Supplementary Information (SI) for Chemical Science. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Structure-Constraint Induced Increase in Lewis Acidity of Tris(ortho-

carboranyl)borane and Selective Complexation with Bestmann Ylides

Libo Xiang,^{a,b} Junyi Wang,^c Alexander Matler,^{a,b} Qing Ye^{*a,b}

a Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg (Germany)

b Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg (Germany)

^cDepartment of Chemistry

Southern University of Science and Technology

518055 Shenzhen (P. R. China).

E-mail: [qing.ye@uni-wuerzburg.](mailto:qing.ye@uni-wuerzburg)de

Experimental procedures

General remarks

Unless otherwise noted, the following conditions apply.

All the manipulations were carried out using standard Schlenk lines or glovebox under an argon atmosphere. All the solvents were dried following standard techniques. C_6D_6 was distilled from Na/K and stored under an argon atmosphere before use. CDCl₃ was dried and stored over 4 molecular sieves before use. Ph3PCCO was purchased from commercial sources and used without further purification. Cy₃PCCO¹, LiC₂B₁₀H₁₁², (C₂B₁₀H₁₀)₂BBr^{3a} and ^{Me}liPr^{3b} were synthesized according to the literature. Other reagents were used as received without further purification.

The nuclear magnetic resonance spectroscopy was recorded on a Bruker Avance-400 (¹H 400.1 MHz; 11 B 128.5 MHz; 13 C 101 MHz; 31 P: 162. MHz) spectrometer at room temperature. 11 B NMR, ¹¹B{¹H} spectra were referenced relative to 15% BF₃·OEt₂. ³¹P{¹H} NMR chemical shifts are relative to 85% H₃PO₄. High-resolution mass spectrometry (HRMS) was performed with a Thermo Fisher Scientific Q-Exactive MS System. Elemental analysis (C, H, N) was performed on a vario micro cube CHNS analyzer. IR spectra were recorded on a Bruker FT-IR spectrometer ALPHA II inside a glovebox.

Synthesis and Spectral Data

Synthesis of 1

The 5 mL toluene solution of $(C_2B_{10}H_{10})_2$ BBr (375.1 mg, 1 mmol) was slowly added to a toluene (50 mL) suspension of LiC₂B₁₀H₁₁ (150.2 mg, 1 mmol) at -78 °C and warmed to room temperature gradually. The reaction mixture was stirred for 12 hours at room temperature. The suspension was filtrated to separate the lithium salt and all volatiles of the filtrate were removed under reduced pressure to obtain the product as a pale-yellow solid. The analytically pure product was crystallized from concentrated toluene solution at −30 C for 12 h to yield **1** as a colorless crystalline solid.

¹**H NMR** (400 MHz, C_6D_6): δ [ppm] = 3.68–1.42 (br. m, 30H, BH), 3.70 (s, 1H, Ccarborane*H*). **¹H{¹¹B} NMR** (400 MHz, C6D6): [ppm] = 2.11 (s, 3H, B*H*), 2.28 (s, 5H, B*H*), 2.33 (s, 3H, B*H*), 2.45 (s, 3H, B*H*), 2.67 (s, 4H, B*H*), 2.76 (s, 4H, B*H*), 2.87 (s, 4H, B*H*), 2.98 (s, 1H, B*H*), 3.09 (s, 2H, B*H*), 3.20 (s, 1H, BH), 3.70 (s, 1H, C_{carborane}H). ¹¹**B NMR** (128 MHz, C₆D₆): δ [ppm] = 65.22 (br, s, *B*–*o*-carborane), 5.64 (d. *J* = 153.3 Hz, *B*carborane), −2.40 (d. *J* = 163.4 Hz, *B*carborane), −5.51 (d. *J* = 153.3 Hz, *B*carborane), −11.60 (d. *J* = 147.9 Hz,

 $B_{\text{carbonane}}$). **11B{¹H} NMR** (128 MHz, C₆D₆): δ [ppm] = 64.94 (br, s, *B*–*o*-carborane), 5.63 (s, *B*_{carborane),} -0.64 (s, *C*carboraneB), −2.43 (s, *B*carborane), −5.42 (s, *B*carborane), −7.33 (s, *B*carborane), −11.54 (s, *B*carborane). **¹³C{¹H} NMR** (100 MHz, C₆D₆): δ [ppm] = 59.7 (s, *C*_{carborane}), 79.7 (s, *C*_{carborane}), **Elemental analysis**: calcd. for C6H31B31, C, 16.44; H, 7.13; found C, 16.20; H, 6.22. **HRMS (LIFDI)**: calcd. for C6H31B³¹ 438.5528; found: 438.5519. Yield: 64 % (279.9 mg, 0.64 mmol).

