), Co^{II}(Pc) (2.9 mg, 0.005 mmol, 5 mol%), manganese powder (11.0 mg, 0.20 mmol, 2.0 equiv.) and pyridine (1 μ L, 0.012 mmol, 12 mol%). The reaction mixture was heated to 55 °C for 16 hours then quenched with saturated aq. Na₂S₂O₃ solution (5 mL) and extracted with EtOAc (10 mL × 3). The combined organic extracts were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography (hexane/ethyl acetate = 10:1) to yield **25** (22.1 mg, 45% yield) as colorless oil.

¹**H NMR (400 MHz, CDCl₃):** δ 7.83 (s, 1H), 7.81 (s, 1H), 7.64 (s, 1H), 7.50 – 7.56 (m, 1H), 7.46 (t, *J* = 7.8 Hz, 2H), 7.10 – 7.20 (m, 2H), 6.68 (d, *J* = 7.6 Hz, 1H), 5.39 – 5.57 (m, 1H), 3.65 (s, 3H), 2.82 (dt, *J* = 16.1, 2.0 Hz, 1H), 2.57 (dd, *J* = 16.1, 9.4 Hz, 1H), 2.44 – 2.50 (m, 1H), 2.02 – 2.09 (m, 1H), 1.89 – 2.00 (m, 2H), 1.60 – 1.64 (m, 1H), 1.54 (s, 3H), 1.43 – 1.52 (m, 2H), 1.35 (dd, *J* = 12.2, 4.7 Hz, 1H), 1.21 – 1.28 (m, 1H), 1.18 (td, *J* = 13.0, 3.6 Hz, 1H), 0.94 (s, 3H), 0.93 (s, 3H), 0.92 (s, 3H).

¹³C NMR (151 MHz, CDCl₃): δ 147.5, 140.7, 134.9, 134.2, 133.1, 128.8, 127.2, 125.6, 124.9, 123.9, 123.1, 123.0, 112.2, 107.1, 55.5, 53.6, 50.3, 42.4, 39.7, 37.0, 33.4, 33.2, 24.0, 22.8, 22.1, 19.0, 13.8.

 $[\alpha]_D^{24} = +3.63 \ (c = 2.40, CHCl_3).$

HRMS (**ESI**+): calculated for C₃₀H₃₇NO₃SNa [M+Na]⁺: 514.2386, found 514.2388.

A solution of **25** (49.2 mg, 0.10 mmol, 1.0 equiv.) in CH₂Cl₂ (2 mL) was stirred at 0 °C for 0.5 hours, trimethylsilyl triflate (44.4 mg, 0.2 mmol, 2.0 equiv.) was added. Then the reaction mixture was stirred at 25 °C for 2.5 h. After completion of the reaction, the reaction mixture was quenched with sat. NaHCO₃ solution (10 ml). Then it was extracted with CH₂Cl₂ (15 ml x 3). The combined organic extracts were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography (hexane/ethyl acetate = 10:1) to yield **26** (34.4 mg, 70% yield) as colorless oil.

¹**H NMR (400 MHz, CDCl₃):** δ 7.87 – 7.94 (m, 2H), 7.48 – 7.57 (m, 1H), 7.40 – 7.48 (m, 3H), 6.87 (d, *J* = 8.0 Hz, 1H), 6.62 (d, *J* = 8.0 Hz, 1H), 3.68 (s, 3H), 2.91 (dd, *J* = 15.7, 3.4 Hz, 1H), 2.61 (ddd, *J* = 15.5, 12.9, 2.1 Hz, 1H), 2.32 – 2.49 (m, 1H), 1.81 – 1.90 (m, 1H), 1.66 – 1.77 (m, 2H), 1.62 – 1.66 (m, 2H), 1.49 – 1.54 (m, 2H), 1.43 – 1.49 (m, 2H), 1.35 – 1.40 (m, 1H), 1.12 (s, 3H), 1.04 (s, 3H), 0.88 – 0.93 (m, 1H), 0.88 (s, 6H).

¹³C NMR (151 MHz, CDCl₃): δ 145.2, 140.4, 138.7, 133.1, 130.8, 128.8, 127.7, 122.4, 121.5, 118.7, 116.6, 108.0, 56.7, 56.5, 56.0, 42.0, 40.3, 39.0, 38.2, 37.3, 33.6, 33.5, 25.1, 21.7, 18.9, 18.8, 18.1, 16.4. [α]_D²⁴ = +26.0 (c = 0.50, CHCl₃).

HRMS (ESI+): calculated for C₃₀H₃₇NO₃SNa [M+Na]⁺: 514.2386, found 514.2386.

5.7 Synthesis of (+)-hongoquercin A

Figure S9. Synthetic route of (+)-hongoquercin A

A solution of **9** (28.5 mg, 0.10 mmol, 1.0 equiv.) and **30** (33.6 mg, 0.10 mmol, 1.0 equiv.) in DMPU (0.3 mL) was treated with NiI₂ (3.1 mg, 0.01 mmol, 10 mol%), 1,2-bis(diphenylphosphino)benzene (2.2 mg, 0.005 mmol, 5 mol%), 4,4'-di-tert-butyl-2,2'-dipyridyl (1.3 mg, 0.005 mmol, 5 mol%), Co^{II}(Pc) (2.9 mg, 0.005mmol, 5 mol%), manganese powder (11.0 mg, 0.20 mmol, 2.0 equiv.) and pyridine (1 μ L, 0.012 mmol, 12 mol%). The reaction mixture was heated to 55 °C for 16 hours then quenched with saturated aq. Na₂S₂O₃ solution (5 mL) and extracted with EtOAc (10 mL × 3). The combined organic extracts were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography (hexane/ethyl acetate = 10:1) to yield **31** (19.9 mg, 48% yield) as colorless oil.

¹**H NMR (600 MHz, CDCl₃):** δ 7.85 (s, 1H), 6.88 (s, 1H), 5.36 – 5.40 (m, 1H), 5.23 5.23 (d, *J* = 1.5 Hz, 2H), 3.86 (s, 3H), 3.48 (s, 3H), 2.69 (dd, *J* = 15.4, 9.3 Hz, 1H), 2.61 (d, *J* = 2.7 Hz, 1H), 2.56 (s, 3H), 2.41 (d, *J* = 9.2 Hz, 1H), 1.96 – 2.03 (m, 1H), 1.86 – 1.93 (m, 2H), 1.50 – 1.58 (m, 1H), 1.41 – 1.48 (m, 5H), 1.31

(dd, *J* = 12.2, 4.7 Hz, 1H), 1.21 (td, *J* = 13.6, 13.0, 4.0 Hz, 1H), 1.12 (td, *J* = 13.2, 3.7 Hz, 1H), 0.91 (s, 3H), 0.90 (s, 3H), 0.88 (s, 3H).

¹³C NMR (151 MHz, CDCl₃): δ 168.0, 157.7, 139.9, 135.7, 132.6, 130.1, 122.5, 122.4, 116.4, 94.2, 56.4,
54.1, 51.7, 50.4, 42.4, 39.7, 37.1, 33.4, 33.2, 26.0, 23.9, 22.7, 22.2, 22.1, 19.1, 14.1.

 $[\alpha]_D^{24} = -26.13 (c = 1.60, CHCl_3).$

HRMS (**ESI**+): calculated for C₂₆H₃₉O₄ [M+H]⁺: 415.2843, found 415.2841.

A solution of **31** (41.5 mg, 0.10 mmol, 1.0 equiv.) in ^{*i*}PrOH (2 mL) was treated with two drops of concentrated hydrochloric acid. The reaction mixture was stirred at 65 °C for 3 hours then quenched with H₂O (10 mL) and extracted with EtOAc (10 mL \times 3). The combined organic extracts were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography (hexane/ethyl acetate = 5:1) to give **S6** (33.0 mg, 89% yield) as white solid.

¹**H NMR (400 MHz, CDCl₃):** δ 7.87 (s, 1H), 6.62 (s, 1H), 5.38 (m, 1H), 3.88 (s, 3H), 2.58 – 2.65 (m, 2H), 2.50 (s, 3H), 2.48 – 2.44 (m, 1H), 1.93 – 2.05 (m, 1H), 1.85 – 1.94 (m, 2H), 1.47 – 1.60 (m, 2H), 1.37 – 1.48 (m, 5H), 1.30 (dd, *J* = 12.0, 4.8 Hz, 1H), 1.21 (dd, *J* = 13.6, 4.0 Hz, 1H), 1.10 (dd, *J* = 13.2, 3.9 Hz, 1H), 0.90 (s, 3H), 0.88 (s, 3H), 0.88 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 168.6, 157.0, 140.0, 135.5, 133.2, 127.5, 122.5, 121.1, 118.4, 53.8, 51.9, 50.2, 42.3, 39.6, 37.0, 33.4, 33.2, 25.8, 23.9, 22.6, 22.1, 21.8, 19.1, 14.0.

 $[\alpha]_D^{23} = +26.91$ (c = 1.60, CHCl₃).

HRMS (ESI+): calculated for C₂₄H₃₃O₃ [M-H]⁻: 369.2424, found 369.2428.

In an argon filled glovebox, to a 4 mL vial with a magnetic stir bar were added the Pt-catalyst¹ (4.9 mg, 3 mol%), silver trifluoromethanesulfonate (1.5 mg, 6 mol%), **S6** (37.1 mg, 0.1 mmol, 1.0 equiv.), and dichloroethane (1 mL). The resulting mixture was stirred at room temperature (23 °C) for 24 h. The reaction mixture was diluted with CH_2Cl_2 , filtered through a pad of celite and concentrated. The residue was purified with silica gel chromatography (hexane/ethyl acetate = 10:1) to yield **33** (29.7 mg, 80% yield) as colorless oil.

¹**H NMR (400 MHz, CDCl₃):** δ 7.73 (s, 1H), 6.60 (s, 1H), 3.84 (s, 3H), 2.55 – 2.63 (m, 2H), 2.51 (s, 3H), 2.02 – 2.12 (m, 1H), 1.58 – 1.80 (m, 4H), 1.58 (s, 3H), 1.31 – 1.52 (m, 3H), 1.23 – 1.28 (m, 1H), 1.19 (s, 3H), 1.11 – 1.18 (m, 1H), 1.02 (dd, *J* = 12.3, 2.2 Hz, 1H), 0.96 (dd, *J* = 12.9, 3.8 Hz, 1H), 0.90 (s, 3H), 0.89 (s, 3H), 0.84 (s, 3H).

¹³C NMR (151 MHz, CDCl₃): δ 167.9, 156.6, 140.5, 133.4, 120.7, 119.8, 119.7, 78.2, 56.2, 52.2, 51.6, 41.9, 41.2, 39.3, 37.0, 33.5, 33.3, 21.9, 21.8, 21.7, 21.1, 19.9, 18.7, 15.1.

 $[\alpha]_D^{22} = +77.92 (c = 1.25, CHCl_3).$

HRMS (ESI+): calculated for C₂₄H₃₅O₃ [M+H]⁺: 371.2581, found 371.2581.

A solution of **33** (37.1 mg, 0.10 mmol, 1.0 equiv.) in MeOH/H₂O (3 mL:0.6 mL) was treated with LiOH (24 mg, 1.00 mmol, 10 equiv.). The reaction mixture was stirred at 100 °C for 10 hours then quenched with 3 M HCl (10 mL) and extracted with EtOAc (10 mL \times 3). The combined organic phase was washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by flash column

chromatography (hexane/ethyl acetate = 5:1, with 1% AcOH, v/v) to give **35** (33.1 mg, 93% yield) as white solid.

¹**H NMR (600 MHz, CDCl₃):** δ 7.85 (s, 1H), 6.62 (s, 1H), 2.65 (dd, *J* = 16.2, 5.3 Hz, 1H), 2.59 (dd, *J* = 16.4, 13.0 Hz, 1H), 2.55 (s, 3H), 2.08 (dt, *J* = 12.5, 3.2 Hz, 1H), 1.77 (dt, *J* = 13.7, 3.3 Hz, 1H), 1.67 – 1.73 (m, 1H), 1.57 – 1.63 (m, 2H), 1.45 – 1.51 (m, 1H), 1.40– 1.43 (m, 2H), 1.31 – 1.38 (m, 1H), 1.21 (s, 3H), 1.16 (dd, *J* = 13.6, 4.2 Hz, 1H), 1.03 (dd, *J* = 12.3, 2.2 Hz, 1H), 0.96 (td, *J* = 12.8, 3.9 Hz, 1H), 0.91 (s, 3H), 0.90 (s, 4H), 0.85 (s, 3H).

¹³C NMR (151 MHz, CDCl₃): δ 172.9, 157.5, 141.6, 134.5, 120.0, 119.9, 119.5, 78.4, 56.2, 52.2, 41.9, 41.1, 39.3, 37.1, 33.5, 33.3, 22.3, 21.8, 21.7, 21.1, 19.9, 18.6, 15.1.

 $[\alpha]_D^{22} = +79.60 \text{ (c} = 1.00, \text{CHCl}_3).$

HRMS (ESI+): calculated for C₂₃H₃₃O₃ [M+H]⁺: 357.2424, found 357.2422.

L was prepared according to literature procedure.¹⁰

Pd(OAc)₂ (1.1 mg, 0.005 mmol, 5 mol%), L (1.8 mg, 0.01 mmol, 10 mol%), **35** (35.7 mg, 0.1 mmol, 1.0 equiv.), and CsOAc (28.8 mg, 0.15 mmol, 1.5 equiv.) were weighed and placed in a reaction tube. Then, DMA (0.3 mL) was added and stirred for 10 min, followed by the addition of H_2O_2 (35% aq., 30 uL, 3.0 equiv.). The vial was sealed with a screw cap and stirred at 60 °C for 24 h. Upon completion, the reaction was quenched with saturated solution of Na_2SO_3 in water until H_2O_2 was completely decomposed. (Tested by the potassium iodide starch test paper). The mixture was diluted with methanol and acidified with formic acid. The solution was filtered through a pad of Celite, and the aqueous layer was extracted with EtOAc (10 mL × 3). The combined organic layers were dried over anhydrous Na_2SO_4 and concentrated under vacuum. The crude mixture was purified by flash chromatography (Hexane/EtOAc = 5:1, with 1% AcOH, v/v) to give **1** (24.2 mg, 65% yield) as white solid.

¹**H NMR (600 MHz, CDCl₃):** δ 11.83 (s, 1H), 6.21 (s, 1H), 2.68 (dd, *J* = 16.8, 4.9 Hz, 1H), 2.52 (s, 3H), 2.29 (dd, *J* = 16.8, 13.2 Hz, 1H), 2.03 – 2.11 (m, 1H), 1.79 – 1.84 (m, 1H), 1.74 – 1.79 (m, 1H), 1.67 – 1.71

(m, 1H), 1.62 – 1.66 (m, 1H), 1.55 (dd, *J* = 13.1, 5.0 Hz, 1H), 1.45 – 1.50 (m, 1H), 1.39 – 1.43 (m, 1H), 1.35 – 1.39 (m, 1H), 1.20 (s, 3H), 1.13 – 1.20 (m, 1H), 1.03 (dd, *J* = 12.2, 2.2 Hz, 1H), 0.95 – 1.01 (m, 1H), 0.92 (s, 3H), 0.91 (s, 3H), 0.85 (s, 3H).

¹³C NMR (151 MHz, CDCl₃): δ 176.1, 164.0, 159.0, 141.6, 112.8, 108.2, 102.7, 78.6, 56.3, 51.7, 42.0, 41.0, 39.3, 37.1, 33.6, 33.4, 24.3, 21.7, 20.9, 19.9, 18.6, 16.8, 15.1.

 $[\alpha]_D^{22} = +86.20 (c = 0.50, CHCl_3).$

HRMS (**ESI**+): calculated for C₂₃H₃₁O₄ [M-H]⁻: 371.2217, found 371.2218.

5.8 Synthesis of (+)-hongoquercin B

Figure S10. Synthetic route of (+)-hongoquercin B

A solution of **10** (39.1 mg, 0.10 mmol, 1.0 equiv.) and **30** (33.6 mg, 0.10 mmol, 1.0 equiv.) in DMPU (0.3 mL) was treated with NiI₂ (3.1 mg, 0.01 mmol, 10 mol%), 1,2-bis(diphenylphosphino)benzene (2.2 mg, 0.005 mmol, 5 mol%), 4,4'-di-tert-butyl-2,2'-dipyridyl (1.3 mg, 0.005 mmol, 5 mol%), Co^{II}(Pc) (2.9 mg, 0.005mmol, 5 mol%), manganese powder (11.0 mg, 0.20 mmol, 2.0 equiv.), and pyridine (1 μ L, 0.012 mmol, 12 mol%). The reaction mixture was heated to 55 °C for 16 hours then quenched with saturated aq. Na₂S₂O₃ solution (5 mL) and extracted with EtOAc (10 mL × 3). The combined organic extracts were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography (hexane/ethyl acetate = 10:1) to yield **32** (25.5 mg, 49% yield) as colorless oil.

¹**H NMR (600 MHz, CDCl₃):** δ 7.84 (s, 1H), 7.30 – 7.38 (m, 4H), 7.24 – 7.28 (m, 1H), 6.89 (s, 1H), 5.36 – 5.42 (m, 1H), 5.24 (s, 2H), 4.68 (d, *J* = 11.8 Hz, 1H), 4.45 (d, *J* = 11.8 Hz, 1H), 3.88 (s, 3H), 3.49 (s, 3H), 3.00 (dd, *J* = 11.7, 3.8 Hz, 1H), 2.73 (dd, *J* = 15.4, 9.1 Hz, 1H), 2.57 – 2.64 (m, 1H), 2.57 (s, 3H), 2.39 (d, *J* = 8.9 Hz, 1H), 1.98 – 2.01 (m, 2H), 1.95 (dt, *J* = 13.4, 3.5 Hz, 1H), 1.84 (dd, *J* = 13.2, 3.8 Hz, 1H), 1.55 (dd, *J* = 11.6, 2.8 Hz, 1H), 1.45 (s, 3H), 1.32 (dd, *J* = 9.5, 7.2 Hz, 1H), 1.20 (td, *J* = 13.6, 3.6 Hz, 1H), 1.01 (s, 3H), 0.95 (s, 3H), 0.93 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 168.0, 157.7, 140.0, 139.6, 135.5, 132.5, 129.9, 128.3, 127.5, 127.4, 122.5, 122.4, 116.5, 94.3, 86.8, 71.5, 56.5, 53.9, 51.7, 50.3, 39.0, 37.7, 36.9, 28.4, 26.0, 23.5, 23.2, 22.5, 22.2, 16.4, 14.1.

 $[\alpha]_D^{21} = -8.51$ (c = 1.75, CHCl₃).

HRMS (ESI+): calculated for C₃₃H₄₄O₅Na [M+Na]⁺: 543.3081, found 543.3080.

A solution of **32** (52.1 mg, 0.10 mmol, 1.0 equiv.) in PrOH (2 mL) was treated with two drops of concentrated hydrochloric acid. The reaction mixture was stirred at 55 °C for 3 hours then quenched with H₂O (10 mL) and extracted with EtOAc (10 mL \times 3). The combined organic extracts were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography (hexane/ethyl acetate = 5:1) to give **S7** (44.8 mg, 94% yield) as white solid.

¹**H NMR (600 MHz, CDCl₃):** δ 7.85 (s, 1H), 7.30 – 7.39 (m, 4H), 7.20 – 7.29 (m, 1H), 6.56 (s, 1H), 5.38 – 5.42 (m, 1H), 5.36 (s, 1H), 4.68 (d, *J* = 11.8 Hz, 1H), 4.45 (d, *J* = 11.9 Hz, 1H), 3.87 (s, 3H), 3.00 (dd, *J* = 11.8, 3.8 Hz, 1H), 2.63 (d, *J* = 6.3 Hz, 3H), 2.52 (s, 3H), 2.36 – 2.43 (m, 1H), 1.91 – 2.03 (m, 3H), 1.84 (dd, *J* = 13.2, 3.7 Hz, 1H), 1.53 – 1.59 (m, 1H), 1.46 (s, 3H), 1.32 (dd, *J* = 9.7, 7.0 Hz, 2H), 1.21 (td, *J* = 13.6, 3.5 Hz, 1H), 1.01 (s, 3H), 0.95 (s, 3H), 0.92 (s, 3H).

¹³C NMR (151 MHz, CDCl₃): δ 168.1, 156.4, 140.1, 139.6, 135.2, 133.3, 128.4, 127.6, 127.4, 127.1, 122.7, 121.8, 118.4, 86.8, 71.6, 53.7, 51.8, 50.3, 39.0, 37.7, 36.9, 28.4, 25.9, 23.5, 23.2, 22.5, 21.8, 16.4, 14.1. [α]²²_D = -12.24 (c = 1.25, CHCl₃).

HRMS (ESI+): calculated for C₃₁H₄₀O₄Na [M+Na]⁺: 499.2819, found 499.2819.

In an argon filled glovebox, to a 4 mL vial with a magnetic stir bar were added the Pt-catalyst¹ (4.9 mg, 3 mol%), silver trifluoromethanesulfonate (1.5 mg, 6 mol%), **S7** (47.7 mg, 0.1 mmol, 1.0 equiv.), and ClCH₂CH₂Cl (1 mL). Then the vial was taken outside of the glovebox and the resulting mixture was stirred at room temperature (23 °C) for 12 h. The reaction mixture was diluted with CH₂Cl₂, filtered through a pad of celite and concentrated. The residue was purified with silica gel chromatography (hexane/ethyl acetate = 10:1) to yield **34** (40.5 mg, 85% yield) as colorless oil.

¹**H NMR (600 MHz, CDCl₃)**: δ 7.73 (s, 1H), 7.30 – 7.40 (m, 4H), 7.24 – 7.30 (m, 1H), 6.61 (s, 1H), 4.68 (d, *J* = 11.8 Hz, 1H), 4.44 (d, *J* = 11.8 Hz, 1H), 3.84 (s, 3H), 2.95 (dd, *J* = 11.8, 4.3 Hz, 1H), 2.58 – 2.63 (m, 2H), 2.52 (s, 3H), 2.09 (dt, *J* = 12.5, 3.2 Hz, 1H), 1.89 (dd, *J* = 13.5, 4.0 Hz, 1H), 1.78 (t, *J* = 3.6 Hz, 1H), 1.76 (t, *J* = 3.5 Hz, 1H), 1.64 – 1.69 (m, 1H), 1.59 – 1.61 (m, 1H), 1.53 – 1.57 (m, 1H), 1.38 – 1.47 (m, 1H), 1.20 (s, 3H), 1.03 (s, 3H), 1.00 – 1.02 (m, 1H), 0.92 (s, 3H), 0.87 (s, 3H).

¹³C NMR (151 MHz, CDCl₃): δ 167.9, 156.6, 140.5, 139.4, 133.4, 128.4, 127.6, 127.4, 120.8, 119.9, 119.4, 86.3, 78.0, 71.7, 55.7, 52.1, 51.6, 41.1, 39.1, 37.5, 36.8, 28.5, 22.9, 21.9, 21.0, 19.5, 16.7, 15.2.
[α]²²_D = +101.22 (c = 0.90, CHCl₃).

HRMS (ESI+): calculated for C₃₁H₄₁O₄ [M+H]⁺: 477.2999, found 477.2998.

A solution of **34** (47.7 mg, 0.10 mmol, 1.0 equiv.) in MeOH/H₂O (3 mL:0.6 mL) was treated with LiOH (24 mg, 1.00 mmol, 10 equiv.). The reaction mixture was stirred at 100 °C for 10 hours then quenched with 3 M HCl (10 mL) and extracted with EtOAc (10 mL \times 3). The combined organic extracts were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography (hexane/ethyl acetate = 5:1, with 1% AcOH, v/v)) to give **36** (43.1 mg, 93% yield) as white solid.

¹**H NMR (400 MHz, CDCl₃):** δ 7.86 (s, 1H), 7.29 – 7.40 (m, 4H), 7.23 – 7.31 (m, 1H), 6.63 (s, 1H), 4.68 (d, *J* = 11.8 Hz, 1H), 4.44 (d, *J* = 11.8 Hz, 1H), 2.96 (dd, *J* = 11.7, 4.3 Hz, 1H), 2.58 – 2.67 (m, 2H), 2.56 (s, 3H), 2.05 – 2.14 (m, 1H), 1.90 (dd, *J* = 13.5, 3.9 Hz, 1H), 1.78 (dd, *J* = 13.1, 3.5 Hz, 2H), 1.59 – 1.74 (m, 2H), 1.51 – 1.61 (m, 1H), 1.39 – 1.48 (m, 1H), 1.21 (s, 3H), 1.04 (s, 3H), 0.98 – 1.03 (m, 2H), 0.92 (s, 3H), 0.88 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 172.8, 157.4, 141.7, 139.4, 134.5, 128.4, 127.6, 127.4, 120.0, 119.6, 119.6, 86.2, 78.2, 71.7, 55.6, 52.0, 41.1, 39.1, 37.5, 36.8, 28.4, 22.9, 22.3, 21.9, 21.1, 19.5, 16.7, 15.2.

 $[\alpha]_D^{23} = +122.80 \text{ (c} = 0.75, \text{CHCl}_3).$

HRMS (ESI+): calculated for C₃₀H₃₈O₄Na [M+Na]⁺: 485.2662, found 485.2664.

L was prepared according to literature procedure.8

 $Pd(OAc)_2$ (1.1 mg, 0.005 mmol, 5 mol%), L (1.8 mg, 0.01 mmol, 10 mol%), **36** (46.3 mg, 0.1 mmol, 1.0 equiv.), and CsOAc (28.8 mg, 0.15 mmol, 1.5 equiv.) were weighed and placed in a reaction tube. Then, DMA (0.3 mL) was added and stirred for 10 min, followed by the addition of H_2O_2 (35% aq., 30 uL, 3.0

equiv.). The vial was sealed with a screw cap and stirred at 60 °C for 24 h. Upon completion, the reaction was quenched with saturated solution of Na₂SO₃ in water until H₂O₂ was completely decomposed. (Tested by the potassium iodide starch test paper). The mixture was diluted with methanol and acidified with formic acid. The solution was filtered through a pad of Celite, and the aqueous layer was extracted with EtOAc (10 mL × 3). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under vacuum. The crude mixture was purified by flash chromatography (Hexane/EtOAc = 5:1, with 1% AcOH, v/v) to give **37** (38.8 mg, 81% yield) as white solid.

