Supplementary Information

Direct synthesis of *N*-perfluoro-*tert*-butyl secondary amines from *N*-trifluoromethyl secondary amines

Leibing Wang,^a Zhongyu Feng,^a Zhen Luo,^a Zihao Guo,^{*a} Jieping Wang ^{*a}

and Wenbin Yi *ab

^{*a*} School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.

^b Key Laboratory of Organofluorine Chemistry, Shanghai Institute Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032 (China).

E-mail: zihao_guo@njust.edu.cn; jieping.wang@njust.edu.cn; yiwb@njust.edu.cn

Table of Contents

1. General information	S3
2. Study of condition optimization and reaction path	S4
3. Density functional theory (DFT) study and calculational details	S12
4. General procedure for the synthesis of <i>N</i> -CF ₃ secondary amines	S24
5. General procedure for <i>N</i> -perfluoro- <i>tert</i> -butyl secondary amines	S27
6. Derivative reactions	S35
7. Stability study of compound 1	S42
8. ¹⁹ F MRI Experiment	S44
9. Crystallographic data for compound 11	S45
10. References	S46
11. NMR Spectra	S47

1. General information

Unless otherwise noted, all reactions were conducted in the oven- or flame-dried glassware under an atmosphere of nitrogen, all reagents and starting materials were purchased from commercial sources and used without further purification. All known compounds are identified by appropriate techniques such as ¹H NMR, ¹³C NMR, ¹⁹F NMR, and compared with previously reported data. All unknown compounds are characterized by ¹H NMR, ¹³C NMR, ¹⁹F NMR, and HRMS. ¹H, ¹³C, and ¹⁹F NMR spectra were recorded on a 500 MHz Bruker DRX 500. Chemical shifts were reported in parts per million (ppm), and the residual solvent peak was used as an internal reference: proton (chloroform δ 7.26), carbon (chloroform δ 77.0). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, and m = multiplet. GC-MS data were recorded on an ISQ LT Single Quadrupole Mass Spectrometer, coupled with a Trace 1300 Gas Chromatograph (Thermo Fisher Scientific). Melting points were measured on a melting point apparatus (HMX-1B) and were uncorrected. High-resolution mass spectral data were acquired on Agilent Technologies 7250 GCQTOF (electro ionization: EI) and JEOL-AccuTOF-GCv4G-GCT MS (FI). The ¹⁹F MRI data were recorded on a Bruker 9.4 T BioSpec 94/30 MRI & PET Insert.

2. Study of condition optimization and reaction path

The variation in CsF dosage resulted in decreased yield, attributed to the formation or increased quantity of by-products. When 0.5 equivalents of CsF was used (entry 13), a dimer was produced during the reaction (Supplementary Figure S1). When 3.0 equivalents of CsF were employed (entry 12), there was a notable increase in by-products compared to the conditions using 1.5 equivalents (entry 11) (Supplementary Figure S2 and S3).

entry	TMSCF ₃ (equiv)	Additive (equiv)	Solvent	Yield $(\%)^b$
1	8	KF (1)	THF	33
2	8	KF (3)	THF	38
3	8	KF (5), CuCl (1.0)	THF	54
4	8	KF (3), CuCl (1.0)	THF	47
5	10	KF (5)	THF	43
6	10	KF (3)	THF	42
7	8	\	THF	0
8	8	NaF (3.0)	THF	0
9	8	TBAF (3.0)	THF	0
10	8	CsF (1.0)	THF	65
11	8	CsF (1.5)	THF	73
12	8	CsF (3.0)	THF	67
13	8	CsF (0.5)	THF	60
14	8	CsF (1.5)	DCM	23
15	8	CsF (1.5)	MeCN	41
16	6	CsF (1.5)	THF	76
17	10	CsF (3.0)	THF	57

Supplementary Figure S1. Reaction results from GC-MS analysis with the addition of 0.5 equivalents of CsF (entry 13).

Supplementary Figure S2. Reaction results from GC-MS analysis with the addition of 1.5 equivalents of CsF (entry 11).

Supplementary Figure S3. Reaction results from GC-MS analysis with the addition of 3.0 equivalents of CsF (entry 12).

The HCF₃ signal was detected by ¹⁹F NMR under reaction conditions without a substrate (4.8 mmol TMSCF₃, 1.2 mmol CsF, 4.0 mL dry THF, 0.5 h), using 0.8 mmol of trifluorotoluene as an internal standard. We found that a very small amount of HCF₃ (7%) was generated (Supplementary Figure S4). In contrast, when the substrate (0.8 mmol) was included in the reaction for 0.5 hours, 51% of HCF₃ remained while the final product was formed (Supplementary Figure S5). This indicates that the vast majority of HCF₃ produced during the reaction is sourced from the substrate, with only a minor portion arising from the solvent THF.

Supplementary Figure S4. ¹⁹F NMR detection of HCF₃ in the absence of substrate.

Supplementary Figure S5. ¹⁹F NMR detection of HCF₃ in the presence of substrate.

Supplementary Figure S6. The mixed products of mono-, di-, and tri-substituted trifluoromethylation.

Supplementary Figure S7. The mass spectrum of compound A from GC-MS.

Supplementary Figure S8. The mass spectrum of compound B from GC-MS.

Supplementary Figure S9. The mass spectrum of compound 1 from GC-MS.

3. Density functional theory (DFT) study and calculational details

In the DFT reaction mechanism study, we used Gaussian 16, Revision A.01¹. Geometry optimizations of all involved compounds were conducted with the PBE0 functional² (Integral grid precision is ultrafine) in combination with the D3BJ dispersion correction³ and the def2-TZVP basis set⁴, which is suitable for organic systems of metal K and Cs. The solvation effects of tetrahydrofuran were considered during geometry optimizations using the SMD⁵ solvation model. Frequency calculations were carried out at the same theoretical level as for geometry optimization to verify that the stationary points of compound structures on the potential energy surface are either minima (no imaginary frequencies) or first-order saddle points (only one imaginary frequency), as well as to obtain thermal Gibbs free energy corrections. Furthermore, Intrinsic reaction coordinate (IRC) calculations were performed to ensure that the first-order saddle points found were true transition states (TS).

It is determined through TS, QST2, QST3, and relaxed scan that there is no suitable transition state in the reaction process from **IM-1** to the product. This may be due to the large Cs atom causing the bond length to be too long and the small H atom causing the bond length to be too short, resulting in no significant energy barrier change on the potential energy surface. All Gibbs free energy obtained using the implicit solvent model was added with a correction of 1.89 kcal/mol corresponding to the 1M standard state.

4-cyanophenyl N-trifluoromethyl secondary amine

С	1.75228200	-1.10552900	0.00000300
С	0.38539300	-0.91265100	0.00001200
С	-0.13680000	0.38462500	0.00001200
С	0.75064000	1.47044000	0.00000300
С	2.11115200	1.27472500	-0.00000400
С	2.63023300	-0.02264500	-0.00000400
Н	2.14452400	-2.11517900	0.00000500
Н	-0.25534500	-1.77933500	0.00002200
Н	0.35512300	2.48041600	0.00000200
Н	2.78039100	2.12629900	-0.00001000
Ν	-1.48214100	0.70810000	0.00002400
Н	-1.69418800	1.69604600	0.00004900
С	-2.62516800	-0.07969100	0.00000100
F	-3.40287700	0.18149100	-1.06991200
F	-2.37181700	-1.38025900	-0.00005700
F	-3.40286100	0.18139700	1.06995000
С	4.03481000	-0.23526700	-0.00001200
Ν	5.17531800	-0.40752200	-0.00001800

TS

С	0.54406600	1.29801200	-0.26843400
С	1.90949700	1.24812700	-0.07642700
С	2.55267500	0.01210500	-0.01230400
Н	2.33817100	-2.12621200	-0.11129100
Н	-0.09722500	-2.03996200	-0.47942700
Н	0.02585400	2.24867600	-0.30535900
Н	2.47889000	2.16270600	0.02877600
Ν	-1.56008700	0.21037300	-0.61801900
Н	-1.97277200	1.15979600	-0.75330100
С	-2.46779500	-0.47361900	-0.01289000
F	-3.68256400	-0.47014200	-0.38034600
F	-2.20426000	-1.38023400	0.84126400
F	-2.92585800	1.69182200	0.64367600
С	3.96274700	-0.04227300	0.18738400
Ν	5.10217900	-0.08710300	0.34852100

IM-1

С	-0.50622200	0.37558000	0.29758200
С	0.31187600	1.44005000	-0.07544900
С	0.04885000	-0.87801500	0.55017700
С	1.66947800	1.24883700	-0.22746000
Н	-0.13058800	2.41365400	-0.24736500
С	1.40879900	-1.07029100	0.41215700
Н	-0.58600000	-1.69734200	0.86585400
С	2.22374400	-0.00904500	0.01647900

Н	2.30718800	2.07121800	-0.52714600
Н	1.84482400	-2.04204900	0.60845600
С	3.62538400	-0.20768000	-0.13100300
Ν	4.76017300	-0.36865400	-0.25163200
Ν	-1.87031900	0.62780900	0.47877500
С	-2.75595500	-0.04306000	-0.06295200
F	-4.02485100	0.17444600	0.14075800
F	-2.62182900	-1.02975900	-0.91486700