Synthetic protocols for 3

The 1 mL toluene solution of Bestmann's ylide R_3 PCCO (0.32 mmol) was slowly added to a solution of **1** (106 mg, 0.32 mmol) in 5 mL toluene at room temperature. The reaction mixture was stirred for 4 h. The precipitate was collected through filtration and the remaining solid was dried under high vacuum to give the crude product as a white solid. The analytically pure product was crystallized from concentrated toluene solution at -30 °C for 12 h to yield 2 as a colorless crystalline solid.

For **3a**

¹H NMR (400 MHz, C_6D_6): δ [ppm] = 2.02–3.98 (br. m, 30H, B*H*), 4.12 (s, 1H, Ccarborane*H*), 6.88–6.92 (m, 6H, *H* of Ph), 6.94– 6.97 (m, 3H, *H* of Ph), 7.17 to 7.23 (m, 6H, *H* of Ph). **¹H{¹¹B} NMR** (400 MHz, C_6D_6): δ [ppm] = 2.51 (s, 2H, BH), 2.62 (s, 2H, B*H*), 2.67 (s, 2H, B*H*), 2.73 (s, 4H, B*H*), 2.80 (s, 4H, B*H*), 2.90(s, 8H, B*H*), 3.10(s, 3H, B*H*), 3.19(s, 1H, B*H*), 3.25 (s, 2H, B*H*), 3.66

(s, 2H, B*H*), 4.12(s, 1H, Ccarborane*H*), 6.88–6.92 (m, 6H, *H* of Ph), 6.95–6.97 (m, 3H, *H* of Ph), 7.18– 7.23 (m, 6H, *H* of Ph). **¹¹B NMR** (128 MHz, C6D6): [ppm] = 0.65 (br, s, *B*carborane), −3.64 (d. *J* = 153.7 Hz, *B*carborane), −7.71 (br, s, *B*carborane), −11.88 (br, s, *B*carborane). **¹¹B{¹H} NMR** (128 MHz, C6D6): [ppm] = 0.80 (s, *B*carborane), −3.53 (s, *C*carboraneB), −7.53 (s, *B*carborane), −12.00 (s, *B*carborane). **³¹P{¹H} NMR** (162 MHz, C₆D₆): δ [ppm] = 5.17. ¹³**C{¹H} NMR** (100 MHz, C₆D₆): δ [ppm] = 13.30 (d, J_{P-C} = 133 Hz, P=C), 60.6 (s, *C*carborane), 78.5 (s, *C*carborane), 121.3 (d, *J*P-C = 100.6 Hz. *C* of Ph), 128.6 (d, *J*P-C = 76.9 Hz. *C*O), 129.6 (d, *J*P-C = 13.8 Hz. *C* of Ph), 132.4 (d, *J*P-C = 12.3 Hz. *C* of Ph), 134.2 (d, *J*P-C = 3.2 Hz. *C* of Ph). HRMS: calcd. for [C₂₆H₄₆B₃₁OP]⁺, 740.6389; found: 740.6497. Yield: 75 % (177.8 mg, 0.24 mmol). **IR**: 2198, 1603, 1439, 1112 cm-1 .