¹**H NMR (600 MHz, CDCl₃):** δ 11.85 (s, 1H), 7.31 – 7.40 (m, 4H), 7.24 – 7.30 (m, 1H), 6.21 (s, 1H), 4.69 (d, *J* = 11.8 Hz, 1H), 4.44 (d, *J* = 11.9 Hz, 1H), 2.96 (dd, *J* = 11.7, 4.1 Hz, 1H), 2.67 (dd, *J* = 16.7, 4.9 Hz, 1H), 2.52 (s, 3H), 2.31 (dd, *J* = 16.7, 13.2 Hz, 1H), 2.09 (dt, *J* = 12.3, 3.2 Hz, 1H), 1.85 – 1.93 (m, 2H), 1.74 – 1.82 (m, 1H), 1.62 – 1.71 (m, 1H), 1.55 – 1.64 (m, 1H), 1.51 (dd, *J* = 13.1, 4.9 Hz, 1H), 1.39 – 1.49 (m, 1H), 1.21 (s, 3H), 0.99 – 1.08 (m, 5H), 0.95 (s, 3H), 0.88 (s, 3H).

¹³C NMR (151 MHz, CDCl₃): δ 176.4, 164.0, 158.9, 141.7, 139.4, 128.4, 127.6, 127.4, 112.8, 108.0, 102.8, 86.3, 78.4, 71.6, 55.8, 51.5, 41.0, 39.1, 37.5, 36.9, 28.5, 24.3, 22.9, 20.8, 19.5, 16.9, 16.7, 15.1.

 $[\alpha]_D^{25} = +143.20 (c = 1.00, CHCl_3).$

HRMS (ESI+): calculated for C₃₀H₃₇O₅ [M-H]⁻: 477.2636, found 477.2634.

A solution of **37** (47.9 mg, 0.10 mmol, 1.0 equiv.) in MeOH (2 mL) was treated with Pd (10% on carbon, 32 mg, 0.03 mmol, 0.3 equiv.). The reaction mixture was stirred at 23 °C in hydrogen (1 atm) for 5 hours then filtered, and concentrated in vacuo. Acetic anhydride (47 μ L, 0.50 mmol, 5.0 equiv.) was added to a magnetically stirred solution of the crude residue in pyridine (0.5 mL) at room temperature. The mixture was stirred for 24 h, then the resulting solution was diluted with water (5 mL), and the mixture was extracted with CH₂Cl₂ (5 mL × 3). The organic phase was washed with HCl (1 N aq.), sat. CuSO₄ solution, water, and brine, dried with Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography (Hexane/EtOAc = 5:1, with 1% AcOH, v/v) to give **38** (38.3 mg, 80% yield) as

colorless oil.

¹**H NMR (600 MHz, CDCl₃):** δ. 6.57 (s, 1H), 4.50 (dd, *J* = 11.6, 4.5 Hz, 1H), 2.45 – 2.52 (m, 1H), 2.43 (s, 3H), 2.30 (s, 3H), 2.21 – 2.29 (m, 1H), 2.06 (s, 3H), 1.95 – 2.04 (m, 1H), 1.69 – 1.80 (m, 3H), 1.60 – 1.68 (m, 2H), 1.54 (dd, *J* = 13.1, 5.0 Hz, 1H), 1.38 – 1.47 (m, 1H), 1.18 (s, 3H), 1.13 – 1.17 (m, 1H), 1.09 (dd, *J* = 12.1, 2.2 Hz, 1H), 0.91 (s, 3H), 0.91 (s, 3H), 0.89 (s, 3H).

¹³C NMR (151 MHz, CDCl₃): δ 171.2, 171.1, 169.2, 156.4, 149.8, 139.2, 117.4, 115.6, 114.2, 80.4, 77.8, 55.2, 51.2, 40.7, 37.9, 37.2, 36.7, 28.2, 23.6, 21.5, 21.4, 21.0, 20.8, 19.4, 17.3, 16.8, 15.1.

 $[\alpha]_D^{24} = +136.83 \text{ (c} = 0.60, \text{CHCl}_3).$

HRMS (ESI+): calculated for C₂₇H₃₆O₇Na [M+Na]⁺: 495.2353, found 495.2353.

38 (20 mg, 0.042 mmol, 1.0 equiv.) was dissolved in methanol (1 mL) and water (0.1 mL), and then K₂CO₃ (17.5 mg, 0.127 mmol, 3.0 equiv.) was added at room temperature. The mixture was stirred for 5 h at room temperature, then the resulting mixture was acidified by 2 N HCl to pH 2–3, and extracted with EtOAc (10 mL × 3). The extract was washed with water and brine, and dried with sodium sulfate. The solvent was evaporated, and the residue was purified by silica gel column chromatography (Hexane/Et₂O = 5:1, with 1% AcOH, v/v) to give **2** (16.3mg, 90 % yield) as a white solid.

¹**H** NMR (400 MHz, CDCl₃): δ 11.88 (s, 1H), 6.21 (s, 1H), 4.52 (dd, *J* = 11.5, 4.9 Hz, 1H), 2.66 (dd, *J* = 16.8, 5.0 Hz, 1H), 2.51 (s, 3H), 2.30 (dd, *J* = 17.0, 13.2 Hz, 1H), 2.05 – 2.14 (m, 1H), 2.07 (s, 3H), 1.86 (dt, *J* = 13.1, 3.6 Hz, 1H), 1.60 – 1.80 (m, 4H), 1.53 (dd, *J* = 13.1, 5.0 Hz, 1H), 1.43 – 1.49 (m, 1H), 1.20 (s, 3H), 1.12 – 1.21 (m, 1H), 1.10 (dd, *J* = 12.0, 2.1 Hz, 1H), 0.95 (s, 3H), 0.91 (s, 3H), 0.89 (s, 3H).

¹³C NMR (151 MHz, CDCl₃): δ 175.7, 171.2, 164.0, 158.8, 141.7, 112.7, 107.9, 102.8, 80.6, 78.1, 55.3, 51.4, 40.8, 37.9, 37.3, 36.8, 28.3, 27.1, 24.3, 23.7, 21.4, 20.8, 19.5, 16.9, 16.8, 15.2.

 $[\alpha]_D^{24} = +89.00 \text{ (c} = 0.30, \text{CHCl}_3).$

HRMS (ESI+): calculated for C₂₅H₃₃O₆ [M-H]⁻: 429.2272, found 429.2276.

6. NMR comparisons

(+)-ent-chromazonarol

¹H NMR¹¹

Literature (500 MHz in CDCl ₃)	Synthetic (400 MHz in CDCl ₃)
6.63 (d, <i>J</i> = 8.3 Hz, 1 H)	6.63 (d, <i>J</i> = 8.4 Hz, 1 H)
6.53 – 6.59 (m, 2 H)	6.52 – 6.59 (m, 2 H)
4.72 (s, 1H, OH)	4.33 (br, 1H, OH)
2.54 – 2.58 (m, 2 H)	2.54 – 2.60 (m, 2 H)
2.04 (dt, <i>J</i> = 12.5, 3.2 Hz, 1 H)	2.04 (dt, <i>J</i> = 12.5, 3.2 Hz, 1 H)
1.78 (m, 1 H)	1.72 - 1.78 (m, 1 H)
1.71 – 1.58 (m, 4 H)	1.61 – 1.71 (m, 4 H)
1.31 – 1.51 (m, 3 H)	1.36 – 1.50 (m, 3 H)
1.13 – 1.22 (m, 4 H)	1.15 – 1.21 (m, 4 H)
1.02 (dd, <i>J</i> = 12.3, 2.3 Hz, 1 H)	1.02 (dd, <i>J</i> = 12.2, 2.3 Hz, 1 H)
0.92 –0.99 (m, 1 H)	0.94 – 0.98 (m, 1 H)
0.90 (s, 3 H)	0.90 (s, 3 H)
0.88 (s, 3 H)	0.88 (s, 3 H)
0.84 (s, 3 H)	0.84 (s, 3 H)

(+)-ent-chromazonarol

¹³C NMR¹¹

Literature (125 MHz in CDCl ₃)	Synthetic (151 MHz in CDCl ₃)
148.7	148.6
147.2	147.3
123.4	123.4
117.6	117.7
115.9	115.9
114.4	114.4
76.9	76.8
56.2	56.3
52.2	52.2
42.0	42.0
41.2	41.3
39.3	39.4
36.9	36.9
33.6	33.6
33.3	33.3
22.6	22.6
21.7	21.8
20.8	20.8
19.9	19.9
18.7	18.7
14.9	15.0

(+)-8-*epi*-puupehenol

¹H NMR¹²

Literature (300 MHz in Acetone- d_6)	Synthetic (400 MHz in Acetone- d_6)
7.60 (bs, 1 H)	7.61 (s, 1 H)
7.20 (bs, 1 H)	7.20 (s, 1 H)
6.49 (s, 1 H)	6.50 (s, 1 H)
6.18 (s, 1 H)	6.19 (s, 1 H)
2.47 (d, $J = 2.0$ Hz, 1 H)	2.40 - 2.51 (m, 2 H)
2.44 (s, 1 H)	
1.95 (dt, <i>J</i> = 12.2, 2.9 Hz, 1 H)	1.96 (dt, <i>J</i> = 12.5, 3.2 Hz, 1 H),
1.25 (s, 3 H)	1.64 – 1.76 (m, 3 H)
0.89 (s, 3 H)	1.59 (dd, <i>J</i> = 13.0, 4.4 Hz, 1 H)
0.89 (s, 6 H)	1.53 (dd, <i>J</i> = 11.4, 7.0 Hz, 1 H)
	1.43 – 1.47 (m, 1 H)
	1.38 – 1.42 (m, 2 H)
	1.18 – 1.23 (m, 1 H)
	1.13 (s, 3 H)
	1.06 (dd, <i>J</i> = 12.4, 2.5 Hz, 1 H)
	0.98 – 1.02 (m, 1 H)
	0.90 (s, 6 H)
	0.86 (s, 3 H)

Note: References for solvent peaks were not listed in all literature reports, which could be responsible for slight variations in chemical shifts. Also, complete peak listings were not always reported.

(+)-8-*epi*-puupehenol

¹³C NMR¹²

Literature (75 MHz in Acetone- d_6)	Synthetic (151 MHz in Acetone- d_6)
147.0	146.2
144.8	144.0
139.2	138.4
116.2	115.2
115.2	112.4
104.5	103.7
76.5	75.7
56.8	56.1
53.4	52.6
42.5	41.7
41.9	41.2
39.8	39.0
37.4	36.6
34.0	32.9
33.7	32.9
22.3	21.5
21.9	21.1
21.3	20.1
21.0	19.5
19.2	18.3
15.2	14.3

(+)-Hongoquercin A

¹H NMR¹³

Literature (500 MHz in CDCl ₃)	Synthetic (600 MHz in CDCl ₃)
11.81 (s, 1 H)	11.83 (s, 1 H)
6.21 (s, 1 H)	6.21 (s, 1 H)
2.69 (dd, <i>J</i> = 16.8, 4.8 Hz, 1 H)	2.68 (dd, <i>J</i> = 16.8, 4.9 Hz, 1 H)
2.52 (s, 3 H)	2.52 (s, 3 H)
2.28 (dd, <i>J</i> = 16.6, 13.3 Hz, 1 H)	2.29 (dd, <i>J</i> = 16.8, 13.2 Hz, 1 H)
2.07 (ddd, <i>J</i> = 12.5, 3.0, 3.0 Hz, 1 H)	2.03 – 2.11 (m, 1 H)
1.78 (m, 1 H)	1.79 – 1.84 (m, 1 H)
1.81 (m, 1 H)	1.74 – 1.79 (m, 1 H)
1.67 (ddd, <i>J</i> = 13.2, 13.2, 4.1 Hz, 1 H)	1.67 – 1.71 (m, 1 H)
1.62 (m, 1 H)	1.62 – 1.66 (m, 1 H)
1.55 (dd, <i>J</i> = 13.2, 4.9 Hz, 1 H)	1.55 (dd, <i>J</i> = 13.1, 5.0 Hz, 1 H)
1.49 (m, 1 H)	1.45 – 1.50 (m, 1 H)
1.42 (d, <i>J</i> = 12.4, 1 H)	1.39 – 1.43 (m, 1 H)
1.36 (ddd, <i>J</i> = 13.7, 13.7, 3.2 Hz, 1 H)	1.35 – 1.39 (m, 1 H)
1.20 (s, 3 H)	1.20 (s, 3 H)
1.17 (ddd, <i>J</i> = 13.5, 13.5, 3.7 Hz, 1 H)	1.13 – 1.20 (m, 1 H)
1.03 (dd, <i>J</i> = 12.2, 1.4 Hz, 1 H)	1.03 (dd, <i>J</i> = 12.2, 2.2 Hz, 1 H)
0.97 (ddd, J = 13.5, 3.1 Hz, 1 H)	0.95 - 1.01 (m, 1 H)
0.92 (s, 3 H)	0.92 (s, 3 H)
0.91 (s, 3 H)	0.91 (s, 3 H)
0.85 (s, 3 H)	0.85 (s, 3 H)

(+)-Hongoquercin A

13C NMR13

Literature (100 MHz in CDCl ₃)	Synthetic (151 MHz in CDCl ₃)
176.3	176.1
164.1	164.0
159.1	159.0
141.7	141.6
112.9	112.8
108.3	108.2
102.7	102.7
78.7	78.6
56.4	56.3
51.8	51.7
42.1	42.0
41.1	41.0
39.4	39.3
37.2	37.1
33.7	33.6
33.4	33.4
24.4	24.3
21.8	21.7
21.0	20.9
20.0	19.9
18.7	18.6
16.9	16.8
15.2	15.1

(+)-Hongoquercin B

¹H NMR¹⁴

Literature (500 MHz in CDCl ₃)	Synthetic (400 MHz in CDCl ₃)
11.85 (s, 1 H)	11.88 (s, 1 H)
6.21 (s, 1 H)	6.21 (s, 1 H)
4.52 (dd, <i>J</i> = 11.6, 4.9 Hz,1 H)	4.52 (dd, <i>J</i> = 11.5, 4.9 Hz,1 H)
2.67 (dd, <i>J</i> = 16.8, 4.9 Hz, 1 H)	2.66 (dd, <i>J</i> = 16.8, 5.0 Hz, 1 H)
2.52 (s, 3 H)	2.51 (s, 3 H)
2.31 (dd, <i>J</i> = 16.8, 13.1 Hz, 1 H)	2.30 (dd, <i>J</i> = 17.0, 13.2 Hz, 1 H)
2.08 (ddd, <i>J</i> = 12.5, 3.1, 1 H)	2.05 – 2.14 (m, 1 H)
2.07 (s,3 H)	2.07 (s,3 H)
1.86 (ddd, <i>J</i> = 13.2, 3.4, 3.4 Hz, 1 H)	1.86 (dt, <i>J</i> = 13.1, 3.6 Hz, 1 H)
1.64 – 1.80 (m, 4 H)	1.60 – 1.80 (m, 4 H)
1.53 (dd, <i>J</i> = 13.1, 4.9 Hz, 1 H)	1.53 (dd, <i>J</i> = 13.1, 5.0 Hz, 1 H)
1.44 (m, 1 H)	1.43 – 1.49 (m, 1 H)
1.20 (s, 3 H)	1.20 (s, 3 H)
1.19 (ddd, <i>J</i> = 13.2, 13.2, 3.7 Hz, 1 H)	1.12 – 1.21 (m, 1 H)
1.10 (dd, <i>J</i> = 12.2, 1.8 Hz, 1 H)	1.10 (dd, <i>J</i> = 12.0, 2.1 Hz, 1 H)
0.96 (s, 3 H)	0.95 (s, 3 H)
0.91 (s, 3 H)	0.91 (s, 3 H)
0.90 (s, 3 H)	0.89 (s, 3 H)

(+)-Hongoquercin B

¹³C NMR¹⁴

Literature (75 MHz in CDCl ₃)	Synthetic (151 MHz in CDCl ₃)
176.1	175.7
171.1	171.2
163.8	164.0
158.5	158.8
141.5	141.7
112.6	112.7
107.7	107.9
102.9	102.8
80.6	80.6
77.9	78.1
55.1	55.3
51.2	51.4
40.6	40.8
37.7	37.9
37.1	37.3
36.6	36.8
28.0	28.3
24.1	24.3
23.5	23.7
21.3	21.4
20.6	20.8
19.3	19.5
16.8	16.9
16.6	16.8
15.0	15.2

¹H NMR⁸

Literature (400 MHz in CDCl ₃)	Synthetic (400 MHz in CDCl ₃)
6.49 (s, 1H)	6.51 (s, 1H)
3.81 (s, 3H)	3.83 (s, 3H)
3.80 (s, 3H)	3.82 (s, 3H)
2.69 (m, 2H)	2.73 (dd, <i>J</i> = 6.8, 4.6 Hz, 1H)
	2.69 (dd, <i>J</i> = 6.8, 4.4 Hz, 1H)
2.56 (dd, <i>J</i> = 14.5, 7.5 Hz, 1H)	2.56 - 2.63 (m, 1H)
2.49 (dd, <i>J</i> = 14.5, 13.0 Hz, 1H)	2.51 (dd, <i>J</i> = 14.8, 12.8 Hz, 1H)
2.36 (dt, <i>J</i> = 12.0, 3.4 Hz, 1H)	2.38 (dt, <i>J</i> = 12.0, 3.2 Hz, 1H)
	1.80 (dd, <i>J</i> = 12.6, 3.9 Hz, 1H)
	1.68 – 1.76 (m, 3H)
	1.54 – 1.60 (m, 2H)
	1.37 – 1.46 (m, 2H)
1.22 (t, <i>J</i> = 7.6 Hz, 3H)	1.24 (t, <i>J</i> = 7.6 Hz, 3H)
	1.17 (dd, <i>J</i> = 13.1, 4.2 Hz, 1H)
1.08 (s, 3H)	1.11 (s, 3H)
1.02 (s, 3 H)	1.04 (s, 3H)
	0.95 – 1.02 (m, 2H)
0.85 (s, 6 H)	0.88 (s, 6H)

Note: References for solvent peaks were not listed in all literature reports, which could be responsible for slight variations in chemical shifts. Also, complete peak listings were not always reported

¹³C NMR⁸

Literature (75 MHz in CDCl ₃)	Synthetic (101 MHz in CDCl ₃)
150.3	150.5
144.8	145.0
143.6	143.7
135.8	136.0
133.7	133.9
111.1	111.2
64.3	64.4
60.4	60.5
57.1	57.2
55.9	56.1
47.9	48.0
42.5	42.7
40.2	40.3
39.3	39.4
37.1	37.2
33.4	33.5
33.1	33.2
25.2	25.4
24.7	24.8
21.3	21.5
21.1	21.3
19.7	19.8
18.3	18.5
16.1	16.3
16.0	16.2

¹H NMR⁹

Literature (400 MHz in CDCl ₃)	Synthetic (400 MHz in CDCl ₃)
7.93 (d, <i>J</i> = 8.2 Hz 2H)	7.87 – 7.94 (m, 2H)
7.51 - 7.58 (m, 1H)	7.48 – 7.57 (m, 1H)
7.42 - 7.49 (m, 3H)	7.40 - 7.48 (m, 3 H)
6.88 (d, J = 8.15 Hz, 1H)	6.87 (d, <i>J</i> = 8.0 Hz, 1H)
6.65 (d, <i>J</i> = 8.15 Hz, 1H)	6.62 (d, <i>J</i> = 8.0 Hz, 1H)
3.70 (s, 3H)	3.68 (s, 3H)
2.94 (dd, <i>J</i> = 15.8, 2.8 Hz, 1H)	2.91 (dd, <i>J</i> = 15.7, 3.4 Hz, 1H)
2.66 (dd, <i>J</i> = 16, 11.8 Hz, 1H)	2.61 (ddd, <i>J</i> = 15.5, 12.9, 2.1 Hz, 1H)
2.44 (d, <i>J</i> = 12.2 Hz, 1H)	2.32 – 2.49 (m, 1H)
1.85-1.88 (m, 1H)	1.81 – 1.90 (m, 1H)
1.71-1.76 (m, 2H)	1.66 – 1.77 (m, 2H)
1.66-1.70 (m, 2H)	1.62 – 1.66 (m, 2H)
1.50-1.58 (m, 2H)	1.49 – 1.54 (m, 2H)
1.46-1.48 (m, 2H)	1.43 – 1.49 (m, 2H)
1.36-1.39 (m, 1H)	1.35 – 1.40 (m, 1H)
1.13 (s, 3H)	1.12 (s, 3H)
1.05 (s, 3H)	1.04 (s, 3H)
0.81 – 0.92 (m, 1H)	0.88 – 0.93 (m, 1H)
0.89 (s, 6H)	0.88 (s, 6H)

¹³C NMR⁹

Literature (75 MHz in CDCl ₃)	Synthetic (101 MHz in CDCl ₃)
145.3	145.2
140.6	140.4
138.8	138.7
133.2	133.1
130.9	130.8
128.9	128.8
127.8	127.7
122.5	122.4
121.6	121.5
118.8	118.7
116.7	116.6
108.2	108.0
56.8	56.7
56.6	56.5
56.1	56.0
42.1	42.0
40.4	40.3
39.1	39.0
38.3	38.2
37.4	37.3
33.7	33.6
33.6	33.5
25.2	25.1
21.8	21.7
19.0	18.9
18.9	18.8
18.2	18.1
16.5	16.4

7. References

- 1 Y. Zhou, X. Xu, H. Sun, G. Tao, X.-Y. Chang, X. Xing, B. Chen and C. Xu, Nat. Commun., 2021, 12, 1953.
- 2 S.-B. Mou, W. Xiao, H.-Q. Wang, S.-J. Wang and Z. Xiang, Org. Lett., 2020, 22, 1976–1979.
- 3 M. P. Polovinka, D. V. Korchagina, Y. V. Gatilov, I. Y. Bagrianskaya, V. A. Barkhash, V. B. Perutskii, N. D. Ungur, P. F. Vlad, V. V. Shcherbukhin and N. S. Zefirov, *J. Org. Chem.*, 1994, **59**, 1509–1517.
- 4 S. Kille, F. E. Zilly, J. P. Acevedo and M. T. Reetz, Nat. Chem., 2011, 3, 738–743.
- 5 S. W. Pelletier, S. Lajsic, Y. Ohtsuka and Z. Djarmati, J. Org. Chem., 1975, 40, 1607–1609.
- 6 P. F. Vlad, A. G. Ciocarlan, M. N. Coltsa, A. V. Baranovsky and N. B. Khripach, *Synth. Commun.*, 2008, **38**, 3960–3972.
- 7 Z.-F. Shi, L.-J. Wang, H. Wang, X.-P. Cao and H.-L. Zhang, Org. Lett., 2007, 9, 595-598.
- 8 L. Yang, D. E. Williams, A. Mui, C. Ong, G. Krystal, R. van Soest and R. J. Andersen, *Org. Lett.*, 2005, 7, 1073–1076.
- 9 D. H. Dethe, S. K. Sau and S. Mahapatra, Org. Lett., 2016, 18, 6392-6395.
- 10 Z. Li, H. S. Park, J. X. Qiao, K.-S. Yeung and J.-Q. Yu, J. Am. Chem. Soc., 2022, 144, 18109–18116.
- 11 D. D. Dixon, J. W. Lockner, Q. Zhou and P. S. Baran, J. Am. Chem. Soc., 2012, 134, 8432–8435.
- A. F. Barrero, E. J. Alvarez-Manzaneda, R. Chahboun, M. Cortés and V. Armstrong, *Tetrahedron*, 1999, 55, 15181–15208.
- 13 D. H. Dethe, G. M. Murhade, B. D. Dherange and S. K. Sau, *Eur. J. Org. Chem.*, 2017, **2017**, 1143–1150.
- 14 H. TSUJIMORI and K. MORI, Biosci. Biotechnol., Biochem., 2000, 64, 1410–1415.