CsHF₂

F	1.13095300	-2.04957400	0.00000000
Н	0.00011900	-2.12521200	0.00000000
F	-1.13096700	-2.05000600	0.00000000
Cs	0.00000000	0.70948100	0.00000000

CsCF₃

С	1.28118300	-0.02828600	-0.26318800
С	1.67291100	-1.35023300	0.07781200
С	2.33601100	0.90367400	-0.45320700
С	2.98676900	-1.71560200	0.21979600
Н	0.89286400	-2.08883600	0.22878800
С	3.65348700	0.53712500	-0.30948900
Н	2.11398700	1.92663300	-0.72112100
С	4.00920800	-0.77434900	0.02853800
Н	3.24128000	-2.73638200	0.48226300
Н	4.43235300	1.27626600	-0.46132200
С	5.36628500	-1.14197500	0.17315700
Ν	6.47571900	-1.44544200	0.29223300
Ν	-0.04287200	0.20234700	-0.38699900
С	-0.58141600	1.41247500	-0.62803400
F	-1.89149000	1.25040400	-1.06761800
Cs	-2.49748500	-1.70310600	0.04427400
F	0.00247200	2.18984800	-1.62215500
С	-0.73532800	2.36941500	0.58879000
F	-1.34468100	3.51249400	0.26249700
F	0.44729000	2.67833700	1.11835300
F	-1.46730100	1.78240000	1.54165800

С	-0.56129900	0.32508300	-0.22093100
С	-1.36076600	1.41292400	0.12259900
С	-1.13735100	-0.91574500	-0.48990500
С	-2.72641400	1.25572200	0.23811100
Н	-0.89784900	2.37534600	0.30298500
С	-2.50576200	-1.07014400	-0.39812400
Н	-0.51634600	-1.75183000	-0.78623000
С	-3.30313300	0.01205500	-0.02380900
Н	-3.35219200	2.09396600	0.51797300
Н	-2.96166000	-2.02934100	-0.61002500
С	-4.71361200	-0.15129700	0.08205200
Ν	-5.85488100	-0.28397100	0.16891600
Ν	0.81337900	0.55155700	-0.35330400
С	1.69024800	-0.17231100	0.13838100
F	1.49787300	-1.24445800	0.90156500
С	3.17626500	0.08218000	-0.04892500
F	3.39342500	1.14983900	-0.79583200
F	3.75167000	-0.97105000	-0.63273400
F	3.76475600	0.26211000	1.13470300

IM-3

С	0.91184900	0.67422100	0.18819900
С	1.84827800	0.16578500	1.12670500
С	1.44601800	1.47205600	-0.85882600
С	3.19535700	0.41414200	1.03089700
Н	1.46537000	-0.41534000	1.95928900
С	2.79418500	1.72135900	-0.95338900
Н	0.78583800	1.88931700	-1.60597900
С	3.69651900	1.19580800	-0.01836200
Н	3.87612600	0.01489600	1.77445100
Н	3.16939100	2.33197100	-1.76729000
С	5.08323200	1.44987500	-0.13026800
Ν	6.21764800	1.65250700	-0.22223900
Ν	-0.37283200	0.28287700	0.33829300
С	-1.43773300	0.90283800	-0.23147700
С	-2.66636500	-0.03722200	-0.10190400
F	-2.43266600	-1.17072600	-0.77968600
F	-3.77974600	0.49348000	-0.60696900
F	-2.91762000	-0.37481900	1.16103300
С	-1.75669100	2.31743100	0.34511300
F	-2.10540200	2.22763400	1.63185400
F	-2.75053000	2.93956300	-0.29539600
F	-0.68757500	3.10890900	0.27351400
Cs	0.28480700	-2.80553400	-0.02133100
F	-1.38898600	1.14018700	-1.64876800

С	0.87673300	-0.67947000	-0.11237700
С	1.66522800	-1.27621700	0.86977900
С	1.45096200	0.13341600	-1.08758500
С	3.01864100	-1.01799400	0.90829600
Н	1.20477100	-1.92715200	1.60262800
С	2.81071400	0.36960400	-1.06405700
Н	0.83517400	0.56236300	-1.86827600
С	3.59754800	-0.19578300	-0.06096500
Н	3.63603300	-1.46083800	1.67986500
Н	3.26612800	0.99781400	-1.81952500
С	4.99818100	0.05650400	-0.03178700
Ν	6.13191000	0.26115500	-0.00758800
Ν	-0.47842000	-1.00674200	-0.15737900
С	-1.44075800	-0.22090200	-0.02291500
С	-2.84953000	-0.79405100	-0.17726100
F	-2.82203100	-1.99874000	-0.72170200
F	-3.59150400	-0.00013200	-0.95497800
F	-3.45712000	-0.88968500	1.00777000
С	-1.36209600	1.27911900	0.29409800
F	-1.27422700	1.99199100	-0.83067100
F	-0.30658200	1.56021200	1.04778200
F	-2.44967800	1.68319500	0.94832500

IM-5

С	0.00002800	-0.00003200	0.34593200
Н	0.00010500	-0.00002700	1.43666400
F	-0.31268700	1.20736600	-0.13005800
F	-0.88930800	-0.87444900	-0.13005100
F	1.20196500	-0.33289300	-0.13014200

Product

С	1.32267100	0.54248100	-0.00647100
С	2.21435600	1.62646000	0.01482800
С	1.84589500	-0.75157900	-0.03004400
С	3.57349300	1.42941400	0.01956100
Н	1.82053900	2.63682900	0.03158700
С	3.21246300	-0.94969500	-0.02035100
Н	1.21036300	-1.62022300	-0.07003500
С	4.09111100	0.13093300	0.00545900
Н	4.24348500	2.28027500	0.03690600
Н	3.60172700	-1.96026500	-0.03940300
С	5.49503100	-0.08240600	0.01320900
Ν	6.63562600	-0.25357500	0.01976600
Ν	-0.01970800	0.87854900	0.00806000
С	-1.21451100	0.10463500	-0.00976800
С	-2.36165500	1.10629400	0.36688600
F	-2.31957400	1.38198200	1.66628400
F	-3.55930300	0.62552400	0.07176800

F -2.21/86000 2.25856300	-0.28/34100
C -1.50719300 -0.48672500	-1.42837600
F -0.43160300 -1.10004100 -	-1.90856800
F -1.82238700 0.49107300	-2.27422100
F -2.50978600 -1.36119100 -	-1.41214200
C -1.24135900 -1.05184300	1.05908800
F -2.48174200 -1.30511600	1.46765100
F -0.51628300 -0.71790500	2.11443800
F -0.76297300 -2.19379300	0.56634600
Н -0.17575000 1.86887900	-0.09590300

TMSCF₃

F17	H11 H12_10 H13
F15 214	Si1 C2 H5
F15	Н7 С6 Н9
	НВ

Si	0.86331300	0.00011400	0.00024500
С	1.36512200	-0.23367900	-1.77478700
Н	0.99102300	-1.18148200	-2.17125200
Н	0.98621000	0.57591400	-2.40444700
Н	2.45624600	-0.24168800	-1.85828500
С	1.36453300	-1.42095500	1.08952700
Н	0.98697000	-1.29330400	2.10763700
Н	0.98835200	-2.37077900	0.69991800
Н	2.45559700	-1.48768300	1.14161600
С	1.36542400	1.65411500	0.68525300
Н	0.98894000	2.47134600	0.06405600
Н	0.98884200	1.79337400	1.70219300
Н	2.45658300	1.73152400	0.71744200
С	-1.08081200	0.00013700	-0.00003300
F	-1.61007000	0.15546100	1.23690800
F	-1.60999200	-1.14875900	-0.48405900
F	-1.61002100	0.99368300	-0.75307800

Si	-0.00007400	-0.00001000	0.01756200
С	0.79409300	-1.58996800	-0.51768700
Н	1.82220900	-1.66275700	-0.15124000
Н	0.23733800	-2.45562500	-0.14722100
Н	0.82241400	-1.65205600	-1.61019100
С	0.98000200	1.48243200	-0.51806900
Н	0.53033800	2.40921600	-0.15002300
Н	2.00862300	1.43195200	-0.14929600
Н	1.01798900	1.53908000	-1.61059700
С	-1.77399300	0.10723100	-0.51796400
Н	-2.35229200	-0.74439100	-0.14790000
Н	-2.24388200	1.02442100	-0.15111000
Н	-1.84214300	0.10940800	-1.61047600
F	-0.00001900	0.00030200	1.64494500

HF

F	-1.12771000	-1.14710100	0.00000000
Н	-0.00002000	-1.27771300	0.00000000
F	1.12771300	-1.14745100	0.00000000
Κ	0.00000000	1.15414100	0.00000000

Cs₂HF₃

4. General procedure for the synthesis of N-CF₃ secondary amines⁶

A 25 mL Schlenk flask equipped with a magnetic stir bar was charged with the isothiocyanate (1.0 mmol, 1.0 equiv.) and silver fluoride (5.0 mmol, 5.0 equiv.). The flask was evacuated and refilled with N₂ three times. Triethylsilane (indicated equivalents) was dissolved in acetonitrile (5.0 mL) and the solution was added quickly to the vessel via syringe (if the isothiocyanate was a liquid or an oil, it was added as a solution in the solvent). The reaction mixture was stirred at room temperature for 8 h. The crude mixture was filtered and concentrated under reduced pressure to about 1 mL, subsequently was added to Et_2O (30 mL) and stirred for 10 minutes. The solid was filtered through celite and the solvents were then evaporated. The crude material was dissolved in Et_2O and filtered through a pad of celite again to obtain the corresponding *N*-CF₃ secondary amines.