For **3b**

¹H NMR (400 MHz, CDCl₃): δ [ppm] = 1.32–1.38 (m, 10H, *H* of Cy), 1.54–1.57 (m, 6H, *H* of Cy), 3.30–3.67 (m, 47H, Cy and carborane overlaped), 3.96 (s, 1H, Ccarborane*H*). **¹H{¹¹B} NMR** $(400 \text{ MHz}, \text{CDCl}_3): \delta \text{[ppm]} = 1.33 - 1.39 \text{ (m, 10H, H of Cy)}, 1.54$ to 1.57 (m, 6H, *H* of Cy), 1.85 (br, s, 3H, *H* of Cy), 1.98–2.02 (m, 14H, *H* of Cy), 2.12–2.24 (s, 15H, B*H*), 2.36 (s, 4H, B*H*), 2.40

(s, 4H, B*H*), 2.54 (s, 2H, B*H*), 2.62 (s, 2H, B*H*), 3.17 (s, 1H, B*H*), 3.29 (s, 2H, Ccarborane*H*), 3.97 (s, 1H, Ccarborane*H*). **¹¹B NMR** (128 MHz, CDCl3): [ppm] = −0.36 (s, *B*carborane), −4.30 (d, *J* = 148.8 Hz, *B*carborane), −8.08 (br, s, *B*carborane), −12.26 (br, s, *B*carborane). **¹¹B{¹H} NMR** (128 MHz, CDCl3): [ppm] = −0.29 (s, *B*carborane), −4.17 (s, *B*carborane), −8.16 (s, *B*carborane), −12.52 (s, *B*carborane). **³¹P{¹H} NMR** (162 MHz, CDCl3): δ [ppm] = 23.3. ¹³**C{¹H} NMR** (100 MHz, CDCl₃): δ [ppm] = 25.3 (d, J_{P-C} = 1.6 Hz. *C* of Cy), 26.5 (d, J_{P-C} = 13.2 Hz. *C* of Cy), 27.0 (d, *J*P-C = 3.5 Hz. *C* of Cy), 32.7 (d, *J*P-C = 51.6 Hz. *C* of Cy), 60.2 (s, *C*carborane), 77.2 (s, C_{carborane}), 128.6 (d, J_{P-C} = 81.9 Hz. *CO*). **HRMS**: calcd. for $[C_{26}B_{31}H_{63}OP]$, 757.7719; found: 757.7708. Yield: 82 % (197.0 mg, 0.26 mmol). **IR**: 2199, 1640, 1447, 1078 cm-1 .

Synthetic protocols for 4a

MeI*i*Pr (5 mg, 0.027 mmol) was added to a toluene (1 mL) solution of **3a** (200 mg, 0.27 mmol) and

stirred at room temperature for 10 min. All volatiles were removed under reduced pressure to obtain a colorless solid. Colorless crystals were obtained by storing the saturated toluene solution of **4a** under −30 °C overnight.

For **4a**

¹H NMR (400 MHz, C_6D_6): δ [ppm] = 2.01–3.76 (br. m, 30H, BH), 4.65 (d, 1H, *J*P-C = 12.9 Hz. C*H*), 6.92–6.94 (m, 6H, *H* of Ph), 6.95–6.99 (m, 6H, *H* of Ph), 7.03 to 7.08 (m, 3H, *H* of Ph). **¹H{¹¹B} NMR** (400 MHz, C_6D_6 : δ [ppm] = 1.88 (s, 2H, BH), 2.55 (s, 4H, BH), 2.63 (s, 2H, BH), 2.72 (s, 4H, B*H*), 2.80 (s, 2H, B*H*), 2.87 (s, 2H, B*H*), 2.96 (s, 2H, B*H*), 3.05 (s, 8H, BH), 3.20 (s, 2H, BH), 3.46 (s, 2H, BH), 4.65 (d, 1H, J_{P-C} =