8. NMR spectra

Parameter	Value]													,OI	-
Title	Drimeno1-220808.1.1.1r														Me	
2 Comment														$\langle \rangle$	$\forall \gamma$	/
3 Origin	Bruker BioSpin GmbH													L	↓ 丿	
4 Owner	nmrsu													7		
5 Site														4	<u>}</u> .,	
6 Instrument	AVANCE NEO 400 MHZ DIGITAL NMR SPECTROMETER													(-)-	Drimenol 11	
7 Author																
3 Solvent	CDC13															
9 Temperature	298. 1															
10 Pulse Sequence	zg30															
11 Experiment	1D															
12 Probe	Z116098_0723 (PA BB0 400S1 BBF-H-D-05 Z SP)															
13 Number of Scans	8															
14 Receiver Gain	101.0															
15 Relaxation Delay	1.0000															
16 Pulse Width	8. 5800															
7 Presaturation Frequency																
18 Acquisition Time	3.9977															
19 Acquisition Date	2022-08-08T18:44:36															
20 Modification Date	2023-11-17T10:24:31															
21 Class																
22 Spectrometer Frequency	400. 13															
23 Spectral Width	8196.7															
24 Lowest Frequency	-1636.9															
25 Nucleus	1H											1				
26 Acquired Size	32768															
27 Spectral Size	65536															
1		_						i i i		الان أحاد	.					
								<u>li</u>			Mill_					
						۲		بالر • • •			Hefe Hefer					
						1.00		1.02	2.12	3.05 0.95 2.07	2.11	3.07 6.06				
		· · · ·	•	· · ·	· · · · ·		_	· · · ·			1	· · ·	· · ·	· · ·	· · · ·	
Parameter	Value	133.	124.2	77. 4 77. 2 76. 9	61. 0 57. 4	50. 0	$\begin{array}{c} 42. \\ 40. \\ 33. \\ 33. \\ 33. \\ 0 \end{array}$	23.7 22.2 22.1 18.9 15.0								
-------------------------------	---	------	-------	------------------------------------	----------------	-------	---	--------------------------------------	-------------							
Title	YYP- drimeno]-20210920.11.1.1r	Î Î			ĪĪ	Ĩ	$\langle \langle \langle \rangle \rangle$	SPZZ								
2 Comment									1							
3 Origin	Bruker BioSpin GmbH								Me							
4 Owner	nmrsu								ſ Ť							
5 Site																
6 Instrument	Avance NEO 600								I §H							
7 Author									(-)-Drime							
8 Solvent	CDC13								11							
9 Temperature	298.2															
10 Pulse Sequence	zgpg30															
ll Experiment	1D 7109779 0097 (CDD1 1 DD0															
12 Probe	2168773_0027 (CPP1.1 BB0 600S3 BB-H&F-D-05 Z XT)															
13 Number of Scans	128															
14 Receiver Gain	101.0															
l5 Relaxation Delay	2.0000															
16 Pulse Width	9.9100															
17 Presaturation Frequency																
18 Acquisition Time	0.9175															
19 Acquisition Date	2021-09-21T06:12:14															
20 Modification Date	2023-04-26T14:43:59															
21 Class																
22 Spectrometer Frequency	150.91															
23 Spectral Width	35714.3				1											
24 Lowest Frequency	-2750. 1															
25 Nucleus	13C															
26 Acquired Size-	-32768	ļl														
27 Spectral Size	32768															

210 200 190 180 170 160 150 140 130 120 110 100

-10

88 86 80

 $233 \\ 232 \\ 252$

т 	· I	·	·	· · · ·	· · · ·		· · · ·	· · · ·	·	· · · ·	· · · · ·	- T	·	· _ [· · · ·	· 1	· I	· 1	· · ·	, <u> </u>	Ι	· I	-
210	200	190	180	170	160	150	140	130	120	110 f1	100 l (ppm	90 1)	80	70	60	50	40	30	20	10	0	-10	

S75

008414
∞.4.∞.⊬.c.
0000000
$\langle \rangle \rightarrow \langle \rangle$

 $\begin{array}{c} 77. \\ 77. \\ 77. \\ 77. \\ 77. \\ 77. \\ 73. \\ 69. \\ 33. \\ 56. \\ 733. \\ 533. \\ 7. \\ 33. \\ 7. \\ 33. \\ 114. \\ 719.$

-7.26

 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 0.886
 <td

—124	 -124 712- 77- 76.	-124 - 124	-124 $79.$ $77.$ $-60.$ $-57.$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
			li l	
		, I , i ,	ı n 11	

50 40

30

20

10

-10

0

210 200 190 180 170 160 150 140 130 120 110 100

90

80

70

S78

S81

HMBC

0.025 <td

		_											
Parameter	Value												
1 Title	20231130-DRI p2-15 mg. 1.1.1r											Me	ОН
2 Comment	20231130-DRI p2-15 mg 400M CDC13											\bigwedge	
3 Origin	Bruker BioSpin GmbH										Н		
4 Owner	nmr											I ≦ H	
5 Site												13	
6 Instrument	spect												
7 Author													
8 Solvent	CDC13												
9 Temperature	-18.3												
10 Pulse Sequence	zg30												
1 Experiment	1D												
12 Probe	5 mm PABBO BB/ 19F-1H/ D Z-GRD Z108618/ 0355												
13 Number of Scans	8												
4 Receiver Gain	78.8												
5 Relaxation Delay	1.0000									1			
6 Pulse Width	15.0000												
17 Presaturation Frequency											I		
18 Acquisition Time	3.9846									ļ			
9 Acquisition Date	2023-11-30T19:07:32										,		
20 Modification Date 21 Class	2023-11-30T19:07:00												
22 Spectrometer Frequency	400. 13												
23 Spectral Width	8223.7												
4 Lowest Frequency	-1520.6												
25 Nucleus	1H												
26 Acquired Size	32768												
27 Spectral Size	65536		I				4	ļ					
		-						<u> </u>					
							۲ 0	۲۳	6				
							2.0(1.0(0.9 <u></u>	2.2	2.1.0,4.0,4.0,4.0,4.0,4.0,4.0,4.0,4.0,4.0,4	1.1 2.9 3.0		
12.5 11.5	10.5 9.5	8.5	7.5	6.5	5.5	4.5	1	3.5	2.5	1.5	0.5	-0.5	-1.

Parameter	Value
1 Title	20231130-DRI p2-15 mg. 2.1.1r
2 Comment	20231130-DRI p2-15 mg 400M CDC13
3 Origin	Bruker BioSpin GmbH
4 Owner	nmr
5 Site	
6 Instrument	spect
7 Author	
8 Solvent	CDC13
9 Temperature	-18.3
10 Pulse Sequence	zgpg30
11 Experiment	1D
12 Probe	5 mm PABBO BB/ 19F-1H/ D Z-GRD Z108618/ 0355
13 Number of Scans	31
14 Receiver Gain	195.8
15 Relaxation Delay	2.0000
16 Pulse Width	10.5800
17 Presaturation Frequency	
18 Acquisition Time	1.2583
19 Acquisition Date	2023-11-30T19:09:22
20 Modification Date	2023-11-30T19:10:00
21 Class	
22 Spectrometer Frequency	100.61
23 Spectral Width	26041.7
24 Lowest Frequency	-2444.1
25 Nucleus	13C
26 Acquired Size	32768

-10 -20

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

Parameter	Value											Ma
Title	YYP-G-118-1-2.10.1.1r											
Comment												ſ Ť Ì
0rigin	Bruker BioSpin GmbH											
Owner	nmrsu											Ē
Site												S1
Instrument	Avance NEO 600											
' Author												
Solvent	CDC13											
Temperature	298.1											
0 Pulse Sequence	zg30											
1 Experiment	1D											
2 Probe	Z114607_0339 (PA BB0 600S3 BBF-H-D-05 Z SP)											
3 Number of Scans	6											
4 Receiver Gain	22.6											
5 Relaxation Delay	1.0000											
6 Pulse Width	10.0000									I.		
7 Presaturation Frequency												
8 Acquisition Time	2.7525											
9 Acquisition Date	2023-11-24T21:31:17											
0 Modification Date	2023-11-27T09:35:11											
21 Class												
2 Spectrometer Frequency	600. 15											
3 Spectral Width	11904.8											
4 Lowest Frequency	-2260.9											
5 Nucleus	1H											
6 Acquired Size	32768											
7 Spectral Size	65536											
		1								II		
					1			1				
									LML_		•	
					Ч	F			н нин	<u>ы</u> ң ң ң		
					1.00	1.05	1.03	0.974.11	0.91	1.10 3.17 3.02	2.93	
								-				

—133. 1 —123. 9

77. 4 √77. 2 76. 9 $\begin{array}{c}-58.5\\-58.6\\-50.2\\-50.2\\-33.2\\-33.2\\-33.2\end{array}$

 ~ 23.7 22.0 221.9 18.9 ~ 13.4

Me
S1

Parameter	Value
1 Title 2 Comment	YYP-G-118-1-2.11.1.1r
3 Origin 4 Owner	Bruker BioSpin GmbH nmrsu
5 Site	
6 Instrument 7 Author	Avance NEO 600
8 Solvent	CDC13
9 Temperature	298.4
10 Pulse Sequence	zgpg30
11 Experiment	1D
12 Probe	Z114607_0339 (PA BB0 600S3 BBF-H-D-05 Z SP)
13 Number of Scans	31
14 Receiver Gain	101.0
15 Relaxation Delay	2.0000
16 Pulse Width	11.5000
17 Presaturation Frequency	
18 Acquisition Time	0.9175
19 Acquisition Date	2023-11-24T21:34:09
20 Modification Date 21 Class	2023-11-27T09:35:11
22 Spectrometer Frequency	150.91
23 Spectral Width	35714.3
24 Lowest Frequency	-2750.5
25 Nucleus	13C
26 Acquired Size	32768
27 Spectral Size	32768

210 200 190 180 170 160 150 140 130 120

100 ^{S85} 90

80

70

60

50

30

40

20

10

0

-10

0.0 0

Parameter	Value
1 Title	YYP-D-179-1-2.1.1.1r
2 Comment	
3 Origin	Bruker BioSpin GmbH
4 Owner	nmrsu
5 Site	
6 Instrument	AVANCE NEO 400 MHZ DIGITAL NMR SPECTROMETER
7 Author	
8 Solvent	CDC13
9 Temperature	295.9
10 Pulse Sequence	zg30
11 Experiment	1D
12 Probe	Z116098_0723 (PA BB0 400S1 BBF-H-D-05 Z SP)
13 Number of Scans	3
14 Receiver Gain	101. 0
15 Relaxation Delay	1.0000
16 Pulse Width	8.5800
17 Presaturation Frequency	
18 Acquisition Time	3.9977
19 Acquisition Date	2022-04-12T22:26:05
20 Modification Date	e 2023-10-19T16:42:24
21 Class	
22 Spectrometer Frequency	400.13
23 Spectral Width	8196.7
24 Lowest Frequency	-1637.1
25 Nucleus	1H
26 Acquired Size	32768
27 Spectral Size	65536
<u></u>	
	······································
	

Paramater	Value	132. 7	124. 1	77.5 77.2 76.8	57.8	50.1	$\begin{array}{c} 442.1\\ 839.4\\ 837.9\\ 833.3\\ 831.6\\ 81.6 \end{array}$	23.7 22.0 21.9 18.8
	Value	ī	Ϊ		Ĩ	Ĩ		5477
Title	YYP-D-179-1-2.2.1.1r							
2 Comment								
8 Origin	Bruker BioSpin GmbH							
4 Owner	nmrsu							
5 Site								
6 Instrument	AVANCE NEO 400 MHZ DIGITAL NMR SPECTROMETER							
7 Author								
3 Solvent	CDC13							
) Temperature	296.3							
0 Pulse Sequence	zgpg30							
1 Experiment	1D							
2 Probe	Z116098_0723 (PA BB0 400S1 BBF-H-D-05 Z SP)							
3 Number of Scans	52							
4 Receiver Gain	58.7							
5 Relaxation Delay	2.0000							
6 Pulse Width	9.7000							
7 Presaturation Frequency								
8 Acquisition Time	1.3763							
9 Acquisition Date	2022-04-12T22:30:17							
20 Modification Date	e 2023-10-19T16:42:25							
21 Class								
22 Spectrometer Frequency	100.61							
23 Spectral Width	23809. 5							
24 Lowest Frequency	-1843.5							
25 Nucleus	13C							
26 Acquired Size	32768							
27 Spectral Size	32768					I		11.

-10

210 200 190 180 170 160 150 140 130 120 110 100 S87

Parameter	Value						01014
1 Title	YYP-G-094-2-3.3.1.1r						
2 Comment							
3 Origin	Bruker BioSpin GmbH						
4 Owner	nmrsu						Me
5 Site							ОМОМ
6 Instrument	AVANCE NEO 400 MHZ DIGITAL NMR SPECTROMETER						
7 Author							15
8 Solvent	CDC13						
9 Temperature	298.1						
10 Pulse Sequence	zg30						
11 Experiment	1D						
12 Probe	Z116098_0723 (PA BB0 400S1 BBF-H-D-05 Z SP)						
13 Number of Scans	7						
14 Receiver Gain	101.0						
15 Relaxation Delay	1.0000						
16 Pulse Width	8.8100						
17 Presaturation Frequency							
18 Acquisition Time	3. 9977						
19 Acquisition Date	2023-10-12T21:58:16						
20 Modification Date	2023-10-13T14:47:19						
21 Class			Į				
22 Spectrometer Frequency	400.13						
23 Spectral Width	8196. 7						
24 Lowest Frequency	-1637.2						
25 Nucleus	1H						
26 Acquired Size	32768						
27 Spectral Size	65536	1					
		i ii a	1 I			الله الله	
						_``````````````````````````````````````	
		۲+ ۲+ ۲+	برا ب		Ψ		
		2.02 1.05	1.00		6.10	1.02 1.02 1.02 0.96 2.11	0.89 5.05 1.42 1.20 1.16 9.05
100 95 9	00 85 80 7	5 70 65	60 55 50	45 40	35 30	25 20	
10.0 7.5		5 1.0 0.5	5.5 5.0 S88	T.J T.V	5.5 5.0	2.5 2.0	1.5 1.0 0.5 0

 $\begin{array}{c} & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & &$

Parameter	Value
1 Title	YYP-G-094-2-3.10.1.1r
2 Comment	
3 Origin	Bruker BioSpin GmbH
4 Owner	nmrsu
5 Site	
6 Instrument	Avance NEO 600
7 Author	
8 Solvent	CDC13
9 Temperature	298.3
11 Experiment	zgpgอบ 1D
12 Probe	7114607 0339 (PA BRO
	600S3 BBF-H-D-05 Z SP)
13 Number of Scans	50
14 Receiver Gain	101.0
15 Relaxation Delay	2.0000
16 Pulse Width	11. 5000
Frequency	
18 Acquisition Time	0.9175
19 Acquisition Date	2023-10-12T22:10:58
20 Modification Date	2023-10-13T14:47:19
21 Class	
22 Spectrometer	150.91
Frequency	35714 3
24 Lowest Frequency	-2766.4
25 Nucleus	130
26 Acquired Size	32768
27 Spectral Size	32768
and they does have the ball with a sum in the officer its birty and the sum of the barry of	al e a de seconde a forme d'a comme da contra en como de seconde de seconde y a del de seconde
, , , , , , , , , , , , , , , , , , ,	, 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 199 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999

$210 \ \ 200 \ \ 190 \ \ 180 \ \ 170 \ \ 160 \ \ 150 \ \ 140 \ \ 130 \ \ 120 \ \ 110 \ \ 100 \ \ 90$

-10

			—135. 5 —131. 5	-122.5 <116.7 <116.2	~113.0	$\underbrace{+77.4}{77.2}$	—54.4 —50.5	$\begin{array}{c} 42.4\\ 33.2\\ 33.2\\ 33.2\\ 33.2\\ 33.2\\ 33.2\\ 33.2\\ 33.2\\ 33.2\\ 14.1\\$
Parameter	Value	7						
1 Title 2 Comment	YYP-G-099-1-1.23.1.1r							HO
3 Origin 4 Owner 5 Site	Bruker BioSpin GmbH nmrsu							Местон
6 Instrument 7 Author	Avance NEO 600							THE REAL PROPERTY OF THE REAL
8 Solvent 9 Temperature 10 Pulse Sequence	CDC13 298.2 zgpg30							16
11 Experiment 12 Probe	1D Z114607_0339 (PA BB0 600S3 BBF-H-D-05 Z SP)							
13 Number of Scans 14 Receiver Gain	200 101. 0							
15 Relaxation Delay 16 Pulse Width 17 Presaturation Frequency	2. 0000 11. 5000							
18 Acquisition Time 19 Acquisition Date 20 Modification Date 21 Class	0.9175 2023-10-14T22:30:38 2023-10-16T08:49:46							
22 Spectrometer Frequency	150. 91							
23 Spectral Width 24 Lowest Frequency 25 Nucleus 26 Acquired Size	35714.3 -2766.4 13C 32768							
27 Spectral Size	32768							
	**********						(, -	uunante arte ante an ante an Brankelande die arte an andere annound an annound an annound annound annound an an

210 200 190 180 170 160 150 140 130 120 110 100

-10

OH

Me

3

-2

-3

_4

S92

Value

YYP-D-112-1-1.11.1.1r

Parameter

1 Title

-123.4-117.7-115.9-114.4

 $\begin{array}{c} -56.3\\ -52.2\\ -52.2\\ -52.2\\ -52.6\\ -33.6\\ -33.6\\ -33.3\\ -33.3\\ -52.6\\ -22.6\\ -22.6\\ -22.6\\ -19.9\\ -19.9\\ -19.9\\ -15.0\\ -22.6\\ -2$

2 Comment							
3 Origin	Bruker BioSpin GmbH						
4 Owner	nmrsu						
5 Site							
6 Instrument	Avance NEO 600						ſΨ
7 Author							
8 Solvent	CDC13						Ē
9 Temperature	298.1						(+)- <i>ent</i> -chro
10 Pulse Sequence	zgpg30						(· <i>)-citt-</i> ointe
11 Experiment	1D						3
12 Probe	Z168773_0027 (CPP1.1 BB0 600S3 BB-H&F-D-05 Z XT)						
13 Number of Scans	102						
14 Receiver Gain	101.0						
15 Relaxation Delay	2.0000						
16 Pulse Width	9.9100			1			
17 Presaturation Frequency							
18 Acquisition Time	0.9175						
19 Acquisition Date	2022-01-10T20:55:01						
20 Modification Date	2023-10-18T20:07:01						
21 Class							
22 Spectrometer Frequency	150.91						
23 Spectral Width	35714.3						
24 Lowest Frequency	-2745.5						
25 Nucleus	13C						
26 Acquired Size	32768						
27 Spectral Size	32768				1 1	a h	
		!					
		 		 Л			<u> </u>

210 200 190 180 170 160 150 140 130 120

100 ^{S93} 90

80

70

60

50

40

30

20

10

-10

0

 $<_{5.09}^{5.10}$

182	64455222446
5.7.0	9.4.7.7.8.8.8.8.6.6.
1415	022222222233
17	

5 7	2	ω,	-	വ
~.~	2.	0	N	÷
	5	5	\sum_{i}	5
	\leq	<pre>/</pre>	~	

Parameter Title Comment	Value YYP-F-169-1-1.4.1.1r				AcO.	
3 Origin 4 Owner	Bruker BioSpin GmbH nmrsu				I	-
5 Site 6 Instrument 7 Author	Avance Neo 400M					
8 Solvent	CDC13					
9 Temperature	298.2					
10 Pulse Sequence	zgpg30					
11 Experiment	1D					
12 Probe	Z163739_0254 (P1 HR- BB0400S1-BBF/ H/ D-5.0- Z SP)					
13 Number of Scans	61					
14 Receiver Gain	36.4			1		
15 Relaxation Delay	2.0000					
16 Pulse Width	7.8100					
17 Presaturation Frequency						
18 Acquisition Time	1.3763					
19 Acquisition Date	2023-07-05T19:02:49					
20 Modification Date 21 Class	2023-07-05T19:55:11					
22 Spectrometer Frequency	100. 63					
23 Spectral Width	23809.5					
24 Lowest Frequency	-1842.2					
25 Nucleus	13C		ļ	11	1	
26 Acquired Size	32768					
27 Spectral Size	32768					

210 200 190 180 170 160 150 140 130 120 110 100

-10

ParameterValue1 TitleYP-F-172-12.11.1.1r2 Comment3 Origin3 OriginBruker BioSpin GubH4 Ownermarsu5 Site66 InstrumentAvance Neo 400M7 Author9 Temporature96.9910 Palse Sequencezgpg3011 Experiment1012 ProbeZl63739_0254 (PI HR- BB040051-BHF/ H/ D-5.0- 2 SP)13 Number of Scams7714 Receiver Cain36.315 Relaxation Dalay2.000016 Palse Side With7.810017 Presentarion7.810017 Presentarion2023-07-26T09:14:1519 Acquisition Date2023-07-26T09:33:1921 Class2222 Spectral Width2809.524 Lowest Frequency181.325 Nuclaus16C26 Acquired Size3276875 Spectral Size32768		—169. 8	7 147.5 146.6 146.6 146.6 137.5 137.5 137.5 137.0 127.0 127.	—109. 2	 77. 5 77. 2 76. 8 72. 3 71. 5 	—54. 6 —50. 4	42. 3 36. 7 36. 9 36. 9 37. 2 33. 2 33. 2 33. 2 33. 2 33. 2 33. 2 33. 2 33. 2 33. 2 14. 0 14. 0
1 Title $YPP-F-172-1-2.11.1.1r$ 2 Comment $WPP-F-172-1-2.11.1.1r$ 3 Origin Bruker BioSpin Gabli 4 Ownor nmmrsu 5 Site $WPP-F-172-1-2.11.1.1r$ 6 Monor nmmrsu 5 Site $WPP-F-172-1-2.11.1.1r$ 6 Monor nmmrsu 6 Instrument Avance Neo 400M 7 Author $WPP-F-172-1.2.11.1.1r$ 8 Solvent CDC13 9 Temperature 26.9 10 Pulse Sequence 269.9 10 Pulse Sequence 269.30 11 Experiment 10 12 System 2.0000 16 Pulse Sequence 2.0000 16 Pulse Sequence 2.0000 16 Pulse Width 7.8100 17 Presentration Frequency Frequency 2023-07-28709:14:15 20 Modification Date 2023-07-28709:14:15 20 Modification Date 2023-07-28709:33:19 21 Lowst Frequency 130.1 22 Spectral Width 23809.5 21 Lowst Frequency 180.2 23 Spectral Size 2768 <td>Parameter</td> <td>Value</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Parameter	Value					
3 Origin Bruker BioSpin Gabil 4 Owner nursu 5 Site 6 Instrument Avance Nee 400M 7 Autor 8 Solvent CD13 9 Temperature 296.9 10 Pulse Sequence zgp30 11 Experimen ID 12 Probe Z163739.0254 (PI HR- BB0400051-B8F/ H/ D-5.0- Z SP) 13 Number of Scam 77 14 Receiver Gain 36.3 15 Relaxation Delay 2.0000 16 Pulse %idt 7.8100 17 Presaturation Frequency 18 Acquisition Time 1.3763 19 Acquisition Date 2023-07-26709:14:15 20 Modification Date 2023-07-26709:33:19 21 Class 22 Spectral Width 2809.5 24 Lowest Frequency - 72 Spectral Width 2809.5 24 Lowest Frequency - 73 Sepectral Width 2809.5 24 Lowest Frequency - 23 Spectral Width 2809.5 24 Lowest Frequency - 23 Spectral Width 2809.5 24 Lowest Frequency - 23 Spectral Size 32768	1 Title 2 Comment	YYP-F-172-1-2.11.1.1r					OBn
6InstrumentAvance Neo 400M7Author8Solvent9CDC139Temperature296.91010Pulse Sequence12Probe212163739_0254 (PT IRP- BE040051-BBF/ H/ D-5.0- Z SP)13Number of Scans771414Receiver Gain36.31516Relaxion Delay2.000016Pulse Width7. 810017Prequency18Acquisition Tate19.4023-07-26T09:14:1520Modification Date2023-07-26T09:33:1921Class22Spectral Width23Sa09_524Lowest Frequency23Sa09_524Sa09_524Sa09_524Sa09_525Sa0626Saure27Spectral Size27Saves26Saves27Spectral Size20Saves21Saves22Saves23Saves24Saves25Saves26Saves27Saves28Saves29Saves20Saves20Saves21Saves22Saves23Saves24Saves25Saves26Saves27	3 Origin 4 Owner 5 Site	Bruker BioSpin GmbH nmrsu					
8 Solvent CDC13 18 9 Temperature 296.9 10 Pulse Sequence zgpg30 11 Experiment 10 10 10 12 Probe Z163739_0254 (PI HR-BB040051-BBF/H/D-5.0-ZSP) 20 13 Number of Scans 77 13 14 Receiver Gain 36.3 15 15 Relaxation Delay 2.000 16 16 Pulse Width 7.8100 17 17 Presaturation Frequency 13 18 Acquisition Date 2023-07-26T09:14:15 20 20 Modification Date 2023-07-26T09:14:15 20 20 Modification Date 2023-07-26T09:33:19 21 21 Class 100.63 Frequency 183.1.3 23 Spectral Width 2809.5 12 24 Lowest Frequency 183.1.3 25 25 Auclaus 13C 2768 27 Spectral Size 32768 2768	6 Instrument 7 Author	Avance Neo 400M					
9 Temperature 296.9 10 Pulse Sequence zgpg30 11 Experiment 10 12 Probe Z163739_0254 (PI HR- BB040051-BBF/ H/ D-5.0- z Sp) 13 Number of Scans 77 14 Receiver Gain 36.3 15 Relaxation Delay 2.0000 16 Pulse Width 7. 8100 17 Presaturation Frequency	8 Solvent	CDC13					18
10 Pulse Sequence zgp30 11 Experiment 10 12 Probe Z163739_0254 (PI HR-B0040S1-BBF/H/D-5.0-Z SP) 13 Number of Scans 77 14 Receiver Gain 36.3 15 Relaxation Delay 2.0000 16 Pulse Width 7.8100 17 Presaturation Frequency 18 Acquisition Time 1.3763 19 Acquisition Tame 2023-07-26T09:14:15 20 Modification Date 2023-07-26T09:33:19 21 Class 22 Spectrometer 23 Spectral Width 2.8809.5 24 Lowest Frequency -1831.3 25 Nucleus 13C 26 Acquired Size 32768	9 Temperature	296.9					10
11 Experiment 1D 12 Probe 2163739_0254 (PI HR-B0040051-BBF/H/D-5.0-2 B040051-BBF/H/D-5.0-2 2.5P 13 Number of Scans 77 14 Receiver Gain 36.3 15 Relaxation Delay 2.0000 16 Pulse Width 7.8100 17 Presaturation - Frequency 18.3763 19 Acquisition Tate 2023-07-26709:14:15 20 Modification Date 2023-07-26709:33:19 21 Class 22 Spectrameter 23 Spectral Width 23809.5 24 Lowest Frequency - 23 Spectral Width 23809.5 24 Lowest Frequency - 23 Spectral Width 326 25 Nucleus 13C 26 Acquired Size 32768	10 Pulse Sequence	zgpg30					
12 Probe Z163739_0254 (PI HR-BB0400S1-BBF/ H/ D-5.0-Z SP) 13 Number of Scans 77 14 Receiver Gain 36.3 15 Relaxation Data 2.0000 16 Pulse Width 7. 8100 17 Presaturation	11 Experiment	1D					
13 Number of Scans 77 14 Receiver Gain 36.3 15 Relaxation Delay 2.0000 16 Pulse Width 7.8100 17 Presaturation Frequency 18 Acquisition Time 1.3763 19 Acquisition Date 2023-07-26T09:14:15 20 Modification Date 2023-07-26T09:33:19 21 Class 22 Spectrometer 100. 63 Frequency 23 Spectral Width 23809.5 24 Lowest Frequency -1831.3 25 Nucleus 13C 26 Acquired Size 32768 27 Spectral Size 32768	12 Probe	Z163739_0254 (PI HR- BB0400S1-BBF/ H/ D-5.0- Z SP)					
14 Receiver Gain 36.3 15 Relaxation Delay 2.0000 16 Pulse Width 7.8100 17 Presaturation Frequency 1 18 Acquisition Time 1.3763 19 Acquisition Date 2023-07-26T09:14:15 20 Modification Date 2023-07-26T09:33:19 21 Class 2 22 Spectrometer Frequency 100.63 23 Spectral Width 23809.5 24 Lowest Frequency -1831.3 25 Nucleus 13C 26 Acquired Size 32768 27 Spectral Size 32768	13 Number of Scans	77					
15 Relaxation Delay 2.0000 16 Pulse Width 7.8100 17 Presaturation - Frequency - 18 Acquisition Time 1.3763 19 Acquisition Date 2023-07-26T09:14:15 20 Modification Date 2023-07-26T09:33:19 21 Class - 22 Spectrometer 100.63 Frequency - 23 Spectral Width 23809.5 24 Lowest Frequency - 25 Nucleus 13C 26 Acquired Size 32768 27 Spectral Size 32768	14 Receiver Gain	36. 3					
16 Pulse Width 7. 8100 17 Presaturation	15 Relaxation Delay	2.0000					
17 Presaturation Frequency 18 Acquisition Time 1.3763 19 Acquisition Date 2023-07-26T09:14:15 20 Modification Date 2023-07-26T09:33:19 21 Class 2023-07-26T09:33:19 22 Spectrometer 100.63 Frequency - 23 Spectral Width 23809.5 24 Lowest Frequency -1831.3 25 Nucleus 13C 26 Acquired Size 32768 27 Spectral Size 32768	16 Pulse Width	7.8100					
18 Acquisition Time 1.3763 19 Acquisition Date 2023-07-26T09:14:15 20 Modification Date 2023-07-26T09:33:19 21 Class 21 Class 22 Spectrometer 100.63 Frequency 100.63 23 Spectral Width 23809.5 24 Lowest Frequency -1831.3 25 Nucleus 13C 26 Acquired Size 32768	17 Presaturation Frequency						
19 Acquisition Date 2023-07-26T09:14:15 20 Modification Date 2023-07-26T09:33:19 21 Class 21 Class 22 Spectrometer 100.63 Frequency - 23 Spectral Width 23809.5 24 Lowest Frequency -1831.3 25 Nucleus 13C 26 Acquired Size 32768 27 Spectral Size 32768	18 Acquisition Time	1.3763					
20 Modification Date 2023-07-26T09:33:19 21 Class 22 Spectrometer 100.63 Frequency 23 Spectral Width 23809.5 24 Lowest Frequency -1831.3 25 Nucleus 13C 26 Acquired Size 32768 27 Spectral Size 32768	19 Acquisition Date	2023-07-26T09:14:15					
22 Spectrometer Frequency 100.63 23 Spectral Width 23809.5 24 Lowest Frequency -1831.3 25 Nucleus 13C 26 Acquired Size 32768 27 Spectral Size 32768	20 Modification Date 21 Class	2023-07-26T09:33:19	I				
23 Spectral Width 23809.5 24 Lowest Frequency -1831.3 25 Nucleus 13C 26 Acquired Size 32768 27 Spectral Size 32768	22 Spectrometer Frequency	100.63					
24 Lowest Frequency -1831.3 25 Nucleus 13C 26 Acquired Size 32768 27 Spectral Size 32768	23 Spectral Width	23809. 5					
25 Nucleus 13C 26 Acquired Size 32768 27 Spectral Size 32768	24 Lowest Frequency	-1831. 3					
26 Acquired Size 32768 27 Spectral Size 32768	25 Nucleus	13C					
27 Spectral Size 32768	26 Acquired Size	32768	📗 🖬 👘	I	!		
	27 Spectral Size	32768					

