# **Supporting Information**

# Reductive Coupling of Azonaphthalenes for the Synthesis of BINAMs via a Diboron-Enabled [5,5]-Sigmatropic Rearrangement

Liang-Wen Qi<sup>‡</sup>, Emmanuella Bema Twumasi<sup>‡</sup>, Xiao-Wei Li, Rui Li, Yixin Lu\*

Department of Chemistry, National University of Singapore, Singapore 117543, Singapore

# **Table of contents**

| General Information                                                 | 2  |
|---------------------------------------------------------------------|----|
| General procedure for the synthesis of azonaphthalenes              | 3  |
| Reaction development and optimization                               | 13 |
| Synthesis of BINAM derivatives via [5,5]-sigmatropic rearrangements | 15 |
| Gram scale synthesis of BINAM derivatives                           | 29 |
| Cleavage of <i>N-N</i> Bond — Accessing free BINAM                  | 29 |
| Crystal Structure of 2z                                             | 32 |
| References                                                          | 44 |
| Copies of NMR Spectra                                               | 45 |

#### **General Information**

Unless otherwise stated, all reagents and solvents were purchased from reputable commercial sources and used without further purification. Flash column chromatography was performed on silica gel with a particle size range of 200-300 mesh. Analytical thin-layer chromatography was performed on precoated silica gel plates (60F-254) and visualized with a UV light source emitting at 254 nm. Both <sup>1</sup>H and <sup>13</sup>C NMR spectra were acquired on a Bruker spectrometer, operating at either 400 MHz or 500 MHz and were referenced to tetramethylsilane as the internal standard. Chemical shifts were reported as parts per million (ppm) relative to the signals of CDCl<sub>3</sub> and DMSO-*d*<sub>6</sub>. Additionally, chemical constants were expressed in Hertz (Hz), measured downfield from tetramethylsilane. Anhydrous 1,2-dimethoxyethane was purchased from Sigma-Aldrich and used in its unaltered state. High-resolution mass spectrometric analysis reported as the mass-to-charge ratio (m/z), was performed using Agilent 7200 QTOF and Bruker MicroTOF-QII spectrometers.

#### Substrates explored in the manuscript



#### General procedure for the synthesis of azonaphthalenes

Azonaphthalenes were prepared according to the reported literature.<sup>1-3</sup>



To a solution of 2-naphthylhydrazine hydrochloride (10 mmol) in acetonitrile (20 mL), benzoyl chloride (11 mmol) and pyridine (1.8 mL, 22 mmol) were added and stirred overnight at room temperature. After completion of the reaction, the solvent was concentrated in vacuo and diluted with ethyl acetate (50 mL). The organic phase was carefully washed with saturated aqueous sodium bicarbonate (50 mL) and extracted with ethyl acetate (3 x 50 mL). The combined organic phase was washed with brine, dried over sodium sulphate. After removal of the solvent, the crude

product was then purified by flash chromatography on silica gel eluted with *n*-hexane: ethyl acetate (5:1 to 2:1).

Pyridinium chlorochromate (PCC) (5 mmol) was added to a solution of naphthyl hydrazide (5 mmol) in dichloromethane (20 mL) and the reaction mixture was stirred at room temperature until the complete consumption of the starting material. The mixture was filtered, concentrated and purified by flash chromatography eluting with *n*-hexane: ethyl acetate (10:1).

#### (E)-(4-fluorophenyl)(naphthalen-2-yldiazenyl) methanone (1d)



Red solid, 55% yield; R<sub>f</sub> 0.61 (*n*-hexane: ethyl acetate = 10:1). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.68 (s, 1H), 8.25 – 8.16 (m, 2H), 8.09 (d, *J* = 8.0 Hz, 1H), 8.02 (dd, *J* = 8.9, 1.9 Hz, 1H), 7.96 (dd, *J* = 8.4, 3.6 Hz, 2H), 7.70 – 7.62 (m, 2H), 7.24 (t, *J* = 8.6 Hz, 2H).<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  180.4, 166.6 (d, *J* = 257.3 Hz), 149.8, 136.0, 133.5 (2C) (d, *J* = 9.6 Hz), 133.2, 132.3, 130.0, 129.6, 129.1, 128.1, 127.7 (d, *J* = 3.1 Hz), 127.3, 116.3 (2C) (d, *J* = 22.1 Hz), 115.4. HRMS (ESI) calcd for [M+H]<sup>+</sup> C<sub>17</sub>H<sub>12</sub>N<sub>2</sub>O, m/z: 279.0930, found: 279.0928.

#### (E)-(naphthalen-2-yldiazenyl) (m-tolyl)methanone (1g)



Red solid, 47% yield; R<sub>f</sub> 0.50 (*n*-hexane: ethyl acetate = 10:1). <sup>1</sup>**H** NMR (500 MHz, CDCl<sub>3</sub>) δ 8.67 (d, *J* = 1.5 Hz, 1H), 8.08 (d, *J* = 7.9 Hz, 1H), 8.04 (dd, *J* = 8.9, 1.9 Hz, 1H), 7.99 – 7.92 (m, 4H), 7.69 – 7.61 (m, 2H), 7.50 (d, *J* = 7.6 Hz, 1H), 7.44 (t, *J* = 7.6 Hz, 1H), 2.46 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 182.2, 149.8, 138.8, 135.9, 135.4, 133.2, 131.8, 131.1, 131.0, 129.9, 129.2, 128.9, 128.8, 128.1, 127.9, 127.2, 115.5, 21.4. HRMS (ESI) calcd for [M+H]<sup>+</sup> C<sub>18</sub>H<sub>15</sub>N<sub>2</sub>O, m/z: 275.1179, found: 275.1181.

#### (E)-(2-fluorophenyl) (naphthalen-2-yldiazenyl) methanone (1i)



Red solid, 51% yield; R<sub>f</sub> 0.53 (*n*-hexane: ethyl acetate = 10:1). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ 8.61 (d, J = 1.9 Hz, 1H), 8.19 – 8.12 (m, 1H), 8.09 – 8.02 (m, 1H), 8.01 (d, J = 1.9 Hz, 1H), 7.98 – 7.92 (m, 2H), 7.71 – 7.59 (m, 3H), 7.39 – 7.33 (m, 1H), 7.24 – 7.16 (m, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  180.8, 162.5 (d, J = 261.1 Hz), 149.8, 136.3 (d, J = 9.1 Hz), 135.9, 133.2, 132.6, 131.5, 129.9, 129.5, 128.9, 128.1, 127.2, 124.6 (d, J = 3.6 Hz), 119.6 (d, J = 11.4 Hz), 117.2 (d, J = 22.1 Hz), 115.7. HRMS (ESI) calcd for [M+H]<sup>+</sup> C<sub>17</sub>H<sub>12</sub>FN<sub>2</sub>O, m/z: 279.0928, found: 279.0928.

(E)-naphthalen-1-yl(naphthalen-2-yldiazenyl) methanone (1k)



Bright orange solid, 45% yield; R<sub>f</sub> 0.55 (*n*-hexane: ethyl acetate = 10:1). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub> δ 9.24 (dd, J = 8.7, 1.0 Hz, 1H), 8.65 (d, J = 1.9 Hz, 1H), 8.36 (dd, J = 7.3, 1.3 Hz, 1H), 8.14 (d, J = 8.3 Hz, 1H), 8.08 – 8.02 (m, 2H), 7.94 (t, J = 8.3 Hz, 3H), 7.77 – 7.70 (m, 1H), 7.67 – 7.58 (m, 3H), 7.58 – 7.53 (m, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 183.2, 149.9, 136.0, 135.6, 134.2, 133.6, 133.4, 131.8 (2C), 130.0, 129.6, 129.1, 129.0, 128.9, 128.2, 127.5, 127.3, 127.0, 126.3, 124.5, 115.8. HRMS (ESI) calcd for [M+H]<sup>+</sup> C<sub>21</sub>H<sub>15</sub>N<sub>2</sub>O, m/z: 311.1179, found: 311.1182.

(E)-naphthalen-2-yl(naphthalen-2-yldiazenyl) methanone (11)



Bright orange solid, 39% yield;  $R_f 0.44$  (*n*-hexane: ethyl acetate = 10:1). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.68 (d, J = 10.1 Hz, 2H), 8.18 (dd, J = 8.6, 1.6 Hz, 1H), 8.11 – 8.06 (m, 2H), 8.01 – 7.90 (m, 5H), 7.67 – 7.55 (m, 4H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  182.2, 150.3, 136.6, 136.3, 133.7, 133.6, 132.8, 132.5, 130.3, 130.2, 129.9, 129.7, 129.4, 129.3, 128.9, 128.5, 128.4, 127.7, 127.4, 125.6, 116.0. HRMS (ESI) calcd for [M+H]<sup>+</sup> C<sub>21</sub>H<sub>15</sub>N<sub>2</sub>O, m/z: 311.1179, found: 311.1182.

#### (*E*)-(2,6-difluorophenyl) (naphthalen-2-yldiazenyl) methanone (1m)



1m

Bright orange solid, 54% yield,  $R_f 0.47$  (*n*-hexane: ethyl acetate = 10:1). <sup>1</sup>**H** NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.58 (s, 1H), 8.05 – 8.00 (m, 2H), 7.93 (d, J = 9.3 Hz, 2H), 7.71 – 7.52 (m, 3H), 7.05 (t, J = 8.4 Hz, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>))  $\delta$  177.7, 161.3 (2C) (d, J = 258.2 Hz), 149.5, 136.3, 134.4, 134.3 (t, J = 10.6 Hz), 133.1, 132.8, 130.1, 129.6, 129.3, 128.1, 127.3, 115.7, 112.3 (2C) (dd, J = 21.6, 3.8 Hz). HRMS (ESI) calcd for [M+H]<sup>+</sup> C<sub>17</sub>H<sub>11</sub>N<sub>2</sub>O, m/z: 297.0834, found: 297.0837.

(E)-(2-fluorophenyl) ((6-methoxynaphthalen-2-yl)diazenyl) methanone (1n)



Red solid, 45% yield;  $R_f 0.26$  (*n*-hexane: ethyl acetate = 10:1). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$ 8.53 (d, J = 2.0 Hz, 1H), 8.16 – 8.11 (m, 1H), 8.00 (dd, J = 8.9, 2.0 Hz, 1H), 7.95 (d, J = 8.9 Hz, 1H), 7.82 (d, J = 8.9 Hz, 1H), 7.68 – 7.64 (m, 1H), 7.37 – 7.33 (m, 1H), 7.28 – 7.24 (m, 1H), 7.24 – 7.22 (m, 1H), 7.22 – 7.18 (m, 1H), 4.00 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  180.8 (d, J =5.9 Hz), 162.5 (d, J = 260.9 Hz), 160.2, 148.5, 137.8, 136.1 (d, J = 9.0 Hz), 132.6 (2C), 131.6, 128.4, 128.2, 126.5, 124.5 (d, J = 3.5 Hz), 119.9, 117.1 (d, J = 22.2 Hz), 116.5, 106.4, 55.5. HRMS (ESI) calcd for [M+H]<sup>+</sup> C<sub>18</sub>H<sub>14</sub>FN<sub>2</sub>O<sub>2</sub>, m/z: 309.1035, found: 309.1035.

(E)-(2-fluorophenyl) ((6-methylnaphthalen-2-yl)diazenyl) methanone (10)



Red orange solid, 57% yield; R<sub>f</sub> 0.53 (*n*-hexane: ethyl acetate = 10:1). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) 8.54 (d, *J* = 1.9 Hz, 1H), 8.19 – 8.08 (m, 1H), 8.01 – 7.90 (m, 2H), 7.82 (d, *J* = 8.9 Hz, 1H), 7.68 (s, 1H), 7.67 - 7.60 (m, 1H), 7.42 (dd, J = 8.4, 1.7 Hz, 1H), 7.35 - 7.29 (m, 1H), 7.17 (dd, J = 10.0, 8.6 Hz, 1H), 2.56 (s, 3H). <sup>13</sup>**C NMR** (**126 MHz**, **CDCl**<sub>3</sub>)  $\delta$  180.8 (d, J = 5.3 Hz), 162.5 (d, J = 261.0 Hz), 149.3, 139.3 (2C), 136.2, 132.6, 131.6, 131.4, 129.7, 129.5, 128.8, 127.2, 124.6 (d, J = 3.5 Hz), 119.8 (d, J = 11.4 Hz), 117.2 (d, J = 22.2 Hz), 115.8, 22.0. **HRMS** (**ESI**) calcd for [M+H]<sup>+</sup> C<sub>18</sub>H<sub>14</sub>FN<sub>2</sub>O, m/z: 293.1085, found: 293.1085.