13.0 Hz. C*H*), 6.88–6.92 (m, 6H, *H* of Ph), 6.95–6.97 (m, 3H, *H* of Ph), 7.18–7.23 (m, 6H, *H* of Ph). **¹¹B NMR** (128 MHz, C₆D₆): δ [ppm] = 2.69 (br, s, *B*_{carborane}), 0.49 (br, s, *B*_{carborane}), −3.74 (br, s, *B*_{carborane}), -7.52 (br, s, *B*_{carborane}), -10.85 (br, s, *B*_{carborane}). ¹¹B{¹H} NMR (128 MHz, C₆D₆): δ [ppm] = 2.76 (s, *B*carborane), 0.01 (s, *C*carboraneB), −4.50 (s, *B*carborane), −6.98 (s, *B*carborane). **³¹P{¹H} NMR** (162 MHz, C6D6): δ [ppm] = 12.64. ¹³**C{¹H} NMR** (100 MHz, C₆D₆): δ [ppm] = 67.5 (s, C_{carborane}), 77.9 (s, C_{carborane}), 119.9 (d, *J*P-C = 95.6 Hz. *C* of Ph), 128.6 (d, *J*P-C = 75.4 Hz. *C*O), 129.9 (d, *J*P-C = 13.2 Hz. *C* of Ph), 132.8 (d, *J*P-C = 12.3 Hz. *C* of Ph), 134.3 (d, *J*P-C = 3.1 Hz. *C* of Ph). **HRMS**: calcd. for [C26H46B31OP]⁺ , 740.6389; found: 740.6496. Yield: 82 % (163.1 mg, 0.22 mmol); **IR**: 2923, 1615, 1436, 1112 cm-1 .

NMR Spectroscopy

Figure S1. ¹H NMR spectrum of 1 in C₆D₆ at 298 K.

Figure S2. ¹ H {¹¹ B } NMR spectrum of **1** in C_6D_6 at 298 K.

Figure S3. 11 B NMR spectrum of 1 in C_6D_6 at 298 K.

Figure S4. ^{11}B ^{{1}H} NMR spectrum of 1 in C_6D_6 at 298 K.

Figure S5. ¹³C{¹H} NMR spectrum of **1** in C_6D_6 at 298 K.

Figure S6. ¹H NMR spectrum of 3a in C₆D₆ at 298 K.

Figure S7. ${}^{1}H{}_{1}{}^{11}B{}_{2}$ NMR spectrum of 3a in $C_{6}D_{6}$ at 298 K.

Figure S8. ^{11}B NMR spectrum of 3a in C_6D_6 at 298 K.

 50

 $\frac{1}{\mathbf{0}}$

 100

 -50

 -100

ppm

Figure S11. ¹³C{¹H} NMR spectrum of **3a** in C₆D₆ at 298 K.

Figure S12. ¹H NMR spectrum of 3b in CDCl₃ at 298 K.

Figure S13. ¹H{¹¹B} NMR spectrum of 3b in CDCl₃ at 298 K.

Figure S14. ¹¹B NMR spectrum of 3b in CDCl₃ at 298 K.

Figure S15. ¹¹B{¹H} NMR spectrum of 3b in CDCl₃ at 298 K.

Figure S16. ³¹P{¹H} NMR spectrum of 3b in CDCl₃ at 298 K.

Figure S17. ¹³C{¹H} NMR spectrum of 3b in CDCl₃ at 298 K.

Figure S18. ¹H NMR spectrum of 4a in C₆D₆ at 298 K.

Figure S19. ${}^{1}H{}_{1}{}^{11}B{}_{2}$ NMR spectrum of 4a in $C_{6}D_{6}$ at 298 K.

Figure S20. ^{11}B NMR spectrum of 4a in C_6D_6 at 298 K.

Figure S21. ¹¹B{¹H} NMR spectrum of $4a$ in C_6D_6 at 298 K.

Figure S22. ³¹P{¹H} NMR spectrum of **4a** in C6D6 at 298 K.

Figure S23. ${}^{13}C{ }^{1}H$ } NMR spectrum of 4a in C_6D_6 at 298 K.

IR Spectroscopy

Figure S24. IR spectrum of **3a**.

Figure S25. IR spectrum of **3b**.

Figure S26. IR spectrum of **3a** and.**3b**

Figure S27. IR spectrum of **4a**.

Figure S28. IR spectrum of **3a** and **4a**.

Characterizations of Lewis acidity

Gutmann–Beckett methods

Equimolar amount of Et_3PO was added to the C_6D_6 solution of 1.