210 200 190 180 170 160 150 140 130 120 110 100

S97

-10

 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0

Parameter	Value													
1 Title 2 Comment	YYP-F-173-1-1.3.1.1r												OBn ↓ ∩	Bn
3 Origin 4 Owner 5 Site	Bruker BioSpin GmbH nmrsu											Me		511
6 Instrument 7 Author	Avance Neo 400M) ÓН	
8 Solvent 9 Temperature 10 Pulse Sequence 11 Experiment 12 Probe	CDC13 297.1 zg30 1D Z163739_0254 (PI HR- BB0400S1-BBF/ H/ D-5.0 Z SP))-										X H	19	
13 Number of Scans 14 Receiver Gain 15 Relaxation Delay 16 Pulse Width 17 Presaturation	4 93.9 1.0000 8.0000													
18 Acquisition Time 19 Acquisition Date 20 Modification Dat 21 Class	3.9977 2023-08-05T17:14:15 e 2023-08-05T17:47:37													
22 Spectrometer Frequency 23 Spectral Width 24 Lowest Frequency 25 Nucleus 26 Acquired Size 27 Spectral Size	400. 18 8196. 7 -1636. 5 1H 32768 65526				۶.									
	00000													
					. 3.91 6.05∄	0.97 ⊥ 0.95 ⊥		1.00 [⊥] 3.91 [⊥] 0.99 ⊥		0.94	0.95 1.07 1.16 1.16	4.90 1.91 ₩ ₩ ₩ ₩	2.98	
14 13	12 11	10	9	8	,	7 _{S98}	6	5	4	3	2	1	0	-1

210 200 190 180 170 160

^{S99} -10

ParameterValue1 TitleYPT-F174-[-1.13.1.1r2 Commentansat3 OriginBruker BioSpin Gabil4 Ownernarsat5 Site6 Instrument6 InstrumentAvance NED 6007 Author298.210 Pules Sequence298.210 Pules Sequence298.210 Pules Sequence20003 BSF-H-D-05 Z SP)13 Number of Seams200014 Receiver Gain101.015 Belaration Date2023-06-00T02:13:4421 Class223-06-00T02:13:4422 Class223-06-00T02:13:4422 Class223-06-00T02:13:4422 Class223-0623 Dectral Frequency2730.123 Nuclever13C23 Nuclever13C24 Loreat Frequency2730.125 Nuclever13C27 Nuclever13C28 Nuclever13C27 Nu	Parameter 1 Title 2 Comment 3 Origin 4 Owner 5 Site	Value YYP-F-174-1-1.13.1.1r Bruker BioSpin GmbH nmrsu		 ·		 		
1 Title $YP-F-174-1-1.13.1.1r$ 2 Commont 3 Origin Bruker BioSpin GebH 4 Owner mrsu 5 Site 6 Instrument Avence NEO 600 7 Author 8 Solvent CDC13 9 Temperature 238.2 10 Fulse Sequence 2mp30 11 Experiment 1D 12 Probe Z114607.0339 (PA BB0 60033 BBF-1D-05 Z SP) 13 Number of Scans 200 14 Receiver Game-1D-05 Z SP) 13 Number of Scans 200 15 Relazation Delay 2.0000 16 Pulse Width 11.5000 17 Presaturation Frequency 22 Spectral Width 35714.3 22 Spectral Width 35714.3 22 Spectral Width 3714.3 22 Spectral Size 32768 27 Spectral Size 32768 27 Spectral Size 32768	1 Title 2 Comment 3 Origin 4 Owner 5 Site	YYP-F-174-1-1.13.1.1r Bruker BioSpin GmbH nmrsu						
3 Origin Bruker BioSpin GabH 4 Omer marsu 5 Site start 6 Instrument Arance NE0 600 7 Author start 9 Temporature 28.2 10 Pulse Squence zps30 11 Experiment 10 12 Probe 2014607 0339 (PA B80 6003 50F+H-Po 5 ZSP) 13 Numbor of Scams 200 14 Receiver Gata 10.0 15 Relaxation Delay 2.0000 16 Pulse Sigue 22:02:45 2000 17 Presentration Frequency Frequency 400:00:13:44 21 Class 22 22 Spectral Width 55768 23 Spectral Width 35768 27 Spectral Size 32768	3 Origin 4 Owner 5 Site	Bruker BioSpin GmbH nmrsu						OBn OBn
6 Instrument Avance NEO 600 7 Autor 8 Solvent CDC13 9 Temperature 298.2 10 Pulse Sequence xgpg30 11 Experimen 10 12 Probe Z114607_0339 (PA BBO 600538 BBF-H-D-05 Z SP) 13 Number of Scans 200 14 Receiver Gain 101.0 15 Relaxtion Dolay 2.0000 16 Pulse Width 11.5000 17 Presturation Frequency 18 Acquisition Time 0.9175 18 Acquisition Date 2023-08-08T22:02:45 20 Modification Date 2023-08-08T22:02:45 20 Modification Date 2023-08-09T09:13:44 21 Class 22 Spectrometer 150.91 Frequency -2750.1 25 Nucleus 13C 24 Lowest Frequency -2750.1 25 Nucleus 13C 26 Acquired Size 32768 27 Spectral Size 32768	0 0106						Me	
8 Solvent CDC13 Image: CDC13 <thimage: cdc13<="" th=""> <thimage: cdc13<="" th=""></thimage:></thimage:>	6 Instrument 7 Author	Avance NEO 600						ſ
60033 BBF-H-D-05 Z SP7 13 Number of Scans 20 14 Receiver Gain 101.0 15 Relaxation Delay 2.0000 16 Pulse Width 11.5000 17 Presaturation Frequency 18 Acquisition Time 0.9175 19 Acquisition Date 2023-08-08T22:02:45 20 Modification Date 2023-08-09T09:13:44 21 Class 22 Spectrometer 22 Spectral Width 35714.3 24 Lowest Frequency -2750.1 25 Nucleus 13C 26 Acquired Size 32768	8 Solvent 9 Temperature 10 Pulse Sequence 11 Experiment 12 Probe	CDC13 298.2 zgpg30 1D Z114607_0339 (PA BB0					▲ 須 〕 一 〕 一 〕 一 2	D
11 Equality 18 Acquisition Time 0.9175 19 Acquisition Date 2023-08-08T22:02:45 20 Modification Date 2023-08-09T09:13:44 21 Class 22 Spectrometer 150.91 Frequency 23 Spectral Width 35714.3 24 Lowest Frequency -2750.1 25 Nucleus 13C 26 Acquired Size 32768	13 Number of Scans 14 Receiver Gain 15 Relaxation Delay 16 Pulse Width 17 Presaturation Froguency	600S3 BBF-H-D-05 Z SP) 200 101. 0 2. 0000 11. 5000						
22 Spectrometer 150.91 Frequency 23 Spectral Width 35714.3 24 Lowest Frequency -2750.1 25 Nucleus 13C 26 Acquired Size 32768 27 Spectral Size 32768	18 Acquisition Time 19 Acquisition Date 20 Modification Date 21 Class	0.9175 2023-08-08T22:02:45 2023-08-09T09:13:44						
	 22 Spectrometer Frequency 23 Spectral Width 24 Lowest Frequency 25 Nucleus 26 Acquired Size 27 Spectral Size 	150.91 35714.3 -2750.1 13C 32768 32768						
								-93-42-44-45-45-45-45-45-45-45-45-45-45-45-45-

S101

œ

Parameter	Value		
Title	YYP-G-105-1-2-Acetone. 10.1.1r	он 	.OH
2 Comment			
8 Origin	Bruker BioSpin GmbH		
4 Owner	nmrsu	Me	
5 Site			
ð Instrument	Avance NEO 600		
7 Author			
Colvert	Agatona		
) Tomporature		(+)-8- <i>epi-</i> puupehe	enol
0 Pulse Seguence	237.2 7930	4	
1 Experiment	1D		
12 Probe	Z114607_0339 (PA BB0 600S3 BBF-H-D-05 Z SP)		
13 Number of Scans	5		
l4Receiver Gain	90. 5		
5 Relaxation Delay	1.0000		
6 Pulse Width	10.0000		
17 Presaturation Frequency			
18 Acquisition Time	2.7525		
9 Acquisition Date	2023-11-02T16:32:12		
20 Modification Date 21 Class	2023-11-02T16:33:36		
22 Spectrometer Frequency	600. 15		
23 Spectral Width	11904.8		
4 Lowest Frequency	-2256.9		
25 Nucleus	1H		
26 Acquired Size	32768		
27 Spectral Size	65536		
	,		
, , , , , , , , , , , , , , , , , , , 			

<u>206. 2</u>			∼147. 1 ∼144. 9 ∽139. 3		—116. 3 —113. 3	—104.5		—76. 6	$[56.9]{53.5}{53.5}$	42. 0 39. 9 33. 8 23. 8	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	29. 5 22. 3 21. 9 21. 0 15. 2 15. 2
	Parameter	Value				·		·				
1 Titl	e	YYP-G-105-1-2-Acetone. 11.1.1r										он 1 он
2 Comm	ent											
3 Orig	in	Bruker BioSpin GmbH										
4 Owne:	r	nmrsu										Me 🚺 📕 🕺
5 Site												
6 Inst	rument	Avance NEO 600										
7 Auth	or	Ivance NEO 000										
0 0 0 1 1		Acatona										, ≧H
	ent											(+)-8- <i>epi</i> -puupehenol
10 Puls		299. 0 zgng30										4
11 Fyne	riment	1D										
12 Prob	e	Z114607_0339 (PA BB0 600S3 BBF-H-D-05 Z SP)										
13 Numb	er of Scans	300										
14 Rece	iver Gain	101. 0										
15 Rela:	xation Delay	2.0000										
16 Puls	e Width	11. 5000										
17 Presa Frequ	aturation uency											
18 Acqu	isition Time	0.9175										
19 Acqu	isition Date	2023-11-02T17:21:42										
20 Modi:	fication Date	2023-11-02T17:25:51										
21 Clas	s											
22 Spec Free	trometer uencv	150. 91			I	!		ł				
23 Spec	tral Width	35714.3				AL ADM AND . P	and a party party of the second second		15 habits da - 19-111			
25 Nuc1	eus	13C	م المحالية العالمية عنه المحالية ، وهذ العالمية المحالية ، وه	an a la su a la su a la su a su a su a su	an tainin tain ta an an an an			tenti de montalitado			and the second secon	<u>₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩</u>
26 Acqu	ired Size	32768										
27 Spec	tral Size	32768										

210 200 190 180 170 160 150 140 130 120 110 100 S103

-10

0-1-1.10.1.1r ioSpin GmbH eo 400M 0254 (PI HR- -BBF/ H/ D-5.0-		Ŷ			Υ.		∽⊬ n	MeO Et 21
ioSpin GmbH eo 400M 0254 (PI HR- -BBF/ H/ D-5.0-								Et 21
ioSpin GmbH eo 400M 0254 (PI HR- -BBF/ H/ D-5.0-								Et 21
eo 400M 0254 (PI HR- -BBF/ H/ D-5.0-								ل 1 21
eo 400M 0254 (PI HR- -BBF/ H/ D-5.0-								21
eo 400M 0254 (PI HR- -BBF/ H/ D-5.0-								
0254 (PI HR- -BBF/ H/ D-5.0-								
0254 (PI HR- -BBF/ H/ D-5.0-								
0254 (PI HR- -BBF/ H/ D-5.0-								
0254 (PI HR- -BBF/ H/ D-5.0-								
0254 (PI HR- -BBF/ H/ D-5.0-								
0254 (PI HR- -BBF/ H/ D-5.0-								
27712-20-16								
27712-20-16								
27712-20-16								
27712-20-16								
27712-20-16								
27712.20.16								
27712.20.16								
27112.29.10								
27T14:18:04								
27	7T14:18:04							

	—152. 4 —146. 9	—142.4 190 б		—112.7	—92. 3	77.5 77.2 76.8	—60. 4 —56. 0	—28. 3	—15.6
Paramater	Value								OMe
									MeO
1 litle 2 Comment	11P-G-190-1-1.11.1.1r								
2 Omigin	Duulean DieSpin Cubl								\checkmark
J Owner									Ét
5 Site	IIIII Su								21
	A N 400M								
6 Instrument	Avance Neo 400M								
7 Author									
8 Solvent	CDC13								
9 Temperature	297.3								
10 Pulse Sequence	zgpg30								
11 Experiment	1D								
12 Probe	Z163739_0254 (PI HR- BB0400S1-BBF/ H/ D-5.0 Z SP)	-							
13 Number of Scans	100								
14 Receiver Gain	41.1								
15 Relaxation Delay	2.0000								
16 Pulse Width	7.8100								
17 Presaturation Frequency									
18 Acquisition Time	1.3763								
19 Acquisition Date	2024-06-27T12:37:36								
20 Modification Date	e 2024-06-27T14:18:05								
21 Class									
22 Spectrometer Frequency	100.63								
23 Spectral Width	23809.5								
24 Lowest Frequency	-1841.8		l				. 1		
25 Nucleus	13C								
26 Acquired Size	32768					ili			
27 Spectral Size	32768				1				
		Ť							

Т Т Т Т Т Т T _{\$105}

Parameter	Value		ОМе
Title	YYP-G-193-2-2.10.1.1r	MeO	
Comment			
Origin	Bruker BioSpin GmbH	. (Et
Owner	nmrsu		\checkmark
5 Site			
5 Instrument	Avance Neo 400M		
' Author			22
Solvent	CDC13		
Temperature	296. 5		
0 Pulse Sequence	zg30		
1 Experiment	1D		
2 Probe	Z163739_0254 (PI HR- BB0400S1-BBF/ H/ D-5.0-Z SP)		
3 Number of Scans	16		
4 Receiver Gain	46.2		
5 Relaxation Delay	1.0000		
6 Pulse Width	8.0000		
17 Presaturation Frequency			
8 Acquisition Time	3.9977		
9 Acquisition Date	2024-06-28T12:17:31		
0 Modification Date	2024-06-28T13:07:38		
1 Class			
22 Spectrometer Frequency	400. 18		
3 Spectral Width	8196.7		
4 Lowest Frequency	-1636.4		
5 Nucleus	1H		
6 Acquired Size	32768		
7 Spectral Size	65536		

Parameter	Value	52.5	44. 9 39. 6 37. 4 36. 1	22. 0 20. 6	09. 1	7.5 7.2 6.8	0.5 5.7 0.4	40042186087004
1 Title	YYP- G-193-2-2.11.1.1r			77	-1		<u></u> 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4
2 Comment								OMe
3 Origin	Bruker BioSpin GmbH							MeO
4 Owner	nmrsu							
5 Site								• C × `Et
6 Instrument	Avance Neo 400M							
7 Author								
8 Solvent	CDC13							
9 Temperature	297.2 zgpg30							• 22
11 Experiment	1D							
12 Probe	Z163739_0254 (PI HR- BB0400S1-BBF/ H/ D-5.0-Z SP)							
13 Number of Scans	150							
14 Receiver Gain	40.1							
15 Relaxation Delay	2.0000							
16 Pulse Width	7.8100							
17 Presaturation Frequency								
18 Acquisition Time	1.3763							
19 Acquisition Date	2024-06-28T12:28:22							
20 Modification	2024-06-28T13:07:38							
21 Class						ili		
22 Spectrometer Frequency	100.63							
23 Spectral Width	23809.5							
24 Lowest	-1831.3							
Frequency	190							
20 Nucleus 26 Acquired Size	32768							
27 Spectral Size	32768							
			***	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		 and a subscription of the second s	,	
		, <u>, , , , , , , , , , , , , , , , , , </u>				 		

210 200 190 180 170 160 150 140 130 120 110 100

90 80 70 60 50 40

30

20 10

0

-10

Parameter	Value								MeO	ом
1 Title	YYP-G-194-1-3.22.1.1r								\succ	
2 Comment								Me	$\int \langle \langle \rangle \rangle$	
3 Origin	Bruker BioSpin GmbH							\sim		
4 Owner	nmrsu									-
5 Site										
6 Instrument	Avance Neo 400M							I ≥ H	23	
7 Author									25	
8 Solvent	CDC13									
9 Temperature	297.5									
10 Pulse Sequence	zg30									
11 Experiment	1D									
12 Probe	Z163739_0254 (PI HR- BB0400S1-BBF/ H/ D-5.0-Z SP)									
13 Number of Scans	11						I			
14 Receiver Gain	76.6									
15 Relaxation Delay	1.0000									
16 Pulse Width	8.0000			ı						
17 Presaturation Frequency										
18 Acquisition Time	3.9977									
19 Acquisition Date	2024-06-29T20:30:29									
20 Modification Date	2024-06-29T20:44:16									
21 Class										
22 Spectrometer Frequency	400. 18									
23 Spectral Width	8196.7									
24 Lowest Frequency	-1636. 4					ا بر الل				
25 Nucleus	1H				۸. III A		WWW.			
26 Acquired Size	32768		 							
27 Spectral Size	65536		Ť			, huhit				
			1.0(2.95 2.91	0.1	2.16 2.11 2.16	2.1 ¹ 3.2 ² 0.9 ²	2.80 2.19 5.98		
10 10	11 10	 0	 6	 · · ·	· · · ·	`	1	•	1	
Parameter	Value	150. 5 145. 0 143. 7	136. 0 133. 9	111.2	77. 5 77. 2 76. 8	64. 4 60. 5 57. 2 56. 1	$\begin{array}{c} 448\\ 333.5\\ 16.2\\ 16.2\\ 16.2\\ 16.2\\ 16.2\\ 16.2\\ 16.2\\ 16.2\\ 16.2\\ 16.2\\ 16.2\\ 16.2\\ 16.2\\ 16.2\\ 16.2\\ 16.2\\ 10.2\\$			
-------------------------------------	---	----------------------------	------------------	-------	-------------------------	----------------------------------	--			
1 Title 2 Comment	YYP-G-194-1-3. 23. 1. 1r	1 51	11			$ \langle \langle \rangle $				
3 Origin 4 Owner 5 Site	Bruker BioSpin GmbH nmrsu						MeO OMe			
6 Instrument 7 Author	Avance Neo 400M						CH3			
8 Solvent	CDC13									
9 Temperature	298.1						23			
10 Pulse Sequence	zgpg30									
11 Experiment	1D									
12 Probe	Z163739_0254 (PI HR- BB0400S1-BBF/ H/ D-5.0-Z SP)									
13 Number of Scans	s 162									
14 Receiver Gain	42.0									
15 Relaxation Delay	2. 0000									
16 Pulse Width	7.8100									
17 Presaturation Frequency										
18 Acquisition Time	1. 3763									
19 Acquisition Date	2024-06-29T20:41:34									
20 Modification Date 21 Class	2024-06-29T20:44:16									
22 Spectrometer Frequency	100. 63									
23 Spectral Width	23809. 5									
24 Lowest Frequency	-1830. 6									
25 Nucleus	13C									
26 Acquired Size	32768		1							
27 Spectral Size	32768		İl							

S109

-10

210 200 190 180 170 160 150 140 130 120 110

	7. 258 7. 81 7. 81 7. 81 7. 81 7. 81 7. 51 81 7. 51 7. 517. 51 7.	6.21222222444422222222222222222222222222		I
Parameter	Value			
Title	mfj-4-2P-H.1.1.1r			
Comment				
Origin	Bruker BioSpin GmbH			ÓMe ^{SO} ₂Ph
Owner	nmrsu			24
Site				
Instrument	AVANCE NEO 400 MHZ DIGITAL NMR SPECTROMETER			
Author				
Solvent	CDC13			
Temperature	298. 2			
)Pulse Sequence	zg30			
Experiment	1D			
2 Probe	Z116098_0723 (PA BB0 400S1 BBF-H-D-05 Z SP)			
8 Number of Scans	8			
Receiver Gain	101.0			
5 Relaxation Delay	1.0000			
3 Pulse Width	8.8100			
7 Presaturation Frequency			1	
Acquisition Time	3. 9977			
Acquisition Date	2024-05-29T10:30:17			
)Modification Date	2024-05-29T12:08:18			
l Class				
2 Spectrometer Frequency	400. 13			
3 Spectral Width	8196.7			
4 Lowest Frequency	-1637.2			1
5 Nucleus	1H			
b Acquired Size	32768	/_////////	NN	L
(Spectral Size	65536	0.93 2.03 2.10 ♪ 1.02 ♪ 1.00 ♪ 1.00 ♪	3.01 -₌	

		147.	129. 127. 124.	114.	107.	77. 5 77. 2 76. 8	64. 8	55.7		1
Parameter	Value	1 555					Ī	Ĩ		$\wedge \downarrow$
Title	mfj-4-2P-H.2.1.1r									
2 Comment										N,
8 Origin	Bruker BioSpin GmbH									
4 Owner	nmrsu									24
5 Site										24
6 Instrument	AVANCE NEO 400 MHZ DIGITAL NMR SPECTROMETER									
7 Author										
3 Solvent	CDC13									
9 Temperature	298.2									
10 Pulse Sequence	zgpg30									
11 Experiment	1D									
12 Probe	Z116098_0723 (PA BB0 400S1 BBF-H-D-05 Z SP)									
3 Number of Scans	189									
14 Receiver Gain	57.0									
15 Relaxation Delay	2.0000									
16 Pulse Width	10.0000									
l7 Presaturation Frequency						ļ				
18 Acquisition Time	1.3763									
19 Acquisition Date 20 Modification Date	2024-05-29T10:42:18 2024-05-29T12:08:18									
21 Class										
22 Spectrometer Frequency	100.61									
23 Spectral Width	23809.5		.1							
4 Lowest Frequency	-1831.5									
25 Nucleus	13C									
26 Acquired Size	32768									
	32768				!					