4-(methylsulfonyl)-*N***-(trifluoromethyl)aniline**. The title compound was obtained as a white solid in 92% yield (220 mg) using triethylsilane (1.4 mmol, 1.4 equiv.) following the general procedure for N-CF₃ secondary amines. M.p.: 127-129

°C. ¹H NMR (500 MHz, CD₃CN) δ 7.81 (d, J = 8.9 Hz, 2H), 7.34 (s, 1H), 7.11 (d, J = 8.6 Hz, 2H), 3.01 (s, 3H). ¹⁹F NMR (470 MHz, CD₃CN) δ -56.9 (d, J = 13.5 Hz, 3F). ¹³C NMR (126 MHz, CD₃CN) δ 143.7, 134.6, 129.7, 121.9 (q, J = 255.2 Hz), 116.7, 44.4. HRMS (EI): m/z calcd for C₈H₈F₃NO₂S: 239.0222 M⁺; Found 239.0222.

phenyl(4-((trifluoromethyl)amino)phenyl)methanone. The title compound was obtained as a white solid in 95% yield (251 mg) using triethylsilane (1.4 mmol, 1.4 equiv.) following the general procedure for *N*-CF₃ secondary amines. M.p.: 104-106 °C. ¹**H NMR** (500 MHz, DMSO-d₆) δ 9.41 (d,

J = 5.4 Hz, 1H), 7.62 (d, J = 8.5 Hz, 2H), 7.57 (d, J = 7.8 Hz, 2H), 7.46 (t, J = 7.6 Hz, 1H), 7.37 (t, J = 7.7 Hz, 2H), 6.98 (d, J = 8.5 Hz, 2H). ¹⁹F NMR (470 MHz, DMSO-d₆) δ -54.5 (d, J = 5.3 Hz, 3F). ¹³C NMR (126 MHz, DMSO-d₆) δ 194.8, 143.4, 138.1, 132.4, 132.2, 130.5, 129.7, 128.7, 122.0 (q, J = 255.0 Hz), 115.7. HRMS (EI): m/z calcd for C₁₄H₁₀F₃NO: 265.0709 M⁺; Found 265.0705.

2-benzyl-*N***-(trifluoromethyl)aniline**. The title compound was obtained as a colorless oil in 84% yield (211 mg) using triethylsilane (1.3 mmol, 1.3 equiv.) following the general procedure for *N*-CF₃ secondary amines. ¹**H** NMR (500 MHz, CDCl₃) δ 7.40 (t, *J* = 7.4 Hz, 2H), 7.36 - 7.31 (m, 2H), 7.29 - 7.26 (m, 2H), 7.23 (d, *J* = 7.1 Hz, 2H), 7.17 (td, *J* = 8.1, 1.3 Hz, 1H),

4.94 (s, 1H), 4.06 (s, 2H). ¹⁹F NMR (470 MHz, CDCl₃) δ -55.1 (d, J = 3.9 Hz, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 138.6, 136.0, 131.3, 130.2, 129.1, 128.5, 127.9, 127.0,

124.0, 121.8 (q, J = 256.2 Hz), 119.6 (q, J = 2.5 Hz), 38.2. **HRMS** (EI): m/z calcd for C₁₄H₁₂F₃N: 251.0916 M⁺; Found 251.0916.

3-isopropyl-*N***-(trifluoromethyl)aniline**. The title compound was obtained as a colorless oil in 89% yield (181 mg) using triethylsilane (1.5 mmol, 1.5 equiv.) following the general procedure for N-CF₃ secondary amines. ¹H NMR (500 MHz,

CDCl₃) δ 7.10 (t, J = 7.8 Hz, 1H), 6.83 (d, J = 7.8 Hz, 1H), 6.69 (d, J = 10.6 Hz, 2H), 4.97 (s, 1H), 2.80 - 2.71 (m, 1H), 1.13 (d, J = 7.1 Hz, 6H). ¹⁹**F NMR** (470 MHz, CDCl₃) δ -55.6 (d, J = 4.6 Hz, 3F). ¹³**C NMR** (126 MHz, CDCl₃) δ 149.5, 136.5, 128.3, 120.7 (q, J = 256.1 Hz), 120.4, 115.2, 114.3, 33.1, 22.8. **HRMS** (EI): m/z calcd for C₁₀H₁₂F₃N: 203.0916 M⁺; Found 203.0915.

1-(4-((trifluoromethyl)amino)phenyl)ethan-1-one. The title compound was obtained as a white solid in 99% yield (201 mg) using triethylsilane (1.5 mmol, 1.5 equiv.) following the general procedure for *N*-CF₃ secondary amines. M.p.: 103-105 °C. ¹H NMR (500 MHz, DMSO-d₆) δ 9.36 (q, *J* = 5.3 Hz, 1H), 7.83 (d,

J = 8.6 Hz, 2H), 6.96 (d, J = 8.5 Hz, 2H), 2.42 (s, 3H). ¹⁹F NMR (470 MHz, DMSOd₆) δ -54.9 (d, J = 5.5 Hz, 3F). ¹³C NMR (126 MHz, DMSO-d₆) δ 196.5, 143.5, 130.9, 130.5, 121.9 (q, J = 255.0 Hz), 115.7, 26.5. HRMS (EI): m/z calcd for C₉H₈F₃NO: 203.0552 M⁺; Found 203.0551.

4-nitro-*N***-(trifluoromethyl)aniline**. The title compound was obtained as a yellow solid in 93% yield (192 mg) using triethylsilane (1.9 mmol, 1.9 equiv.) following the general procedure for *N*-CF₃ secondary amines. M.p.: 102-104 °C. ¹H

NMR (500 MHz, DMSO-d₆) δ 9.93 (s, 1H), 8.22 (d, J = 9.3 Hz, 2H), 7.13 (d, J = 9.2 Hz, 2H). ¹⁹**F NMR** (470 MHz, DMSO-d₆) δ -55.2 (s, 3F). ¹³**C NMR** (126 MHz, DMSO-d₆) δ 145.3, 141.7, 125.9, 121.5 (q, J = 255.6 Hz), 115.8. **HRMS** (EI): m/z calcd for C₇H₅F₃N₂O₂: 206.0298 M⁺; Found 206.0298.

3,5-dimethyl-*N***-(trifluoromethyl)aniline**. The title compound was obtained as a colorless oil in 80% yield (151 mg) using triethylsilane (1.4 mmol, 1.4 equiv.) following the general procedure for *N*-CF₃ secondary amines. ¹**H** NMR (500 MHz, CDCl₃) δ 6.59 (s, 1H), 6.46 (s, 2H), 4.87 (s, 1H), 2.16 (s, 6H). ¹⁹**F** NMR (470 MHz, CDCl₃) δ -

55.5 (d, J = 5.1 Hz, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 138.2, 136.4, 123.9, 120.7 (q, J = 256.1 Hz), 114.6, 20.2. HRMS (EI): m/z calcd for C₉H₁₀F₃N: 189.0760 M⁺; Found 189.0760.

 N^4 , N^4 '-bis(trifluoromethyl)-[1,1'-biphenyl]-4,4'-diamine. The title compound was obtained as a yellow solid in 90% yield (288 mg) using triethylsilane (3.2

mmol, 3.2 equiv.), silver fluoride (10.0 mmol, 10.0 equiv.), MeCN (10.0 mL) following

the general procedure for *N*-CF₃ secondary amines. M.p.: 104-106 °C. ¹H NMR (500 MHz, CD₃CN) δ 7.38 (d, *J* = 8.7 Hz, 4H), 7.06 (q, *J* = 6.0 Hz, 2H), 6.98 (d, *J* = 8.5 Hz, 4H). ¹⁹F NMR (470 MHz, CD₃CN) δ -56.0 (d, *J* = 5.7 Hz, 6F). ¹³C NMR (126 MHz, CD₃CN) δ 138.3, 135.1, 128.0, 122.8 (q, *J* = 254.0 Hz), 118.4. HRMS (EI): m/z calcd for C₁₄H₁₀F₆N₂: 320.0743 M⁺; Found 320.0743.

4,4'-methylenebis(*N***-(trifluoromethyl)aniline)**. The title compound was obtained as a white solid in 81% yield (271 mg) using triethylsilane (2.8 mmol, 2.8 equiv.), silver fluoride (10.0 mmol, 10.0 equiv.),

MeCN (10.0 mL) following the general procedure for *N*-CF₃ secondary amines. M.p.: 36-37 °C. ¹H NMR (500 MHz, CD₃CN) δ 6.99 (d, *J* = 8.7 Hz, 4H), 6.83 (d, *J* = 8.3 Hz, 4H), 6.43 (q, *J* = 6.3 Hz, 2H), 3.69 (s, 2H). ¹⁹F NMR (470 MHz, CD₃CN) δ -56.1 (d, *J* = 6.3 Hz, 6F). ¹³C NMR (126 MHz, CD₃CN) δ 137.0, 137.0, 130.3, 122.9 (q, *J* = 254.0 Hz), 118.7, 40.4. HRMS (EI): m/z calcd for C₁₅H₁₂F₆N₂: 334.0899 M⁺; Found 334.0899.

