Supporting Information

Strongly Photoluminescent and Radioluminescent Copper(I) Iodide Hybrid Materials Made of Coordinated Ionic Chains

Jingwen Chen, ^{a, b} Kang Zhou, ^b Jingbai Li, ^b Guozhong Xu, ^{*a} Xiuze Hei, ^{*b} Jing $Li^{*c, b}$

^a College of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China.

^b Hoffman Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd., Shenzhen, 518055 China.

^cDepartment of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, NJ 08854, USA.

E-mail: gz_xu@ustl.edu.cn; xiuzehei@szpu.edu.cn; jingli@rutgers.edu.

TABLE OF CONTENTS

- S1. Methods.
- S2. ¹H NMR spectroscopy.
- S3. Crystal data and structural plots of compounds **1-4**.
- S4. DFT calculation results.
- S5. Photophysical properties.
- S6. References.

S1. Methods

Materials. 1H-benzo[1,2,3]-triazole (99%); 1-bromo-2-chloroethane (98%); 1-bromo-3 chloropropane (98%); 3-Quinuclidinol (95%); Potassium iodide (99%); Potassium carbonate (99%); Acetone (99.5%); Acetonitrile (99.5%); Ethyl ether (99%); Copper iodide (98%). All materials are purchased from vendors and used directly without further purifications. 1-(2 chloroethyl)-1H-benzo[d][1,2,3]triazole (*Cl-ebt*) and 1-(3-chloropropyl)- 1Hbenzo[d][1,2,3]triazole (*Cl-pbt*) were synthesized according to previously reported procedures.^{1, 2}

Preparation of *L¹* **I.**

Cl-ebt (0.9 g, 5 mmol) and KI (1.6 g, 10 mmol) were added with 30 ml acetone and stirred for 5 h at room temperature before drying under reduced pressure. The solid residue was wash with EtOAc, filtered to get filtrate. After removal of the solvent under reduced pressure, MeCN (50 ml) and 3- Quinuclidinol (0.64 g, 5 mmol) were added and stirring under 60 \degree C for 2 days. The reaction mixture was evaporated under reduced pressure, washed with ethyl ether and dried under vacuum. Recyclizing with EtOH gives the final product as white solid. The yield is 57%.

Preparation of L_2 **I.** L_2 I was prepared with a similar procedure as L_1 I but using *Cl-pbt*. White solid was obtained as final product. The yield is 63%.

Synthesis of compound 1. CuI (30 mg, 0.15 mmol) was first dissolved in KI saturated solution (1 ml) in a reaction vial. MeCN (1 ml) was added slowly as another layer, followed by the slow addition of *L¹* I (40 mg, 0.1 mmol) EtOH solution (1 ml). The reaction was kept undisturbed at RT for 2 days to yield plate-like orange crystals. The yield is 46%.

Synthesis of compound 2. CuI (38 mg, 0.2 mmol) was first dissolved in KI saturated solution (1 ml) in a reaction vial. MeCN (1 ml) was added slowly as another layer, followed by the slow addition of L_1 I (42 mg, 0.1 mmol) MeOH solution (1 ml). The reaction was kept undisturbed at RT for 2 days to yield plate-like yellow crystals. The yield is 62%.

Synthesis of compound 3. Compound **3** was synthesized in the same way as that of compound **1**, using *L²* I as ligand. Needle-like orange crystals were obtained. The yield is 55%.

Synthesis of compound 4. Compound **4** was synthesized in the same way as that of compound **2**, using *L²* I as ligand. Plate-like yellow crystals were obtained. The yield is 44%.