S111

-10

210 200 190 180 170 160 150 140 130 120 110

1 1111e YP- G-174-4-4-0829.11.1.r 3 0/14	Parameter	Value	47.5	40. 7 334. 9 334. 9 33. 1 225. 6 224. 9 223. 9 223. 0 7. 1 223. 0 7. 1 223. 0 7. 1 223. 0 7. 1 223. 0 7. 1 223. 0 7. 1 223. 1 233. 1 23	7.4 6.9	$ \begin{array}{c} 5.5\\ 3.6\\ 0.3\\ \end{array} $	2.4 9.7 3.4 3.2	3.0018
2 Comment 3 Origin Broker BioSpin GebH 4 Owner mmrsu 5 Site 6 Instrument Avance NEO 600 7 Author 8 Solvent CDC13 9 Tomperature 298, 2 10 Pulse Sequence zgpg00 11 Experiment ID 12 Probe Z165973,0001 (CPP1.1 BB0 6 Poisson 300 14 Receiver Gain 101.0 15 Relaxation 2.0000 Delay 16 Pulse Site 10 17 Presasturation Proquency 18 Acquisition 2024-08-29722:54:50 Date 20 Modification 2024-08-29722:54:50 Date 21 Class 22 Spectral Width 35714.3 24 Lorest -2750.3 Prequency 23 Spectral Width 35714.3 24 Lorest -2750.3 Prequency ISA Comments -2000 24 Lorest -2750.3 Prequency Size 37768 27 Spectral Size 3768 27 Spec	1 Title	YYP- G-174-4-4-0829.11.1.1r	1			מֿמֿמֿ \		
3 Origin Bruker BioSpin GabH 4 0wner mmrsu 6 Site 6 Instrument Avance NEO 600 7 Author 8 8 Solvent CDC13 9 Temporature 298.2 10 Dulos Sequence 20030 11 11 Experiment 10 12 Probe Z168772_001 (CPP1.1 BBO 60053 BD-HBF-D-05 2 XT) 13 Number of Scans 300 14 14 Receiver Gain 10.1.0 15 Relaxation 2.0000 Delay Temporation Properation 9 Temporation 0.9175 17 Traine ion 2024-08-20702.154:50 Pate 21 Class 22 Spectrawler 22 Spectrawler 150.91 Proquency 23 Spectral Vida 3714.3 24 Lowest -2750.3 Frequency 136 25 Swcieus 136 26 Acourieus 136 27 Spectral Size 2768	2 Comment							
4 Owner nursu 5 Site	3 Origin	Bruker BioSpin GmbH						
5 Site 6 Instrument Avance NEO 600 7 Author 8 Solvent CDC13 9 Temperature 298.2 10 Pulse Sequence 2gpg30 11 Experiment 1D 12 Probe Z168773_0001 (CPP1.1 BB0 60053 BB-H&P-D 5 Z XI) 13 Number of Scans 300 Delay 16 Pulse Width 10.0000 17 Presaturation Prequency 16 Acuisition 0.9175 Time 19 Acquisition 2024-08-20709:18:44 Date 21 Gouse 225 22 Spectrometer 150.91 Prequency 23 Spectral Width 35714.3 24 Lovest - 2750.3 Prequency 25 Nucleus 13C 26 Acquired Size 32768 27 Spectral Size 32768	4 Owner	nmrsu						SO₂Ph
6 Instrument Avance NEO 600 7 Author 8 Solvent CDC13 9 Temperature 298, 2 10 Pulse Sequence zgpg30 11 Experiment 10 12 Probe Z168773.0001 (CPP1.1 BBO 60053 BB-HAP-D-05 Z XT) 13 Number of Scans 300 14 Receiver Gai 101.0 15 Relaxation 2.0000 Delay 16 Pulse Witht 10.0000 17 Presaturation Frequency 18 Acquisition 2024-08-29T22:54:50 Date 20 Modification 2024-08-30T09:18:44 Date 21 Class 22 Spectrometer 150.91 Frequency 23 Spectral Width 5714.3 24 Lowest - 2750.3 Frequency 25 Nucleus 13C 26 Acquired Size 32768	5 Site							
7 Author 8 Solvent CDC13 9 Temperature 298.2 10 Pulse Sequence zsps30 11 Experiment 1D 2 Probe Z168773.0001 (CPP1.1 BB0 GOS3 BB-HEP-D-05 Z XT) 3 Number of Scans 300 14 Receiver Gain 101.0 15 Relaxation 2.0000 Delay 16 Pulse Width 10.0000 17 Presaturation Frequency 18 Acquisition 0.9175 Time 19 Acquisition 2024-08-29T22:54:50 Date 20 Modification 2024-08-29T22:54:50 Date 21 Class 22 Spectrometer 150.91 Frequency 23 Spectral Width 36714.3 24 Lowest - 2750.3 Frequency 25 Nucleus 13C 26 Acquirol Size 32768 27 Spectral Size 32768	6 Instrument	Avance NEO 600						Olivie
S Solvent CDC13 9 Temperature 298.2 10 Pulse Sequence 298.2 11 Experiment 10 12 Probe Z168773.0001 (CPP1.1 B80 (CONS) BB-H&H-D-05 Z XT) 13 Number of Scans 300 14 14 Receiver Gain 101.0 15 Relaxation 2.0000 Delay 16 Pulse Fidth 16 Pulse Fidth 10.0000 17 Presaturation Frequency 18 Acquisition 2024-08-29722:54:50 Date 2024-08-20709:18:44 Pate 21 Class 22 Spectrometer 150.91 Frequency 25 SNclaus 23 Spectral Width 35714.3 24 Lowest -2750.3 Frequency 25 SNclaus 25 Nuclaus 13C 26 Acquired Size 32768 27 Spectral Size 32768	7 Author							
9 Temperature 298.2 10 Pulse Sequence zep30 11 Experiment 1D 12 Probe Z168773_0001 (CPP1.1 BB0 60053 BB-H&P-D-05 Z XT) 13 Number of Scans 300 14 Receiver Gain 101.0 15 Relaxation 2.0000 Delay 16 Pulse Width 10.0000 17 Tresaturation Frequency 18 Acquisition 0.9175 Time 19 Acquisition 2024-08-29T22:54:50 Date 21 Class 22 Spectrameter 150.91 Frequency 23 Spectral Width 35714.3 24 Lowest -2750.3 Frequency 25 Nucleus 13C 26 Acquired Size 32768 27 Spectral Size 32768	8 Solvent	CDC13						
10 Pulse Sequence spp30 75H 11 Experiment 10 12 Probe 2168773 001 (CPPL 1 BB0 60053 B6 HBF-D-05 Z XT) 13 Number of Scans 30 60053 B6 HBF-D-05 Z XT) 14 Receiver Gain 10.0 15 Relaxation 2.0000 Delay 16 Pulse Width 16 Pulse Width 10.0000 17 Preseturation Frequency 18 Acquisition 0.9175 Time 19 Acquisition 2024-08-29722:54:50 Date 20 Modification 2024-08-30709:18:44 Date 22 Spectrometer 150.91 Frequency 23 Spectral Width 35714.3 24 Lorest -2750.3 Frequency 25 Ncleus 25 Ncleus 13C 26 Acquired Size 32768 27 Spectral Size 32768	9 Temperature	298.2						
11 Experiment 10 12 12 Probe Z168773.0001 (CPP1.1 BB0 60053 BB-H&F-D-05 Z XT) 13 13 Number of Scans 300 14 Receiver Gain 10.0 15 Relaxation 2.0000 2.0000 15 Delay 16 Prise Width 10.0000 17 17 Presaturation Frequency 0.9175 11 11 18 Acquisition 0.9175 11 11 19 Acquisition 2024-08-29T22:54:50 20 20 Date 20 204-08-30T09:18:44 20 Date 22 Spectrometer 150.91 Frequency 23 Spectral Size 137 24 Lowest -2750.3 27 Frequency 132 23768 23768 27 Spectral Size 32768 23768	10 Pulse Sequence	zgpg30						A ≥ H
12 Probe 60053 BB-H&P-D-05 Z XT) 13 Number of Scans 300 14 Receiver Gain 101.0 15 Relaxation 2.0000 Delay 16 Pulse Width 10.0000 17 Presturation Frequency 18 Acquisition 0.9175 Time 19 Acquisition 2024-08-29T22:54:50 Date 20 Modification 2024-08-30T09:18:44 Date 21 Class 22 Spectrometer 150.91 Frequency 23 Spectral Width 35714.3 24 Lowest - 2750.3 Frequency 25 Nucleus 13C 26 Acquired Size 32768 27 Spectral Size 32768	11 Experiment	1D						25
13 Number of Scans 300 14 Receiver Gain 101.0 15 Relaxation 2.0000 Delay 16 Pulse Width 10.0000 17 Presaturation Frequency 18 Acquisition 0.9175 Time 19 Acquisition 2024-08-29122:54:50 Date 20 Modification 2024-08-30T09:18:44 Date 21 Class 22 Spectral Width 35714.3 22 Spectral Width 35714.3 24 Lowest - 2750.3 Frequency 25 Nucleus 13C 26 Acquired Size 32768 27 Spectral Size 32768	12 Probe	Z168773_0001 (CPP1.1 BB0 600S3 BB-H&F-D-05 Z XT)						
14 Receiver Gain 101.0 15 Relaxation 2.0000 Delay 16 Pulse Width 16 Pulse Width 10.0000 17 Presaturation Frequency 18 Acquisition 0.9175 Time 19 Acquisition 20 Modification 2024-08-29T22:54:50 Date 20 21 Class 22 22 Spectrometer 150.91 Prequency 23 23 Spectral Width 35714.3 24 Lowest -2750.3 Prequency 25 25 Nucleus 13C 26 Acquired Size 32768 27 Spectral Size 32768	13 Number of Scans	s 300						
15 Relaxation 2.000 Delay 16 Pulse Width 10.0000 17 Presaturation Frequency 18 Acquisition 0.9175 Time 19 Acquisition 2024-08-29T22:54:50 Date 20 Modification 2024-08-30T09:18:44 Date 21 Class 22 Spectrometer 150.91 Frequency 23 Spectral Width 35714.3 24 Lowest -2750.3 Frequency 25 Nucleus 13C 26 Acquired Size 32768 27 Spectral Size 32768	14 Receiver Gain	101.0						
16 Pulse Width 10.0000 17 Presaturation Frequency 18 Acquisition 0.9175 Time 19 Acquisition 19 Acquisition 2024-08-29T22:54:50 Date 20 Modification 20 Modification 2024-08-30T09:18:44 Date 21 Class 22 Spectrometer 150.91 Frequency 23 Spectral Width 35714.3 24 Lowest -2750.3 Frequency 25 Nucleus 13C 26 Acquired Size 32768 27 Spectral Size 32768	15 Relaxation Delay	2.0000						
17 Presturation Frequency 18 Acquisition 0.9175 Time 19 Acquisition 2024-08-29T22:54:50 Date 20 Modification 2024-08-30T09:18:44 Date 21 Class 22 Spectrometer 150.91 Frequency 23 Spectral Width 35714.3 24 Lowest -2750.3 Frequency 25 Nucleus 13C 26 Acquired Size 32768 27 Spectral Size 32768	16 Pulse Width	10.0000						
18 Acquisition 0.9175 Time 0 19 Acquisition 2024-08-29T22:54:50 Date 0 20 Modification 2024-08-30T09:18:44 Date 0 21 Class 0 22 Spectrometer 150.91 Frequency 0 23 Spectral Width 35714.3 24 Lowest -2750.3 Frequency 0 25 Nucleus 13C 26 Acquired Size 32768 27 Spectral Size 32768	17 Presaturation Frequency							
19 Acquisition 2024-08-29T22:54:50 Date 20 Modification 20 Modification 2024-08-30T09:18:44 Date 21 Class 21 Class 22 Spectrometer 150.91 Frequency 23 Spectral Width 35714.3 24 Lowest -2750.3 Frequency 25 Nucleus 13C 26 Acquired Size 27 Spectral Size 32768	18 Acquisition Time	0. 9175						
20 Modification 2024-08-30T09:18:44 Date 21 Class 22 Spectrometer 150.91 Frequency 23 Spectral Width 35714.3 24 Lowest -2750.3 Frequency 25 Nucleus 13C 26 Acquired Size 32768 27 Spectral Size 32768	19 Acquisition Date	2024-08-29T22:54:50						
21 Class 22 Spectrometer 150.91 Frequency 23 Spectral Width 35714.3 24 Lowest -2750.3 Frequency 25 Nucleus 13C 26 Acquired Size 32768 27 Spectral Size 32768	20 Modification Date	2024-08-30T09:18:44						
22 Spectrometer 150.91 Frequency 23 Spectral Width 23 Spectral Width 35714.3 24 Lowest -2750.3 Frequency 25 Nucleus 13C 26 Acquired Size 27 Spectral Size 32768 27 Spectral Size 32768	21 Class							
23 Spectral Width 35714.3 24 Lowest -2750.3 Frequency 25 Nucleus 13C 26 Acquired Size 32768 27 Spectral Size 32768	22 Spectrometer Frequency	150. 91						
24 Lowest -2750.3 Frequency 25 Nucleus 13C 26 Acquired Size 32768 27 Spectral Size	23 Spectral Width	35714. 3						
Frequency 25 Nucleus 13C 26 Acquired Size 32768 27 Spectral Size 32768	24 Lowest	-2750.3						
25 Nucleus 13C 26 Acquired Size 32768 27 Spectral Size 32768	Frequency							
26 Acquired Size 32768 27 Spectral Size 32768	25 Nucleus	13C				il I		
27 Spectral Size 32768	26 Acquired Size	32768						
	27 Spectral Size	32768						
La de								
					······································		[*]	

S113

-10

Parameter	Value												SO₂Ph	
1 Title	YYP-G-175-2-1-0904-1.10.1.1r											//-N	í Í	
2 Comment													стом	е
3 Origin	Bruker BioSpin GmbH												l	
4 Owner	nmrsu										\sim	$ \sim \sim$	\checkmark	
5 Site														
6 Instrument	Avance Neo 400M										X	\sim		
7 Author											4 30	26		
8 Solvent	CDC13													
9 Temperature	298.1													
10 Pulse Sequence	zg30													
11 Experiment	1D													
12 Probe	Z163739_0254 (PI HR-BB0400S1- BBF/ H/ D-5.0-Z SP)													
13 Number of Scans	16													
14 Receiver Gain	101.0													
15 Relaxation Delay	1.0000													
16 Pulse Width	8. 0000													
17 Presaturation Frequency														
18 Acquisition Time	3. 9977													
19 Acquisition Date	2024-09-04T22:47:42													
20 Modification Date	2024-09-05T09:30:06													
21 Class														
22 Spectrometer	400. 18													
23 Spectral Width	8196.7		İ						ĺ					
24 Lowest Frequency	-1636.8						1			1				
25 Nucleus	1H													
26 Acquired Size	32768													
27 Spectral Size	65536								li l					
			1 1	1 h				l.						
									ulll					
			屮 婐	भ म		ŀ	т	┍╴──┡┠╫╟						
			91- 97- 83-	00-00		0	00 00	90 - 4 98 - 4	23	94 49 13	24-01-			
			- 0 0	-		ſ	<u>i</u>	<u>- ~ ~</u>	<u>ה</u> ה	<u></u>				
16 15 14	13 12 11 10	9	8	7 6	5	4	3	2	1	0	-1	-2	-3	-4

S114

Parameter	Value	222.2233.2222.222.222.222.222.2222.222	18. 16. 08.	4.7	6.9 6.5 6.0	6.188.9715.289.2002
1 Title	YYP- G-175-2-1-0904. 11. 1. 1r					
2 Comment						
3 Origin	Bruker BioSpin GmbH					,SO₂Ph
4 Owner	nmrsu					//─Ń
5 Site						OMe
6 Instrument	Avance NEO 600					
7 Author						
8 Solvent	CDC13					
9 Temperature	298.2					λ. H
10 Pulse Sequence	zgpg30					26
11 Experiment	1D					
12 Probe	Z168773_0001 (CPP1.1 BB0 600S3 BB-H&F-D-05 Z XT)					
13 Number of Scans	251					
14 Receiver Gain	101.0					
15 Relaxation Delay	2.0000					
16 Pulse Width	10.0000					
17 Presaturation Frequency						
18 Acquisition Time	0.9175					
19 Acquisition Date	2024-09-04T14:47:13					
20 Modification Date	2024-09-04T14:56:02					
21 Class						
22 Spectrometer Frequency	150.91					
23 Spectral Width	35714.3					
24 Lowest Frequency	-2746.1	li.				
25 Nucleus	13C					
26 Acquired Size	32768				Li Li	
27 Spectral Size	32768					
	An and a first a booth of a loss to all constitutions and and also all others are an all only a shall be as to A first and a second and a second a second and		land the land of the second second second second second second second second second second second second second	ning ang magnagina ng mga n Ng mang ng mang ng mga ng mga ng mga ng mga ng mga ng mga ng mga ng mga ng mga ng mga ng mga ng mga ng mga ng mg	New York Company Street, Stree	a series de la contra la contra de la contra de la contra de la contra contra contra de la contra de la contra
			- <u> - -</u>			· · · · · · · · · · · · · · · · · · ·

—7.26 —6.87 -5.26—3.84 —3.49

-2.55

ÇOOMe

, Me

Parameter	Value
1 Title 2 Comment	YYP-F-098-1-1.10.1.1r
3 Origin 4 Owner 5 Site	Bruker BioSpin GmbH nmrsu
6 Instrument 7 Author	Avance NEO 600
8 Solvent	CDC13
9 Temperature	298.0
10 Pulse Sequence	zg30
11 Experiment	1D
12 Probe	Z168773_0027 (CPP1.1 BBO 600S3 BB-H&F-D-05 Z XT)
13 Number of Scans	2
14 Receiver Gain	71.8
15 Relaxation Delay	1.0000
16 Pulse Width	11.1300
17 Presaturation Frequency	
18 Acquisition Time	2.7525
19 Acquisition Date	2023-05-05T22:09:24
20 Modification Date	2023-05-06T09:05:20
21 Class	
22 Spectrometer Frequency	600. 15
23 Spectral Width	11904.8
24 Lowest Frequency	-2260.5
25 Nucleus	1H
26 Acquired Size	32768
27 Spectral Size	65536

15

6

	-166. 1 -158. 6	∽143. 3 ~142. 1	-124. 5 116 0	-94. 7	82. 6 77. 4 77. 2 76. 9	-56. 6 -51. 9	-22.2
Parameter	Value		ļ	I) TH		I
1 Title 2 Comment	YYP-F-098-1-1.11.1.1r						
3 Origin 4 Owner 5 Site	Bruker BioSpin GmbH nmrsu						
6 Instrument 7 Author	Avance NEO 600						
8 Solvent 9 Temperature 10 Pulse Sequence 11 Experiment	CDC13 298.0 zgpg30 1D						
12 Probe	Z168773_0027 (CPP1.1 BB0 600S3 BB-H&F-D-05 Z XT)						
13 Number of Scans 14 Receiver Gain 15 Relaxation Delay 16 Pulse Width 17 Presaturation Frequency	30 101. 0 2. 0000 9. 8900						
18 Acquisition Time 19 Acquisition Date 20 Modification Date 21 Class	0.9175 2023-05-05T22:11:39 2023-05-06T09:05:20						
22 Spectrometer Frequency	150.91						
23 Spectral Width 24 Lowest Frequency	35714.3 -2759.1						
26 Acquired Size 27 Spectral Size	32768 32768					1	
			I				

210 200 190 180 170 160 150 140 130 120 110 100 S117

-10

ParameterValue1 TitleYP-F-091-3-2.11.1.1r2 Comment3 OriginBruker BioSpin GubH4 Ownernmrsu5 Site6 InstrumentAvance NEO 6007 Author8 SolventCDC139 Temperature298.110 Pulse Sequencezpg2011 Experiment1012 ProbeZ168773 0027 (CPPL 113 Number of Scans2614 Receiver Gain101.015 Relaxation Delay2000016 Fulse Width9.890017 PreseturationPropency18 Acquisition Date2023-05-08719:03:1320 Modification Date2023-05-08719:15:4421 Class2222 Spectrometer150.91Prequency:2747.023 Shoctral Width35714.324 Lowest Frequency:376825 Nucleus:37626 State:3768		—168. 0 —157. 7	~139.9 ~135.7 ~132.6	$<^{122.5}_{122.4}$ -116.4	 $\overbrace{76.9}^{77.4}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
2 Comment 3 Origin Bruker BioSpin GmbH 4 Owner nmrsu 5 Site	Parameter 1 Title	Value YYP-F-091-3-2.11.1.1r				
6 Instrument Avance NEO 600 7 Author 8 Solvent CDC13 9 Temperature 298.1 10 Pulse Sequence zgg30 11 Experiment 1D 12 Probe Z168773_0027 (CPP1.1 BB0 60053 BB-H&F-D-05 Z TT) 13 Number of Scans 26 14 Receiver Gain 101.0 15 Relaxation Delay 2.0000 16 Pulse Width 9.8900 17 Presaturation Frequency 18 Acquisition Time 0.9175 19 Acquisition Date 2023-05-08T19:03:13 20 Modification Date 2023-05-08T19:15:44 21 Class 22 Spectral Width 35714.3 24 Lowest Frequency -2747.0 25 Nucleus 13C 26 Acquired Size 32768	2 Comment 3 Origin 4 Owner 5 Site	Bruker BioSpin GmbH nmrsu				Me
8 Solvent CDC13 9 Temperature 298.1 10 Pulse Sequence zgp30 11 Experiment 10 12 Probe Z168773_0027 (CPP1.1 B80 600S3 BB-H&F-D-05 Z XT) 13 Number of Scans 26 14 Receiver Gain 101.0 15 Relaxation Delay 2.0000 16 Pulse Width 9. 8900 17 Presaturation Frequency 2023-06-08719:03:13 20 Modification Date 2023-06-08719:03:13 20 Modification Date 2023-06-08719:03:13 22 Spectral Width 35714.3 24 Lovest Frequency -2747.0 25 Nucleus 13C 26 Acquired Size 32768	6 Instrument 7 Author	Avance NEO 600				
9 Temperature 298.1 10 Pulse Sequence zgpg30 11 Experiment 1D 12 Probe Z168773_0027 (CPP1.1 B0 60053 BB-H&F-D-05 Z XT 13 Number of Scans 26 14 Receiver Gain 101.0 15 Relaxation Delay 2.0000 16 Pulse Width 9.8900 17 Presaturation Frequency 18 Acquisition Time 0.9175 19 Acquisition Date 2023-05-08T19:03:13 20 Modification Date 2023-05-08T19:03:13 20 Modification Date 2023-05-08T19:15:44 21 Class 22 Spectral Width 35714.3 24 Lowest Frequency -2747.0 25 Nucleus 13C 26 Acquired Size 32768	8 Solvent	CDC13				31
11 Experiment 10 12 Probe Z168773_0027 (CPP1.1 B80 600S3 BB-H&F-D-05 Z XT) 13 Number of Scans 26 14 Receiver Gain 101.0 15 Relaxation Delay 2.0000 16 Pulse Width 9.8900 17 Presaturation Frequency 18 Acquisition Time 0.9175 19 Acquisition Date 2023-05-08T19:03:13 20 Modification Date 2023-05-08T19:15:44 21 Class 22 Spectrometer 150.91 Frequency 23 Spectral Width 35714.3 24 Lowest Frequency -2747.0 25 Nucleus 13C 26 Acquired Size 32768 27 Spectrol Size 32768	9 Temperature 10 Pulse Sequence	298. 1 zgng30				
12 Probe Z168773_0027 (CPP1.1 B0 60053 BB-H&F-D-05 Z XT) 13 Number of Scans 26 14 Receiver Gain 101.0 15 Relaxation Delay 2.0000 16 Pulse Width 9.8900 17 Presaturation Frequency 9.8900 18 Acquisition Time 0.9175 19 Acquisition Date 2023-05-08T19:03:13 20 Modification Date 2023-05-08T19:15:44 21 Class 22 Spectrometer 150.91 Frequency 23 Spectral Width 35714.3 24 Lowest Frequency -2747.0 25 Nucleus 13C 26 Acquired Size 32768	11 Experiment	1D				
13 Number of Scans 26 14 Receiver Gain 101.0 15 Relaxation Delay 2.0000 16 Pulse Width 9.8900 17 Presaturation Frequency 9.8900 18 Acquisition Time 0.9175 19 Acquisition Date 2023-05-08T19:03:13 20 Modification Date 2023-05-08T19:15:44 21 Class 22 Spectrometer 22 Spectrometer 150.91 Frequency 23 Spectral Width 35714.3 24 Lowest Frequency -2747.0 25 Nucleus 13C 26 Acquired Size 32768 27 Spectrol Size 32768	12 Probe	Z168773_0027 (CPP1.1 BB0 600S3 BB-H&F-D-05 Z XT)			I	
14 Receiver Gain 101.0 15 Relaxation Delay 2.0000 16 Pulse Width 9.8900 17 Presaturation - Frequency 0.9175 18 Acquisition Time 0.9175 19 Acquisition Date 2023-05-08T19:03:13 20 Modification Date 2023-05-08T19:15:44 21 Class 22 22 Spectrometer 150.91 Frequency - 23 Spectral Width 35714.3 24 Lowest Frequency - 25 Nucleus 13C 26 Acquired Size 32768	13 Number of Scans	26				
15 Relaxation Delay 2.0000 16 Pulse Width 9.8900 17 Presaturation Frequency 18 Acquisition Time 0.9175 18 Acquisition Date 2023-05-08T19:03:13 20 Modification Date 2023-05-08T19:03:14 21 Class 22 Spectrometer 22 Spectrometer 150.91 Frequency	14 Receiver Gain	101.0				
16 Pulse Width 9.8900 17 Presaturation . Frequency . 18 Acquisition Time 0.9175 18 Acquisition Date 2023-05-08T19:03:13 20 Modification Date 2023-05-08T19:15:44 21 Class . 22 Spectrometer 150.91 Frequency . 23 Spectral Width 35714.3 24 Lowest Frequency . 25 Nucleus 13C 26 Acquired Size 32768	15 Relaxation Delay	2.0000				
17 Presaturation Frequency 18 Acquisition Time 0.9175 19 Acquisition Date 2023-05-08T19:03:13 20 Modification Date 2023-05-08T19:15:44 21 Class 22 Spectrometer 150. 91 Frequency 150. 91 Frequency 23 Spectral Width 35714. 3 24 Lowest Frequency -2747. 0 25 Nucleus 13C 26 Acquired Size 32768	16 Pulse Width	9.8900				
18 Acquisition Time 0.9175 19 Acquisition Date 2023-05-08T19:03:13 20 Modification Date 2023-05-08T19:15:44 21 Class 22 Spectrometer 22 Spectrometer 150.91 Frequency 23 Spectral Width 35714.3 24 Lowest Frequency -2747.0 25 Nucleus 13C 26 Acquired Size 32768	17 Presaturation Frequency					
19 Acquisition Date 2023-05-08T19:03:13 20 Modification Date 2023-05-08T19:15:44 21 Class 22 Spectrometer 150.91 Frequency 23 Spectral Width 35714.3 24 Lowest Frequency -2747.0 25 Nucleus 13C 26 Acquired Size 32768	18 Acquisition Time	0.9175				
20 Modification Date 2023-05-08T19:15:44 21 Class 22 Spectrometer 22 Spectrometer 150.91 Frequency 23 Spectral Width 35714.3 24 Lowest Frequency 25 Nucleus 13C 26 Acquired Size 32768 27 Spectral Size 32768	19 Acquisition Date	2023-05-08T19:03:13				
21 Class 22 Spectrometer Frequency 23 Spectral Width 35714.3 24 Lowest Frequency -2747.0 25 Nucleus 13C 26 Acquired Size 32768	20 Modification Date	2023-05-08T19:15:44				
22 Spectrometer 150.91 Frequency 23 Spectral Width 23 Spectral Width 35714.3 24 Lowest Frequency -2747.0 25 Nucleus 13C 26 Acquired Size 32768 27 Spectral Size 32768	21 Class					
23 Spectral Width 35714.3 24 Lowest Frequency -2747.0 25 Nucleus 13C 26 Acquired Size 32768 27 Spectral Size 32768	22 Spectrometer Frequency	150.91				
24 Lowest Frequency -2747.0 25 Nucleus 13C 26 Acquired Size 32768 27 Spectral Size 32768	23 Spectral Width	35714.3				
25 Nucleus 13C 26 Acquired Size 32768 27 Spectral Size 32768	24 Lowest Frequency	-2747.0		1		
26 Acquired Size 32768	25 Nucleus	13C		i i		
27 Spectral Size 32768	26 Acquired Size	32768				
	27 Spectral Size	32768				