4,4'-sulfonylbis(*N*-(trifluoromethyl)aniline). The title compound was obtained as a white solid in 80% yield (307 mg) using triethylsilane (2.8 mmol, 2.8 equiv.), silver fluoride (10.0 mmol, 10.0 equiv.), MeCN (10.0 mL) following the general procedure

for *N*-CF₃ secondary amines. M.p.: 167-169 °C. ¹H NMR (500 MHz, CD₃CN) δ 7.72 (d, *J* = 8.9 Hz, 4H), 7.22 (q, *J* = 5.2 Hz, 2H), 6.97 (d, *J* = 8.7 Hz, 4H). ¹⁹F NMR (470 MHz, CD₃CN) δ -57.0 (d, *J* = 5.9 Hz, 6F). ¹³C NMR (126 MHz, CD₃CN) δ 143.5, 135.5, 129.7, 121.8 (q, *J* = 255.3 Hz), 116.8. HRMS (FI): m/z calcd for C₁₄H₁₀F₆N₂O₂S: 384.0362 M⁺; Found 384.0364.

tert-butyl (*tert*-butoxycarbonyl)(4-((trifluoromethyl)amino)phenyl)carbamate. The title compound was obtained as a white solid in 97% yield (364 mg) using triethylsilane (1.3 mmol, 1.3 equiv.) following the general procedure for *N*-CF₃

secondary amines. M.p.: 137-139 °C. ¹H NMR (500 MHz, DMSO-d₆) δ 8.89 (q, J = 5.8 Hz, 1H), 7.10 (d, J = 8.6 Hz, 2H), 6.96 (d, J = 8.4 Hz, 2H), 1.39 (s, 18H). ¹⁹F NMR (470 MHz, DMSO-d₆) δ -54.2 (d, J = 5.9 Hz, 3F). ¹³C NMR (126 MHz, DMSO-d₆) δ 152.1, 138.0, 133.6, 129.2, 122.4 (q, J = 253.9 Hz), 117.2, 82.4, 27.9. HRMS (EI): m/z calcd for C₁₇H₂₃F₃N₂O₄: 376.1604 M⁺; Found 376.1609.

5. General procedure for N-perfluoro-tert-butyl secondary amines

Under nitrogen atmosphere, a 25 mL Schlenk flask equipped with a magnetic stir bar was charged with the *N*-CF₃ secondary amines (0.8 mmol, 1.0 equiv.), CsF (1.2 mmol, 1.5 equiv.) and dry THF (2.0 mL). The mixture was stirred at room temperature and then TMSCF₃ (4.8 mmol, 6.0 equiv.) dissolved in dry THF (2.0 mL) was added dropwise to the reaction mixture. After the addition was completed, the reaction mixture was stirred at room temperature for 6 h. The crude mixture was filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel using the indicated solvent system to give the corresponding products.

Particular examples

Compounds 27 and 28 were obtained in a one-pot method from isothiocyanates to *N*-PFtB secondary amines. According to general procedure for the synthesis of *N*-CF₃ secondary amines, a mixture of isothiocyanate (0.8 mmol, 1.0 equiv.), silver fluoride (4.0 mmol, 5.0 equiv.), triethylsilane (1.36 mmol, 1.7 equiv.) and replacement of MeCN with THF (4.0 mL) was stirred at room temperature for 12 h. After the reaction was completed, CsF (1.2 mmol, 1.5 equiv.) and TMSCF₃ (4.8 mmol, 6.0 equiv.) were added and stirred at room temperature for another 6 h.

For compounds **29** and **30**, a mixture of isothiocyanate (0.8 mmol, 1.0 equiv.), silver fluoride (4.0 mmol, 5.0 equiv.), triethylsilane (1.2 mmol, 1.5 equiv.) and MeCN (4.0 mL) was stirred at room temperature for 8 h following the general procedure for *N*-CF₃ secondary amines. But THF was used instead of Et₂O to purify the crude mixture, which was then concentrated to about 2 mL and CsF (1.2 mmol, 1.5 equiv.) and TMSCF₃ (4.8 mmol, 6.0 equiv.) were added following the general procedure for *N*-perfluoro-*tert*-butyl secondary amines.

4-((1,1,1,3,3,3-hexafluoro-2-(trifluoromethyl)propan-2-yl)amino)benzonitrile (1). White solid, M.p.: 89-91 °C, yield 76% (204 mg). Eluent: ethyl acetate/petroleum ether (4:96). ¹H NMR (500 MHz, CDCl₃) δ 7.55 (d, J = 8.8 Hz, 2H), 7.14 (d, J= 8.6 Hz, 2H), 4.71 (s, 1H). ¹⁹F NMR (470 MHz, CDCl₃) δ -

68.8 (s, 9F). ¹³C NMR (126 MHz, CDCl₃) δ 144.6, 133.3, 121.9, 120.9 (q, J = 292.3 Hz), 118.5, 107.2, 69.9 (m). HRMS (EI): m/z calcd for C₁₁H₅F₉N₂: 336.0304 M⁺; Found 336.0307.

N-(1,1,1,3,3,3-hexafluoro-2-(trifluoromethyl)propan-2-yl)-4-(trifluoromethyl)aniline⁷ (2). Colorless oil (volatile compound). Eluent: petroleum ether. ¹H NMR (500 MHz, CDCl₃) δ 7.56 (d, J = 8.5 Hz, 2H), 7.18 (d, J = 8.3 Hz, 2H), 4.23 (s, 1H). ¹⁹F NMR (470 MHz, CDCl₃) δ -62.7 (s, 3F), -68.8

(s, 9F). ¹³C NMR (126 MHz, CDCl₃) δ 143.0, 127.1 (q, *J* = 33.3 Hz), 126.4 (q, *J* = 3.8 Hz), 124.0 (q, *J* = 272.2 Hz), 123.1, 121.0 (q, *J* = 291.7 Hz), 69.9 (m). HRMS (EI): m/z calcd for C₁₁H₅F₁₂N: 379.0225 M⁺; Found 379.0225.

N-(1,1,1,3,3,3-hexafluoro-2-(trifluoromethyl)propan-2-yl)-4-nitroaniline⁷ (3). White solid, M.p.: 69-70 °C, yield 85% (242 mg). Eluent: ethyl acetate/petroleum ether (3:97). ¹H NMR (500 MHz, CDCl₃) δ 8.15 - 8.12 (m, 2H), 7.17 (d, *J* = 9.3 Hz, 2H), 4.91 (s, 1H). ¹⁹F NMR (470 MHz, CDCl₃) δ -68.8

(s, 9F). ¹³C NMR (126 MHz, CDCl₃) δ 146.5, 143.4, 125.1, 120.9 (q, J = 293.3 Hz), 120.5, 69.9 (m). **HRMS** (EI): m/z calcd for C₁₀H₅F₉N₂O₂: 356.0202 M⁺; Found 356.0205.

methyl 4-((1,1,1,3,3,3-hexafluoro-2-(trifluoromethyl)propan-2-yl)amino)benzoate (4). White solid, M.p.: 67-68 °C, yield 80% (236 mg). Eluent: ethyl acetate/petroleum ether (3:97). ¹H NMR (500 MHz, CDCl₃) δ 7.94 (d, J = 8.5 Hz, 2H), 7.10 (d, J = 8.5 Hz, 2H), 4.51 (s, 1H), 3.86 (s, 3H).

¹⁹F NMR (470 MHz, CDCl₃) δ -68.9 (s, 9F). ¹³C NMR (126 MHz, CDCl₃) δ 166.5, 144.3, 130.8, 126.2, 122.0, 121.0 (q, *J* = 293.3 Hz), 70.0 (m), 51.9. HRMS (EI): m/z calcd for C₁₂H₈F₉NO₂: 369.0406 M⁺; Found 369.0413.

4-(*tert***-butyl)-***N***-(1,1,1,3,3,3-hexafluoro-2-(trifluoromethyl)propan-2-yl)aniline (5). Light yellow oil, yield 31% (91 mg). Eluent: petroleum ether. ¹H NMR (500 MHz, CDCl₃) \delta 7.30 (d, J = 8.6 Hz, 2H), 7.07 (d, J = 8.3 Hz, 2H), 3.89 (s, 1H), 1.31 (s, 9H). ¹⁹F NMR (470 MHz, CDCl₃) \delta -68.7 (s, 9F). ¹³C NMR**

 $(126 \text{ MHz}, \text{CDCl}_3) \delta 148.9, 136.5, 125.9, 125.3, 121.1 (q, J = 293.0 \text{ Hz}), 70.0 (m), 34.4, 31.3.$ **HRMS** (EI): m/z calcd for C₁₄H₁₄F₉N: 367.0977 M⁺; Found 367.0980.