(E)-(2-fluorophenyl) ((6-isopropylnaphthalen-2-yl)diazenyl) methanone (1p)



Red solid, 38% yield;  $R_f 0.59$  (*n*-hexane: ethyl acetate = 10:1). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ 8.55 (d, J = 1.9 Hz, 1H), 8.17 – 8.09 (m, 1H), 7.97 (dd, J = 8.8, 2.1 Hz, 2H), 7.87 (d, J = 8.9 Hz, 1H), 7.72 (s, 1H), 7.69 – 7.60 (m, 1H), 7.50 (dd, J = 8.5, 1.8 Hz, 1H), 7.33 (t, J = 7.6 Hz, 1H), 7.22 – 7.13 (m, 1H), 3.17 – 3.08 (m, 1H), 1.37 (d, J = 6.9 Hz, 6H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$ 180.8 (d, J = 5.9 Hz), 162.5 (d, J = 261.0 Hz), 150.1, 149.4, 136.3, 136.2 (d, J = 9.0 Hz), 132.6, 131.7, 131.6, 129.9, 129.2, 127.1, 124.6 (d, J = 3.7 Hz), 124.5, 119.8 (d, J = 11.6 Hz), 117.2 (d, J = 22.2 Hz), 115.7, 34.5, 23.8 (2C). HRMS (ESI) calcd for [M+H]<sup>+</sup> C<sub>20</sub>H<sub>18</sub>FN<sub>2</sub>O, m/z: 321.1398, found: 321.1398.

#### (E)-((6-cyclohexylnaphthalen-2-yl)diazenyl) (2-fluorophenyl) methanone (1q)



Red solid, 61% yield;  $R_f 0.48$  (*n*-hexane: ethyl acetate = 10:1). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$ 8.54 (d, J = 2.0 Hz, 1H), 8.15 – 8.10 (m, 1H), 7.99 – 7.95 (m, 2H), 7.86 (d, J = 8.9 Hz, 1H), 7.71 (s, 1H), 7.67 – 7.61 (m, 1H), 7.48 (dd, J = 8.4, 1.8 Hz, 1H), 7.36 – 7.31 (m, 1H), 7.22 – 7.15 (m, 1H), 2.76 – 2.67 (m, 1H), 2.03 – 1.97 (m, 2H), 1.91 (d, J = 12.8 Hz, 2H), 1.81 (d, J = 12.7 Hz, 1H), 1.60 – 1.40 (m, 5H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  180.8 (d, J = 5.7 Hz), 162.5 (d, J = 261.2 Hz), 149.4, 149.3, 136.3, 136.2 (d, J = 9.0 Hz), 132.6, 131.7, 131.6, 129.8, 129.2, 127.6, 124.9, 124.5 (d, J = 3.7 Hz), 119.8 (d, J = 11.3 Hz), 117.2 (d, J = 22.2 Hz), 115.6, 44.9, 34.3 (2C), 26.9 (2C), 26.1. **HRMS (ESI)** calcd for [M+H]<sup>+</sup> C<sub>23</sub>H<sub>22</sub>FN<sub>2</sub>O, m/z: 361.1711, found: 361.1712.

(E)-(2-fluorophenyl)((6-phenylnaphthalen-2-yl)diazenyl)methanone (1r)



Red solid, 49% yield;  $R_f 0.45$  (*n*-hexane: ethyl acetate = 10:1). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.63 (d, J = 1.9 Hz, 1H), 8.18 – 8.10 (m, 3H), 8.08 – 8.02 (m, 1H), 8.00 (d, J = 8.9 Hz, 1H), 7.88 (dd, J = 8.5, 1.8 Hz, 1H), 7.78 (d, J = 7.0 Hz, 2H), 7.70 – 7.65 (m, 1H), 7.55 (t, J = 7.7 Hz, 2H), 7.45 (t, J = 7.4 Hz, 1H), 7.37 (t, J = 7.6 Hz, 1H), 7.21 (dd, J = 10.4, 8.5 Hz, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  180.8 (d, J = 5.8 Hz), 162.5 (d, J = 261.0 Hz), 149.8, 141.7, 140.4, 136.3 (d, J = 9.2 Hz), 132.6, 132.3, 131.3, 130.5, 129.8, 129.1 (2C), 128.9, 128.1, 127.5 (2C), 126.9, 125.9, 124.6 (d, J = 3.5 Hz), 119.7 (d, J = 11.1 Hz), 117.2 (d, J = 22.2 Hz), 116.2. HRMS (ESI) calcd for [M+H]<sup>+</sup> C<sub>23H16</sub>FN<sub>2</sub>O, m/z: 355.1241, found: 355.1244.

(E)-((6-bromonaphthalen-2-yl)diazenyl)(2-fluorophenyl) methanone (1s)



Red solid, 53% yield,  $R_f 0.54$  (*n*-hexane: ethyl acetate = 10:1). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ 8.45 (d, J = 1.9 Hz, 1H), 8.08 – 8.01 (m, 1H), 8.00 (d, J = 1.9 Hz, 1H), 7.95 – 7.90 (m, 1H), 7.82 (d, J = 8.7 Hz, 1H), 7.76 (d, J = 8.9 Hz, 1H), 7.61 – 7.55 (m, 2H), 7.30 – 7.23 (m, 1H), 7.13 – 7.06 (m, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  180.8 (d, J = 5.6 Hz), 162.5 (d, J = 260.9 Hz), 149.8, 136.7, 136.4 (d, J = 9.1 Hz), 132.6, 131.6, 131.3, 130.8, 130.7, 130.3, 128.6, 124.7 (d, J = 3.6 Hz), 123.3, 119.4 (d, J = 10.7 Hz), 117.2 (d, J = 22.6 Hz), 117.1. HRMS (ESI) calcd for [M+H]<sup>+</sup> C<sub>17</sub>H<sub>11</sub>BrFN<sub>2</sub>O, m/z: 357.0033, found: 357.0033.

#### (E)-(2-fluorophenyl)((6-vinylnaphthalen-2-yl)diazenyl) methanone (1t)



Red solid, 38% yield;  $R_f 0.50$  (*n*-hexane: ethyl acetate = 10:1). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$ 8.53 (d, J = 2.0 Hz, 1H), 8.16 – 8.09 (m, 1H), 8.02 – 7.96 (m, 2H), 7.89 (d, J = 8.9 Hz, 1H), 7.82 (d, J = 1.6 Hz, 1H), 7.73 (dd, J = 8.5, 1.7 Hz, 1H), 7.65 (d, J = 8.4 Hz, 1H), 7.38 – 7.31 (m, 1H), 7.21 – 7.15 (m, 1H), 6.91 (dd, J = 17.6, 10.9 Hz, 1H), 5.97 (d, J = 17.6 Hz, 1H), 5.45 (d, J = 10.9Hz, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  180.8 (d, J = 5.8 Hz), 162.5 (d, J = 261.1 Hz), 149.8, 138.0, 136.5, 136.3 (d, J = 9.1 Hz), 136.2, 132.8, 132.6, 131.1, 130.3, 129.6, 126.3, 124.6 (2C), 119.7 (d, J = 11.1 Hz), 117.2 (d, J = 22.3 Hz), 116.3, 116.1. HRMS (ESI) calcd for [M+H]<sup>+</sup> C<sub>19</sub>H<sub>14</sub>FN<sub>2</sub>O, m/z: 305.1085, found: 305.1090.

#### (E)-((6-ethynylnaphthalen-2-yl)diazenyl)(2-fluorophenyl) methanone (1u)



Red solid, 65% yield;  $R_f 0.46$  (*n*-hexane: ethyl acetate = 10:1). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$ 8.56 (d, J = 2.0 Hz, 1H), 8.18 – 8.11 (m, 1H), 8.09 (d, J = 1.4 Hz, 1H), 8.05 – 7.97 (m, 2H), 7.90 (d, J = 8.9 Hz, 1H), 7.71 – 7.62 (m, 2H), 7.38 – 7.32 (m, 1H), 7.20 (dd, J = 10.0, 8.6 Hz, 1H), 3.28 (s, 1H).<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  180.8 (d, J = 6.0 Hz), 162.5 (d, J = 260.9 Hz), 150.2, 136.4 (d, J = 8.9 Hz), 135.3, 132.8 (2C), 132.6, 132.2, 130.7, 129.9 (d, J = 2.6 Hz), 129.4, 124.7 (d, J = 3.6 Hz), 122.5, 119.4 (d, J = 11.2 Hz), 117.2 (d, J = 22.2 Hz), 116.8, 83.5, 79.3. HRMS (ESI) calcd for [M+H]<sup>+</sup> C<sub>19</sub>H<sub>12</sub>FN<sub>2</sub>O, m/z: 303.0928, found: 303.0929.

(E)-((6-fluoronaphthalen-2-yl)diazenyl)(2-fluorophenyl) methanone (1v)



Bright orange solid, 54% yield;  $R_f 0.50$  (*n*-hexane: ethyl acetate = 10:1). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.56 (d, J = 1.9 Hz, 1H), 8.16 – 8.10 (m, 1H), 8.06 – 8.00 (m, 2H), 7.86 (d, J = 8.9 Hz,

1H), 7.69 – 7.62 (m, 1H), 7.53 (dd, J = 9.6, 2.5 Hz, 1H), 7.39 – 7.31 (m, 2H), 7.20 – 7.15 (m, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  180.8 (d, J = 5.8 Hz), 162.5 (d, J = 261.0 Hz), 162.4 (d, J = 251.2Hz), 149.4 (d, J = 2.5 Hz), 137.0 (d, J = 9.6 Hz), 136.4 (d, J = 9.1 Hz), 132.6, 132.5 (d, J = 9.4Hz), 131.1, 130.1, 128.8 (d, J = 5.3 Hz), 124.6 (d, J = 3.7 Hz), 119.5 (d, J = 11.3 Hz), 117.6 (d, J = 25.3 Hz), 117.2 (d, J = 22.2 Hz), 117.0, 111.7 (d, J = 20.9 Hz). HRMS (ESI) calcd for [M+H]<sup>+</sup> C<sub>17</sub>H<sub>11</sub>F<sub>2</sub>N<sub>2</sub>O, m/z: 297.0834, found: 297.0837.

#### Methyl (E)-6-((2-fluorobenzoyl)diazenyl)-2-naphthoate (1w)



Red solid, 63% yield; R<sub>f</sub> 0.29 (*n*-hexane: ethyl acetate = 10:1). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$ 8.67 (s, 1H), 8.60 (d, J = 1.5 Hz, 1H), 8.20 – 8.12 (m, 2H), 8.11 – 8.07 (m, 1H), 8.07 – 8.04 (m, 2H), 7.72 – 7.59 (m, 1H), 7.41 – 7.33 (m, 1H), 7.23 – 7.15 (m, 1H), 4.03 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  180.8 (d, J = 6.0 Hz), 166.7, 162.6 (d, J = 261.1 Hz), 150.9, 136.5 (d, J = 9.1 Hz), 135.4, 134.9, 132.8, 132.5, 130.9 (d, J = 14.6 Hz), 130.2, 130.0, 129.9, 126.6, 124.7 (d, J = 3.6Hz), 119.3 (d, J = 11.3 Hz), 117.2 (d, J = 22.2 Hz), 116.8, 52.5. HRMS (ESI) calcd for [M+H]<sup>+</sup> C<sub>19</sub>H<sub>14</sub>FN<sub>2</sub>O<sub>3</sub>, m/z: 337.0983, found: 337.0985.

#### (E)-(2-fluorophenyl)((7-methylnaphthalen-2-yl)diazenyl) methanone (1x)



Red solid, 59% yield, R<sub>f</sub> 0.55 (*n*-hexane: ethyl acetate = 10:1). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ 8.50 (d, J = 1.9 Hz, 1H), 8.15 – 8.09 (m, 1H), 7.92 (dd, J = 8.9, 1.9 Hz, 1H), 7.87 (d, J = 8.9 Hz, 1H), 7.81 (d, J = 8.4 Hz, 2H), 7.67 – 7.60 (m, 1H), 7.46 (dd, J = 8.3, 1.8 Hz, 1H), 7.36 – 7.30 (m, 1H), 7.21 – 7.15 (m, 1H), 2.55 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  180.9 (d, J = 5.7 Hz), 162.5 (d, J = 261.1 Hz), 149.9, 137.1, 136.3 (d, J = 8.9 Hz), 134.2, 133.4, 132.6, 131.2, 131.1, 129.2, 128.9, 127.9, 124.6 (d, J = 3.6 Hz), 119.7 (d, J = 10.9 Hz) 117.2 (d, J = 22.2 Hz), 114.8, 21.7. HRMS (ESI) calcd for [M+H]<sup>+</sup> C<sub>18</sub>H<sub>14</sub>FN<sub>2</sub>O, m/z: 293.1086, found: 293.1085. (*E*)-(2-fluorophenyl)((7-phenylnaphthalen-2-yl)diazenyl) methanone (1y)



Red solid, 51% yield; R<sub>f</sub> 0.50 (*n*-hexane: ethyl acetate = 10:1). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ 8.55 (d, J = 1.8 Hz, 1H), 8.13 (d, J = 1.8 Hz, 1H), 8.07 – 8.03 (m, 1H), 7.92 – 7.84 (m, 3H), 7.81 (dd, J = 8.5, 1.8 Hz, 1H), 7.68 – 7.64 (m, 2H), 7.59 – 7.54 (m, 1H), 7.46 – 7.40 (m, 2H), 7.36 – 7.31 (m, 1H), 7.28 – 7.23 (m, 1H), 7.12 – 7.07 (m, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  180.9 (d, J = 5.8 Hz), 162.6 (d, J = 261.0 Hz), 150.1, 140.3, 140.0, 136.4 (d, J = 9.0 Hz), 135.0, 133.5, 132.6, 132.1, 131.7, 129.8, 129.6 (d, J = 15.7 Hz), 129.3, 129.0, 128.6, 127.9, 127.6, 127.5, 124.6 (d, J =3.5 Hz), 117.2 (d, J = 22.2 Hz), 116.4, 115.8. HRMS (ESI) calcd for [M+H]<sup>+</sup> C<sub>23</sub>H<sub>16</sub>FN<sub>2</sub>O, m/z: 355.1241, found: 355.1241.