S119

-10

1 Tile YYP-F-107-3-1.22.1.1r 2 Comment Bruker BioSpin GabH 1 Owner marsu 5 Site 6 6 Instrument Avance Neo 400M 7 Author 8 8 Solvant CDC13 9 Temperature 296,1 10 Puise Sequence 230 11 Tilsperiment 10 12 Probe Z163739_0254 (PI HR- BB0000S1-BBF/H/D-5.0- Z SP) 3 13 Nubber of Scans 3 14 Receiver Gain 32.0 15 Relation Delay 1.0000 16 16 Propercey 18 18 Acoustilon Delay 1.0000 17 17 Propercey 18 18 Acoustilon Date 2023-07-26709:18:32 20 20 Nodification Date 2023-07-26709:18:32 20 21 Class 11 23 Spectrometer 400.18 Provocey 23 Spectrometer 21 Class 37 </th <th>Parameter</th> <th>Value</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Parameter	Value						
3 Grigin Bruker BioSpin GabH 4 Grunz marsu 5 Site 6 Instrument Avance Neo 400M 7 Author 8 Solvent CDCl3 9 Temperature 296.1 10 Pulse Square zg30 11 Experiment 1D 12 Probe Z163739 0251 (PI HR- B09100S1-DBF/ H/ D-5.0- Z SP) 13 Number of Scans 3 14 Receiver Gain 32.0 15 Relaxition Dalay 1.0000 16 Pulse Width 8.0000 17 Presuturation Prequency 13 Acquisition Thes 2023-07-26T09:18:32 22 Obsofrication Date 2023-07-26T09:18:32 22 Spectral Size 65536 T Spectral Size 65536 T Spectral Size 65536	1 Title 2 Comment	YYP-F-107-3-1.22.1.1r						COOMe ↓ Me
4 0 wore: mmrsu 5 Site 6 6 1 nstrument Avance Neo 400M 7 Author 8 8 Solvent CDC13 9 Temperature 295.1 10 Pulso Sequence \$\$283.1 12 Probe 2183739_0254 (PI HF 12 Probe 2183739_0254 (PI HF 13 Number of Seams 3 14 Receiver Gain 32.0 15 Relaxation Delay 1.0000 16 Pulse Width 8.0000 17 Preseturation 9977 18 Acculation Time 3.9977 19 Accuisition Time 1.997 21 Lowest Frequencey 3.500<	3 Origin	Bruker BioSpin GmbH						
§ Site ● Instrument Avance Neo 400M 6 Instrument Avance Neo 400M 7 Author B Solvent CDC13 9 Temperature 296.1 DPules Sequence zg30 11 Experiment 10 12 Probe Z163739.0254 (PI HR-BB040051-BBPC H/ D-5.0-Z Sf 13 Number of Scans 3 14 Reciver Gain 32.0 15 Relaxation Delay 1.0000 16 Progenery Sg 18 Acquisition Time 3.9977 19 Acquisition Time 3.9977 19 Acquisition Tate 2.02-07-26709:18:32 20 Decisition Date 2023-07-26709:33:19 21 Class 22 Spectral Bith 8166.7 24 Lowest Frequency 23.768 27.768 27 Spectral Size 5536 Streamer 5536 Streamer Streamer 19 Acquired Size 5536 Streamer Streamer Streamer Streamer 27 Spectral Size 5536 Streamer Streamer Streamer Streamer Streamer 10 Streamer 15 Streamer 15 Streamer Streamer Streamer Streamer Streamer	4 Owner	nmrsu						
6 Instrument Avance Neo 400M 7 Author 8 Solvent CDC13 9 Temperature 296.1 10 Pulse Sequence zg30 11 Experiment 10 12 Probe Z163739_0254 (PT HR- BB04000051-BBF/ B/ D=5.0- Z SP) 13 Number of Scans 3 14 Receiver Gain 32.0 15 Relaxation Delay 1.0000 16 Pulse With 8.0000 17 Preseturation Frequency 18 Acquisition Tabe 3.9977 19 Acquisition Tabe 2023-07-26T09:33:19 21 Class 22 Spectral With 8.196.7 21 Lorest Frequency - 26709:33:19 21 Class 22 Spectral With 8.196.7 23 Spectral With 18. 25 Nucleus 11 25 Nucleus 11 25 Acquired Size 32768 27 Spectral Size 65536	5 Site							Me / OH
7 Author 8 Solvent CDC13 9 Temperature 296.1 10 Pulse Sequence zg30 11 Raperisent 10 12 Probe Z163739_0254 (PI HR- BB04000S1-BBF/ H/ D=5.0- Z SP) Sol 13 Wubber of Scans 3 14 Receiver Gain 32.0 15 Relation Delay 1.0000 16 Pulse With 8.0000 17 Prequency 18 18 Acquisition Time 3.0977 19 Acquisition Time 3.0977 19 Acquisition Date 2023-07-26T09:18:32 20 Modification Date 2023-07-26T09:33:19 21 Class 22 23 Spectral Width 8196.7 24 Lowest Frequency -1637.0 25 Acquired Size 32768 27 Spectral Size 6536	6 Instrument	Avance Neo 400M						
B Solvent CDC13 9 Temperature 296.1 10 Pulse Sequence 230 11 Experiment 10 12 Probe Z163739.0254. (PI HR-BE040051-BBF/H/D-5.0-Z SP) 13 Number of Scans 3 14 Receiver Gain 32.0 15 Relaxation Delay 1.0000 16 Pulse Width 16 Pulse Width 8.0000 17 Presaturation Frequency 18 Acquisition Table 2.023-07-26709:18:32 20 Modification Date 2023-07-26709:33:19 21 Class 22 Spectrometer 400.18 Prequency 1637.0 25 Nucleus 1H 26 Acquired Size 32766 32766 27 Spectral Size 65536 1H 00 14	7 Author							
9 Temperature 296.1 10 Pulse Sequence zg30 11 Experiment 1D 12 Probe Z163739.0254 (PT HR- BB0400051-BBF/ H/ D-5.0- Z SP) 13 Number of Scans 3 14 Receiver Gain 32.0 15 Relaxation Delay 1.0000 16 Pulse Width 8.0000 17 Presaturation Frequency H 18 Acquisition Time 3.0977 19 Acquisition Date 2023-07-26T09:18:32 20 Modification Date 2023-07-26T09:18:32 22 Spectrometer 400.18 Frequency -1637.0 23 Spectral Width 8196.7 24 Lorest Frequency -1637.0 25 Nucleus IH 26 Acquired Size 32768 27 Spectral Size 6536 10 00 11 11 11 11 11 11 11 11 11 11 11 1	8 Solvent	CDC13						N
10 Pulse Sequence 2g30 11 Expriment 10 12 Probe Z163739_0254 (PI HR-B040051-BBF/H/P=5.0-Z59) 13 Number of Scans 3 14 Receiver Gain 32.0 15 Relaxation Delay 10000 16 Pulse Width 8.0000 17 Presaturation Frequency 18 Acquisition Date 2023-07-26709:18:32 20 Modification Date 2023-07-26709:18:32 21 Class 22 Spectral Vidth 8196.7 23 Spectral Width 8196.7 24 Lorest Frequency -1637.0 25 Nucleus IH 26 Acquired Size 32768 27 Spectral Size 65536	9 Temperature	296.1						S6
11 Experiment 10 12 Probe Z163739_0254 /PI HR-BB0400S1-BBF/H/D-5.0-Z 2 SP) Z SP) 13 Number of Scans 3 14 Receiver Gain 32.0 15 Relaxation Delay 1.0000 16 Pulse Width 8.0000 17 Presaturation Frequency 18 Acquisition Date 2023-07-26109:18:32 20 Modification Date 2023-07-26109:18:32 20 Modification Date 2023-07-26109:18:32 20 Modification Date 2023-07-26109:33:19 21 Class 22 Spectrometer 23 Spectral Width 8196.7 24 Lorest Frequency -1637.0 25 Nucleus 1H 26 Acquired Size 32768 27 Spectral Size 6536	10 Pulse Sequence	zg30						
12 Probe Z163739.0254 (PI IH- Breduency 13 Number of Scans 3 14 Receiver Gain 32.0 15 Relaxation Delay 1.0000 16 Fulse Width 8.0000 17 Presenturation Frequency 9977 18 Acquisition Date 2023-07-26T09:18:32 20 Modification Date 2023-07-26T09:33:19 21 Class 22 Spectrameter 22 Spectrameter 400.18 Frequency 23 Spectral Width 8196.7 24 Lowest Frequency 1637.0 25 Nucleus 11 26 Acquired Size 32768 27 Spectral Size 65536	11 Experiment	1D						
13 Number of Scans 3 14 Receiver Gain 32.0 15 Relaxation Delay 1.0000 16 Pulse Width 8.0000 17 Presaturation Frequency 18 Acquisition Time 3.9977 19 Acquisition Date 2023-07-26T09:18:32 20 Modification Date 2023-07-26T09:33:19 21 Class 22 22 Spectral Width 8196.7 24 Lowest Frequency	12 Probe	Z163739_0254 (PI HR- BB0400S1-BBF/ H/ D-5.0- Z SP)						
14 Receiver Gain 32.0 15 Relaxation Delay 1.0000 16 Pulse Width 8.0000 17 Tresturation Frequency 18 Acquisition Time 3.9977 19 Acquisition Date 2023-07-26T09:18:32 20 Modification Date 2023-07-26T09:33:19 21 Class 22 Spectrometer 23 Spectral Width 8196.7 24 Lowest Frequency -1637.0 25 Nucleus 1H 26 Acquired Size 32768 27 Spectral Size 65536	13 Number of Scans	3						
15 Relaxation Delay 1.0000 16 Pulse Width 8.0000 17 Presaturation Prequency 18 Acquisition Time 18 Acquisition Date 2023-07-26T09:18:32 20 Modification Date 2023-07-26T09:18:32 20 Modification Date 2023-07-26T09:33:19 21 Class 22 22 Spectrometer 400.18 Frequency 1637.0 25 Nucleus 1H 26 Acquired Size 32768 27 Spectral Size 65536	14 Receiver Gain	32.0						
16 Pulse Width 8.0000 17 Presaturation Frequency	15 Relaxation Delay	1.0000						
17 Presaturation Frequency 18 Acquisition Time 3.9977 19 Acquisition Date 2023-07-26T09:18:32 20 Modification Date 2023-07-26T09:33:19 21 Class 22 Spectrometer 400.18 Frequency 23 Spectral Width 8196.7 24 Lowest Frequency - 1637.0 25 Nucleus 1H 26 Acquired Size 32768 27 Spectral Size 65536	16 Pulse Width	8.0000						
18 Acquisition Time 3.9977 19 Acquisition Date 2023-07-26T09:18:32 20 Modification Date 2023-07-26T09:33:19 21 Class 22 22 Spectrometer 400.18 Frequency 23 23 Spectral Width 8196.7 24 Lowest Frequency -1637.0 25 Nucleus 1H 26 Acquired Size 32768 27 Spectral Size 65536	17 Presaturation Frequency							
19 Acquisition Date 2023-07-26T09:18:32 20 Modification Date 2023-07-26T09:33:19 21 Class 22 Spectrometer 400.18 Frequency 23 Spectral Width 8196.7 24 Lowest Frequency -1637.0 25 Nucleus 1H 26 Acquired Size 32768 27 Spectral Size 65536	18 Acquisition Time	3.9977						
20 Modification Date 2023-07-26T09:33:19 21 Class 22 Spectrometer 400.18 Frequency 23 Spectral Width 8196.7 24 Lowest Frequency -1637.0 25 Nucleus 1H 26 Acquired Size 32768 27 Spectral Size 65536	19 Acquisition Date	2023-07-26T09:18:32						
22 Spectrometer 400.18 Frequency 23 Spectral Width 23 Spectral Width 8196.7 24 Lowest Frequency -1637.0 25 Nucleus 1H 26 Acquired Size 32768 27 Spectral Size 65536 V V	20 Modification Date 21 Class	2023-07-26T09:33:19				I		
23 Spectral Width 8196.7 24 Lowest Frequency -1637.0 25 Nucleus 1H 26 Acquired Size 32768 27 Spectral Size 65536	22 Spectrometer Frequency	400. 18						
24 Lowest Frequency -1637.0 25 Nucleus 1H 26 Acquired Size 32768 27 Spectral Size 65536 H 1 V H <	23 Spectral Width	8196.7						
25 Nucleus 1H 26 Acquired Size 32768 27 Spectral Size 65536 V V V	24 Lowest Frequency	-1637.0						
26 Acquired Size 32768 27 Spectral Size 65536 H H H H N <td< td=""><td>25 Nucleus</td><td>1H</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	25 Nucleus	1H						
27 Spectral Size 65536	26 Acquired Size	32768						
	27 Spectral Size	65536						
					l.		Mr. M. M. M.	
·····································								ш
000079797977977979779797979797979797979				T N	T T			
<u>0,0,0,7,7,0,7,0,0,0,0,0,0,0,0,0,0,0,0,0</u>			ō.	<u> </u>	0	7 7	- ~ ~ ~ ~ ~ ~ ~	000
	<u>, , , , , , , , , , , , , , , , , , , </u>			~		יירי רי	·	o n o
$.3.0\ 12.5\ 12.0\ 11.5\ 11.0\ 10.5\ 10.0\ 9.5\ 9.0\ 8.5\ 8.0\ 7.5\ 7.0\ 6.5\ 6.0\ 5.5\ 5.0\ 4.5\ 4.0\ 3.5\ 3.0\ 2.5\ 2.0\ 1.5\ 1.0\ 0.5\ 0.$	3.0 12.5 12.0 11.5	5 11.0 10.5 10.0 9.5).0 8.5 8.0 7.5	7.0 6.5 6.	0 5.5 5.0	4.5 4.0 3.5 3.0) 2.5 2.0 1.5 1.	0 0.5 0.0 -0.5 -1.0

	-168.6 -157.0	∼140.0 ∽135.5 ∽133.2	-127.5 -122.5 -121.1 -118.4		$\sqrt{77.5}$ $\sqrt{76.8}$	∕53.8 √51.9 √50.2	$\begin{array}{c} 42.3\\ 33.2\\ 33.2\\ 33.2\\ 33.2\\ 22.6\\ 119.1\\ 119.1\\ 114.0\\ 1$
Parameter	Value		וור ו		אר)))(ווו ז וודר ר
1 Title 2 Comment	YYP-F-107-3-1.23.1.1r						
3 Origin	Bruker BioSpin GmbH						COOMe I
4 Owner	nmrsu						Me
5 Site							
6 Instrument 7 Author	Avance Neo 400M						Ме ОН
8 Solvent	CDC13						
9 Temperature	296.5						
10 Pulse Sequence	zgpg30						V ≥ H
11 Experiment	1D						S6
12 Probe	Z163739_0254 (PI HR- BB0400S1-BBF/ H/ D-5.0- Z SP)						
13 Number of Scans	37						
14 Receiver Gain	39.0						
15 Relaxation Delay	2.0000						
16 Pulse Width	7.8100						
17 Presaturation Frequency							
18 Acquisition Time	1.3763						
19 Acquisition Date	2023-07-26T09:22:08						
20 Modification Date	2023-07-26T09:33:19				4		
21 Class							
22 Spectrometer Frequency	100.63						
23 Spectral Width	23809.5						
24 Lowest Frequency	-1842.2						
25 Nucleus	13C	1					
26 Acquired Size	32768						
27 Spectral Size	32768						
مىيى بەر الەر ئەر مەسىيە ئەڭ. مەمىيە مەر مەر مەر مەر مەر مەر مەر مەر مەر مە	مع المراجع الم	منط به الم روانين الله، المحاديق والتوقيق وما بل البرانين	و مدرج المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع	a designed to a life state and a state of the state of the state of the state of the state of the state of the	من عن المحمد المالين الله عنه المحمد والتي	المراجع الم	
ىرىنىدىر بىلىغىرىكى بىغۇرىنى بايىرا يەرلىغىلىغانىيە يارىغىيىيى	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	tensalan di kasila dan dan mantan dalam dalam dalam dalam dalam dalam dalam dalam dalam dalam dalam dalam dalam	an an an an an an an an an an an an an a	a d. 19dan (na tao kata ang 19da ng	der bei Liefer, der der bei der bei der bei der bei der bei der bei der bei der bei der bei der bei der bei der	مى يەرىپى يەرىپىيە بەر يەرىپىيە يەرىپىلىرىغى يەرىپىلىرىغى يەرىپىيە يەرىپىلىرىغى يەرىپىلىرىغى يەرىپىلىرىغى يەرى يەرىپىلىرىغى يەرىپىلىرىغى يەرىپىلىرىغى يەرىپىلىرىغى يەرىپىلىرىغى يەرىپىلىرىغى يەرىپىلىرىغى يەرىپىلىرىغى يەرىپىلى	समीरामन प्रदेश पि उस सम्पर थे। विकित संग्रेज कर स्था का (उस्प्रीय संग्रेसक में क्रिक्रोसक स्थाप कर कर कर कर क समीरामन प्रदेश पि उस सम्पर थे। विकित संग्रेज कर स्था का (उस्प्रीय संग्रेसक में क्रिक्रोसक कर क्रिक्रो कर कर कर क
<u> </u>		 	<u> </u>	· · · · · ·			<u> </u>
210 200 19	0 180 170 160	150 140 1	30 120 110	100 90 S121	80 70 6	60 50	40 30 20 10 0 -10

				—7.73 —7.20	-6.60 -3.82 -2.65	522	2000 2010 2010							-1. 20 -1. 20 -1. 12			0-0-0 28.0 28.0
Parameter	Value]															
1 Title 2 Comment	YYP-F-108-1-1.1.1.1r														cu L	DOMe Me	
3 Origin	Bruker BioSpin GmbH															Ĩ	
4 Owner	nmrsu															ッ	
5 Site														A M			
6 Instrument	AVANCE NEO 400 MHZ DIGITAL NMR SPECTROMETER																
7 Author														I ≩H			
8 Solvent	CDC13														33		
9 Temperature	295.5																
10 Pulse Sequence	zg30																
11 Experiment	1D																
12 Probe	Z116098_0723 (PA BB0 400S1 BBF-H-D-05 Z SP)																
13 Number of Scans	5																
14 Receiver Gain	101.0																
15 Relaxation Delay	1.0000																
16 Pulse Width 17 Presaturation Frequency	8. 5800																
18 Acquisition Time 19 Acquisition Date 20 Modification Date 21 Class	3.9977 2023-05-11T21:55:38 2023-05-11T22:09:32																
22 Spectrometer Frequency	400. 13																
23 Spectral Width	8196.7																
24 Lowest Frequency	-1637.1									1	ļ	tı –					
25 Nucleus	1H											li					
26 Acquired Size	32768																
27 Spectral Size	65536																
				0.98⊸	1.00 -≖			3.06⊣ 1.91 -	2.92	4.28 [∎] 3.02 [∎]	3.18 0.99	3.10	0.95 2.91	3.14 2.97			
6 15 14	13 12 11	10	9	8	7	6	5	4	3	2		1	0	-1	-2	-3	-4

	—167. 9 —156. 6	—140. 5	—133.4	120.7 119.8 119.7		78. 2 77. 4 76. 9	$\overbrace{51.6}{55.2}$	$\begin{array}{c} 41. \\ 41. \\ 32. \\ 33. \\$
Parameter	Value	1						
1 Title 2 Comment	YYP-F-108-1-1.10.1.1r							COOMe
3 Origin 4 Owner 5 Site	Bruker BioSpin GmbH nmrsu							Me
6 Instrument 7 Author	Avance NEO 600							
8 Solvent	CDC13							∕ §Ē
9 Temperature	298.1							33
10 Pulse Sequence	zgpg30							
11 Experiment	1D							
12 Probe	Z168773_0027 (CPP1.1 BBO 600S3 BB-H&F-D-05 Z XT)							
13 Number of Scans	64							
14 Receiver Gain	101.0							
15 Relaxation Delay	2.0000							
16 Pulse Width	9.8900							
17 Presaturation Frequency								
18 Acquisition Time	0.9175							
19 Acquisition Date	2023-05-12T10:51:09							
20 Modification Date 21 Class	2023-05-12T13:20:25							
22 Spectrometer Frequency	150.91							
23 Spectral Width	35714.3							
24 Lowest Frequency	-2746.0							
25 Nucleus	130							
26 Acquired Size	32768							
27 Spectral Size	32768							
<u>.</u>		-						
			فسيغابون		1991-1914-19-19-19-19-19-19-19-19-19-19-19-19-19-		ومتعاليه المستعم	

S123

-10

Parameter	Value											/H M≏
1 Title 2 Comment	YYP-G-100-1-1.10.1.1r											, we
3 Origin	Bruker BioSpin GmbH									Ν		
0wner	nmrsu											
5 Site	init ou										Í	
5 Instrument	Avance NEO 600									\sim	\sim	
7 Author											1	
Solvent	CDC13										35	
) Temperature	298.2											
0 Pulse Sequence	zg30											
1 Experiment	1D											
l2 Probe	Z114607_0339 (PA BB0 600S3 BBF-H-D-05 Z SP)											
3 Number of Scans	3											
4 Receiver Gain	101.0											
5 Relaxation Delay	1.0000											
6 Pulse Width	10.0000											
17 Presaturation Frequency												
8 Acquisition Time	2.7525											
9 Acquisition Date	2023-10-17T19:07:47											
0 Modification Date	2023-10-17T19:13:43			I								
21 Class										1		
22 Spectrometer Frequency	600. 15											
3 Spectral Width	11904. 8											
4 Lowest Frequency	-2260.9											
5 Nucleus	1H											
6 Acquired Size	32768											
7 Spectral Size	65536		1									
									Ŀ			
				L		L	·		al Mill			
			щ	щ								
			1.00	1.00			2.05 2.98	1.05- 1.28- 1.18- 1.97-	1.35 1.83 1.27	1.24- 1.08- 1.08- 1.08-	2.95- 3.30 3.12	
, , , , , , , , , , , , , , , , , , , 					- I				•	· · ·		
4 13	12 11 10	9	8	7	6	5	4	3	2	1	0	_

-

—172. 9	—157. 5	—141. 6 —134. 5	$\overbrace{119.5}^{120.0}$	78. 4 77. 4 77. 0 77. 0	—56. 2 —52. 2	$\begin{array}{c} 41.9\\ 41.9\\ 41.1\\ 32.1\\ 33.5\\ 33.3\\$
	·		·			

1 Title 2 Comment	YYP-F-127-1-1.11.1.1r							, j	
3 Origin	Bruker BioSpin GmbH							Me	
4 Owner	nmrsu								
5 Site									
6 Instrument	Avance NEO 600							X	
7 Author								35	
8 Solvent	CDC13								
9 Temperature	298.1								
10 Pulse Sequence	zgpg30								
11 Experiment	1D								
12 Probe	Z168773_0027 (CPP1.1 BB0 600S3 BB-H&F-D-05 Z XT)								
13 Number of Scans	44								
14 Receiver Gain	101.0								
15 Relaxation Delay	2.0000								
16 Pulse Width	9.8900								
17 Presaturation Frequency									
18 Acquisition Time	0.9175								
19 Acquisition Date	2023-05-25T10:40:11				I				
20 Modification Date	2023-05-25T10:55:33								
21 Class									
22 Spectrometer Frequency	150.91								
23 Spectral Width	35714.3								
24 Lowest Frequency	-2747.0								
25 Nucleus	13C								
26 Acquired Size	32768			I.		I	п. Т	ul . I	
27 Spectral Size	32768	!	İ	1					
					 IJ	 			