N-(1,1,1,3,3,3-hexafluoro-2-(trifluoromethyl)propan-2-yl)- $\square CF_3$ 4-methoxyaniline⁷ (6). Brown oil, yield 35% (95 mg). Eluent: $\square CF_3$ petroleum ether. ¹H NMR (500 MHz, CDCl₃) δ 7.13 (d, *J* = 8.6 Hz, 2H), 6.81 (d, *J* = 8.9 Hz, 2H), 3.79 (s, 3H), 3.77 (s,

1H). ¹⁹**F NMR** (470 MHz, CDCl₃) δ -68.7 (s, 9F). ¹³**C NMR** (126 MHz, CDCl₃) δ 158.1, 131.5, 128.8, 121.1 (q, *J* = 291.8 Hz), 114.0, 70.0 (m), 55.4. **HRMS** (EI): m/z calcd for C₁₁H₈F₉NO: 341.0457 M⁺; Found 341.0453.

N-(1,1,1,3,3,3-hexafluoro-2-(trifluoromethyl)propan-2-yl)-3,5-dimethoxyaniline (7). Light yellow oil, yield 28% (83 mg). Eluent: ethyl acetate/petroleum ether (3:97). ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3) \delta 6.28 \text{ (t, } J = 4.3 \text{ Hz}, 1\text{H}), 6.27 \text{ (d, } J = 2.2 \text{ Hz})$ Hz, 2H), 3.98 (s, 1H), 3.76 (s, 6H). ¹⁹F NMR (470 MHz,

CDCl₃) δ -68.4 (s, 9F). ¹³C NMR (126 MHz, CDCl₃) δ 161.0, 141.3, 121.0 (q, J=291.9 Hz), 102.9, 97.3, 70.0 (m), 55.3. HRMS (EI): m/z calcd for C₁₂H₁₀F₉NO₂: 371.0562 M⁺; Found 371.0561.

C^{CF3} Eluent: petroleum ether. ¹H NMR (500 MUL) C^T 1H), 6.79 (s, 2H), 3.91 (s, 1H), 2.32 (s, 6H). ¹⁹F NMR (470 MHz, CDCl₃) δ -68.5 (s, 9F). ¹³C NMR (126 MHz, CDCl₃) δ 139.3,

138.7, 127.4, 122.9, 121.1 (q, J = 293.0 Hz), 70.1 (m), 21.1. **HRMS** (EI): m/z calcd for C₁₂H₁₀F₉N: 339.0664 M⁺; Found 339.0667.

N-(1,1,1,3,3,3-hexafluoro-2-(trifluoromethyl)propan-2-yl)-**3-isopropylaniline (9)**. Light yellow oil, yield 39% (110 mg). Eluent: petroleum ether. ¹H NMR (500 MHz, CDCl₃) δ 7.24 (t, .8 Hz, 1H), 7.09 (d, J = 7.8 Hz, 1H), 7.04 (s, 1H), 6.99 (d,

J = 7.9 Hz, 1H), 3.98 (s, 1H), 2.95 - 2.87 (m, 1H), 1.27 (d, J = 7.1 Hz, 6H). ¹⁹F NMR (470 MHz, CDCl₃) δ -68.5 (s, 9F). ¹³C NMR (126 MHz, CDCl₃) δ 150.1, 139.3, 128.9, 123.9, 123.6, 122.7, 121.1 (q, J = 293.0 Hz), 70.1 (m), 34.0, 23.7. HRMS (EI): m/z calcd for C₁₃H₁₂F₉N: 353.0821 M⁺; Found 353.0825.

2-ethoxy-N-(1,1,1,3,3,3-hexafluoro-2-(trifluoromethyl)propan-N_CCF₃ **2-yl)aniline (10)**. Colorless oil, yield 61% (173 mg). Eluent: petroleum ether. ¹H NMR (500 MHz, CDCl₃) δ 7.16 (d, J = 8.0 Hz, CF₃ HI) 7.05 (t. L. 7.05). 1H), 7.05 (t, J = 7.8 Hz, 1H), 6.87 (t, J = 8.7 Hz, 2H), 5.00 (s, 1H),

4.08 (q, J = 7.0 Hz, 2H), 1.44 (t, J = 7.0 Hz, 3H). ¹⁹F NMR (470 MHz, CDCl₃) δ -73.9 (s, 9F). ¹³C NMR (126 MHz, CDCl₃) δ 150.8, 129.9, 124.6, 121.9, 121.3 (q, J = 293.1 Hz), 120.7, 111.3, 70.2 (m), 64.2, 14.5. HRMS (EI): m/z calcd for C₁₂H₁₀F₉NO: 355.0613 M⁺; Found 355.0614.

N-(1,1,1,3,3,3-hexafluoro-2-(trifluoromethyl)propan-2yl)-[1,1'-biphenyl]-4-amine (11). White solid, M.p.: 91-93 °C, yield 39% (121 mg). Eluent: ethyl acetate/petroleum ether (1:99). ¹H NMR (500 MHz, CDCl₃) δ 7.60 (d, J = 7.5Hz, 2H), 7.55 (d, *J* = 8.3 Hz, 2H), 7.46 (t, *J* = 7.6 Hz, 2H), 7.37 (t, J = 7.4 Hz, 1H), 7.23 (d, J = 8.2 Hz, 2H), 4.04 (s,

1H). ¹⁹F NMR (470 MHz, CDCl₃) δ -68.6 (s, 9F). ¹³C NMR (126 MHz, CDCl₃) δ 140.1, 138.7, 138.6, 128.9, 127.7, 127.4, 127.0, 125.7, 121.2 (q, J = 292.0 Hz), 70.1 (m). **HRMS** (EI): m/z calcd for $C_{16}H_{10}F_9N$: 387.0664 M⁺; Found 387.0671.

N-(1,1,1,3,3,3-hexafluoro-2-(trifluoromethyl)propan-2-yl)naphthalen-1-amine (12). White solid, M.p.: 120-122 °C, yield 38% (110 mg). Eluent: petroleum ether. ¹H NMR (500 MHz, CDCl₃) δ 8.09 (d, *J* = 8.4 Hz, 1H), 7.88 (d, *J* = 8.1 Hz, 1H), 7.74 (d, *J* = 8.1 Hz, 1H), 7.58 (t, *J* = 7.4 Hz, 1H), 7.53 (t, *J* = 7.5 Hz, 1H), 7.48 (d,

J = 7.5 Hz, 1H), 7.42 (t, J = 7.9 Hz, 1H), 4.20 (s, 1H). ¹⁹F NMR (470 MHz, CDCl₃) δ -68.9 (s, 9F). ¹³C NMR (126 MHz, CDCl₃) δ 134.7, 134.5, 131.0, 128.7, 126.9, 126.7, 126.2, 125.4, 123.3, 121.5, 121.3 (q, J = 293.3 Hz), 70.6 (m). HRMS (EI): m/z calcd for C₁₄H₈F₉N: 361.0508 M⁺; Found 361.0510.

H N-(1,1,1,3,3,3-hexafluoro-2-(trifluoromethyl)propan-2-yl)naphthalen-2-amine (13). White solid, M.p.: 54-55 °C, yield 54% (156 mg). Eluent: petroleum ether. ¹H NMR (500 MHz, CDCl₃) δ 7.87 (d, J = 8.5 Hz, 1H), 7.82 (d, J = 9.1 Hz, 2H),

7.65 (d, J = 2.4 Hz, 1H), 7.56 - 7.50 (m, 2H), 7.32 (dd, J = 8.8, 2.4 Hz, 1H), 4.22 (s, 1H). ¹⁹**F NMR** (470 MHz, CDCl₃) δ -68.4 (s, 9F). ¹³**C NMR** (126 MHz, CDCl₃) δ 136.9, 133.7, 131.4, 129.0, 127.6, 126.7, 125.8, 124.6, 122.6, 121.3 (q, J = 291.7 Hz), 70.2 (m). **HRMS** (EI): m/z calcd for C₁₄H₈F₉N: 361.0508 M⁺; Found 361.0513.

N-(1,1,1,3,3,3-hexafluoro-2-(trifluoromethyl)propan-2-yl)-5,6,7,8-tetrahydronaphthalen-1-amine (14). Colorless oil, yield 30% (88 mg). Eluent: petroleum ether. ¹H NMR (500 MHz, CDCl₃) δ 7.06 - 7.01 (m, 2H), 6.87 (d, J = 7.1 Hz, 1H), 3.81 (s,

1H), 2.77 (t, J = 6.3 Hz, 2H), 2.60 (t, J = 6.5 Hz, 2H), 1.88 - 1.83 (m, 2H), 1.78 - 1.73 (m, 2H). ¹⁹**F NMR** (470 MHz, CDCl₃) δ -68.8 (s, 9F). ¹³**C NMR** (126 MHz, CDCl₃) δ 138.5, 138.0, 130.1, 125.8, 125.7, 121.2 (q, J = 293.4 Hz), 119.8 (m), 70.2 (m), 29.9, 24.3, 23.1, 22.4. **HRMS** (EI): m/z calcd for C₁₄H₁₂F₉N: 365.0821 M⁺; Found 365.0822.