#### (E)-((7-bromonaphthalen-2-yl)diazenyl)(2-fluorophenyl) methanone (1z)



Red solid, 57% yield,  $R_f 0.58$  (*n*-hexane: ethyl acetate = 10:1). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$ 8.61 (d, J = 1.9 Hz, 1H), 8.20 – 8.10 (m, 2H), 8.07 – 8.01 (m, 1H), 7.93 (d, J = 8.8 Hz, 1H), 7.87 (d, J = 8.9 Hz, 1H), 7.75 – 7.66 (m, 2H), 7.60 – 7.52 (m, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$ 180.8 (d, J = 5.9 Hz), 162.6 (d, J = 261.1 Hz), 150.2, 136.5 (d, J = 9.1 Hz), 134.3, 134.2, 132.5, 132.1, 131.7, 129.8, 129.7, 129.5, 124.7 (d, J = 3.6 Hz), 121.3, 119.3, 117.2 (d, J = 22.2 Hz), 116.4. HRMS (ESI) calcd for [M+H]<sup>+</sup> C<sub>17</sub>H<sub>11</sub>BrFN<sub>2</sub>O, m/z: 357.0033, found: 357.0032.

(E)-(anthracen-2-yldiazenyl) (2-fluorophenyl)methanone (1ad)



S11

Orange solid, 29%; R<sub>f</sub> 0.55 (*n*-hexane: ethyl acetate = 10:1). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.80 (s, 1H), 8.65 (s, 1H), 8.47 (s, 1H), 8.17 – 8.12 (m, 1H), 8.10 – 8.03 (m, 3H), 8.00 – 7.94 (m, 1H), 7.65 (dd, *J* = 13.4, 7.2 Hz, 1H), 7.61 – 7.52 (m, 2H), 7.35 (t, *J* = 7.7 Hz, 1H), 7.23 – 7.16 (m, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  180.8 (d, *J* = 5.8 Hz), 162.5 (d, *J* = 261.0 Hz), 149.6, 136.2 (d, *J* = 9.1 Hz), 135.3, 133.5, 132.9, 132.6, 132.3, 130.9, 130.1, 129.7, 128.5 (d, *J* = 28.9 Hz), 128.2, 127.1, 126.8, 126.4, 125.4, 124.6 (d, *J* = 3.7 Hz), 117.2 (d, *J* = 22.3 Hz), 114.7. HRMS (ESI) calcd for [M+H]<sup>+</sup> C<sub>20</sub>H<sub>18</sub>FN<sub>2</sub>O, m/z: 321.1398, found: 321.1398.

## **Reaction development and optimization**

# Supplementary Table 1: Optimization of reaction conditions in terms of solvent<sup>a</sup>



| entry           | Solvent              | Yield $(\%)^b$ |
|-----------------|----------------------|----------------|
| 1               | 1, 2-dimethoxyethane | 51             |
| 2               | 1, 4 dioxane         | 32             |
| 3               | MTBE                 | 44             |
| 4               | THF                  | 40             |
| 5               | Dichloromethane      | 33             |
| 6               | Methanol             | 0              |
| 7               | Toluene              | 16             |
| 8               | DMF                  | 12             |
| 9               | DMSO                 | 9              |
| 10              | Acetone              | n.d            |
| 11              | Ethyl acetate        | 25             |
| 12              | Acetonitrile         | 50             |
| 13 <sup>c</sup> | 1, 2-dimethoxyethane | 73             |

<sup>*a*</sup>Unless otherwise indicated, reactions were performed using **1a** azonaphthalene (0.1 mmol), and diboron (0.055 mmol) in 1.0 mL solvent at room temperature for 2 h. <sup>*b*</sup> Yields were determined by crude <sup>1</sup>H NMR analysis using 1,3,5-trimethoxybenzene as an internal standard. <sup>*c*</sup> 0.11 mmol of B<sub>2</sub>Cat<sub>2</sub> was used. *n.d* not detected.

| $\sum_{n=1}^{N} \sum_{n=1}^{N} \sum_{n$ | + $B = B_0^{O}$ Additive (10 mol<br>DME, rt | 2%)<br>H<br>H<br>H<br>N<br>N<br>Bz<br>H<br>H<br>Za |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------|
| entry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Additive                                    | Yield (%) <sup>a</sup>                             |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                           | 73%                                                |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cs <sub>2</sub> CO <sub>3</sub>             | 81%                                                |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PPh <sub>3</sub>                            | 67%                                                |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Triethylamine                               | 68%                                                |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DABCO                                       | 63%                                                |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DBU                                         | 76%                                                |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DMAP                                        | 81%                                                |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2,6-lutidine                                | 63%                                                |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2,6-dibromopyridine                         | 89%                                                |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,4,6-tribromopyridine                      | 72%                                                |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4-iodopyridine                              | 74%                                                |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3-bromopyridine                             | 71%                                                |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2-cyanopyridine                             | 66%                                                |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4-methoxy pyridine                          | 63%                                                |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4-benzyl pyridine                           | 58%                                                |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4-acetylpyridine                            | 67%                                                |

# Supplementary Table 2: Optimization of reaction conditions in terms of additives

<sup>*a*</sup> Unless otherwise indicated, reactions were performed using **1a** azonaphthalene (0.1 mmol), B<sub>2</sub>cat<sub>2</sub> (0.11 mmol) and additive (0.01 mmol) in 1.0 mL DME at room temperature for 2 h. <sup>*b*</sup> Yields were determined by crude <sup>1</sup>H NMR analysis using 1,3,5-trimethoxybenzene as an internal standard.

Synthesis of BINAM derivatives via [5,5]-sigmatropic rearrangements



A dry 4 mL vial equipped with a Teflon-coated magnetic stirring bar was charged with azonaphthalene (0.2 mmol),  $B_2cat_2$  (0.22 mmol) and 2,6-dibromopyridine (0.02 mmol). Anhydrous 1,2-dimethoxyethane (2.0 mL) was added and stirred at room temperature. Upon reaction completion, the mixture was concentrated under reduced pressure to give a residue which was then purified by washing with warm methanol to give the desired product.

#### *N'*,*N'''-([1,1'-binaphthalene]-2,2'-diyl)di(benzohydrazide) (2a)*



Following the general protocol, compound **2a** was obtained in 89% yield as a white solid.  $R_f 0.39$  (*n*-hexane: ethyl acetate = 2.5:1). <sup>1</sup>H NMR (**500** MHz, DMSO-*d*<sub>6</sub>)  $\delta$  10.66 (s, 2H), 8.00 – 7.75 (m, 8H), 7.60 – 7.42 (m, 10H), 7.28 (t, *J* = 7.4 Hz, 2H), 7.19 (t, *J* = 7.7 Hz, 2H), 6.80 (d, *J* = 8.5 Hz, 2H). <sup>13</sup>C NMR (**126** MHz, DMSO-*d*<sub>6</sub>)  $\delta$  168.0, 145.1, 134.0, 133.2, 132.3, 130.1, 129.2, 128.9 (2C), 128.6, 127.7 (2C), 127.0, 124.5, 123.3, 115.5, 112.2. HRMS (ESI) calcd for [M+H]<sup>+</sup> C<sub>34</sub>H<sub>27</sub>N<sub>4</sub>O<sub>2</sub> m/z 523.2129, found 523.2130.

N',N'''-([1,1'-binaphthalene]-2,2'-diyl)bis(4-bromobenzohydrazide) (2b)



Following the general protocol, compound **2b** was obtained in 76% yield as a white solid.  $R_f 0.57$  (*n*-hexane: ethyl acetate = 3:1).<sup>1</sup>H NMR (**400** MHz, DMSO-*d*<sub>6</sub>)  $\delta$  10.71 (d, *J* = 2.0 Hz, 2H), 7.94 (d, *J* = 9.1 Hz, 2H), 7.87 (d, *J* = 6.8 Hz, 2H), 7.78 (d, *J* = 8.6 Hz, 4H), 7.54 (d, *J* = 8.6 Hz, 4H), 7.48 (s, 2H), 7.41 (d, *J* = 9.0 Hz, 2H), 7.31 – 7.24 (m, 2H), 7.21-7.15 (m, 2H), 6.77 (d, *J* = 8.5 Hz, 2H). <sup>13</sup>C NMR (**126** MHz, DMSO-*d*<sub>6</sub>)  $\delta$  167.0, 144.8, 137.1, 134.0, 131.9, 130.2, 129.6 (2C), 129.2, 129.1 (2C), 128.6, 127.0, 124.5, 123.4, 115.4, 112.2. HRMS (ESI) calcd for [M+H]<sup>+</sup> C<sub>34H25</sub>Br<sub>2</sub>N<sub>4</sub>O<sub>2</sub>, m/z: 679.0339, found: 679.0338.

#### *N'*,*N'''-([1,1'-binaphthalene]-2,2'-diyl)bis(4-chlorobenzohydrazide) (2c)*



Following the general protocol, compound **2c** was obtained in 84% yield as a white solid.  $R_f 0.54$  (*n*-hexane: ethyl acetate = 3:1). **<sup>1</sup>H NMR (400 MHz, DMSO-***d*<sub>6</sub>)  $\delta$  10.71 (d, *J* = 2.0 Hz, 2H), 7.94 (d, *J* = 9.1 Hz, 2H), 7.87 (d, *J* = 6.8 Hz, 2H), 7.78 (d, *J* = 8.6 Hz, 4H), 7.54 (d, *J* = 8.6 Hz, 4H), 7.48 (s, 2H), 7.41 (d, *J* = 9.0 Hz, 2H), 7.31 – 7.24 (m, 2H), 7.21-7.15 (m, 2H), 6.77 (d, *J* = 8.5 Hz, 2H). **<sup>13</sup>C NMR (126 MHz, DMSO-***d*<sub>6</sub>)  $\delta$  167.0, 144.8, 137.1, 134.0, 131.9, 130.2, 129.6 (2C), 129.2, 129.1 (2C), 128.6, 127.0, 124.5, 123.4, 115.4, 112.2. **HRMS (ESI)** calcd for [M+H]<sup>+</sup> C<sub>34</sub>H<sub>25</sub>Cl<sub>2</sub>N<sub>4</sub>O<sub>2</sub>, m/z: 591.1349, found: 591.1347.

#### N',N'''-([1,1'-binaphthalene]-2,2'-diyl)bis(4-fluorobenzohydrazide) (2d)



Following the general protocol, compound **2d** was obtained in 79% yield as a white solid. R<sub>f</sub> 0.53 (*n*-hexane: ethyl acetate = 2.5:1). <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  10.67 (s, 2H), 7.94 (d, *J* = 9.0 Hz, 2H), 7.89 – 7.80 (m, 6H), 7.51 (s, 2H), 7.42 (d, *J* = 9.0 Hz, 2H), 7.34 – 7.23 (m, 6H), 7.20

- 7.15 (m, 2H), 6.77 (d, J = 8.5 Hz, 2H). <sup>13</sup>C NMR (126 MHz, DMSO)  $\delta$  166.9, 164.6 (d, J = 249.1 Hz), 144.9, 134.0, 130.4 (2C) (d, J = 9.1 Hz), 130.1, 129.6 (d, J = 3.0 Hz), 129.2, 128.6, 127.0, 124.5, 123.3, 116.0 (2C) (d, J = 22.0 Hz), 115.4, 112.2. HRMS (ESI) calcd for [M+H]<sup>+</sup> C<sub>34H25</sub>F<sub>2</sub>N<sub>4</sub>O<sub>2</sub>, m/z: 559.1940, found: 559.1946.

N',N'''-([1,1'-binaphthalene]-2,2'-diyl)bis(4-methylbenzohydrazide) (2e)



Following the general protocol, compound **2e** was obtained in 89% yield as a white solid. R<sub>f</sub> 0.34 (*n*-hexane: ethyl acetate = 3:1). **<sup>1</sup>H NMR (500 MHz, DMSO-***d***<sub>6</sub>)**  $\delta$  10.55 (d, *J* = 2.1 Hz, 2H), 7.94 (d, *J* = 9.1 Hz, 2H), 7.86 (d, *J* = 8.6 Hz, 2H), 7.67 (d, *J* = 7.9 Hz, 4H), 7.55 (s, 2H), 7.40 (d, *J* = 9.1 Hz, 2H), 7.31 – 7.22 (m, 6H), 7.17 (t, *J* = 7.7 Hz, 2H), 6.77 (d, *J* = 8.5 Hz, 2H), 2.34 (s, 6H). **<sup>13</sup>C NMR (126 MHz, DMSO-***d***<sub>6</sub>)**  $\delta$  167.8, 145.2, 142.2, 134.0, 130.4, 130.0, 129.4 (2C), 129.2, 128.5, 127.7 (2C), 126.9, 124.5, 123.3, 115.4, 112.2, 21.5. **HRMS (ESI)** calcd for [M+H]<sup>+</sup> C<sub>36</sub>H<sub>31</sub>N<sub>4</sub>O<sub>2</sub>, m/z: 551.2442, found: 551.2438.