DFT calculation

All calculations were performed with the Gaussian 09 program.⁴ All ground-state geometries were optimized using the B3LYP hybrid functional⁵ in combination with def2-TZVP basis set.⁶ Frequency calculations were performed to confirm that a local minimum has no imaginary frequency. For the FIA and HIA calculations, geometries and final electronic energies were obtained at the BP86- D3/def2-SVP level of theory.⁷ The FIA reaction enthalpies were calculated according to the scheme proposed by Krossing using the given G3 anchor points and isodesmic reactions.⁸ %V_{Bur} of values for the selected Lewis acids, obtained from the geometry of FIA adducts, were calculated using the SambVca 2.1 web application: https://www.molnac.unisa.it/OMtools/sambvca2.1/index.html.9

	E/Hartree	corr. Entha/	$E(H)/kJ$ mol ⁻¹	FIA/kJ mol ⁻¹	FIA/kJ mol ⁻¹
		Hartree			(ref. to SbF ₅)
1	-1017.39	0.493927	-2669825.803		146.53
$1-F$	-1117.38	0.497998	-2932332.526	621.42	
A	-719.32	0.286094	-1887798.876	354.35	-120.53
$A-F$	-819.21	0.287503	-2150038.529		
В	-718.13	0.263823	-1884715.974	366.27	-108.62
$B-F$	-818.01	0.265238	-2146967.544		
C	-2206.67	0.180139	-5793060.606	452.68	-22.21
$C-F^-$	-2306.60	0.182442	-6055398.583		
D	-2007.17	0.172461	-5269288.298	456.67	
$D-F$	-2107.09	0.174809	-5531630.269		-18.22
Е	-1018.59	0.516750	-2672918.865		106.64
$E-F^-$	-1118.57	0.520052	-2935385.692	581.53	

Table S2. FIA calculational data.

Table S3. HIA calculational data.

		corr. Entha/		FIA/kJ mol ⁻¹	FIA/kJ mol ⁻¹
	E/Hartree	Hartree	$E(H)/kJ$ mol ⁻¹		(ref. to $B(C_6F_5)_3$)
1	-1017.39	0.493927	-2669825.803		
$1-H^-$	-1018.15	0.503462	-2671796.654	631.89	147.41
A	-719.32	0.286094	-1887798.876		
$A-H^-$	-719.97	0.291212	-1889497.538	359.70	-124.78
B	-718.12	0.263823	-1884715.974		
$B-H^-$	-718.79	0.269972	-1886437.37	382.43	-102.04
C	-2206.67	0.180139	-5793060.606		
$C-H^-$	-2207.38	0.18806	-5794884.043	484.47	0
D	-2007.17	0.172461	-5269288.298		
$D-H^-$	-2007.87	0.180164	-5271118.076	490.81	6.34
Е	-1018.59	0.516750	-2672918.865		
E-H	-1019.34	0.525671	-2674860.28	602.45	117.98

Table S4. Global Electrophilicity Index (GEI)¹⁰ of compound **1** and **A** to **E**.

Compound	Anion	$%V_{\text{bur}}$	d(LA-F)/Å	Pyramidization energy/kJ•mol-1	Steric Map
$\mathbf{1}$	$1-F$	67.7	1.423	122.0	-3.03 2.25 $+1.50$ -0.75 -0.03 -0.75 -1.50 \rightarrow -2.25 -3.00 $-3-$ -3 $\frac{1}{2}$ -1 0 1 $\frac{1}{2}$
E	$E-F$	73.3	1.426	130.1	3.00 -2.25 -1.50 -0.75 -0.00 -0.75 -1.50 -2 -2.25 -3.00 -3 \rightarrow -2 -1 6 1 2 3

Table S5. %V_{Bur} and pyramidization energy of compound 1 and E.

Crystallographic Details

The crystal data of **1** and **3a** was collected on a Bruker D8 VENTURE diffractometer with graphite monochromated Mo_{Kα} radiation (λ = 0.71073 Å). Data reduction, scaling and absorption corrections were performed using SAINT (Bruker, V8.38A, 2013). The structure was solved with the XT structure solution program using the Intrinsic Phasing solution method¹¹ and by using Olex2¹² as the graphical interface. The model was refined with the ShelXL program¹³ using Least Squares minimization. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in structure factor calculations. All hydrogen atoms were assigned to idealized geometric positions.