H ^H ^N $C_{CF_3}^{CF_3}$ ^{CF3} **4-fluoro**-*N*-(1,1,1,3,3,3-hexafluoro-2-(trifluoromethyl)propan-2-yl)aniline⁷ (15). Colorless oil (volatile compound). Eluent: petroleum ether. ¹H NMR (500 MHz, CDCl₃) δ 7.17 - 7.15 (m, 2H), 7.01 - 6.97 (m, 2H), 3.86 (s, 1H). ¹⁹F NMR (470 MHz, CDCl₃) δ -68.4 (s, 9F), -115.8 (s, 1F). ¹³C NMR (126 MHz,

CDCl₃) δ 161.0 (d, J = 246.5 Hz), 134.8 (d, J = 3.3 Hz), 128.7 (d, J = 8.7 Hz), 121.0 (q, J = 291.6 Hz), 115.8 (d, J = 22.6 Hz), 69.9 (m). **HRMS** (EI): m/z calcd for C₁₀H₅F₁₀N: 329.0257 M⁺; Found 329.0257.

4-chloro-*N***-(1,1,1,3,3,3-hexafluoro-2-(trifluoromethyl)prop**an-2-yl)aniline (16). Light yellow oil, yield 62% (171 mg). Eluent: petroleum ether. ¹H NMR (500 MHz, CDCl₃) δ 7.16 (d, J = 8.8 Hz, 2H), 6.98 (d, J = 8.7 Hz, 2H), 3.83 (s, 1H). ¹⁹F NMR (470 MHz, CDCl₃) δ -68.5 (s, 9F). ¹³C NMR (126 MHz, CDCl₃)

δ 137.8, 131.7, 129.2, 127.1, 121.0 (q, J = 293.0 Hz), 69.9 (m). **HRMS** (EI): m/z calcd for C₁₀H₅ClF₉N: 344.9961 M⁺; Found 344.9965.

 $\begin{array}{ll} & N-(1,1,1,3,3,3-\text{hexafluoro-2-(trifluoromethyl)propan-2-yl)-3-} \\ \text{iodoaniline (18). Colorless oil, yield 65\% (227 mg). Eluent:} \\ \text{petroleum ether. } ^{1}\text{H NMR} (500 \text{ MHz, CDCl}_{3}) \delta 7.53 (d, J = 7.6 \\ \text{Hz, 1H}), 7.50 (s, 1H), 7.12 (d, J = 8.0 \text{ Hz, 1H}), 7.03 (t, J = 8.0 \text{ Hz}, 1H), 7.03 (t, J = 8.0 \text{ Hz}, 1H),$

1H), 3.97 (s, 1H). ¹⁹**F NMR** (470 MHz, CDCl₃) δ -68.8 (s, 9F). ¹³**C NMR** (126 MHz, CDCl₃) δ 140.7, 134.8, 134.1, 130.5, 124.2, 121.0 (q, *J* = 291.9 Hz), 93.8, 69.9 (m). **HRMS** (EI): m/z calcd for C₁₀H₅F₉IN: 436.9317 M⁺; Found 436.9323.

2-bromo-4-chloro-*N*-(1,1,1,3,3,3-hexafluoro-2-(trifluoromethyl)propan-2-yl)aniline (19). Colorless oil, yield 75% (255 mg). Eluent: petroleum ether. ¹H NMR (500 MHz, CDCl₃) δ 7.57 (d, *J* = 2.4 Hz, 1H), 7.23 (dd, *J* = 9.0, 2.5 Hz, 1H), 7.18 (d, *J* = 8.9 Hz, 1H), 4.83 (s, 1H). ¹⁹F NMR (470 MHz, CDCl₃) δ -

68.9 (s, 9F). ¹³C NMR (126 MHz, CDCl₃) δ 137.0, 132.5, 129.9, 128.5, 122.5 (m), 121.0 (q, J = 293.3 Hz), 118.0, 70.1 (m). HRMS (EI): m/z calcd for C₁₀H₄BrClF₉N: 422.9066 M⁺; Found 422.9067.

 $\begin{array}{l} (4-((1,1,1,3,3,3-hexafluoro-2-(trifluoromethyl)propan-\\ 2-yl)amino)phenyl)(phenyl)methanone (20). White solid, M.p.: 81-82 °C, yield 55% (183 mg). Eluent: ethyl acetate/petroleum ether (2:98). ¹H NMR (500 MHz, CDCl₃) <math>\delta$ 7.77 (t, *J* = 6.7 Hz, 4H), 7.58 (t, *J* = 7.4 Hz, 1H), 7.48 (t, *J* = 7.6 Hz, 2H), 7.14 (d, *J* = 8.4 Hz, 2H), 4.46 (s,

1H). ¹⁹**F NMR** (470 MHz, CDCl₃) δ -69.4 (s, 9F). ¹³**C NMR** (126 MHz, CDCl₃) δ 195.4, 144.0, 137.7, 133.5, 132.3, 131.6, 129.8, 128.3, 121.6, 121.0 (q, *J* = 293.4 Hz), 70.0 (m). **HRMS** (EI): m/z calcd for C₁₇H₁₀F₉NO: 415.0613 M⁺; Found 415.0618.

NMR (470 MHz, CDCl₃) δ -68.6 (s, 9F). ¹³C **NMR** (126 MHz, CDCl₃) δ 196.9, 144.6, 133.0, 129.7, 121.5, 121.0 (q, *J* = 292.1 Hz), 70.0 (m), 26.2. **HRMS** (EI): m/z calcd for C₁₂H₈F₉NO: 353.0457 M⁺; Found 353.0460.

N-(1,1,1,3,3,3-hexafluoro-2-(trifluoromethyl)propan-2yl)-4-(methylsulfonyl)aniline (22). White solid, M.p.: 111-113 °C, yield 49% (152 mg). Eluent: ethyl acetate/petroleum ether (25:75). ¹H NMR (500 MHz, CDCl₃) δ 7.81 (d, *J* = 8.7 Hz, 2H), 7.18 (d, *J* = 8.8 Hz, 2H), 4.67 (s, 1H), 3.03 (s,

3H). ¹⁹**F NMR** (470 MHz, CDCl₃) δ -68.4 (s, 9F). ¹³**C NMR** (126 MHz, CDCl₃) δ 145.3, 135.5, 128.9, 121.6, 120.9 (q, *J* = 293.6 Hz), 69.8 (m), 44.5. **HRMS** (EI): m/z calcd for C₁₁H₈F₉NO₂S: 389.0127 M⁺; Found 389.0134.

methyl 3-((1,1,1,3,3,3-hexafluoro-2-(trifluoromethyl)propan-2-yl)amino)-5-phenylthiophene-2-carboxylate
(23). Light yellow solid, M.p.: 95-97 °C, yield 70% (253 mg). Eluent: ethyl acetate/petroleum ether (3:97). ¹H NMR (500 MHz, CDCl₃) δ 8.63 (s, 1H), 7.59 (d, J = 6.4 Hz, 2H),

7.44 - 7.39 (m, 3H), 7.10 (s, 1H), 3.91 (s, 3H). ¹⁹**F NMR** (470 MHz, CDCl₃) δ -68.9 (s, 9F). ¹³**C NMR** (126 MHz, CDCl₃) δ 165.4, 149.8, 148.8, 133.0, 129.5, 129.2, 126.1, 121.1 (q, *J* = 293.6 Hz), 115.4, 107.8, 69.5 (m), 52.0. **HRMS** (EI): m/z calcd for C₁₆H₁₀F₉NO₂S: 451.0283 M⁺; Found 451.0286.

tert-butyl 5-((1,1,1,3,3,3-hexafluoro-2-(trifluoromethyl)propan-2-yl)amino)-1*H*-indole-1-carboxylate (24). Light yellow solid, M.p.: 96-97 °C, yield 40% (144 mg). Eluent: ethyl acetate/petroleum ether (1:99). ¹H NMR (500 MHz, CDCl₃) δ 8.06 (d, *J* = 8.9 Hz, 1H), 7.61 (d, *J* = 3.7 Hz, 1H),

7.40 (s, 1H), 7.15 (d, J = 9.7 Hz, 1H), 6.53 (d, J = 3.7 Hz, 1H), 4.00 (s, 1H), 1.67 (s, 9H). ¹⁹**F NMR** (470 MHz, CDCl₃) δ -69.3 (s, 9F). ¹³**C NMR** (126 MHz, CDCl₃) δ 149.6, 133.8, 133.5, 131.0, 126.9, 123.7, 121.2 (q, J = 292.6 Hz), 119.3, 115.3, 107.1, 83.9, 70.2 (m), 28.1. **HRMS** (EI): m/z calcd for C₁₇H₁₅F₉N₂O₂: 450.0984 M⁺; Found 450.0987.

tert-butyl (*tert*-butoxycarbonyl)(4-((1,1,1,3,3,3-hexafluoro-2-(trifluoromethyl)propan-2-yl)amino)phenyl)carbamate (25). Light yellow oil, yield 54% (277 mg). Eluent: ethyl acetate/petroleum ether (3:97). ¹H NMR (500 MHz,

CDCl₃) δ 7.09 (d, J = 8.5 Hz, 2H), 7.01 (d, J = 8.5 Hz, 2H), 4.07 (s, 1H), 1.35 (s, 18H). ¹⁹F NMR (470 MHz, CDCl₃) δ -68.5 (s, 9F). ¹³C NMR (126 MHz, CDCl₃) δ 151.5, 138.4, 137.2, 128.4, 125.8, 121.0 (q, J = 291.7 Hz), 82.7, 70.0 (m), 27.7. HRMS (EI): m/z calcd for C₂₀H₂₃F₉N₂O₄: 526.1509 M⁺; Found 526.1523.