N',N'''-([1,1'-binaphthalene]-2,2'-diyl)bis(3-bromobenzohydrazide) (2f)



Following the general protocol, compound **2f** was obtained in 69% yield as a white solid.  $R_f 0.57$  (*n*-hexane: ethyl acetate = 2.5:1). <sup>1</sup>H NMR (**400 MHz, DMSO-***d*<sub>6</sub>)  $\delta$  10.72 (s, 2H), 7.95 (d, *J* = 9.0 Hz, 2H), 7.90 – 7.84 (m, 4H), 7.80 – 7.72 (m, 4H), 7.47 – 7.40 (m, 6H), 7.28 (t, *J* = 6.8 Hz, 2H), 7.19 (t, *J* = 6.9 Hz, 2H), 6.77 (d, *J* = 8.4 Hz, 2H). <sup>13</sup>C NMR (**126 MHz, DMSO-***d*<sub>6</sub>)  $\delta$  166.7, 144.7, 135.4, 135.0, 134.0, 131.3, 130.3, 130.2, 129.3, 128.6, 127.0, 126.7, 124.5, 123.4, 122.3, 115.5, 112.2. HRMS (ESI) calcd for [M+H]<sup>+</sup> C<sub>34</sub>H<sub>25</sub>Br<sub>2</sub>N<sub>4</sub>O<sub>2</sub>, m/z: 679.0339, found: 679.0337.

N',N'''-([1,1'-binaphthalene]-2,2'-diyl)bis(3-methylbenzohydrazide) (2g)



Following the general protocol, compound **2g** was obtained in 83% yield as a white solid.  $R_f 0.43$  (*n*-hexane: ethyl acetate = 3:1). <sup>1</sup>H NMR (**400 MHz, DMSO-***d*<sub>6</sub>)  $\delta$  10.57 (s, 2H), 7.91 (dd, *J* = 30.9, 8.7 Hz, 4H), 7.55 (s, 6H), 7.45 – 7.09 (m, 10H), 6.78 (d, *J* = 8.5 Hz, 2H), 2.31 (s, 6H). <sup>13</sup>C NMR (**126 MHz, DMSO-***d*<sub>6</sub>)  $\delta$  168.2, 145.1, 138.2, 134.0, 133.3, 132.8, 130.1, 129.2, 128.8, 128.6, 128.2, 127.0, 124.7, 124.5, 123.3, 115.5, 112.1, 21.3. HRMS (ESI) calcd for [M+H]<sup>+</sup> C<sub>36</sub>H<sub>31</sub>N<sub>4</sub>O<sub>2</sub> m/z: 551.2442, found: 551.2441.

N',N'''-([1,1'-binaphthalene]-2,2'-diyl)bis(2-chlorobenzohydrazide) (2h)



Following the general protocol, compound **2h** was obtained in 72% yield as a white solid.  $R_f 0.29$  (*n*-hexane: ethyl acetate = 2.5:1). <sup>1</sup>**H** NMR (**400** MHz, DMSO-*d*<sub>6</sub>)  $\delta$  10.56 (d, *J* = 2.1 Hz, 2H), 8.03 (d, *J* = 9.1 Hz, 2H), 7.91 (d, *J* = 7.5 Hz, 2H), 7.59 (d, *J* = 9.0 Hz, 2H), 7.55 (d, *J* = 8.0 Hz, 2H), 7.51 – 7.45 (m, 2H), 7.39 (d, *J* = 3.8 Hz, 6H), 7.29 (t, *J* = 7.1 Hz, 2H), 7.19 (t, *J* = 6.9 Hz, 2H), 6.77 (d, 2H). <sup>13</sup>C NMR (**126** MHz, DMSO-*d*<sub>6</sub>)  $\delta$  167.7, 144.6, 134.9, 133.9, 132.0, 130.9, 130.4, 130.1, 129.7, 129.3, 128.6, 127.6, 127.1, 124.2, 123.5, 115.7, 112.2. HRMS (ESI) calcd for [M+H]<sup>+</sup> C<sub>34</sub>H<sub>25</sub>Cl<sub>2</sub>N<sub>4</sub>O<sub>2</sub>, m/z: 591.1349, found: 591.1348.

*N*',*N*'''-([1,1'-binaphthalene]-2,2'-diyl)bis(2-fluorobenzohydrazide) (2i)



Following the general protocol, compound **2i** was obtained in 87% yield as a white solid.  $R_f 0.33$  (*n*-hexane: ethyl acetate = 2.5:1). <sup>1</sup>H NMR (**400** MHz, DMSO-*d*<sub>6</sub>)  $\delta$  10.52 (s, 2H), 8.01 (d, *J* = 9.0 Hz, 2H), 7.90 (d, *J* = 8.0 Hz, 2H), 7.57 (t, *J* = 7.3 Hz, 4H), 7.50 (d, *J* = 8.9 Hz, 4H), 7.39 – 7.26 (m, 6H), 7.22 – 7.17 (m, 2H), 6.77 (d, *J* = 8.5 Hz, 2H). <sup>13</sup>C NMR (**126** MHz, DMSO-*d*<sub>6</sub>)  $\delta$  165.5, 159.7 (d, *J* = 250.2 Hz), 144.7, 134.0, 133.5 (d, *J* = 8.3 Hz), 130.4 (d, *J* = 2.8 Hz), 130.2, 129.3, 128.6, 125.1 (d, *J* = 3.2 Hz), 125.1, 124.5, 123.4, 122.7 (d, *J* = 15.0 Hz), 116.8 (d, *J* = 21.7 Hz), 115.4, 112.2. HRMS (ESI) calcd for [M+H]<sup>+</sup> C<sub>34</sub>H<sub>25</sub>F<sub>2</sub>N<sub>4</sub>O<sub>2</sub>, m/z: 559.1940, found: 559.1939.

N',N'''-([1,1'-binaphthalene]-2,2'-diyl)bis(2-methylbenzohydrazide) (2j)



Following the general protocol, compound **2j** was obtained in 65% yield as a white solid.  $R_f 0.49$  (*n*-hexane: ethyl acetate = 3:1). <sup>1</sup>**H NMR (400 MHz, DMSO-***d*<sub>6</sub>)  $\delta$  10.39 (d, *J* = 2.2 Hz, 2H), 8.02 (d, *J* = 9.1 Hz, 2H), 7.90 (d, *J* = 6.9 Hz, 2H), 7.56 (s, 2H), 7.49 (d, *J* = 8.9 Hz, 2H), 7.41 (d, *J* = 7.5 Hz, 2H), 7.36 (t, *J* = 7.4 Hz, 2H), 7.31 – 7.22 (m, 6H), 7.18 (t, *J* = 7.3 Hz, 2H), 6.75 (d, *J* = 8.0 Hz, 2H), 2.24 (s, 6H). <sup>13</sup>**C NMR (126 MHz, DMSO-***d*<sub>6</sub>)  $\delta$  170.4, 145.0, 136.5, 134.8, 134.0, 131.1, 130.5, 130.1, 129.2, 128.6, 127.9, 127.0, 126.0, 124.5, 123.4, 115.4, 112.2, 19.8. **HRMS (ESI)** calcd for [M+H]<sup>+</sup> C<sub>36</sub>H<sub>31</sub>N<sub>4</sub>O<sub>2</sub>, m/z: 551.2442, found: 551.2444.

*N*',*N*'''-([1,1'-binaphthalene]-2,2'-diyl)bis(1-naphthohydrazide) (2k)



Following the general protocol, compound **2k** was obtained in 73% yield as a white solid. R<sub>f</sub> 0.46 (*n*-hexane: ethyl acetate = 3:1). **<sup>1</sup>H NMR (400 MHz, DMSO-***d***<sub>6</sub>)**  $\delta$  10.80 (s, 2H), 8.16 – 8.06 (m, 6H), 7.96 (d, *J* = 8.1 Hz, 4H), 7.89 – 7.80 (m, 4H), 7.64 (d, *J* = 8.6 Hz, 4H), 7.46 (t, *J* = 7.5 Hz, 2H), 7.33 (t, *J* = 7.5 Hz, 2H), 7.23 (t, *J* = 7.7 Hz, 2H), 7.05 (t, *J* = 7.7 Hz, 2H), 6.82 (d, *J* = 8.3 Hz, 2H). **<sup>13</sup>C NMR (126 MHz, DMSO-***d*<sub>6</sub>)  $\delta$  170.2, 145.0, 134.1, 133.6, 132.3, 131.2, 130.9, 130.4, 130.3, 129.3, 128.7, 127.1 (2C), 126.8, 126.5, 125.7, 125.4, 124.5, 123.5, 115.3, 112.3. **HRMS (ESI)** calcd for [M+H]<sup>+</sup> C<sub>42</sub>H<sub>31</sub>N<sub>4</sub>O<sub>2</sub> m/z: 623.2440, found: 623.2442.

*N'*,*N*'''-([1,1'-binaphthalene]-2,2'-diyl)bis(2-naphthohydrazide) (2l)



Following the general protocol, compound **2l** was obtained in 82% yield as a white solid.  $R_f 0.40$  (*n*-hexane: ethyl acetate = 3:1). <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  10.83 (s, 2H), 8.43 (d, *J* = 4.8 Hz, 2H), 7.96 (dd, *J* = 10.8, 4.1 Hz, 8H), 7.89 (d, *J* = 8.1 Hz, 2H), 7.81 (d, *J* = 6.7 Hz, 2H), 7.67 (d, *J* = 6.4 Hz, 2H), 7.64 – 7.50 (m, 6H), 7.29 (t, *J* = 7.5 Hz, 2H), 7.24 – 7.18 (m, 2H), 6.83 (t, *J* = 6.7 Hz, 2H). <sup>13</sup>C NMR (126 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  168.2, 145.1, 134.8, 134.1, 132.5, 130.6, 130.1, 129.3 (2C), 128.6 (2C), 128.3, 128.2, 128.1, 127.4, 127.0, 124.6, 124.3, 123.3, 115.6, 112.3. HRMS (ESI) calcd for [M+H]<sup>+</sup> C<sub>42</sub>H<sub>31</sub>N<sub>4</sub>O<sub>2</sub>, m/z: 623.2442, found: 623.2445.

N',N'''-([1,1'-binaphthalene]-2,2'-diyl)bis(2,6-difluorobenzohydrazide) (2m)



Following the general protocol, compound **2m** was obtained in 89% yield as a white solid.  $R_f 0.37$  (*n*-hexane: ethyl acetate = 3:1). <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  10.76 (d, *J* = 2.3 Hz, 2H), 8.04 (d, *J* = 9.1 Hz, 2H), 7.91 (d, *J* = 8.0 Hz, 2H), 7.61 – 7.53 (m, 2H), 7.49 (d, *J* = 9.0 Hz, 2H), 7.29 (t, *J* = 6.6 Hz, 4H), 7.25 – 7.16 (m, 6H), 6.77 (d, *J* = 8.5 Hz, 2H). <sup>13</sup>C NMR (126 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  161.1, 159.8 (d, *J* = 247.4 Hz), 159.8 (d, *J* = 250.8 Hz), 144.4, 133.9, 133.0, 130.2, 129.3, 128.6, 127.1, 124.5, 123.6, 115.3, 113.5 (t, *J* = 22.2 Hz), 112.6 (d, *J* = 4.3 Hz), 112.40 (2C). HRMS (ESI) calcd for [M+H]<sup>+</sup> C<sub>34</sub>H<sub>23</sub>F<sub>4</sub>N<sub>4</sub>O<sub>2</sub>, m/z 595.1752, found: 595.1758.

N',N''-(6,6'-dimethoxy-[1,1'-binaphthalene]-2,2'-diyl)bis(2-fluorobenzohydrazide) (2n)



Following the general protocol, compound **2n** was obtained in 87% yield as a white solid. R<sub>f</sub> 0.21 (*n*-hexane: ethyl acetate = 2.5:1). <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  10.46 (s, 2H), 7.91 (s, 2H), 7.44 (d, *J* = 95.7 Hz, 14H), 6.89 (s, 2H), 6.68 (s, 2H), 3.83 (s, 6H). <sup>13</sup>C NMR (126 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  165.4, 159.7 (d, *J* = 250.1 Hz), 155.8, 142.8, 133.4 (d, *J* = 8.4 Hz), 130.4 (2C), 130.2, 129.2, 129.1 (d, *J* = 24.1 Hz), 125.0 (d, *J* = 3.2 Hz), 122.8 (d, *J* = 15.1 Hz), 119.3, 116.7 (d, *J* = 21.9 Hz), 115.9, 112.9, 107.2, 55.6. HRMS (ESI) calcd for [M+H]<sup>+</sup> C<sub>36</sub>H<sub>29</sub>F<sub>2</sub>N<sub>4</sub>O<sub>4</sub> m/z: 619.2151, found: 619.2154.