The crystal data of **3b** and **4a** were collected on a Rigaku XtaLAB Synergy-R diffractometer with a HPA area detector and multi-layer mirror monochromated Cu_{Ka} radiation. The structure was solved using intrinsic phasing method5, refined with the ShelXL program¹³ and expanded using Fourier techniques.

Crystallographic data have been deposited with the Cambridge Crystallographic Data as supplementary publication nos. CCDC-2355581 (**1**), 2355582 (**3a**), 2355583 (**3b**), 2382930(**4a**). These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via Data https://www.ccdc.cam.ac.uk

Details of the data collection and refinement for complexes **1**–**4a** are given in Table S6-S9.

Reference

- 1 A. Brar, D. K. Unruh, A. J. Aquino, C. Krempner, *Chem. Commun.* **2019**, *55*, 3513-3516.
- 2 F. A. Gomez, M. F. Hawthorne, *J. Org. Chem.* **1992**, *57*, 1384-1390.
- 3 (a) C. Zhang, J. Wang, Z. Lin, Q. Ye, *Inorg. Chem.* **2022**, *61*, 18275–18284; (b) Ryan, S. J.; Schimler, S. D.; Bland, D. C.; Sanford, M. S. Org. Lett. **2015**, *17*, 1866-1869.
- 4 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A., Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford CT, **2013**.
- 5 A. D. J. Becke, *Chem. Phys.* **1993**, *98*, 5648−5652.
- 6 P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. J. Frisch, *Phys. Chem.* **1994**, *98*, 11623−11627.
- 7 a) J. P. Perdew, *Phys. Rev. B* **1986**, *33*, 8822–8824; b) A. D. Becke, *Phys. Rev. A* **1988**, *38*, 3098– 3100; c) S. Grimme, S. Ehrlich, L. Goerigk, *J. Comput. Chem.* **2011**, *32*, 1456–1465; d) E. R. Johnson, A. D. Becke, *J. Chem. Phys.* **2005**, *123*, 24101; e) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, *J. Chem. Phys.* **2010**, *132*, 154104; f) A. D. Becke, E. R. Johnson, *J. Chem. Phys.* **2005**, *122*, 154104.
- 8 a) H. Böhrer, N. Trapp, D. Himmel, M. Schleep, I. Krossing, *Dalton Trans.* **2015**, *44*, 7489–7499; b) L. Greb, *Chem. Eur. J.* **2018**, *24*, 17881–17896; c) L. O. Müller, D. Himmel, J. Stauffer, G. Steinfeld, J. Slattery, G. Santiso-Quiñones, V. Brecht, I. Krossing, *Angew. Chem. Int. Ed.* **2008**, *47*, 7659–7663.
- 9 a) A. C. Hillier, W. J. Sommer, B. S. Yong, J. L. Petersen, L. Cavallo, S. P. Nolan, *Organometallics*, **2003**, *22*, 4322-4326; b) A. Poater, F. Ragone, S. Giudice, C. Costabile, R. Dorta, S. P. Nolan, L. Cavallo, *Organometallics*, **2008**, *27*, 2679-2681; (d) S. Díez-González and S. P. Nolan, *Coord. Chem. Rev.*, **2007**, *251*, 874-883; (e) A. Gómez-Suárez, D. J. Nelson and S. P. Nolan, *Chem. Commun.*, **2017**, *53*, 2650-2660.
- 10 a) P. Pérez, L. R. Domingo, A. Aizman, R. Contreras, *Theor. Comput. Chem.* **2007**, *19*, 139-201; b) A. R. Jupp, T. C. Johnstone, D. W. Stephan, *Inorg. Chem.* **2018**, *57*, 14764−14771.
- 11 G. M. Sheldrick, SHELXT Integrated space-group and crystal-structure determination. *Acta Cryst. A* **2015**, *71*, 3-8.
- 12 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program. *J. Appl. Cryst.* **2009**, *42*, 339–341.

13 G. M. Sheldrick, A short history of SHELX. *Acta Cryst. A* **2008**, *64*, 112-122.