2-benzyl-*N***-(1,1,1,3,3,3-hexafluoro-2-(trifluoromethyl)propan-2-yl)aniline (26).** Colorless oil, yield 74% (237 mg). Eluent: petroleum ether. ¹H NMR (500 MHz, CDCl₃) δ 7.46 - 7.43 (m, 3H), 7.41 - 7.36 (m, 3H), 7.31 - 7.27 (m, 3H), 4.21 (s, 2H), 3.96 (s, 1H). ¹⁹F NMR (470 MHz, CDCl₃) δ -68.8 (s, 9F). ¹³C NMR (126 MHz, CDCl₃) δ 138.6, 138.5, 134.6, 131.6,

129.0, 128.3, 127.8, 126.9, 125.1, 124.2 (m), 121.3 (q, J = 292.0 Hz), 70.3 (m), 38.5. HRMS (EI): m/z calcd for C₁₇H₁₂F₉N: 401.0821 M⁺; Found 401.0825.

 $\begin{array}{l} N-(1,1,1,3,3,3-\text{hexafluoro-2-(trifluoromethyl)propan-2-yl)pyrid-}\\ \text{in-3-amine (27). Violet solid, M.p.: 55-56 °C, yield 31% (77 mg, 2 steps). Eluent: ethyl acetate/petroleum ether (20:80). ¹H NMR (500 MHz, CDCl₃) <math>\delta$ 8.41 (d, J = 2.9 Hz, 1H), 8.37 (d, J = 3.3 Hz, 1H), 7.51 (d, J = 8.1 Hz, 1H), 7.22 (q, J = 4.4 Hz, 1H), 4.67 (s, 1H). ¹⁹F

NMR (470 MHz, CDCl₃) δ -68.6 (s, 9F). ¹³C **NMR** (126 MHz, CDCl₃) δ 147.3, 146.7, 136.3, 133.0, 123.5, 120.9 (q, J = 293.0 Hz), 69.8 (m). **HRMS** (EI): m/z calcd for C₉H₅F₉N₂: 312.0304 M⁺; Found 312.0303.

^H ^N ^C ^{CF3} ^{CF3} ^{S-bromo-N-(1,1,1,3,3,3-hexafluoro-2-(trifluoromethyl)propan-2-yl)pyridin-3-amine (28). White solid, M.p.: 84-85 °C, yield 35% (109 mg, 2 steps). Eluent: ethyl acetate/petroleum ether (10:90). ¹H NMR (500 MHz, CDCl₃) δ 8.46 (s, 1H), 8.34 (s, 1H), 7.66 (s, 1H), 4.48 (s, 1H). ¹⁹F NMR (470 MHz, CDCl₃)}

δ -68.6 (s, 9F). ¹³C NMR (126 MHz, CDCl₃) δ 147.7, 144.7, 137.0, 135.0, 120.8 (q, J = 293.0 Hz), 120.2, 69.7 (m). HRMS (EI): m/z calcd for C₉H₄BrF₉N₂: 389.9409 M⁺; Found 389.9417.

H N-(1,1,1,3,3,3-hexafluoro-2-(trifluoromethyl)propan-2-yl)benzo[d]thiazol-5-amine (29). Light yellow solid, M.p.: 119-121 °C, yield 28% (82 mg, 2 steps). Eluent: ethyl acetate/petroleum ether (10:90). ¹H NMR (500 MHz, CDCl₃) δ

9.00 (s, 1H), 7.95 (d, J = 2.3 Hz, 1H), 7.85 (d, J = 8.6 Hz, 1H), 7.27 (dd, J = 8.5, 2.3 Hz, 1H), 4.31 (s, 1H). ¹⁹**F NMR** (470 MHz, CDCl₃) δ -68.3 (s, 9F). ¹³**C NMR** (126 MHz, CDCl₃) δ 155.4, 153.9, 137.9, 131.3, 124.4, 121.9, 121.1 (q, J = 293.0 Hz), 120.6, 70.1 (m). **HRMS** (EI): m/z calcd for C₁₁H₅F₉N₂S: 368.0024 M⁺; Found 368.0030.

N-(1,1,1,3,3,3-hexafluoro-2-(trifluoromethyl)propan-2-yl)isoquinolin-4-amine (30). Light yellow solid, M.p.: 130-132 °C, yield 25% (72 mg, 2 steps). Eluent: ethyl acetate/petroleum ether (20:80). ¹H NMR (500 MHz, MeOD) δ 9.15 (s, 1H), 8.44 (s, 1H), 8.29 (d, *J* = 8.6 Hz, 1H), 8.13 (d, *J* = 8.3 Hz, 1H), 7.89 - 7.85 (m,

1H), 7.74 - 7.71 (m, 1H). ¹⁹**F NMR** (470 MHz, MeOD) δ -69.9 (s, 9F). ¹³**C NMR** (126 MHz, MeOD) δ 150.7, 141.0 (q, J = 2.2 Hz), 135.9, 131.6, 131.1, 129.3, 127.8, 127.7, 122.2, 121.4 (q, J = 291.3 Hz), 70.4 (m). **HRMS** (EI): m/z calcd for C₁₃H₇F₉N₂: 362.0460 M⁺; Found 362.0468.

 $\begin{array}{c} F_{3}C, CF_{3} \\ C'-CF_{3} \\ H \end{array} \begin{array}{c} N^{4}, N^{4} \text{-bis(1,1,1,3,3,3-hexafluoro-2-(trifleor-oomethyl)propan-2-yl)-[1,1'-biphenyl]-4,4'-oomethyl)propan-2-yl)-[1,1'-biphenyl]-4,4'-oomethyl)propan-2-yl)-[1,1'-biphenyl]-4,4'-oomethyl)propan-2-yl)-[1,1'-biphenyl]-4,4'-oomethyl)propan-2-yl)-[1,1'-biphenyl]-4,4'-oomethyl)propan-2-yl)-[1,1'-biphenyl]-4,4'-oomethyl)propan-2-yl)-[1,1'-biphenyl]-4,4'-oomethyl)propan-2-yl)-[1,1'-biphenyl]-4,4'-oomethyl)propan-2-yl)-[1,1'-biphenyl]-4,4'-oomethyl)propan-2-yl)-[1,1'-biphenyl]-4,4'-oomethyl)propan-2-yl)-[1,1'-biphenyl]-4,4'-oomethyl)propan-2-yl)-[1,1'-biphenyl]-4,4'-oomethyl)propan-2-yl)-[1,1'-biphenyl]-4,4'-oomethyl)propan-2-yl)-[1,1'-biphenyl]-4,4'-oomethyl)propan-2-yl)-[1,1'-biphenyl]-4,4'-oomethyl)propan-2-yl)-[1,1'-biphenyl]-4,4'-oomethyl)propan-2-yl)-[1,1'-biphenyl]-4,4'-oomethyl)propan-2-yl)-[1,1'-biphenyl]-4,4'-oomethyl)propan-2-yl)-[1,1'-biphenyl]-4,4'-oomethyl]propan-2-yl)-[1,1'-biphenyl]-4,4'-oomethyl]propan-2-yl]propan-2$

acetate/petroleum ether (2:98). ¹**H NMR** (500 MHz, CDCl₃) δ 7.50 (d, J = 8.6 Hz, 4H),

7.20 (d, J = 8.3 Hz, 4H), 4.02 (s, 2H). ¹⁹F NMR (470 MHz, CDCl₃) δ -69.2 (s, 18F). ¹³C NMR (126 MHz, CDCl₃) δ 138.7, 137.5, 127.5, 125.7, 121.1 (q, J = 293.1 Hz), 70.1 (m). HRMS (EI): m/z calcd for C₂₀H₁₀F₁₈N₂: 620.0551 M⁺; Found 620.0558.

4,4'-methylenebis(*N*-(**1**,**1**,**1**,**3**,**3**,**3**-hexafluoro-**2-(trifluoromethyl)propan-2-yl)aniline)** (**32**). Colorless oil, yield 15% (76 mg). Eluent: ethyl acetate/petroleum ether (2:98). ¹H NMR (500

MHz, CDCl₃) δ 7.07 (s, 8H), 3.93 (s, 2H), 3.90 (s, 2H). ¹⁹F NMR (470 MHz, CDCl₃) δ -68.7 (s, 18F). ¹³C NMR (126 MHz, CDCl₃) δ 138.5, 137.4, 129.5, 125.9, 121.1 (q, *J* = 291.6 Hz), 70.1 (m), 40.5. HRMS (EI): m/z calcd for C₂₁H₁₂F₁₈N₂: 634.0708 M⁺; Found 634.0713.

4,4'-sulfonylbis(N-(1,1,1,3,3,3-hexafluoro-2-(trifluoromethyl)propan-2-yl)aniline) (33). White solid, M.p.: 151-153 °C, yield 27% (148 mg). Eluent: ethyl acetate/petroleum ether (10:90). ¹H NMR (500 MHz, CD₃CN) δ 7.75

(d, J = 8.9 Hz, 4H), 7.20 (d, J = 8.5 Hz, 4H), 5.48 (s, 2H). ¹⁹F NMR (470 MHz, CD₃CN) δ -69.0 (s, 18F). ¹³C NMR (126 MHz, CD₃CN) δ 145.9, 137.2, 129.3, 123.0, 121.7 (q, J = 291.9 Hz), 70.6 (m). HRMS (EI): m/z calcd for C₂₀H₁₀F₁₈N₂O₂S: 684.0170 M⁺; Found 684.0172.