N',N'''-(6,6'-dimethyl-[1,1'-binaphthalene]-2,2'-diyl)bis(2-fluorobenzohydrazide) (20)



Following the general protocol, compound **20** was obtained in 83% yield as a white solid.  $R_f 0.34$  (*n*-hexane: ethyl acetate = 3:1). <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  10.48 (s, 2H), 7.90 (d, *J* = 9.0 Hz, 2H), 7.65 (s, 2H), 7.55 (t, *J* = 6.8 Hz, 4H), 7.47 – 7.40 (m, 4H), 7.36 – 7.25 (m, 4H), 7.03 (dd, *J* = 8.8, 1.8 Hz, 2H), 6.67 (d, *J* = 8.7 Hz, 2H), 2.38 (s, 6H). <sup>13</sup>C NMR (126 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  165.4, 159.7 (d, *J* = 250.1 Hz), 143.9, 133.5 (d, *J* = 8.3 Hz), 132.4, 132.2, 130.4, 129.4 (2C), 129.1, 127.5, 125.0 (d, *J* = 2.6 Hz), 124.6, 122.8 (d, *J* = 15.0 Hz), 116.8 (d, *J* = 21.7 Hz), 115.4, 112.42, 21.3. HRMS (ESI) calcd for [M+H]<sup>+</sup> C<sub>36</sub>H<sub>29</sub>F<sub>2</sub>N<sub>4</sub>O<sub>2</sub>, m/z: 587.2253, found: 587.2256.

*N'*,*N*'''-(6,6'-diisopropyl-[1,1'-binaphthalene]-2,2'-diyl)bis(2-fluorobenzohydrazide) (2p)



Following the general protocol, compound **2p** was obtained in 85% yield as a white solid.  $R_f 0.37$  (*n*-hexane: ethyl acetate = 3:1). <sup>1</sup>**H NMR** (**500 MHz**, **DMSO**-*d*<sub>6</sub>)  $\delta$  10.46 (s, 2H), 7.93 (d, *J* = 9.1 Hz, 2H), 7.69 (d, *J* = 1.9 Hz, 2H), 7.61 – 7.52 (m, 4H), 7.44 (d, *J* = 9.0 Hz, 2H), 7.40 – 7.38 (m, 2H), 7.37 – 7.23 (m, 4H), 7.13 (dd, *J* = 8.8, 1.9 Hz, 2H), 6.72 (d, *J* = 8.7 Hz, 2H), 2.97 (p, *J* = 6.8 Hz, 2H), 1.25 (dd, *J* = 6.9, 3.4 Hz, 12H). <sup>13</sup>**C NMR** (**126 MHz**, **DMSO**-*d*<sub>6</sub>)  $\delta$  165.4, 159.7 (d, *J* = 249.9 Hz), 144.0, 143.3, 133.4 (d, *J* = 8.4 Hz), 132.6, 130.3 (d, *J* = 2.6 Hz), 129.8, 129.4, 126.8, 125.1, 125.0, 124.7, 122.8 (d, *J* = 15.0 Hz), 116.7 (d, *J* = 21.8 Hz), 115.3, 112.4, 33.6, 24.4, 24.2. **HRMS** (**ESI**) calcd for [M+H]<sup>+</sup> C<sub>40</sub>H<sub>37</sub>F<sub>2</sub>N<sub>4</sub>O<sub>2</sub>, m/z: 643.2879, found: 643.2880.

N',N'''-(6,6'-dicyclohexyl-[1,1'-binaphthalene]-2,2'-diyl)bis(2-fluorobenzohydrazide) (2q)



Following the general protocol, compound **2q** was obtained in 87% yield as a white solid. R<sub>f</sub> 0.40 (*n*-hexane: ethyl acetate = 3:1). <sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.65 (d, *J* = 10.8 Hz, 2H), 7.77 (d, *J* = 8.8 Hz, 4H), 7.53 (s, 2H), 7.36 (d, *J* = 9.0 Hz, 4H), 7.12 – 6.96 (m, 8H), 2.58 – 2.46 (m, 2H), 1.84 (d, *J* = 11.4 Hz, 4H), 1.76 (d, *J* = 8.6 Hz, 4H), 1.66 (d, *J* = 12.2 Hz, 2H), 1.44 – 1.26 (m, 8H), 1.24 – 1.15 (m, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  164.4 (d, *J* = 3.7 Hz), 160.6 (d, *J* = 248.7 Hz), 143.4, 143.0, 133.7 (d, *J* = 9.0 Hz), 132.5, 131.9 (d, *J* = 2.6 Hz), 123.0, 129.8, 127.5, 124.8 (2C), 124.7, 119.8 (d, *J* = 13.3 Hz), 116.1 (d, *J* = 24.0 Hz), 115.5, 113.9, 44.3, 34.5, 34.3, 27.0 (2C), 26.2. HRMS (ESI) calcd for [M+H]<sup>+</sup> C<sub>46</sub>H<sub>45</sub>F<sub>2</sub>N<sub>4</sub>O<sub>2</sub>, m/z: 723.3505, found: 723.3507.

*N'*,*N*'''-(6,6'-diphenyl-[1,1'-binaphthalene]-2,2'-diyl)bis(2-fluorobenzohydrazide) (2r)



Following the general protocol, compound **2r** was obtained in 75% yield as a white solid. R<sub>f</sub> 0.23 (*n*-hexane: ethyl acetate = 3:1). **<sup>1</sup>H NMR (500 MHz, DMSO-***d*<sub>6</sub>)  $\delta$  10.56 (s, 2H), 8.22 (s, 2H), 8.12 (d, *J* = 9.1 Hz, 2H), 7.74 (d, *J* = 7.7 Hz, 4H), 7.61 – 7.51 (m, 10H), 7.47 (t, *J* = 7.6 Hz, 4H), 7.39 – 7.28 (m, 6H), 6.92 (d, *J* = 8.8 Hz, 2H). <sup>13</sup>C NMR (126 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  165.5, 159.8 (d, *J* = 250.3 Hz), 145.0, 140.5, 135.1, 133.5 (d, *J* = 8.6 Hz), 133.3, 130.8, 130.4 (2C), 129.6, 129.4 (2C), 127.6, 127.1 (2C), 126.2 (d, *J* = 12.5 Hz), 125.3, 125.1 (d, *J* = 3.3 Hz), 122.7 (d, *J* = 14.9 Hz), 116.8 (d, *J* = 21.8 Hz), 115.9, 112.0. HRMS (ESI) calcd for [M+H]<sup>+</sup> C<sub>46</sub>H<sub>33</sub>F<sub>2</sub>N<sub>4</sub>O<sub>2</sub>, m/z: 711.2566, found: 711.2576.

N',N'''-(6,6'-dibromo-[1,1'-binaphthalene]-2,2'-diyl)bis(2-fluorobenzohydrazide) (2s)



Following the general protocol, compound **2s** was obtained in 92% yield as a white solid.  $R_f 0.29$  (*n*-hexane: ethyl acetate = 3:1). <sup>1</sup>H NMR (**500** MHz, DMSO-*d*<sub>6</sub>)  $\delta$  10.55 (s, 2H), 8.16 (d, *J* = 2.2 Hz, 2H), 8.01 (d, *J* = 9.1 Hz, 2H), 7.62 – 7.53 (m, 4H), 7.51 (d, *J* = 9.1 Hz, 2H), 7.46 (s, 2H), 7.36 – 7.27 (m, 6H), 6.68 (d, *J* = 9.0 Hz, 2H). <sup>13</sup>C NMR (**126** MHz, DMSO-*d*<sub>6</sub>)  $\delta$  165.5, 159.7 (d, *J* = 250.3 Hz), 145.3, 133.6 (d, *J* = 8.3 Hz), 132.5, 130.5, 130.4 (2C), 130.1, 129.7, 126.6, 125.1 (d, *J* = 3.2 Hz), 122.5 (d, *J* = 14.9 Hz), 116.8 (d, *J* = 21.6 Hz), 116.6, 116.3, 111.6. HRMS (ESI) calcd for [M+H]<sup>+</sup> C<sub>34</sub>H<sub>23</sub>Br<sub>2</sub>F<sub>2</sub>N<sub>4</sub>O<sub>2</sub>, m/z: 715.0150, found: 715.0147.

*N'*,*N'''*-(6,6'-divinyl-[1,1'-binaphthalene]-2,2'-diyl)bis(2-fluorobenzohydrazide) (2t)



Following the general protocol, compound **2t** was obtained in 58% yield.  $R_f 0.39$  (*n*-hexane: ethyl acetate = 2.5:1). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.54 (d, J = 12.9 Hz, 2H), 8.16 (td, J = 7.7, 1.8 Hz, 2H), 7.81 – 7.73 (m, 4H), 7.72 – 7.60 (m, 4H), 7.45 – 7.37 (m, 2H), 7.38 – 7.29 (m, 4H), 7.28 – 7.21 (m, 4H), 7.17 (dd, J = 8.8, 2.3 Hz, 2H), 5.82 (d, J = 17.6 Hz, 2H), 5.28 (d, J = 11.4 Hz, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  165.5, 160.8 (d, J = 245.8 Hz), 145.7, 137.0, 134.2 (d, J = 9.3 Hz), 132.3, 129.5, 129.4, 127.7, 127.0, 126.6, 126.5, 126.3, 125.2 (d, J = 2.5 Hz), 123.9, 116.4 (d, J = 20.0 Hz), 116.2 (d, J = 14.3 Hz), 113.0, 108.1. HRMS (ESI) calcd for [M+H]<sup>+</sup> C<sub>38</sub>H<sub>29</sub>F<sub>2</sub>O<sub>2</sub>, m/z: 611.2253, found: 611.2254.

*N'*,*N*<sup>''</sup>-(6,6'-diethynyl-[1,1'-binaphthalene]-2,2'-diyl)bis(2-fluorobenzohydrazide) (2u)



Following the general protocol, compound **2u** was obtained in 83% yield as a white solid.  $R_f 0.24$  (*n*-hexane: ethyl acetate = 3:1). <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  10.57 (s, 2H), 8.10 (s, 2H), 8.04 (d, *J* = 9.1 Hz, 2H), 7.60 – 7.49 (m, 8H), 7.39 – 7.20 (m, 6H), 6.74 (d, *J* = 8.8 Hz, 2H), 4.17 (s, 2H). <sup>13</sup>C NMR (126 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  165.4, 159.7 (d, *J* = 250.4 Hz), 145.9, 133.6 (2C), 132.6, 130.4 (2C), 129.6, 128.7, 125.1 (d, *J* = 2.7 Hz), 124.8, 122.5 (d, *J* = 14.9 Hz), 116.8 (d, *J* = 21.7 Hz), 116.37, 116.19, 111.5, 84.4, 80.8. HRMS (ESI) calcd for [M+H]<sup>+</sup> C<sub>38</sub>H<sub>25</sub>F<sub>2</sub>N<sub>4</sub>O<sub>2</sub>, m/z: 607.1940 found: 607.1946.

*N'*,*N*'''-(6,6'-difluoro-[1,1'-binaphthalene]-2,2'-diyl)bis(2-fluorobenzohydrazide) (2v)



Following the general protocol, compound **2v** was obtained in 92% yield as a white solid.  $R_f 0.27$  (*n*-hexane: ethyl acetate = 3:1). <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  10.53 (s, 2H), 8.00 (s, 2H), 7.70 (dd, *J* = 9.9, 2.8 Hz, 2H), 7.54 (s, 6H), 7.45 (d, *J* = 2.1 Hz, 2H), 7.36 – 7.27 (m, 4H), 7.14 (d, *J* = 2.8 Hz, 2H), 6.77 (d, *J* = 3.7 Hz, 2H). <sup>13</sup>C NMR (126 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  165.4, 159.7 (d, *J* = 250.2 Hz), 158.9 (d, *J* = 240.7 Hz), 144.4, 133.5 (d, *J* = 8.4 Hz), 130.9, 130.4, 129.7 (2C), 127.0 (d, *J* = 8.6 Hz), 125.1 (d, *J* = 2.7 Hz), 122.6 (d, *J* = 14.9 Hz), 117.1 (d, *J* = 24.9 Hz), 116.8 (d, *J* = 9.4 Hz), 116.7, 112.2, 111.7 (d, *J* = 20.4 Hz). HRMS (ESI) calcd for [M+H]<sup>+</sup> C<sub>34</sub>H<sub>23</sub>F<sub>4</sub>N<sub>4</sub>O<sub>2</sub>, m/z: 595.1752, found: 595.1753.

Dimethyl 2,2'-bis(2-(2-fluorobenzoyl)hydrazineyl)-[1,1'-binaphthalene]-6,6'-dicarboxylate (2w)



Following the general protocol, compound **2w** was obtained in 88% yield as a white solid.  $R_f 0.13$  (*n*-hexane: ethyl acetate = 2.5:1). <sup>1</sup>H NMR (**500** MHz, DMSO-*d*<sub>6</sub>)  $\delta$  10.61 (s, 2H), 8.62 (s, 2H), 8.25 (d, *J* = 9.1 Hz, 2H), 7.70 (dd, *J* = 9.0, 1.9 Hz, 2H), 7.61 – 7.54 (m, 8H), 7.39 – 7.25 (m, 4H), 6.86 (d, *J* = 8.8 Hz, 2H), 3.87 (s, 6H). <sup>13</sup>C NMR (**126** MHz, DMSO-*d*<sub>6</sub>)  $\delta$  166.9, 165.4, 159.8 (d, *J* = 250.4 Hz), 147.2, 136.3, 133.7 (d, *J* = 7.9 Hz), 132.2, 131.6, 130.4, 128.2, 126.3, 125.1 (d, *J* = 2.7 Hz), 124.6, 124.3, 122.4 (d, *J* = 14.7 Hz), 116.8 (d, *J* = 21.8 Hz), 116.3, 111.3, 52.5. HRMS (ESI) calcd for [M+H]<sup>+</sup> C<sub>38</sub>H<sub>29</sub>F<sub>2</sub>N<sub>4</sub>O<sub>6</sub>, m/z: 675.2050, found: 675.2051.