Characterizations. Nuclear magnetic resonance (NMR) data was recorded using 400 MHz JEOL JNM-ECZ400S. Single crystal X-ray diffraction data were collected on a Bruker D8 Venture diffractometer. The structures were solved by direct methods and refined by full-matrix leastsquares on F^2 using the Bruker SHELXTL package. The structures were deposited in Cambridge Crystallographic Data Center (CCDC) with numbers 2374849-2374852. Powder X-ray diffraction (PXRD) patterns were measured using Bruker D8 Advance X-ray diffractometer with Cu Kα radiation. Thermogravimetric analysis (TGA) were performed using the TA Instrument Q5000IR thermogravimetric analyzer. Optical absorption spectra were measured at room temperature on a Shimadzu UV-3600 UV–vis–NIR spectrometer. Photoluminescence quantum yields (PLQYs) were recorded using a C9920-02 absolute quantum yield measurement system (Hamamatsu Photonics). PL measurements were carried out on FLS1000 spectrofluorometer (Edinburgh Instruments). RL measurements were carried out on OmniFluo960-XrayP spectrofluorometer (Zolix Instruments). DFT calculations were carried out using VASP.

Equations.

The X-ray attenuation coefficient μ of a scintillator can be estimated using eq. $S1³$:

$$
\mu = \frac{\rho Z^4}{AE^3} \qquad \qquad eq. S1
$$

Where ρ is the density, *Z* is the atomic number, *A* is atomic mass and *E* is the incident X-ray energy. For a specific compound, instead of *Z*, the effective atomic number (*Zeff*) is often used and be calculated from eq. 2^4 :

$$
Z_{eff} = \sqrt[4]{\sum_{i} w_i Z_i^4}
$$
 eq.S2

Where w_i is the weight ratio of the *i*-th element of the material, Z_i is the atomic number of the *i*-th element.

The emission intensity of a scintillator under X-ray irradiation can be calculated as following eq. 3^4 :

$$
I = \frac{E}{\beta E_g} \times S \times Q \qquad \qquad eq. S3
$$

Where *E* is the energy of the incident X-rays, β is a constant parameter, E_g is the band gap of the materials, S is the energy migration efficiency, and Q is the quantum efficiency, which is equivalent in value to the PLQY.

Tetrahedral parameters of Δd (bond distance deviation) and Δθ (bond angle deviations) were calculated with the following equations⁵:

$$
\Delta d = \frac{1}{4} \sum_{n=1}^{4} \left(\frac{d_n - d}{d} \right)^2
$$
 \t\t eq. S4

$$
\Delta\theta = \frac{1}{6} \sum_{n=1}^{6} \left(\frac{\theta_n - \theta}{\theta}\right)^2
$$
 eq.S5

Where d_n and d are the individual bond distance and average bond distance within the tetrahedral, respectively. The θ_n and θ are the individual and average I-Cu-I / I-Cu-N bond angle in the tetrahedral.

S2. ¹H NMR spectroscopy.

All the ¹H NMR spectra were collected using dimethyl sulfoxide-d6 as solvent. The peaks at 2.50 ppm and ~3.3 ppm are the residue DMSO and water peaks, respectively.

Figure S1. (a) Structural plot and (b) ¹H NMR spectrum of L_I I.

Figure S2. (a) Structural plot and (b) ¹H NMR spectrum of *L²* I.

Figure S3. ¹H NMR spectra of dissolved compound **1** (top) and free ligand *L¹* I (bottom).

Figure S4. ¹H NMR spectra of dissolved compound 3 (top) and free ligand *L*₂ I (bottom).

S3. Crystal data and structural plots of compounds 1-4.

Table. S1 Summary of crystallographic data of compounds **1**-**4**.

Figure S5. Structure plots of compounds (a) **1**, (b) **2**, (c) **3,** and (d) **4**. H atoms and disorders are omitted for clarity. Color scheme: cyan: Cu; purple: I; gray: C; blue: N; red: O.

Figure S6. Close $\pi-\pi$ interactions in all compounds. The two π systems are from two adjacent AIO chains. Color scheme: gray: C; blue: N; red: centroid. *d*: vertical distance between the adjacent π planes; *θ*: displacement angle, the angle between the centroid–centroid line and the vertical line.

S3. DFT calculation results.