210 200 190 180 170 160 150 140 130 120 110

Value

Parameter

S125

-10

Parameter	Value													соон
1 Title 2 Comment	YYP-G-103-2-2.10.1.1r												но	Me
3 Origin	Bruker BioSpin GmbH													
4 Owner	nmrsu												Ме	
5 Site												\wedge	$\psi \uparrow \psi$.0
6 Instrument	Avance NEO 600											L	Ϋ́	
7 Author												T.	.H	
8 Solvent	CDC13													
9 Temperature	298.2											(+)-l	Hongoqı	iercin A
10 Pulse Sequence	zg30												1	
11 Experiment	1D													
12 Probe	Z114607_0339 (PA BBO 600S3 BBF-H-D-05 Z SP)													
13 Number of Scans	8													
14 Receiver Gain	101. 0													
15 Relaxation Delay	1.0000													
16 Pulse Width	10.0000													
17 Presaturation Frequency														
18 Acquisition Time	2.7525													
19 Acquisition Date	2023-10-31T19:04:29													
20 Modification Date	2023-10-31T19:31:50													
21 Class														
22 Spectrometer Frequency	600.15									1 1				
23 Spectral Width	11904.8								ļ	i il				
24 Lowest Frequency	-2261.0													
25 Nucleus	1H													
26 Acquired Size	32768													
27 Spectral Size	65536			I										
-														
					i						i			
	I													
									L II L ANG					
					4						+ (0 -			
	1.02				1.0(0.95 3.20	1.1.	0.96	1.2	1.1 3.3	1.1	3.0(3.0! 3.0!		
15 14	13 12 11	10 9	8	7	6	5	4	3	2	1	0	-1	-2	-3
					S126									

	—176. 1	—164. 0 —159. 0	—141.6	 ✓112. 8 ✓108. 2 ✓102. 7 	78. 6 77. 4 76. 9	—56.3 —51.7	$\begin{array}{c} 42. \\ 41. \\ 41. \\ 33. \\ 33. \\ 33. \\ 33. \\ 33. \\ 33. \\ 51. \\ 12. \\ 15. \\$
Parameter	Val	lue					(
1 Title 2 Comment	YYP-G-103-2-	-2.11.1.1r					НО
3 Origin 4 Owner 5 Site	Bruker BioSp nmrsu	oin GmbH					Me
6 Instrument 7 Author	Avance NEO 6	500					H
8 Solvent	CDC13						(+)-Hongoque
9 Temperature	298.2						1
10 Pulse Sequence	zgpg30						
11 Experiment	1D						
12 Probe	Z114607_0339 600S3 BBF-H-	9 (PA BBO -D-05 Z SP)					
13 Number of Scans	400						
14 Receiver Gain	101.0						
15 Relaxation Delay	2.0000						
16 Pulse Width	11.5000						
17 Presaturation Frequency							
18 Acquisition Time	0.9175						
19 Acquisition Date	2023-10-31T1	19:25:27					
20 Modification Date	2023-10-31T1	19:31:50					
21 Class							
22 Spectrometer Frequency	150.91						
23 Spectral Width	35714.3						
24 Lowest Frequency	-2745.7						
25 Nucleus	13C						
26 Acquired Size	32768						
27 Spectral Size	32768						
		I			Į.		
	harring an purpose	were the particular second		and a state of the second second second second second second second second second second second second second s			an a gan a balan a sha a sha a sha a sha a sha a sha a sha a sha a sha a sha a sha a sha a sha a sha a sha a s

S127

-10

1 Title 2 Comment	YYP-G-078-1-1.3.1.1r				0
2 Comment					
					Me
o urigin di	Bruker BioSpin GmbH				
4 Owner	amrsu				
5 Site					HU.
6 Instrument	Avance Neo 400M				27
7 Author					
8 Solvent (CDC13				
9 Temperature f	296. 7				
10 Pulse Sequence	zg30				
11 Experiment	1D				
12 Probe	Z163739_0254 (PI HR- 3B0400S1-BBF/ H/ D-5.0- Z SP)				
13 Number of Scans	4				
14 Receiver Gain	48.4				
15 Relaxation Delay	1. 0000				
16 Pulse Width	3. 0000				
17 Presaturation Frequency					
18 Acquisition Time	3. 9977				
19 Acquisition Date	2023-09-19T17:10:57				
20 Modification Date 2	2023-09-19T17:25:43				
21 Class					
22 Spectrometer 4 Frequency	400.18				
23 Spectral Width {	3196. 7				
24 Lowest Frequency –	-1636.9				
25 Nucleus	1H				
26 Acquired Size	32768				
27 Spectral Size	35536				· · · · · · · · · · · · · · · · · · ·
		I		վես ա	
		l	 	ÜÜÜ	
			۲	ૡ ૡ, ਸ	
			9	4 2 9	8 ~ 9 ~ 9 9 8 7 9 4 5
			 0.	0.6.0	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Parameter	Value
1 Title 2 Comment	YYP-G-078-1-1.4.1.1r
3 Origin 4 Owner 5 Site	Bruker BioSpin GmbH nmrsu
6 Instrument 7 Author	Avance Neo 400M
8 Solvent	CDC13
9 Temperature	297.1
10 Pulse Sequence	zgpg30
11 Experiment	1D
12 Probe	Z163739_0254 (PI HR- BB0400S1-BBF/ H/ D-5.0- Z SP)
13 Number of Scans	31
14 Receiver Gain	39.0
15 Relaxation Delay	2.0000
16 Pulse Width	7.8100
17 Presaturation Frequency	
18 Acquisition Time	1.3763
19 Acquisition Date	2023-09-19T17:14:49
20 Modification Date	2023-09-19T17:25:43
21 Class	
22 Spectrometer Frequency	100. 63
23 Spectral Width	23809.5
24 Lowest Frequency	-1829.6
25 Nucleus	13C
26 Acquired Size	32768
27 Spectral Size	32768

-10

വ

ŝ

210 200 190 180 170 160 150 140 130 120 110

S129

Parameter	Value]									ОП	
1 Title 2 Comment	YYP-G-082-1-3.1.1.1r										Me	Me
3 Origin	Bruker BioSpin GmbH										I	
4 Owner 5 Site	nmrsu									BnO		
6 Instrument 7 Author	Avance										28	
8 Solvent	CDC13											
9 Temperature	295. 3											
10 Pulse Sequence	zg30											
11 Experiment	1D											
12 Probe	Z116098_0723 (PA BBO 400S1 BBF-H-D-05 Z SP)											
13 Number of Scans	8											
14 Receiver Gain	101.0											
15 Relaxation Delay	1.0000											
16 Pulse Width	8.5800											
Frequency												
18 Acquisition Time	3.9977											
19 Acquisition Date	2023-09-21T18:48:10											
20 Modification Date	2023-09-21T19:56:53											
21 Class												
22 Spectrometer Frequency	400. 13											
23 Spectral Width	8196.7											
24 Lowest Frequency	-1637.4											
25 Nucleus	1H		. 1									
26 Acquired Size	32768		Ϊİ									
27 Spectral Size	65536											
									. I.			
			N							M	L	
			<u>ل</u>		Ч	ታ ጘ	म्रम्	ተ				
			4.30 1.10		1.00	1.16 1.02	1.00 1.03	1.00	1.10 1.93 2.13 3.06 2.19 2.19	3.08 3.02 3.80		
3.5 12.5	11.5 10.5 9.	.5 8.5	7.5	6.5	5.5	4.5	3.5	I	2.5 1.5	0.5	-0.5	_]

S131

-10

I Tile YTF-G-106-2-1.2. fid 2 Comment Bruker BioSpin GabH 4 Owner marau 5 Site Instrument 6 Instrument Molifield 9 Tomporture 298.1 10 Pulso Square zx30 11 Export 20000 10 Pulso Square zx30 12 Probe Z1(1069_0723 (PA BB0 10 Partice 203-11-04T15:23:52 20 Modification Data 2023-11-04T15:23:52 20 Modification Data 2023-11-04T15:23:52 20 Modification Data 2023-11-04T15:31:06 21 Class II Bayer 22 Spectral Nidth 8.196.7 31 Hower -163.0 25 Nucleus III Bayer 27 Spectral Size 3268 27 Spectral Size 3268 27 Spectral Size 3268 27 Spectral Size 5000 000 28 Spectral Size 5000 000 28 Spectral Size 5000 000 9000 9000 91000 10000 12 Class 110000 13 Spectranouter 100.13	Parameter	Value	1						Br
2 Comment 3 Origin Broker BioSpin GabH 4 Owner marau 5 Site 6 Instrument AVANCE NEO 400 MHZ SPECTROMETER 8 Solvent CDC13 9 Temperature 298.1 10 Pulse Sequence 2430 11 Experiment ID 12 Probe 2116098 0723 (PA BBO 40051 BBF-H-D-05 Z SP) 13 Number of Scans 4 14 Receiver Gain 10.1 15 Relatation Belay 1.0000 16 Palse Statation Belay 1.0000 16 Palse Statation Belay 1.0000 17 Pressturation Prequency 18 Acquisition Time 3.9977 19 Acquisition Bate 2023-11-04715:23:52 20 Modification Bate 2023-11-04715:31:06 21 Class 22 Spectral Nuth 8196.7 23 Lorest Frequency 1837.0 23 Neutrel Nuth 8196.7 24 Lorest Frequency 1837.0 25 Neutons III 22 Spectral Size 22768 27 Spectral Size 2768 27 Spectral Size 32768 27 Spectral Size 327 Spectral Size 32768 27 S	1 Title	YYP-G-106-2-1.2.fid							Ma
3 Origin Bruker BioSpin (mbH 4 Owner musu 5 5 Site 7 6 Instrument AVANCE NEO 400 MHZ DIGITAL NMR SPECTROMETER 7 7 Author 8 8 Solvent COCI3 9 Temperature 298.1 10 Divise Sequence 2430 11 Experiment 1D 10 Divise Sequence 2430 11 Experiment 1D 12 Probe 12 Divise 10051 BBF-H-D-05 2. SP) 13 Number of Scans 4 14 Receiver Gain 101.0 15 Relaxation Diate 2023-11-04715:23:52 20 Modification Date 2023-11-04715:33.06 21 Class 2 22 Spectral Nicht B16.7 24 Lowest Frouency - 1637.0 25 Nucleus H 26 Acquired Size 32768 27 Spectral Size 65506	2 Comment								Me
4 Owner mursu Bio Dictrat. Name 5 Site 6 Instrument AVANCE NEO 400 NHZ DICTATA. NAME SUBCITATA. NAME 9 Temperature 290. 1 10 Pulse Sequence 200. 1 10 Pulse Sequence 200. 1 10 Pulse Sequence 200. 1 12 Probe 2116098_0723 (PA BBO 4005 IBP-10-05 2 SP) 13 Number of Scans 4 14 Receiver Cain 10.0 15 Relaxation Delay 1.0000 16 Pulse Width 8.8100 17 Presenterion Prequency 18 22 Spectral Nick 2023-11-04T15:23:52 20 Modification Date 2023-11-04T15:23:52 21 Lowest Prequency 1-057.0 22 Lowest Prequency 1-057.0 25 Nucleus 11 25 Sequence 7-057.0 25 Nucleus 11 25 Sequence 7-057.0 25 Nucleus 11 25 Sequence 7-057.0 25 Nucleus 11 26 Modification 257.0 25 Nucleus 11 25 Sequence 7-057.0 25 Nucleus 11 10 Pulse Width 8196.7 27 Spectral Size 65536	3 Origin	Bruker BioSpin GmbH							
5 Site 6 Instrument AVARCE NEO 400 MHZ DIGITAL NAR SPECITOMETER 7 Author 8 Solvent COCI3 9 Temperature 298.1 10 Pulse Sequence 283.0 10 Pulse Sequence 283.0 10 Pulse Sequence 283.0 11 Experiment 10 12 Probe Z116098 0723 (PA BBO 40051 BBF-H-D-05 Z SP) 13 Momber of Scans 4 14 Receiver Gain 101.0 15 Relaxation Belay 1.0000 16 Pulse With 8.8100 17 Presutration Prequency 18 Acquisition Tate 3.9977 18 Acquisition Date 2023-11-04T15:23:52 20 Modification Date 2023-11-04T15:23:52 22 Spectral With 8196.7 24 Lorest Frequency - 1637.0 25 Nucleus III 25 Spectral Size 65536 T State 27 Spectral Size 65536	4 Owner	nmrsu							BnO
6 Instrueent AVANCE NED 4000 MHZ DIGTATLA. NWR SPECTROMETER 10 7 Author 8 Solvent CDC13 9 Temperature 298.1 10 11 10 11 10 11 10 11 10 11 10 11 10 11 11 10 11 11 10 11 </td <td>5 Site</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>H</td>	5 Site								H
7 Author 8 Solvent CDC13 9 Temperature 298.1 10 Pulse Sequence zg30 11 Experiment ID 12 Probe Z116098.0723 (PA BB0 40051 EBF+1D=05 Z SP) 13 Number of Seans 4 14 Receiver Gain 101.0 15 Relaxation Delay 1.0000 16 Pulse Width 8.8100 17 Presaturation Frequency 3.9977 19 Acquisition Tabe 3.9977 19 Acquisition Date 2023-11-04T15:23:52 20 Modification Date 2023-11-04T15:31:06 21 Class 22 Spectrometer 22 Spectral Vidth 8196.7 24 Lowest Frequency -1637.0 25 Nucleus 11 11 M 26 Acquired Size 27 Spectral Size 65536	6 Instrument	AVANCE NEO 400 MHZ DIGITAL NMR SPECTROMETER							10
8 Solvent CDC13 9 Temperature 298.1 10 Poles Sequence zg30 11 Experiment 10 12 Probe Z116098.0723. (PA BB0 40051 BBF-H-D-05 Z SP) 13 Number of Scans 4 14 Receiver Gain 101.0 15 Relaxation Delay 1.0000 16 Pulse Width 8.8100 17 Presaturation Frequency 18 Acquisition Tate 3.9977 19 Acquisition Tate 3.9977 19 Acquisition Tate 3.9977 19 Acquisition Tate 3.9977 19 Acquisition Date 2023-11-04T15:23:52 20 Modification Date 2023-11-04T15:31:06 21 Class 22 Spectral Fidth 8196.7 24 Lowst Frequency 23 Spectral Vidth 8196.7 24 Lowst Frequency -1637.0 25 Nucleus IR 26 Acquired Size 32768 27 Spectral Size 65306 T T T T T T T T T T T T T T T T T T T	7 Author								
9 Temperature 298.1 10 Pulse Sequence 2g30 11 Experiment ID 12 Probe 2015 BBF-H-D-05 Z SP) 13 Number of Scans 4 14 Receiver Gain 101.0 15 Relaxation Pollay 1.0000 16 Pulse Width 8.8100 17 Presultration Frequency B. 2023-11-04T15:23:52 20 Modification Date 2023-11-04T15:31:06 21 Class 22 22 Spectral Width 8196.7 22 Spectral Width 8196.7 24 Lowest Frequency - 1637.0 25 Nucleus IH 26 Acquired Size 32768 27 Spectral Size 65536	8 Solvent	CDC13							
10 Pulse Sequence zg30 11 Experiment 1D 21 Probe Z116098 0723 (PA BB0 40051 BBF-HD-D5 Z SP) 13 Number of Scans 4 14 Receiver Gain 101.0 15 Relaxation Delay 1.0000 16 Pulse Width 8.8100 17 Presaturation Frequency 18 Acquisition Date 2023-11-04T15:23:52 20 Modification Date 2023-11-04T15:23:52 20 Modification Date 2023-11-04T15:23:52 22 Spectrale Via 8196.7 23 Spectral Width 8196.7 24 Lowest Prequency 23 Spectral Size 65536 The State Sta	9 Temperature	298.1							
11 Expreiment 10 12 Probe 2116098_0723 (PA BB0 400S1 BBF-H-D-05 Z SP) 13 Number of Scans 4 14 Receiver Gai 101.0 15 Relaxation Delay 1.0000 16 Palse Width 8.8100 17 Presaturation Frequency 18 Acquisition Time 3.9977 19 Acquisition Tome 2023-11-04T15:23:52 20 Modification Date 2023-11-04T15:31:06 21 Class 22 Spectral Width 8196.7 24 Lowest Frequency 23 Spectral Width 8196.7 24 Lowest Frequency - 1637.0 25 Nucleus IR 26 Acquired Size 32768 27 Spectral Size 65536	10 Pulse Sequence	zg30							
12 Probe 2116098.0723 (PA BBO 400S1 BBF-H-D-05 Z SP) 13 Number of Scans 4 14 Receiver Gain 101.0 15 Relaxation Delay 1.0000 16 Pulse Width 8. 8100 17 Presaturation Frequency 5 18 Acquisition Time 3. 9977 19 Acquisition Date 2023-11-04T15:23:52 20 Modification Date 2023-11-04T15:23:52 20 Modification Date 2023-11-04T15:31:06 21 Class 22 Spectral Width 23 Spectral Width 8196.7 24 Lowest Frequency -1637.0 25 Nucleus 1H 26 Acquired Size 32768 27 Spectral Size 65536	11 Experiment	1D							
13 Number of Scans 4 14 Receiver Gain 101.0 15 Relaxation Delay 10000 16 Pulse Width 8.8100 17 Presaturation Prequency	12 Probe	Z116098_0723 (PA BB0 400S1 BBF-H-D-05 Z SP)							
14 Receiver Gain 101.0 15 Relaxation Delay 1.0000 16 Pulse Width 8.8100 17 Presaturation Frequency 18 Acquisition Time 3.9977 19 Acquisition Date 2023-11-04T15:23:52 20 Modification Date 2023-11-04T15:31:06 21 Class 22 Spectrometer 23 Spectral Width 8196.7 24 Lowest Frequency -1637.0 25 Nucleus 1H 26 Acquired Size 32768 27 Spectral Size 65536	13 Number of Scans	4							
15 Relaxation Delay 1.0000 16 Pulse Width 8.8100 17 Presaturation Frequency 18 Acquisition Time 3.9977 19 Acquisition Date 2023-11-04T15:23:52 20 Modification Date 2023-11-04T15:31:06 21 Class 22 Spectrometer 22 Spectral Width 8196.7 24 Lowest Frequency -1637.0 25 Nucleus 1H 26 Acquired Size 32768 27 Spectral Size 65536	14 Receiver Gain	101.0							
16 Pulse Width 8. 8100 17 Presaturation Frequency	15 Relaxation Delay	1.0000							
17 Presaturation Frequency 18 Acquisition Time 3.9977 19 Acquisition Date 2023-11-04T15:23:52 20 Modification Date 2023-11-04T15:31:06 21 Class 22 Spectrometer 400.13 Frequency 23 Spectral Width 8196.7 24 Lowest Frequency -1637.0 25 Nucleus 1H 26 Acquired Size 32768 27 Spectral Size 65536 T T T T T T T T T T T T T T T T T T T	16 Pulse Width	8.8100							
18 Acquisition Time 3. 9977 19 Acquisition Date 2023-11-04T15:23:52 20 Modification Date 2023-11-04T15:31:06 21 Class 22 Spectrometer 400.13 Frequency 1637.0 23 Spectral Width 8196.7 24 Lowest Frequency -1637.0 25 Nucleus 1H 26 Acquired Size 32768 27 Spectral Size 65536	17 Presaturation Frequency								
19 Acquisition Date 2023-11-04T15:23:52 20 Modification Date 2023-11-04T15:31:06 21 Class 22 Spectrometer 400.13 Frequency 23 Spectral Width 8196.7 24 Lowest Frequency -1637.0 25 Nucleus 1H 26 Acquired Size 32768 27 Spectral Size 65536 T T T T T T T T T T T T T T T T T T T	18 Acquisition Time	3.9977							
20 Modification Date 2023-11-04T15:31:06 21 Class 22 Spectrometer 400.13 Frequency 23 Spectral Width 8196.7 24 Lowest Frequency -1637.0 25 Nucleus 1H 26 Acquired Size 32768 27 Spectral Size 65536 T T T T T T T T T T T T T T T T T T T	19 Acquisition Date	2023-11-04T15:23:52							
22 Spectrometer 400.13 Frequency 23 Spectral Width 8196.7 24 Lowest Frequency -1637.0 25 Nucleus 1H 26 Acquired Size 32768 27 Spectral Size 65536	20 Modification Date 21 Class	2023-11-04T15:31:06							
23 Spectral Width 8196.7 24 Lowest Frequency -1637.0 25 Nucleus 1H 26 Acquired Size 32768 27 Spectral Size 65536	22 Spectrometer Frequency	400. 13							
24 Lowest Frequency -1637. 0 25 Nucleus 1H 26 Acquired Size 32768 27 Spectral Size 65536	23 Spectral Width	8196.7							
25 Nucleus 1H 26 Acquired Size 32768 27 Spectral Size 65536 4 7 7 7 7 7 880 50 50 50 50 50 50 50 50 50 50 50 50 50	24 Lowest Frequency	-1637.0							
26 Acquired Size 32768 27 Spectral Size 65536	25 Nucleus	1H							
27 Spectral Size 65536	26 Acquired Size	32768							
	27 Spectral Size	65536				d 66 a	. L.	1 Jul 11	
			W					_ h. M	L
			ĻĦ	۲	\mathbf{H} \mathbf{H}	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		ㅋ ㅋ ㅋ	
$\mathbf{v} \qquad \mathbf{v} \qquad $			1.09 1.04	1.00	1.05 1.08	1.01	1.02 3.08 3.25 3.25	1.35 2.25 3.09 3.08 3.08	
					- - -				

---1

Value G-106-2-1.3.fid er BioSpin GmbH CE NEO 400 MHZ CAL NMR CROMETER 32 30 998_0723 (PA BB0 1 BBF-H-D-05 Z SP)
G-106-2-1.3.fid er BioSpin GmbH 1 CE NEO 400 MHZ CAL NMR CROMETER 3 2 30 998_0723 (PA BB0 1 BBF-H-D-05 Z SP)
er BioSpin GmbH CE NEO 400 MHZ FAL NMR FROMETER 3 3 30 998_0723 (PA BBO 1 BBF-H-D-05 Z SP)
er BioSpin GmbH 1 CE NEO 400 MHZ CAL NMR CROMETER 3 2 30 998_0723 (PA BBO 1 BBF-H-D-05 Z SP)
2 2 NEO 400 MHZ 2 AL NMR 2 ROMETER 3 3 3 9 98_0723 (PA BBO 1 BBF-H-D-05 Z SP)
CE NEO 400 MHZ CAL NMR CROMETER 3 2 30 998_0723 (PA BBO 1 BBF-H-D-05 Z SP)
CE NEO 400 MHZ CAL NMR CROMETER 3 2 30 998_0723 (PA BB0 1 BBF-H-D-05 Z SP)
3 2 30 998_0723 (PA BB0 1 BBF-H-D-05 Z SP)
3 2 30 998_0723 (PA BB0 BBF-H-D-05 Z SP)
2 30 998_0723 (PA BB0 1 BBF-H-D-05 Z SP)
30 998_0723 (PA BB0 1 BBF-H-D-05 Z SP)
098_0723 (PA BB0 BBF-H-D-05 Z SP)
098_0723 (PA BB0 BBF-H-D-05 Z SP)
00
000
53
-11-04T15:28:23
-11-04T15:31:06
52
9.5
. 6
3
j

-10

210 200 190 180 170 160 150 140 130 120 110 100 S133

Parameter	Valua												
	Varue												
1 Title	YYP-G-085-1-3.3.1.1r												
2 Comment												000	la
3 Origin	Bruker BioSpin GmbH												ie
4 Owner	nmrsu												Me
5 Site													
6 Instrument	Avance NEO 600										Мо		
7 Author												🗸 ómon	1
8 Solvent	CDC13											Ĩ	
9 Temperature	298.1									В		/	
10 Pulse Sequence	zg30										I € H		
11 Experiment	1D										3	2	
12 Probe	Z114607 0339 (PA BBO												
	600S3 BBF-H-D-05 Z SP)												
13 Number of Scans	2												
14 Receiver Gain	71.8												
15 Relaxation Delay	1.0000												
16 Pulse Width	10.0000												
17 Presaturation Frequency													
18 Acquisition Time	2.7525												
19 Acquisition Date	2023-09-23T17:00:01												
20 Modification Date	2023-09-23T17:24:40												
21 Class													
22 Spectrometer Frequency	600. 15												
23 Spectral Width	11904.8												
24 Lowest Frequency	-2260.9												
25 Nucleus	1H												
26 Acquired Size	32768								1		. h		
27 Spectral Size	65536								İ		i I		
		1				I							
			1	ku l						1			
			ĺ	li i			e u			,			
			ш			нн	———						
			90	2 7		18	0000	17	98 97 97	90 91	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
			° °			<u>, 4</u>	 -	ກໍຕ ້ ⊂	0400	<u></u>	с с о о		
· 1 · [·] ·] · ·		· · · ·			. [· 1 ·			, <u> </u>		· ·	

210 200 190 180 170 160

S135 -10

Parameter	Value										COOM	le
1 Title 2 Comment	YYP-G-088-1-1.11.1.1r											Ме
3 Origin	Bruker BioSpin GmbH									Ма	\sim	
4 Owner	nmrsu										人 / Ы	
5 Site										ÍŤ	Ì	
6 Instrument	Avance NEO 600								В		<u> </u>	
7 Author										I ≦H		
8 Solvent	CDC13										S7	
9 Temperature	298.2											
10 Pulse Sequence	zg30											
11 Experiment	1D											
12 Probe	Z114607_0339 (PA BB0 600S3 BBF-H-D-05 Z SP)											
13 Number of Scans	6											
14 Receiver Gain	101.0											
15 Relaxation Delay	1.0000											
16 Pulse Width	10.0000											
17 Presaturation Frequency												
18 Acquisition Time	2.7525											
19 Acquisition Date	2023-09-25T22:16:11											
20 Modification Date 21 Class	2023-09-25T22:37:11											
22 Spectrometer Frequency	600.15											
23 Spectral Width	11904.8									1		
24 Lowest Frequency	-2260.9							I		ıll		
25 Nucleus	1H											
26 Acquired Size	32768		I									
27 Spectral Size	65536								1.1			
			i u	!								
									Nelalia	Julia.		
				ť	严	<u> </u>						
			0.95 4.00 1.09	0.96	1.00 0.96	1.03 1.04	2.94 1.04 1.96	3.07 0.97 2.96 1.06	1.14 2.92 1.09 1.20	3.06 2.89 2.87		
5 12.5 11	1.5 10.5 9.5	8.5	7.5	6.5	5.5	4.5	3.5	2.5	1.5	0.5	-0.5	- 1