N',N'''-(7,7'-dimethyl-[1,1'-binaphthalene]-2,2'-diyl)bis(2-fluorobenzohydrazide) (2x)



Following the general protocol, compound **2x** was obtained in 83% yield as a white solid. R<sub>f</sub> 0.28 (*n*-hexane: ethyl acetate = 3:1). <sup>1</sup>H NMR (**400** MHz, DMSO-*d*<sub>6</sub>)  $\delta$  7.94 (d, *J* = 9.0 Hz, 2H), 7.79 (d, *J* = 8.3 Hz, 2H), 7.63 – 7.50 (m, 4H), 7.39 (d, *J* = 8.9 Hz, 2H), 7.37 – 7.23 (m, 6H), 7.13 (dd, *J* = 8.3, 1.7 Hz, 2H), 6.57 (s, 2H), 2.15 (s, 6H). <sup>13</sup>C NMR (**126** MHz, DMSO-*d*<sub>6</sub>)  $\delta$  165.3, 159.7 (d, *J* = 250.0 Hz), 144.7, 136.1, 134.1, 133.5 (d, *J* = 8.4 Hz), 130.4, 129.9, 128.5, 127.5, 125.7, 125.1 (d, *J* = 3.5 Hz), 123.3, 122.7 (d, *J* = 14.9 Hz), 116.8 (d, *J* = 21.7 Hz), 114.4, 111.9, 22.2. HRMS (ESI) calcd for [M+H]<sup>+</sup> C<sub>36</sub>H<sub>29</sub>F<sub>2</sub>N<sub>4</sub>O<sub>2</sub>, m/z: 587.2253, found: 587.2249.

*N'*,*N'''*-(7,7'-diphenyl-[1,1'-binaphthalene]-2,2'-diyl)bis(2-fluorobenzohydrazide) (2y)



Following the general protocol, compound **2y** was obtained in 84% yield as a white solid. R<sub>f</sub> 0.25 (*n*-hexane: ethyl acetate = 3:1). <sup>1</sup>**H** NMR (500 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  10.55 (s, 2H), 8.03 (dd, *J* = 31.9, 8.7 Hz, 4H), 7.63 – 7.50 (m, 8H), 7.46 (s, 2H), 7.37 – 7.31 (m, 4H), 7.31 – 7.26 (m, 8H), 7.25 – 7.20 (m, 2H), 7.07 (s, 2H). <sup>13</sup>C NMR (126 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  165.4, 159.8 (d, *J* = 250.1 Hz), 145.3, 141.1, 138.8, 134.1, 133.5 (d, *J* = 8.2 Hz), 130.4, 130.1, 129.4 (3C), 128.5, 127.8, 127.1 (2C), 125.1 (d, *J* = 3.4 Hz), 122.9, 122.7 (d, *J* = 14.8 Hz), 122.2, 116.8 (d, *J* = 21.8 Hz), 115.6, 112.2. HRMS (ESI) calcd for [M+H]<sup>+</sup> C<sub>46</sub>H<sub>33</sub>F<sub>2</sub>N<sub>4</sub>O<sub>6</sub>, m/z: 711.2566, found: 711.2567.

N',N'''-(7,7'-dibromo-[1,1'-binaphthalene]-2,2'-diyl)bis(2-fluorobenzohydrazide) (2z)



Following the general protocol, compound **2z** was obtained in 93% yield as a white solid.  $R_f 0.24$  (*n*-hexane: ethyl acetate = 3:1). <sup>1</sup>H NMR (**500** MHz, DMSO-*d*<sub>6</sub>)  $\delta$  10.54 (s, 2H), 8.06 (d, *J* = 9.1 Hz, 2H), 7.89 (d, *J* = 8.6 Hz, 2H), 7.61 – 7.47 (m, 6H), 7.45 – 7.38 (m, 4H), 7.37 – 7.26 (m, 4H), 6.88 (s, 2H). <sup>13</sup>C NMR (**126** MHz, DMSO-*d*<sub>6</sub>)  $\delta$  165.3, 159.8 (d, *J* = 250.3 Hz), 146.0, 135.1, 133.6 (d, *J* = 8.5 Hz), 131.2, 130.8, 130.4 (d, *J* = 2.7 Hz), 127.7, 126.5, 125.7, 125.1 (d, *J* = 3.3 Hz), 122.4 (d, *J* = 14.8 Hz), 121.1, 116.8 (d, *J* = 21.7 Hz), 116.0, 110.2. HRMS (ESI) calcd for [M+H]<sup>+</sup> C<sub>34</sub>H<sub>23</sub>Br<sub>2</sub>F<sub>2</sub>N<sub>4</sub>O<sub>2</sub>, m/z: 715.0150, found: 715.0151.

*N*',*N*'''-(8,8'-dimethyl-[1,1'-binaphthalene]-2,2'-diyl)bis(2-fluorobenzohydrazide) (2aa)



Following the general protocol, compound **2aa** was obtained in 82% yield as a white solid.  $R_f 0.35$  (*n*-hexane: ethyl acetate = 3:1). <sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.47 (d, *J* = 11.3 Hz, 2H), 8.04 – 7.95 (m, 2H), 7.64 (d, *J* = 8.7 Hz, 2H), 7.51 (d, *J* = 7.9 Hz, 2H), 7.49 – 7.41 (m, 2H), 7.28 (d, *J* = 2.3 Hz, 2H), 7.21 (t, *J* = 7.4 Hz, 2H), 7.17 – 7.08 (m, 6H), 7.08 – 7.03 (m, 2H), 2.48 (s, 6H).<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  164.0 (d, *J* = 3.7 Hz), 160.7 (d, *J* = 248.2 Hz), 145.4, 134.1 (d, *J* = 9.3 Hz), 133.5, 132.9, 132.1 (d, *J* = 2.5 Hz), 130.0, 129.6, 127.2, 126.2, 125.2 (d, *J* = 3.1 Hz), 123.3, 116.2 (d, *J* = 24.4 Hz), 115.6, 115.3, 105.0, 19.4. HRMS (ESI) calcd for [M+H]<sup>+</sup> C<sub>36</sub>H<sub>29</sub>F<sub>2</sub>N<sub>4</sub>O<sub>2</sub>, m/z 587.2253 found: 587.2252.

*N'*,*N*'''-(4,4'-dibromo-[1,1'-binaphthalene]-2,2'-diyl)bis(2-fluorobenzohydrazide) (2ab)



Following the general protocol, compound **2ab** was obtained in 72% yield as a white solid.  $R_f 0.43$  (*n*-hexane: ethyl acetate = 3:1). <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  10.55 (s, 2H), 8.11 (d, *J* = 8.4 Hz, 2H), 7.78 (s, 2H), 7.61 – 7.56 (m, 2H), 7.51 (t, *J* = 6.5 Hz, 2H), 7.47 – 7.42 (m, 4H), 7.39 – 7.33 (m, 2H), 7.31 (t, *J* = 7.5 Hz, 4H), 6.86 (d, *J* = 8.5 Hz, 2H). <sup>13</sup>C NMR (126 MHz, DMSO)  $\delta$  165.4, 159.7 (d, *J* = 249.7 Hz), 145.2, 134.9, 133.7 (d, *J* = 8.7 Hz), 130.3, 130.2, 128.3, 127.3, 125.2 (2C), 125.1, 124.5, 122.4 (d, *J* = 15.1 Hz), 119.3, 116.8 (d, *J* = 21.7 Hz), 111.7. HRMS (ESI) calcd for [M+H]<sup>+</sup> C<sub>34</sub>H<sub>23</sub>Br<sub>2</sub>F<sub>2</sub>N<sub>4</sub>O<sub>2</sub>, m/z: 715.015, found: 715.0145.

*N'*,*N*'''-([1,1'-bianthracene]-2,2'-diyl)bis(2-fluorobenzohydrazide) (2ad)



Following the general protocol, compound **2ad** was obtained in 58% yield as a white solid.  $R_f 0.44$  (*n*-hexane: ethyl acetate = 3:1). <sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.57 (d, J = 12.4 Hz, 2H), 8.31 (s, 2H), 8.19 (s, 2H), 8.14 (dd, J = 7.7, 1.9 Hz, 2H), 7.97 – 7.86 (m, 6H), 7.43 – 7.30 (m, 8H), 7.28 – 7.24 (m, 4H), 7.16 (dd, J = 9.0, 2.2 Hz, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  163.7, 160.8 (d, J = 248.0 Hz), 144.7, 134.2 (d, J = 9.3 Hz), 132.3 (d, J = 2.3 Hz), 130.8, 130.4, 129.9, 128.8, 128.3, 127.7, 126.3, 125.5, 125.2 (d, J = 3.2 Hz), 124.4, 124.2, 122.9, 117.7, 116.6, 116.3 (d, J = 24.5 Hz), 106.0. HRMS (ESI) calcd for [M+H]<sup>+</sup> C<sub>42</sub>H<sub>29</sub>F<sub>2</sub>N<sub>4</sub>O<sub>2</sub>, m/z: 659.2253, found: 659.2254.

#### Gram scale synthesis of BINAM derivatives

Azonaphthalene (15 g, 57.7 mmol), B<sub>2</sub>cat<sub>2</sub> (15 g, 63.5 mmol) and 2,6-dibromopyridine (1.4 g, 5.77 mmol) were added to a 500 mL dry round-bottomed flask equipped with a Teflon-coated magnetic stirring bar. Anhydrous 1,2-dimethoxyethane (280 mL) was added and the reaction was stirred at room temperature for 1 hour. The reaction mixture was then concentrated to dryness and purified by washing with warm methanol to give 13.7 g of **2a** (91% yield).

#### Cleavage of N-N Bond — Accessing free BINAM



A Schlenk tube containing approximately 100 mg of Raney nickel and equipped with a Tefloncoated magnetic stir bar was washed with methanol (5 x 2 mL). Methanol (1 mL), BINAM derivative 2 (0.1 mmol, 1 equiv.), and aqueous potassium hydroxide solution (0.5 mmol, 0.2 M) were added. The reaction mixture was degassed, backfilled with hydrogen gas (H<sub>2</sub> balloon), and stirred at 60 °C until complete consumption of the starting material. The reaction was allowed to cool to room temperature and filtered carefully whilst washing with ethyl acetate, and the filtrate was then concentrated to dryness. The resulting residue was dissolved in dichloromethane, washed with brine, and dried over sodium sulfate. The organic phase was filtered off, evaporated to dryness, and purified by flash chromatography using (n-hexane: ethyl acetate = 6:1 to 4:1) to obtain **3** as a white solid.

[1,1'-binaphthalene]-2,2'-diamine (3a)



Following the general protocol, compound **3a** was obtained in 90% yield;  $R_f 0.41$  (*n*-hexane: ethyl acetate = 3:1). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.74 – 7.67 (m, 4H), 7.17 – 7.08 (m, 4H), 7.05 (d, J = 8.7 Hz, 2H), 6.99 (d, J = 8.5 Hz, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  142.5, 133.7, 129.6, 128.6, 128.2, 126.9, 124.0, 122.5, 118.4, 112.8. HRMS (ESI) calcd for [M+H]<sup>+</sup> C<sub>20</sub>H<sub>17</sub>N<sub>2</sub>, m/z: 285.1386, found: 285.1384.

6,6'-dimethoxy-[1,1'-binaphthalene]-2,2'-diamine (3n)



Following the general protocol, compound **3n** was obtained in 83% yield as a white solid.  $R_f 0.24$  (*n*-hexane: ethyl acetate = 3:1). <sup>1</sup>H NMR (**500 MHz, CDCl**<sub>3</sub>)  $\delta$  7.70 (d, J = 8.7 Hz, 2H), 7.14 (dd, J = 5.7, 3.0 Hz, 4H), 6.99 (d, J = 9.1 Hz, 2H), 6.90 (dd, J = 9.2, 2.6 Hz, 2H), 3.88 (s, 6H). <sup>13</sup>C NMR (**126 MHz, CDCl**<sub>3</sub>)  $\delta$  155.5, 140.6, 129.4, 129.0, 128.2, 125.7, 119.1, 119.0, 113.8, 106.8, 55.3. HRMS (ESI) calcd for [M+H]<sup>+</sup> C<sub>22</sub>H<sub>21</sub>N<sub>2</sub>O<sub>2</sub>, m/z: 345.1598, found: 345.1596.

6,6'-dimethyl-[1,1'-binaphthalene]-2,2'-diamine (30)



Following the general protocol, compound **30** was obtained in 89% yield as a white solid.  $R_f 0.47$  (*n*-hexane: ethyl acetate = 3:1). <sup>1</sup>H NMR (**500** MHz, CDCl<sub>3</sub>)  $\delta$  7.75 (d, J = 8.8 Hz, 2H), 7.60 (s, 2H), 7.15 (d, J = 8.7 Hz, 2H), 7.07 (d, J = 8.7 Hz, 2H), 7.01 (d, J = 8.6 Hz, 2H). <sup>13</sup>C NMR (**126** MHz, CDCl<sub>3</sub>)  $\delta$  141.8, 131.9, 131.8, 129.0, 128.8, 127.3, 124.0, 118.5, 113.1, 21.3. HRMS (ESI) calcd for [M+H]<sup>+</sup> C<sub>22</sub>H<sub>21</sub>N<sub>2</sub>, m/z: 313.1699, found: 313.1699.