The geometry optimizations and electronic structure calculations for all compounds used the VASP 5.0.4 with a plane wave (PW) basis set and projected augmented wave (PAW) pseudopotentials (PPs). We employed the PBE flavor of the GGA PPs, and long-range dispersion interactions were considered by the DFTD3 scheme. The kinetic energy cut-off is 500 eV for the expansion of the wavefunctions. The convergence thresholds were set to 10^{-6} eV for energy and 0.05 eV/ \AA for the norm of the atomic forces. The k-points in all calculations used for compounds **1**–**4** are 3×3×2, 3×3×2, 3×2×3, and 3×3×3 using the Gamma-centered mesh.

Figure S7. Computed wave functions of the VBM (left) and CBM (right) of compound **2**.

Figure S8. (a) Calculated projected density of states (PDOS) of compounds **3** and **4**. yellow: Cu 3d; purple: I 5p; blue: N 2p; black: C 2p. Computed wave functions of the VBM (left) and CBM (right) of compounds (b) **3** and (c) **4**.

S4. Photophysical properties.

Figure S9. Excitation-dependent PL spectra of compounds **2-4.**

Figure S10. Details of PLQY measurement of compound **1.**

Figure S11. Details of PLQY measurement of compound **2.**

Figure S12. Details of PLQY measurement of compound **3.**

Figure S13. Details of PLQY measurement of compound **1.**

Figure S14. Luminescence decay curves of compounds (a) **3** and (b) **4** at various temperatures.

Figure S15. Temperature-dependent PL spectra of compounds (a) **3** and (c) **4**. Huang–Rhys factor (*S*) and photon frequency (*ħω*photon) fitting curves of compounds (b) **3** and (d) **4**.

Temperature (K)	Lifetimes (μs)			
	Compound 1	Compound 2	Compound 3	Compound 4
77	20.1	25.2	15.5	18.9
107	20.1	24.9	16.1	19.2
137	19.9	22.5	15.9	17.3
167	18.4	19.3	14.9	15.2
197	16.1	16.4	13.3	13.1
227	13.2	12.6	11.2	11.1
257	10.3	10.4	9.1	9.2
287	8.2	8.4	7.1	7.6
RT	6.1	6.5	5.1	6.5

Table S2. Lifetime values of all compounds at various temperatures.

Figure S16. Current-dependent RL spectra of compound **1** at 50 kV.

Figure S17. The RL and PL comparison of compounds (a) **1**, (b) **2**, (c) **3**, and (d) **4**.

S6. References

(1) Hei, X.; Teat, S. J.; Liu, W.; Li, J. Eco-friendly, solution-processable and efficient low-energy lighting phosphors: copper halide based hybrid semiconductors $Cu4X6(L)2 (X = Br, I)$ composed of covalent, ionic and coordinate bonds. *Journal of Materials Chemistry C* **2020**, *8* (47), 16790-16797, 10.1039/D0TC04672H. DOI: 10.1039/D0TC04672H.

(2) Hei, X.; Liu, W.; Zhu, K.; Teat, S. J.; Jensen, S.; Li, M.; O'Carroll, D. M.; Wei, K.; Tan, K.; Cotlet, M.; et al. Blending Ionic and Coordinate Bonds in Hybrid Semiconductor Materials: A General Approach toward Robust and Solution-Processable Covalent/Coordinate Network Structures. *Journal of the American Chemical Society* **2020**, *142* (9), 4242-4253. DOI: 10.1021/jacs.9b13772.

(3) Chen, X.; Song, J.; Chen, X.; Yang, H. X-ray-activated nanosystems for theranostic applications. *Chemical Society Reviews* **2019**, *48* (11), 3073-3101, 10.1039/C8CS00921J. DOI: 10.1039/C8CS00921J.

(4) Yanagida, T. Inorganic scintillating materials and scintillation detectors. *Proceedings of the Japan Academy, Series B* **2018**, *94* (2), 75-97. DOI: 10.2183/pjab.94.007.

(5) Robinson, K.; Gibbs, G. V.; Ribbe, P. H. Quadratic Elongation: A Quantitative Measure of Distortion in Coordination Polyhedra. *Science* **1971**, *172* (3983), 567-570. DOI: 10.1126/science.172.3983.567 (acccessed 2024/07/28).