	—168. 1 —156. 4	140.1 135.2 135.2 135.2 $133.3.3$ 122.4 122.4 122.7 1122.4 118.4	-86.8 77.4 77.2 76.9 71.6	 53. 7 51. 8 50. 3 	$\begin{array}{c} 39.0 \\ 37.7 \\ 36.9 \\ 28.4 \\ 23.5 \\ 23.5 \\ 22$
Parameter	Value				
1e	YYP-G-088-1-1.12.1.1r				
ment					
gin	Bruker BioSpin GmbH				
r	nmrsu				
9					
strument	Avance NEO 600		1		Dro
ıthor					BnO
olvent	CDC13				
emperature	298. 1				
Pulse Sequence	zgpg30				
xperiment	1D				
Probe	Z114607_0339 (PA BB0 600S3 BBF-H-D-05 Z SP)				
Number of Scans	151				
Receiver Gain	101. 0				
Relaxation Delay	2.0000				
Pulse Width	11. 5000				
Presaturation Frequency					
Acquisition Time	0.9175				
Acquisition Date	2023-09-25T22:24:59				
Modification Date	2023-09-25T22:37:12				
Spectrometer Frequency	150. 91				
Spectral Width	35714.3				
Lowest Frequency	-2746.4				
Nucleus	13C				
Acquired Size	32768				
Spectral Size	32768				
				i i i	

S137

-10

Parameter	Value			
Title	YYP-G-089-1-1.3.1.1r			
2 Comment				Me 🚺 🖬 🗍
8 Origin	Bruker BioSpin GmbH			
4 Owner	nmrsu			
5 Site				BnO
6 Instrument	Avance NEO 600			↓ ³ H
7 Author				34
8 Solvent	CDC13			
Temperature	298.2			
0 Pulse Sequence	zg30			
1 Experiment	1D			
2 Probe	Z114607_0339 (PA BB0 600S3 BBF-H-D-05 Z SP)			
3 Number of Scans	6			
4 Receiver Gain	101.0			
5 Relaxation Delay	1.0000			
6 Pulse Width	10.0000			
7 Presaturation Frequency				
8 Acquisition Time	2.7525			
9 Acquisition Date	2023-09-26T11:29:12			
0 Modification Date	2023-09-26T12:13:44			
21 Class				
22 Spectrometer Frequency	600.15			
3 Spectral Width	11904.8			
4 Lowest Frequency	-2260.9			
5 Nucleus	1H			
6 Acquired Size	32768			
27 Spectral Size	65536	i 1	ļ	
		۲ ,⊸۳		
		0.96 4.06 0.95	36.0	1.103 1.036 1.103 1.103 1.103 1.103 1.103 1.103 1.103 1.103 1.103 1.103

	—167.9 —156.6	~140.5 ~139.4	123. 4 128. 4 127. 6 120. 8	×119.4			78. 0 77. 4 77. 2 71. 2 71. 7	~55.7 .59.1	51.6	41. 1 39. 1 36. 8	22.9 222.9	21.9 21.0 19.5 15.2 15.2		
Parameter	Value]												COOMe
1 Title 2 Comment	YYP-G-089-1-1.4.1.1r												ſ	
3 Origin 4 Owner 5 Site	Bruker BioSpin GmbH nmrsu												Me	Ì
6 Instrument 7 Author	Avance NEO 600											BnO		
8 Solvent 9 Temperature 10 Pulse Sequence 11 Experiment 12 Probe	CDC13 298.1 zgpg30 1D Z114607_0339 (PA BB0 600S3 BBF=H=D=05 7 SP)												34	
13 Number of Scans 14 Receiver Gain 15 Relaxation Delay 16 Pulse Width 17 Presaturation	156 101. 0 2. 0000 11. 5000						l							
18 Acquisition Time 19 Acquisition Date 20 Modification Date 21 Class	0.9175 2023-09-26T11:38:44 2023-09-26T12:13:44													
22 Spectrometer Frequency 23 Spectral Width	150. 91 35714 - 3													
23 Spectral width 24 Lowest Frequency	-2747.2													
25 Nucleus	13C													
26 Acquired Size 27 Spectral Size	32768 32768		 !											
	. !	1.						1						
				<u> </u>	~~		Uk	la.		<u></u>				<u></u>
210 200 19	0 180 170 160	150 140	130 12	20 110	100	90 8	80 70	60	50	40	30	20	10 0	-10

7. 36 7. 37 7. 37 7. 35 7. 35 7. 35 7. 35 7. 35 7. 35 7. 35 7. 35 7. 28

63 70 92 88 43 98 67 97 5 -0.0.0

соон

36

,Me

-1.:

-0.5

				 1 1 1		1 1 1 1	1 1 1 1	
		1.01 [⊥] 4.13 1.00	1.04⊣	 1.00 [⊥] 1.06 [⊥]	1.08 1.91	2.97] 1.27] 1.11] 1.93	2.01 1.14 2.98 2.98	2.00 3.00 3.27
								M
27 Spectral Size	65536							
26 Acquired Size	32768							
25 Nucleus	1H							
24 Lowest Frequency	-1636.8						!	1
23 Spectral Width	8196.7							I
22 Spectrometer Frequency	400.18							
21 Class								
20 Modification Date	2023-10-13T14:47:08							
19 Acquisition Date	2023-10-13T12:16:23							
18 Acquisition Time	3. 9977							
17 Presaturation Frequency								
16 Pulse Width	10.0000							
15 Relaxation Delay	1.0000							
14 Receiver Gain	101. 0							
13 Number of Scans	16							
12 Probe	Z116098_0913 (PA BB0 400S1 BBF-H-D-05 Z SP)							
11 Experiment	1D							30
10 Pulse Sequence	zg30							
9 Temperature	295.2						BnO	Ϋ́ι
8 Solvent	CDC13							
6 Instrument 7 Author	Avance Neo 400M							Me
4 Owner 5 Site	nmrsu							
3 Origin	Bruker BioSpin GmbH							
2 Comment								
1 Title	YYP-G-090-2-1.10.1.1r							
lalameter	value							

	—172.8	—157.4	$\begin{array}{c} 141.7 \\ 133.4 \\ 134.5 \\ 127.6 \\ 1127.6 \\ 119.6 \\ 119.6 \\ 119.6 \end{array}$	 —55.6 —52.0	$\begin{array}{c} 41.1 \\ 32.5 \\ 33.6 \\ 33.6 \\ 33.6 \\ 33.6 \\ 33.6 \\ 23.9 \\ 23.9 \\ 15.2 \\ 15$
Parameter	Value				
1 Title 2 Comment	YYP-G-090-2-1.	11. 1. 1r			СООН
3 Origin 4 Owner 5 Site	Bruker BioSpin nmrsu	GmbH			Me
6 Instrument 7 Author	Avance Neo 400M	M			BnO
8 Solvent	CDC13				Ē
9 Temperature	295.4				36
10 Pulse Sequence	zgpg30				
11 Experiment	1D				
12 Probe	Z116098_0913 (H 400S1 BBF-H-D-C	PA BBO D5 Z SP)			
13 Number of Scans	300				
14 Receiver Gain	101.0				
15 Relaxation Delay	2.0000				
16 Pulse Width	10.0000				
17 Presaturation Frequency					
18 Acquisition Time	1.3763				
19 Acquisition Date	2023-10-13T12:3	35:08			
20 Modification Date	2023-10-13T14:4	47:09			
21 Class					
22 Spectrometer Frequency	100.63				
23 Spectral Width	23809.5				
24 Lowest Frequency	-1831.2				
25 Nucleus	13C		,l		
26 Acquired Size	32768				
27 Spectral Size	32768				
		'			

_{\$141}

-10

 $\begin{array}{c} 1.5 \\$

Parameter Title	Valu YYP-G-093-3-2	1e	1			l 1∎r r	1 1	
Title	YYP-G-093-3-2							
Comment		. 11. 1. 1r						соон
Origin Owner Site	Bruker BioSpi nmrsu	n GmbH						
Instrument Author	Avance NEO 60	0						
Solvent	CDC13							BnO
0 Pulse Sequence	zgpg30							37
1 Experiment	1D							
2 Probe	Z114607_0339 600S3 BBF-H-D	(PA BB0 -05 Z SP)						
3 Number of Scans	200							
4 Receiver Gain	101.0							
5 Relaxation Delay	2.0000							
<pre>6 Pulse Width 7 Presaturation Frequency</pre>	11. 5000							
8 Acquisition Time	0.9175					I		
9 Acquisition Date	2023-11-08T22	:17:43						
0 Modification Date	e 2023-11-09T09	:09:16						
1 Class								
2 Spectrometer Frequency	150.91							
3 Spectral Width	35714.3							
4 Lowest Frequency	-2747.3							
5 Nucleus	13C							
6 Acquired Size	32768			I				
7 Spectral Size	32768							
	I	1 1	1.1					
~~~~~~			i i					
210 200 10	0 180 17	70 160	150 140	130 12	0 110 100	90 80 70	60 50	40 30 20 10 0

### Control of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second




S145

Parameter	Value	]																<u> </u>	н
1 Title	YYP-G-112-1-1.1.1.1r																HO.	Ļ	.Me
2 Comment																		$\checkmark$	
3 Origin	Bruker BioSpin GmbH																	$\checkmark$	
4 Owner	nmrsu																Me		
5 Site																<	$\sim \sim$	$\downarrow^0$	
6 Instrument	AVANCE NEO 400 MHZ DIGITAL NMR SPECTROMETER														Ad	:0	, , , , , , , , , , , , , , , , , , ,		
7 Author																(+	)-Hongo	quercin	в
8 Solvent	CDC13																2	2	
9 Temperature	293.7																		
10 Pulse Sequence	zg30																		
11 Experiment	1D																		
12 Probe	Z116098_0723 (PA BB0 400S1 BBF-H-D-05 Z SP)																		
13 Number of Scans	8																		
14 Receiver Gain	101.0																		
15 Relaxation Delay	1.0000																		
16 Pulse Width	8.8100																		
17 Presaturation Frequency																			
18 Acquisition Time	3.9977																		
19 Acquisition Date	2023-11-14T18:20:19																		
20 Modification Date	2023-11-14T18:39:02																		
21 Class																			
22 Spectrometer Frequency	400. 13										l								
23 Spectral Width	8196.7				1								.						
24 Lowest Frequency	-1637.2										I.		1 1						
25 Nucleus	1H																		
26 Acquired Size	32768																		
27 Spectral Size	65536					I.													
		-						ú				a antis ma	h, h						
											المشالية		Mille						
	ŀт					щ		ተ			<u>ымы</u> в	<u>4 - 14164</u> 164 1646							
	1.03					1.00		1.04	<b>1.08</b> <b>3.02</b>	1.16 4.09	1.29 2.14	2.16 1.19	1.14 3.98	1.25 3.07	3.10				
16 15 14	13 12 11	10	9	8	7	<b>6</b>	5	I	4	3	,	2	1	0	I	-1	-2	-3	-4

-11.88

	—175. 7 —171. 2 —164. 0 —158. 8	—141.7	112. 7 	80. 6 78. 1 77. 4 777. 2 777. 0	—55.3 —51.4	$\begin{array}{c} 40.8\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\ 37.9\\$
Parameter	Value					соон
1 Title 2 Comment	YYP-G-112-1-1.23.1.1r					HO
3 Origin 4 Owner 5 Site	Bruker BioSpin GmbH nmrsu					Me
6 Instrument 7 Author	Avance NEO 600					AcO H
8 Solvent	CDC13			Ι		(+)-Hongoquercin B
9 Temperature	298.1					2
10 Pulse Sequence	zgpg30					
11 Experiment	1D					
12 Probe	Z114607_0339 (PA BB0 600S3 BBF-H-D-05 Z SP)					
13 Number of Scans	7500					
14 Receiver Gain	101. 0					
15 Relaxation Delay	2.0000					
16 Pulse Width	11. 5000					
17 Presaturation Frequency						
18 Acquisition Time	0.9175					
19 Acquisition Date	2023-11-16T05:08:57					
20 Modification Date	2023-11-16T09:27:54					
21 Class						
22 Spectrometer Frequency	150. 91					
23 Spectral Width	35714.3					
24 Lowest Frequency	-2921.0					
25 Nucleus	13C					
26 Acquired Size	32768					
27 Spectral Size	32768					
L						
				i i		

**210 200 190 180 170 160 150 140 130 120 110 100** S147

-10



33
ര്
ñ

-103.9

—131. 3 —126. 7



 $\overbrace{\begin{subarray}{c} -42.3\\ -37.9\\ -37.8\\ -33.15\\ -33.15\\ -33.1\\ -33.1\\ -33.1\\ -24.4\\ -24.4\\ -20.7\\ -19.2\\ -19.2\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.7\\ -20.$ ø —48.



	Parameter	Value
1	Title	YYP-D-126-2-1.11.1.1r
2	Comment	
3	Origin	Bruker BioSpin GmbH
4	Owner	nmrsu
5	Site	
6	Instrument	Avance NEO 600
7	Author	
8	Solvent	CDC13
9	Temperature	298.2
1	)Pulse Sequence	zgpg30
1	l Experiment	1D
1:	2 Probe	Z168773_0027 (CPP1.1
		BBO 600S3 BB-H&F-D-05 Z XT)
1	Number of Scans	44
1	4 Receiver Gain	101.0
1	5 Relaxation Delay	2.0000
1	3 Pulse Width	9.9100
1	7 Presaturation	
	Frequency	
	8 Acquisition Time	0.9175
	Acquisition Date	2022-02-15T10:53:06
20	) Modification Date	2023-12-05115:13:03
2	l Class	
2	2 Spectrometer	150.91
0	Frequency Speetrol Width	25714 2
	Lowest Frequency	
2	Nucleus	130
2	Acquired Size	32768
2	7 Spectral Size	32768

S149

-10

210 200 190 180 170 160 150 140 130 120 110

	Parameter	Value
1	Title	YYP-G-119-12-3.10.1.1r
2	Comment	
3	Origin	Bruker BioSpin GmbH
4	Owner	nmrsu
5	Site	
6	Instrument	Avance NEO 600
7	Author	
8	Solvent	CDC13
9	Temperature	298.2
10	Pulse Sequence	zg30
11	Experiment	1D
12	2 Probe	Z114607_0339 (PA BB0 600S3 BBF-H-D-05 Z SP)
13	Number of Scans	8
14	Receiver Gain	101.0
15	Relaxation Delay	1.0000
16	Pulse Width	10.0000
17	Presaturation Frequency	
18	Acquisition Time	2.7525
19	Acquisition Date	2023-11-28T17:36:52
20	Modification Data	$2023 - 11 - 28T17 \cdot 50 \cdot 17$

-5.12

---7.26 ---6.97 -3.48





Parameter	Value	-152.	-117.	-95.3	77.4 77.4 77.2	- 4 - 4	0				
1 Title 2 Comment	YYP-G-119-12-3. 11. 1. 1r	r'	I	I	¥		I			ò	MOM
3 Origin 4 Owner 5 Site	Bruker BioSpin GmbH nmrsu										
6 Instrument 7 Author	Avance NEO 600									l o c	MOM
8 Solvent 9 Temperature	CDC13										
10 Pulse Sequence	zgpg30										
11 Experiment 12 Probe	1D Z114607_0339 (PA BB0 600\$3 BBE-H-D-05 7 \$P)										
13 Number of Scans	200	,									
14 Receiver Gain	101. 0										
15 Relaxation Delay	2.0000										
16 Pulse Width	11. 5000										
17 Presaturation Frequency											
18 Acquisition Time	0.9175										
19 Acquisition Date	2023-11-28T17:48:04										
20 Modification Date 21 Class	2023-11-28T17:50:17										
22 Spectrometer Frequency	150. 91										
23 Spectral Width	35714.3										
24 Lowest Frequency	-2744.9										
25 Nucleus	13C										
26 Acquired Size	32768										
27 Spectral Size	32768										



Parameter         Value           1 Title         YTP-G-119-1-3.11.1.r           2 Comment         musu           3 Grigin         Bruker BioSpin GubH           4 Owner         mursu           5 Site         musu           6 Instrument         Avance NEO 600           7 Author         grigin           9 Temperature         298.1           10 Pulse Sequence         298.1           10 Pulse Sequence         298.1           10 Pulse Sequence         298.1           11 Supper funct         10           12 Probe         C114607 0338 (PA BBO 6000           13 Relaxation Delay         20000           15 Relaxation Delay         20000           16 Pulse Wildh         1.5000           17 Presenturion         Frequency           Frequency         23.11-28T11:57:17           20 Moification Date         2023.11-28T12:14:40           21 Class         22 Spectral Hidth           23 Spectral Hidth         35714.3           24 Lowest Frequency         32768           27 Spectral Size         32768	Parameter         Value           1 Title         YPr-G-119-T-3.11.1.1r           2 Comment         Bruker BioSpin Gabil           3 Origin         Bruker BioSpin Gabil           4 Owner         marsu           5 Site         Gamma           6 Instrument         Avance NEO 600           7 Awthor         8 Solvent           9 Temporature         298.1           10 Pulse Sequence         sgg30           11 Experiment         ID           12 Probe         2714407.0339 (PA BDO           60053 BBF-H-D-05 Z SP)           13 Number of Scane           14 Neceiver Gain           10.0           15 Relaxation Delay           16 Pulse Side Th           17 Presturation           Frequency           18 Acquisition Time           19 Acquisition Date           2023-11-28711:57:17           20 Modification Date           223 Spectral Nith           3514.3           21 Lowest Frequency           23 Spectral Nith           30 C           24 Lowest Frequency           25 Nucleus           26 Acquired Size           27 Spectral Size           27 Spectral Size <th></th> <th></th> <th></th> <th>—130.2</th> <th>∠119.8 ∠117.4 ∕116.6</th> <th>∕_96.2 ∕_95.3</th> <th>∠77.4 ∠77.2</th> <th>76.9</th> <th>0.00</th> <th></th> <th>MOMO-</th> <th></th> <th>—<b>OMO</b></th> <th>М</th>				—130.2	∠119.8 ∠117.4 ∕116.6	∕_96.2 ∕_95.3	∠77.4 ∠77.2	76.9	0.00		MOMO-		— <b>OMO</b>	М
1 Tile YP-G-119-1-3.11.1 r 2 Comment 3 Origin Bruker BioSpin GabH 4 Owner marsu 5 Site 5 Instrument Avance NEO 600 7 Author 8 Solvent CDC13 9 Temperature 298.1 10 Pulse Sequence apg80 11 Experiment ID 12 Probe Z000 60053 BPH-HD-05 Z SP) 13 Number of Scans 64 14 Receiver Gain 01.0 15 Relaxation Delay 2.0000 16 Pulse Width 11.5000 17 Presaturation Frequency 18 Acquisition Time 0.9175 19 Acquisition Tate 2023-11-28T12:14:40 21 Class 22 Spectral Width 37T14.3 24 Lorest Frequency - 2746.1 25 Nucleus 13C 26 Acquired Size 32768 27 Spectral Size 32768	1 Title       YP-G-119-1-3.11.1 r         2 Comment $MOMO \rightarrow \phi \rightarrow \phi$ 3 Origin       Bruker BioSpin GubH         4 Omer       marsu         5 Site $\bullet$ 7 Author $\bullet$ 3 Solvent       CDC13         9 Tapperture       298.1         10 Pulse Sequence       xapp(30)         11 Experiment       D         12 Probe       20003 BBF-H-D-05 Z SP)         13 Number of Scams       64         14 Receiver Gain       10.0         15 Peakerstone       20000         16 Pulse Width       11.5000         17 Presaturation       Frequency         18 Acquisition Time       0.9775         19 Acquisition Date       2023-11-28711:57:17         20 Modification Date       2023-11-28711:24:40         21 Class       22 Spectrometer         23 Soutcal Width       35.0         35 Soutcal Width       35.0         26 Acquired Size       32768         27 Spectral Size       32768	Parameter	Value												
i frigin         Bruker BioSpin GubH           Owner         marsu           Site         Instrument           Avance NEO 600           Author           Solvent         CD13           Temperature         298.1           OPulse Sequence         zgpg30           LExperiment         ID           OVote         289.1           Outors Sequence         zgpg30           LExperiment         ID           Ateceiver Cain         10.0           Steleitin         10.0           Steleitin         1.5000           Presaturation         Presaturation           Frequency         84           Advectiver Cain         20.000           6 Pulse Width         1.5000           7 Presaturation         Presaturation           Frequency         8 Acquisition Date         2023-11-28T11:57:17           0 Modification Date         2023-11-28T12:14:40           11Class         2         2           2 Spectral Width         S5T4.3           Alcoverst Frequency         32/766.1           5 Nocleus         3C           6 Acquird Size         32/768	i Origin Bruker BioSpin GabH Owner mursu Site J Instrument Avance NED 600 Author Solvent CDC13 J Tesperature 298.1 O Pulse Sequence zgp30 J Haper of Scans 64 A Receiver Gam 10.0 5 Relaxation Delay 2.0000 6 Pulse Width 11.5000 7 Pressturator Frequency 8 Acquisition Tate 0.9175 9 Acquisition Tate 0.9175 9 Acquisition Tate 0.2023-11-28T11:57:17 00 Modification Date 2023-11-28T12:14:40 1 Class 2 Spectral Width 35T14.3 4 Lorest Frequency - 2746.1 5 Nucles 13C 6 Acquired Size 32768 7 Spectral Size 32768	Title Comment	YYP-G-119-1-3.11.1.1r									МС	мо		OMON
Instruent         Avance NEO 600           Author            Solvent         CDC13           Temperature         298.1           0 Puise Sequence         xgp30           1 Experiment         ID           2 Probe         CMOS3 DEP-HD-05 Z SP)           3 Number of Scans         6           4 Receiver Gain         10.0           5 Relaxation Dala         2.000           6 Puise Width         1.5000           7 Presaturation         Frequency           9 Acquisition Time         0.9175           9 Acquisition Data         2023-11-28T11:57:17           0 Modification Data         2023-11-28T12:14:40           11 Class         132           2 Spectral Width         35714.3           4 Loreest Frequency         -2746.1           5 Kouleus         13C           6 Acquired Size         32768           17 Spectral Size         32768	Instrument         Avance NE0 600           Author	8 Origin 4 Owner 5 Site	Bruker BioSpin GmbH nmrsu										D	<u> </u>	
Solvent         CDC13           Temperature         298.1           Phulse Seguest         298.1           D         Presenter           IExperiment         ID           2 Prob         C0003 BBF-H-D-05 Z SP)           3 Number of Scans         64           Receiver Gamma         10.0           5 Relaxation Delay         2.0000           6 Pulse Width         1.5000           7 Presaturation         -           Frequency         -           8 Acquisition Time         0.9175           9 Acquisition Tute         2023-11-28T11:57:17           0 Modification Date         2023-11-28T12:14:40           1 Class         -           2 Spectremeter         -           3 Scalt Still         -           4 Lowest Frequency         -           3 Cr68         -	Solvent         CDC13           Temperature         298.1           Prules Sequence         298,0           1 Experiment         1D           2 Probe         CDC13 (000000000000000000000000000000000000	i Instrument Author	Avance NEO 600												
13 Number of Scans       64         14 Receiver Gain       101.0         15 Relaxation Delay       2.0000         16 Pulse Widh       11.5000         17 Presaturation Frequency       0.9175         18 Acquisition Time       0.9175         19 Acquisition Date       2023-11-28T11:57:17         10 Modification Date       2023-11-28T12:14:40         12 Spectral Width       35714.3         14 Lowest Frequency	13 Number of Scans       64         14 Receiver Gain       101.0         15 Relaxation Delay       2.0000         16 Pulse Width       11.5000         17 Presaturation Prequency       -         18 Acquisition Time       0.9175         19 Acquisition Date       2023-11-28T11:57:17         10 Modification Date       2023-11-28T12:14:40         11 Class       -         12 Spectral Width       35714.3         14 Lowest Frequency       -         13 Spectral Size       32768         17 Spectral Size       32768	Solvent Temperature OPulse Sequence Experiment Probe	CDC13 298.1 zgpg30 1D Z114607_0339 (PA BB0 600S3 BBF-H-D-05 Z SP	2)											
Frequency         8 Acquisition Time       0.9175         9 Acquisition Date       2023-11-28T11:57:17         0 Modification Date       2023-11-28T12:14:40         1 Class       2         2 Spectrometer       150.91         Frequency       3         3 Spectral Width       35714.3         4 Lowest Frequency       -2746.1         5 Nucleus       13C         6 Acquired Size       32768         7 Spectral Size       32768	Frequency         8 Acquisition Time       0.9175         9 Acquisition Date       2023-11-28T12:57:17         0 Modification Date       2023-11-28T12:14:40         1 Class       2         2 Spectrometer       150.91         Frequency       3         3 Spectral Width       35714.3         4 Lowest Frequency       -2746.1         5 Nucleus       13C         6 Acquired Size       32768         7 Spectral Size       32768	3 Number of Scans 4 Receiver Gain 5 Relaxation Delay 6 Pulse Width 7 Presaturation	64 101. 0 2. 0000 11. 5000												
2 Spectrometer 150.91 Frequency 3 Spectral Width 35714.3 4 Lowest Frequency -2746.1 5 Nucleus 13C 6 Acquired Size 32768 7 Spectral Size 32768	2 Spectrometer 150.91 Frequency 3 Spectral Width 35714.3 4 Lowest Frequency -2746.1 5 Nucleus 13C 6 Acquired Size 32768 7 Spectral Size 32768	8 Acquisition Time 9 Acquisition Date 0 Modification Date 1 Class	0.9175 2023-11-28T11:57:17 2023-11-28T12:14:40												
		2 Spectrometer Frequency 3 Spectral Width 4 Lowest Frequency 5 Nucleus 6 Acquired Size 7 Spectral Size	150.91 35714.3 -2746.1 13C 32768 32768					ł							
					 				***	 	 			1000-0-1-0-0-1-0-0-0	