6,6'-diphenyl-[1,1'-binaphthalene]-2,2'-diamine (3r)



Following the general protocol, compound **3r** was obtained in 85% yield as a white solid.  $R_f 0.36$  (*n*-hexane: ethyl acetate = 3:1). <sup>1</sup>**H NMR** (**500 MHz**, **CDCl**<sub>3</sub>)  $\delta$  8.05 (d, *J* = 1.9 Hz, 2H), 7.91 (d, *J* = 8.8 Hz, 2H), 7.69 (d, *J* = 6.9 Hz, 4H), 7.53 (dd, *J* = 8.7, 2.0 Hz, 2H), 7.47 (t, *J* = 7.7 Hz, 4H), 7.35 (t, *J* = 7.4 Hz, 2H), 7.23 (dd, *J* = 8.7, 3.7 Hz, 4H). <sup>13</sup>**C NMR** (**126 MHz**, **CDCl**<sub>3</sub>)  $\delta$  142.9, 141.3, 135.3, 132.9, 123.0, 128.8 (3C), 127.1 (2C), 126.9, 126.5, 126.2, 124.3 118.8, 112.4. **HRMS** (**ESI**) calcd for [M+H]<sup>+</sup> C<sub>32</sub>H<sub>25</sub>N<sub>2</sub>, m/z: 437.2012, found: 437.2011.

# **Crystal Structure of 2z**

The Cambridge Crystallographic Data Centre (CCDC) has received the crystallographic data for compound **2z** (CCDC 2294982) which is accessible at no cost via www.ccdc.cam.ac.uk/conts/retrieving.html.



### Single Crystal Structure X-ray Analysis

| Sample Code:        | N265               |
|---------------------|--------------------|
| Sample ID:          | et-7br-bm          |
| Student/Researcher: | Emmanuella Twumasi |
| Supervisor:         | Lu Yixin           |
| CDCC:               | 2294982            |
| Date:               | 4-07-2023          |

Note: The crystal is monoclinic, space group C2/c. The asymmetric unit contains half a molecule of the compound  $C_{34}H_{22}Br_2F_2N_4O_2$ . The 1-fluoro-benzene group was disordered by flipping over with occupancy ratio =87:13.

Restraints in bond lengths and thermal parameters were applied to the disordered atoms. Hydrogens on the N atoms were located from different map. Final R values are R1=0.0266 and wR2=0.0665 for 2- theta up to 59°.

| Identification code                      | N265                                        |                    |
|------------------------------------------|---------------------------------------------|--------------------|
| Empirical formula                        | C34 H22 Br2 F2 N4 O2                        |                    |
| Formula weight                           | 716.37                                      |                    |
| Temperature                              | 100(2) K                                    |                    |
| Wavelength                               | 0.71073 Å                                   |                    |
| Crystal system                           | Monoclinic                                  |                    |
| Space group                              | C2/c                                        |                    |
| Unit cell dimensions                     | a = 13.8725(9) Å                            | a= 90°.            |
|                                          | b = 29.1188(18) Å                           | b= 127.298(2)°.    |
|                                          | c = 9.3620(6)  Å                            | $g = 90^{\circ}$ . |
| Volume                                   | 3008.4(3) Å <sup>3</sup>                    |                    |
| Z                                        | 4                                           |                    |
| Density (calculated)                     | 1.582 Mg/m <sup>3</sup>                     |                    |
| Absorption coefficient                   | 2.746 mm <sup>-1</sup>                      |                    |
| F(000)                                   | 1432                                        |                    |
| Crystal size                             | 0.299 x 0.294 x 0.124 mm <sup>3</sup>       |                    |
| Theta range for data collection          | 2.293 to 29.579°.                           |                    |
| Index ranges                             | -19<=h<=19, -37<=k<=40, -13<=l<=12          |                    |
| Reflections collected                    | 52265                                       |                    |
| Independent reflections                  | 4220 [R(int) = 0.0480]                      |                    |
| Completeness to theta = $25.242^{\circ}$ | 99.6 %                                      |                    |
| Absorption correction                    | Semi-empirical from equivalents             |                    |
| Max. and min. transmission               | 0.7459 and 0.6142                           |                    |
| Refinement method                        | Full-matrix least-squares on F <sup>2</sup> |                    |
| Data/restraints /parameters              | 4220 / 250 / 262                            |                    |
| Goodness-of-fit on F <sup>2</sup>        | 1.034                                       |                    |
| Final R indices [I>2sigma(I)]            | R1 = 0.0266, wR2 = 0.0640                   |                    |

# Supplementary Table 3. Crystal data and structure refinement for N265.

| R indices (all data)        | R1 = 0.0313, $wR2 = 0.0665$        |
|-----------------------------|------------------------------------|
| Extinction coefficient      | n/a                                |
| Largest diff. peak and hole | 0.984 and -0.902 e.Å <sup>-3</sup> |

**Supplementary Table 4.** Atomic coordinates (  $x \ 10^4$ ) and equivalent isotropic displacement parameters (Å<sup>2</sup>x 10<sup>3</sup>) for N265. U(eq) is defined as one-third of the trace of the orthogonalized U<sup>ij</sup> tensor.

| _     | Х       | у       | Z        | U(eq) |  |
|-------|---------|---------|----------|-------|--|
|       |         |         |          |       |  |
| Br(1) | 3911(1) | 2274(1) | 10129(1) | 26(1) |  |
| O(1)  | 3656(1) | 4855(1) | 6716(1)  | 19(1) |  |
| N(1)  | 4470(1) | 4300(1) | 5285(2)  | 15(1) |  |
| N(2)  | 3809(1) | 4709(1) | 4487(2)  | 15(1) |  |
| C(1)  | 3590(1) | 3290(1) | 6722(2)  | 13(1) |  |
| C(2)  | 4057(1) | 2987(1) | 8197(2)  | 15(1) |  |
| C(3)  | 3305(1) | 2668(1) | 8138(2)  | 17(1) |  |
| C(4)  | 2081(1) | 2620(1) | 6662(2)  | 18(1) |  |
| C(5)  | 1618(1) | 2908(1) | 5227(2)  | 18(1) |  |
| C(6)  | 2342(1) | 3249(1) | 5222(2)  | 15(1) |  |
| C(7)  | 1858(1) | 3559(1) | 3766(2)  | 18(1) |  |
| C(8)  | 2552(1) | 3900(1) | 3825(2)  | 17(1) |  |
| C(9)  | 3795(1) | 3946(1) | 5332(2)  | 14(1) |  |
| C(10) | 4333(1) | 3638(1) | 6746(2)  | 12(1) |  |
| C(11) | 3433(1) | 4960(1) | 5266(2)  | 16(1) |  |
| C(12) | 2724(2) | 5384(1) | 4273(2)  | 21(1) |  |
| C(13) | 1729(5) | 5388(1) | 2490(5)  | 28(1) |  |
| C(14) | 1063(4) | 5784(1) | 1629(5)  | 40(1) |  |
| C(15) | 1418(3) | 6186(1) | 2595(4)  | 40(1) |  |
| C(16) | 2412(3) | 6195(1) | 4394(4)  | 36(1) |  |

| C(17)  | 3061(3)  | 5794(1) | 5242(4)  | 27(1) |
|--------|----------|---------|----------|-------|
| F(1)   | 1400(1)  | 4988(1) | 1557(2)  | 36(1) |
| C(12A) | 2724(2)  | 5384(1) | 4273(2)  | 21(1) |
| C(13A) | 2870(30) | 5839(6) | 4860(20) | 30(3) |
| C(14A) | 2140(20) | 6197(6) | 3790(30) | 31(3) |
| C(15A) | 1160(20) | 6107(8) | 2070(30) | 33(3) |
| C(16A) | 1000(30) | 5679(8) | 1370(30) | 28(2) |
| C(17A) | 1790(30) | 5325(9) | 2390(30) | 22(2) |
| F(1A)  | 3867(9)  | 5855(3) | 6622(13) | 41(2) |
|        |          |         |          |       |

**Supplementary Table 5.** Bond lengths [Å] and angles [°] for N265.

| Br(1)-C(3) | 1.8962(14) |
|------------|------------|
| O(1)-C(11) | 1.2342(18) |
| N(1)-C(9)  | 1.4106(18) |
| N(1)-N(2)  | 1.4110(16) |
| N(1)-H(1)  | 0.86(2)    |
| N(2)-C(11) | 1.3406(19) |
| N(2)-H(2A) | 0.84(2)    |
| C(1)-C(2)  | 1.4220(19) |
| C(1)-C(6)  | 1.4270(18) |
| C(1)-C(10) | 1.4359(19) |
| C(2)-C(3)  | 1.372(2)   |
| C(2)-H(2)  | 0.9500     |
| C(3)-C(4)  | 1.404(2)   |
| C(4)-C(5)  | 1.369(2)   |
| C(4)-H(4)  | 0.9500     |
| C(5)-C(6)  | 1.415(2)   |
| C(5)-H(5)  | 0.9500     |
| C(6)-C(7)  | 1.419(2)   |

| C(7)-C(8)     | 1.361(2)   |
|---------------|------------|
| C(7)-H(7)     | 0.9500     |
| C(8)-C(9)     | 1.4260(19) |
| C(8)-H(8)     | 0.9500     |
| C(9)-C(10)    | 1.3848(18) |
| C(10)-C(10)#1 | 1.501(3)   |
| C(11)-C(12A)  | 1.499(2)   |
| C(11)-C(12)   | 1.499(2)   |
| C(12)-C(13)   | 1.378(4)   |
| C(12)-C(17)   | 1.399(3)   |
| C(13)-F(1)    | 1.357(4)   |
| C(13)-C(14)   | 1.388(3)   |
| C(14)-C(15)   | 1.377(4)   |
| C(14)-H(14)   | 0.9500     |
| C(15)-C(16)   | 1.387(4)   |
| C(15)-H(15)   | 0.9500     |
| C(16)-C(17)   | 1.393(3)   |
| C(16)-H(16)   | 0.9500     |
| C(17)-H(17)   | 0.9500     |
| C(12A)-C(13A) | 1.402(16)  |
| C(12A)-C(17A) | 1.429(17)  |
| C(13A)-F(1A)  | 1.367(15)  |
| C(13A)-C(14A) | 1.377(16)  |
| C(14A)-C(15A) | 1.362(16)  |
| C(14A)-H(14A) | 0.9500     |
| C(15A)-C(16A) | 1.363(16)  |
| C(15A)-H(15A) | 0.9500     |
| C(16A)-C(17A) | 1.378(17)  |
| C(16A)-H(16A) | 0.9500     |
| C(17A)-H(17A) | 0.9500     |
|               |            |
| C(9)-N(1)-N(2)   | 113.75(11) |
|------------------|------------|
| C(9)-N(1)-H(1)   | 114.0(14)  |
| N(2)-N(1)-H(1)   | 109.8(14)  |
| C(11)-N(2)-N(1)  | 120.95(12) |
| C(11)-N(2)-H(2A) | 121.2(14)  |
| N(1)-N(2)-H(2A)  | 117.8(14)  |
| C(2)-C(1)-C(6)   | 118.12(12) |
| C(2)-C(1)-C(10)  | 121.52(12) |
| C(6)-C(1)-C(10)  | 120.33(12) |
| C(3)-C(2)-C(1)   | 119.53(13) |
| C(3)-C(2)-H(2)   | 120.2      |
| C(1)-C(2)-H(2)   | 120.2      |
| C(2)-C(3)-C(4)   | 122.98(13) |
| C(2)-C(3)-Br(1)  | 119.73(11) |
| C(4)-C(3)-Br(1)  | 117.28(11) |
| C(5)-C(4)-C(3)   | 118.20(13) |
| C(5)-C(4)-H(4)   | 120.9      |
| C(3)-C(4)-H(4)   | 120.9      |
| C(4)-C(5)-C(6)   | 121.48(13) |
| C(4)-C(5)-H(5)   | 119.3      |
| C(6)-C(5)-H(5)   | 119.3      |
| C(5)-C(6)-C(7)   | 121.73(13) |
| C(5)-C(6)-C(1)   | 119.67(13) |
| C(7)-C(6)-C(1)   | 118.60(13) |
| C(8)-C(7)-C(6)   | 120.88(13) |
| C(8)-C(7)-H(7)   | 119.6      |
| C(6)-C(7)-H(7)   | 119.6      |
| C(7)-C(8)-C(9)   | 120.70(13) |
| C(7)-C(8)-H(8)   | 119.7      |
| C(9)-C(8)-H(8)   | 119.7      |
| C(10)-C(9)-N(1)  | 121.31(12) |

| C(10)-C(9)-C(8)      | 120.85(13) |
|----------------------|------------|
| N(1)-C(9)-C(8)       | 117.76(12) |
| C(9)-C(10)-C(1)      | 118.48(12) |
| C(9)-C(10)-C(10)#1   | 122.85(11) |
| C(1)-C(10)-C(10)#1   | 118.61(11) |
| O(1)-C(11)-N(2)      | 122.89(13) |
| O(1)-C(11)-C(12A)    | 121.26(13) |
| N(2)-C(11)-C(12A)    | 115.85(13) |
| O(1)-C(11)-C(12)     | 121.26(13) |
| N(2)-C(11)-C(12)     | 115.85(13) |
| C(13)-C(12)-C(17)    | 118.3(2)   |
| C(13)-C(12)-C(11)    | 123.92(19) |
| C(17)-C(12)-C(11)    | 117.74(16) |
| F(1)-C(13)-C(12)     | 118.1(2)   |
| F(1)-C(13)-C(14)     | 119.4(3)   |
| C(12)-C(13)-C(14)    | 122.5(3)   |
| C(15)-C(14)-C(13)    | 118.5(3)   |
| C(15)-C(14)-H(14)    | 120.7      |
| C(13)-C(14)-H(14)    | 120.7      |
| C(14)-C(15)-C(16)    | 120.7(2)   |
| C(14)-C(15)-H(15)    | 119.6      |
| C(16)-C(15)-H(15)    | 119.6      |
| C(15)-C(16)-C(17)    | 120.0(3)   |
| C(15)-C(16)-H(16)    | 120.0      |
| C(17)-C(16)-H(16)    | 120.0      |
| C(16)-C(17)-C(12)    | 120.0(2)   |
| C(16)-C(17)-H(17)    | 120.0      |
| C(12)-C(17)-H(17)    | 120.0      |
| C(13A)-C(12A)-C(17A) | 113.8(11)  |
| C(13A)-C(12A)-C(11)  | 130.5(7)   |
| C(17A)-C(12A)-C(11)  | 115.5(9)   |

```
F(1A)-C(13A)-C(14A)
                     127.8(15)
F(1A)-C(13A)-C(12A)
                     107.9(11)
C(14A)-C(13A)-C(12A) 124.3(13)
C(15A)-C(14A)-C(13A) 118.8(17)
C(15A)-C(14A)-H(14A) 120.6
C(13A)-C(14A)-H(14A) 120.6
C(14A)-C(15A)-C(16A) 120.1(16)
C(14A)-C(15A)-H(15A) 119.9
C(16A)-C(15A)-H(15A) 119.9
C(15A)-C(16A)-C(17A) 121.2(18)
C(15A)-C(16A)-H(16A) 119.4
C(17A)-C(16A)-H(16A) 119.4
C(16A)-C(17A)-C(12A) 120.9(17)
C(16A)-C(17A)-H(17A) 119.5
C(12A)-C(17A)-H(17A) 119.5
```

Symmetry transformations used to generate equivalent atoms: #1 -x+1,y,-z+3/2

**Supplementary Table 6.** Anisotropic displacement parameters (Å<sup>2</sup>x 10<sup>3</sup>) for N265. The anisotropic displacement factor exponent takes the form:  $-2p^2[h^2 a^{*2}U^{11} + ... + 2h k a^{*} b^{*} U^{12}]$ 

|       | U11   | U <sup>22</sup> | U33   | U23   | U13   | U12  |  |
|-------|-------|-----------------|-------|-------|-------|------|--|
| Br(1) | 17(1) | 33(1)           | 25(1) | 14(1) | 10(1) | 1(1) |  |
| O(1)  | 24(1) | 20(1)           | 16(1) | 2(1)  | 14(1) | 4(1) |  |
| N(1)  | 14(1) | 13(1)           | 15(1) | 1(1)  | 8(1)  | 1(1) |  |
| N(2)  | 20(1) | 14(1)           | 15(1) | 3(1)  | 12(1) | 2(1) |  |
| C(1)  | 12(1) | 13(1)           | 14(1) | -1(1) | 7(1)  | 1(1) |  |
| C(2)  | 12(1) | 17(1)           | 14(1) | 1(1)  | 6(1)  | 1(1) |  |
|       |       |                 |       |       |       |      |  |

| C(3)   | 15(1) | 18(1) | 16(1) | 3(1)  | 9(1)  | 2(1)  |
|--------|-------|-------|-------|-------|-------|-------|
| C(4)   | 15(1) | 18(1) | 20(1) | -1(1) | 9(1)  | -4(1) |
| C(5)   | 13(1) | 20(1) | 17(1) | -1(1) | 7(1)  | -2(1) |
| C(6)   | 12(1) | 15(1) | 14(1) | -1(1) | 7(1)  | 0(1)  |
| C(7)   | 12(1) | 20(1) | 14(1) | 0(1)  | 5(1)  | 1(1)  |
| C(8)   | 16(1) | 18(1) | 13(1) | 2(1)  | 7(1)  | 2(1)  |
| C(9)   | 14(1) | 14(1) | 14(1) | -1(1) | 9(1)  | 1(1)  |
| C(10)  | 11(1) | 12(1) | 13(1) | -1(1) | 7(1)  | 1(1)  |
| C(11)  | 17(1) | 14(1) | 18(1) | 0(1)  | 11(1) | -1(1) |
| C(12)  | 25(1) | 18(1) | 27(1) | 6(1)  | 21(1) | 6(1)  |
| C(13)  | 28(1) | 29(1) | 31(1) | 9(1)  | 19(1) | 12(1) |
| C(14)  | 42(1) | 40(2) | 40(1) | 22(1) | 26(1) | 26(1) |
| C(15)  | 54(2) | 32(1) | 54(2) | 25(1) | 42(2) | 26(1) |
| C(16)  | 53(2) | 20(1) | 54(2) | 12(1) | 43(1) | 13(1) |
| C(17)  | 38(2) | 17(1) | 38(1) | 5(1)  | 30(1) | 7(1)  |
| F(1)   | 26(1) | 39(1) | 25(1) | 1(1)  | 5(1)  | 5(1)  |
| C(12A) | 25(1) | 18(1) | 27(1) | 6(1)  | 21(1) | 6(1)  |
| C(13A) | 39(3) | 20(3) | 38(3) | 6(2)  | 28(3) | 8(3)  |
| C(14A) | 45(4) | 21(3) | 44(3) | 9(3)  | 36(3) | 15(3) |
| C(15A) | 45(3) | 27(3) | 41(3) | 15(3) | 33(3) | 15(3) |
| C(16A) | 35(3) | 29(3) | 36(3) | 13(3) | 29(2) | 19(3) |
| C(17A) | 25(3) | 26(3) | 28(2) | 12(3) | 23(2) | 13(3) |
| F(1A)  | 50(4) | 20(3) | 40(3) | -2(2) | 21(3) | 5(3)  |
|        |       |       |       |       |       |       |

|        | x        | у       | Z        | U(eq) |
|--------|----------|---------|----------|-------|
|        |          |         |          |       |
| H(1)   | 5144(19) | 4359(7) | 6310(30) | 22(5) |
| H(2A)  | 3703(19) | 4800(7) | 3550(30) | 24(5) |
| H(2)   | 4883     | 3005    | 9217     | 18    |
| H(4)   | 1586     | 2393    | 6658     | 22    |
| H(5)   | 793      | 2877    | 4212     | 21    |
| H(7)   | 1038     | 3528    | 2736     | 21    |
| H(8)   | 2205     | 4110    | 2853     | 20    |
| H(14)  | 378      | 5777    | 400      | 48    |
| H(15)  | 978      | 6461    | 2023     | 48    |
| H(16)  | 2650     | 6475    | 5047     | 43    |
| H(17)  | 3732     | 5799    | 6480     | 32    |
| H(14A) | 2304     | 6502    | 4245     | 38    |
| H(15A) | 591      | 6342    | 1355     | 39    |
| H(16A) | 339      | 5623    | 149      | 34    |
| H(17A) | 1704     | 5039    | 1843     | 27    |
|        |          |         |          |       |

**Supplementary Table 7.** Hydrogen coordinates (  $x \ 10^4$ ) and isotropic displacement parameters (Å<sup>2</sup>x 10<sup>3</sup>)for N265.

**Supplementary Table 8.** Torsion angles [°] for N265.

| 66.65(17)   |
|-------------|
| 0.1(2)      |
| 178.17(13)  |
| 0.8(2)      |
| -178.20(10) |
| -0.6(2)     |
| 178.49(12)  |
| -0.7(2)     |
| -177.84(14) |
| 1.6(2)      |
| -1.3(2)     |
| -179.36(13) |
| 178.17(13)  |
| 0.1(2)      |
| 176.66(14)  |
| -2.8(2)     |
| 1.9(2)      |
| -145.63(13) |
| 37.75(17)   |
| 1.7(2)      |
| 178.39(13)  |
| 179.14(12)  |
| -4.3(2)     |
| -3.9(2)     |
| 172.66(13)  |
| -174.60(13) |
| 3.41(19)    |
| 8.3(2)      |
| -173.71(13) |
|             |

| N(1)-N(2)-C(11)-O(1)        | 1.3(2)      |
|-----------------------------|-------------|
| N(1)-N(2)-C(11)-C(12A)      | -179.15(12) |
| N(1)-N(2)-C(11)-C(12)       | -179.15(12) |
| O(1)-C(11)-C(12)-C(13)      | -128.7(4)   |
| N(2)-C(11)-C(12)-C(13)      | 51.8(4)     |
| O(1)-C(11)-C(12)-C(17)      | 48.0(3)     |
| N(2)-C(11)-C(12)-C(17)      | -131.6(3)   |
| C(17)-C(12)-C(13)-F(1)      | -179.5(4)   |
| C(11)-C(12)-C(13)-F(1)      | -2.9(8)     |
| C(17)-C(12)-C(13)-C(14)     | 0.7(8)      |
| C(11)-C(12)-C(13)-C(14)     | 177.4(4)    |
| F(1)-C(13)-C(14)-C(15)      | -179.4(5)   |
| C(12)-C(13)-C(14)-C(15)     | 0.3(9)      |
| C(13)-C(14)-C(15)-C(16)     | -0.7(7)     |
| C(14)-C(15)-C(16)-C(17)     | -0.1(6)     |
| C(15)-C(16)-C(17)-C(12)     | 1.2(6)      |
| C(13)-C(12)-C(17)-C(16)     | -1.5(6)     |
| C(11)-C(12)-C(17)-C(16)     | -178.3(3)   |
| O(1)-C(11)-C(12A)-C(13A)    | 50(2)       |
| N(2)-C(11)-C(12A)-C(13A)    | -129(2)     |
| O(1)-C(11)-C(12A)-C(17A)    | -134(2)     |
| N(2)-C(11)-C(12A)-C(17A)    | 47(2)       |
| C(17A)-C(12A)-C(13A)-F(1A)  | -174(3)     |
| C(11)-C(12A)-C(13A)-F(1A)   | 2(4)        |
| C(17A)-C(12A)-C(13A)-C(14A) | 5(5)        |
| C(11)-C(12A)-C(13A)-C(14A)  | -179(2)     |
| F(1A)-C(13A)-C(14A)-C(15A)  | -178(3)     |
| C(12A)-C(13A)-C(14A)-C(15A) | 3(5)        |
| C(13A)-C(14A)-C(15A)-C(16A) | -7(5)       |
| C(14A)-C(15A)-C(16A)-C(17A) | 3(5)        |
| C(15A)-C(16A)-C(17A)-C(12A) | 6(6)        |

| C(13A)-C(12A)-C(17A)-C(16A) | -10(5) |
|-----------------------------|--------|
| C(11)-C(12A)-C(17A)-C(16A)  | 174(3) |

Symmetry transformations used to generate equivalent atoms: #1 -x+1,y,-z+3/2

Supplementary Table 9. Hydrogen bonds for N265 [Å and °].

| D-HA             | d(D-H)  | d(HA)   | d(DA)      | <(DHA)    |
|------------------|---------|---------|------------|-----------|
| N(1)-H(1)O(1)#1  | 0.86(2) | 2.13(2) | 2.9000(16) | 148.8(18) |
| N(2)-H(2A)O(1)#2 | 0.84(2) | 1.96(2) | 2.7781(16) | 166(2)    |

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,y,-z+3/2 #2 x,-y+1,z-1/2

## References

1. Qi, L.-W.; Mao, J.-H.; Zhang, J.; Tan, B., Organocatalytic asymmetric arylation of indoles enabled by azo groups. *Nat. Chem.* **2018**, *10*, 58.

 Xu, W.-L.; Zhao, W.-M.; Zhang, R.-X.; Chen, J.; Zhou, L., Organocatalytic cycloaddition– elimination cascade for atroposelective construction of heterobiaryls. *Chem. Sci.* 2021, *12*, 14920.
 Hu, Y.-L.; Wang, Z.; Yang, H.; Chen, J.; Wu, Z.-B.; Lei, Y.; Zhou, L., Conversion of two stereocenters to one or two chiral axes: atroposelective synthesis of 2,3-diarylbenzoindoles. *Chem. Sci.* 2019, *10*, 6777.

## **Copies of NMR Spectra**













8.8.5
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15
8.8.15













100 f1 (ppm)





































f1 (ppm) Ċ 
















f1 (ppm) 











Ċ f1 (ppm) 



## $\begin{array}{c} 2.53\\ 2.50\\ 2.50\\ 2.50\\ 2.50\\ 2.50\\ 2.50\\ 2.50\\ 2.50\\ 1.183\\ 1.183\\ 1.177\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.13\\ 1.$





f1 (ppm) 















Nov06-2023-et-b6-8ch3-bm

## Nov06-2023-et-b6-8ch3-bm 6 9 0 0 6 9 0 0 6 9 0 0 6 9 0 0 6 9 0 0 6 9 0 0 6 9 0 0 6 9 0 0 6 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th









Aug23-2023-et-b6-bnmclv.10.fid Aug23-2023-et-b6-bnmclv

## 