6. Derivative reactions

Transformation of 34:

Ferrous powder (7.5 mmol, 5.0 equiv.) was added into the mixture of **3** (1.5 mmol, 1.0 equiv.) and ammonium chloride (15.0 mmol, 10.0 equiv.) in 10.0 mL MeOH/H₂O (1: 1). The reaction mixture was stirred at 80 °C for 3 h, and then cooled to room temperature. The mixture was filtered, the filtrate was collected. After removal of MeOH under reduced pressure, the resulting aqueous fraction was adjusted to pH 4 with 2M HCl and then extracted with ethyl acetate. The organic layer was washed with saturated NaCl and dried over anhydrous Na₂SO₄. After concentrated under reduced pressure, the crude residue was purified by flash column chromatography on silica gel.

Transformation of 35:

Compound 4 (1.5 mmol, 1.0 equiv.), NaOH (3.0 mmol, 2.0 equiv.) were dissolved in 10.0 mL THF/H₂O (4: 1). The reaction mixture was stirred at 80 °C for 3 h, and then cooled to room temperature. The reaction mixture diluted with EtOAc (100 mL) and was washed with 0.5M HCl (100 mL). The organic layer was separated, dried over anhydrous Na₂SO₄ and evaporated under reduced pressure. The crude residue was purified by column chromatography on silica gel.

H N^{1} -(1,1,1,3,3,3-hexafluoro-2-(trifluoromethyl)propan-2yl)benzene-1,4-diamine (34). White solid, M.p.: 41-42 °C, yield 75% (367 mg). Eluent: ethyl acetate/petroleum ether (10:90). ¹H NMR (500 MHz, CDCl₃) δ 7.02 (d, J = 8.4 Hz, 2H), 6.57 (d, J = 8.8 Hz, 2H), 3.82 (s, 1H), 3.62 (s, 2H). ¹⁹F NMR (470 MHz, CDCl₃) δ -68.7 (s, 9F). ¹³C NMR (126 MHz, CDCl₃) δ 145.1, 129.5, 129.1, 121.2 (q, J = 293.1

Hz), 115.1, 70.0 (m). **HRMS** (EI): m/z calcd for $C_{10}H_7F_9N_2$: 326.0460 M⁺; Found 326.0462.

H 4-((1,1,1,3,3,3-hexafluoro-2-(trifluoromethyl)propan-2yl)amino)benzoic acid (35). White solid, M.p.: 163-165 °C, yield 90% (479 mg). Eluent: ethyl acetate/petroleum ether (90:10). ¹H NMR (500 MHz, DMSO-d₆) δ 12.79 (s, 1H), 7.88 (d, J = 8.7 Hz, 2H), 7.25 (d, J = 8.4 Hz, 2H), 7.04 (s, 1H). ¹⁹F NMR (470 MHz, DMSO-d₆) δ -67.3 (s, 9F). ¹³C NMR (126 MHz, DMSO-d₆) δ 167.3, 145.2, 130.7, 126.7, 123.5, 121.4 (q, J = 295.0 Hz), 70.3 (m). HRMS (EI): m/z calcd for C₁₁H₆F₉NO₂: 355.0249 M⁺; Found 355.0244.

Synthesis of 36, 37:

Compound **34** (0.5 mmol, 1.0 equiv.) was added into the mixture of acid (1.0 mmol, 2.0 equiv.), EDC (0.75 mmol, 1.5 equiv.) and DMAP (0.05 mmol, 0.1 equiv.) in 2.0 mL DCM. The reaction was stirred at room temperature for 12 h. Upon completion, the solution was evaporated under reduced pressure. The crude residue was purified by column chromatography on silica gel.
Synthesis of 38, 39:

Alcohol or amine (0.75 mmol, 1.5 equiv.) was added into the mixture of compound **35** (0.5 mmol, 1.0 equiv.), EDC (0.75 mmol, 1.5 equiv.) and DMAP (0.05 mmol, 0.1 equiv.) in 2.0 mL DCM. The reaction was stirred at room temperature for 12 h. Upon completion, the solution was evaporated under reduced pressure. The crude residue was purified by column chromatography on silica gel.

N-(4-((1,1,1,3,3,3-hexafluoro-2-(trifluoro-methyl)propan-2-yl)amino)phenyl)-2-(4-isobutylphenyl)propanamide (36).
Colorless wax, yield 97% (249 mg). Eluent: ethyl acetate/petroleum ether (10:90). ¹H

NMR (500 MHz, CDCl₃) δ 8.00 (s, 1H), 7.42 (d, J = 8.9 Hz, 2H), 7.29 (d, J = 7.9 Hz, 2H), 7.16 (d, J = 8.0 Hz, 2H), 7.06 (d, J = 8.6 Hz, 2H), 4.00 (s, 1H), 3.76 (q, J = 7.1 Hz, 1H), 2.50 (d, J = 7.2 Hz, 2H), 1.94 - 1.85 (m, 1H), 1.59 (d, J = 7.2 Hz, 3H), 0.95 (d, J = 6.8 Hz, 6H). ¹⁹F NMR (470 MHz, CDCl₃) δ -68.5 (s, 9F). ¹³C NMR (126 MHz, CDCl₃) δ 172.3, 140.0, 137.0, 135.2, 134.0, 128.7, 126.3, 126.0, 120.1 (q, J = 291.0 Hz), 119.4, 68.9 (m), 46.4, 44.0, 29.2, 21.3, 17.4. HRMS (EI): m/z calcd for C_{23H23}F₉N₂O: 514.1661 M⁺; Found 514.1665.

4-(*N*,*N*-dipropylsulfamoyl)-*N*-(4-((1,1,1,3,3,3-hexafluoro-2-(trifleoromethyl)propan-2-yl)amino)phenyl)benza-mide (37). White solid, M.p.: 222-224 °C, yield 81% (240 mg). Eluent: ethyl acetate/petroleum ether (20:80). ¹H NMR (500 MHz, DMSO-

d₆) δ 10.50 (s, 1H), 8.11 (d, *J* = 8.5 Hz, 2H), 7.95 (d, *J* = 8.3 Hz, 2H), 7.72 (d, *J* = 9.0 Hz, 2H), 7.20 (d, *J* = 8.6 Hz, 2H), 6.53 (s, 1H), 3.07 (t, *J* = 7.6 Hz, 4H), 1.53 - 1.46 (m, 4H), 0.83 (t, *J* = 7.4 Hz, 6H). ¹⁹**F NMR** (470 MHz, DMSO-d₆) δ -67.5 (s, 9F). ¹³**C NMR**

(126 MHz, DMSO-d₆) δ 164.8, 142.4, 138.9, 137.1, 135.7, 129.1, 128.3, 127.3, 121.5 (q, J = 293.1 Hz), 121.0, 70.5 (m), 50.2, 22.1, 11.4. **HRMS** (EI): m/z calcd for C₂₃H₂₄F₉N₃O₃S: 593.1389 M⁺; Found 593.1389.

H N_C-CF₃ CF₃ CF₃ 2-(diethylamino)ethyl 4-((1,1,1,3,3,3-hexafluoro-2-(trifluoromethyl)propan-2-yl)amino)benzoate (38). Colorless oil, yield 45% (102 mg). Eluent: ethyl acetate/petroleum ether (30:70). ¹H NMR (500 MHz, CDCl₃) δ 7.94 (d, J = 8.9 Hz,

2H), 7.08 (d, J = 8.6 Hz, 2H), 4.40 (s, 1H), 4.34 (t, J = 6.3 Hz, 2H), 2.81 (t, J = 6.3 Hz, 2H), 2.60 (q, J = 7.2 Hz, 4H), 1.04 (t, J = 7.2 Hz, 6H). ¹⁹F NMR (470 MHz, CDCl₃) δ -68.5 (s, 9F). ¹³C NMR (126 MHz, CDCl₃) δ 165.9, 144.2, 130.9, 126.4, 121.9, 121.0 (q, J = 291.9 Hz), 69.9 (m), 63.4, 51.0, 47.8, 12.0. HRMS (EI): m/z calcd for C₁₇H₁₉F₉N₂O₂: 454.1297 M⁺; Found 454.1292.

H N_{C} CF_3 CF_3

methanol/dichloromethane (10:90). ¹**H NMR** (500 MHz, DMSO-d₆) δ 8.34 (d, *J* = 7.6 Hz, 1H), 7.83 (d, *J* = 8.5 Hz, 2H), 7.22 (d, *J* = 8.4 Hz, 2H), 6.87 (s, 1H), 3.84 - 3.79 (m, 1H), 3.33 (t, *J* = 6.3 Hz, 2H), 3.21 (s, 3H), 2.99 (d, *J* = 9.1 Hz, 2H), 2.48 (s, 2H), 2.21 (s, 2H), 1.82 - 1.66 (m, 6H). ¹⁹**F NMR** (470 MHz, DMSO-d₆) δ -67.5 (s, 9F). ¹³**C NMR** (126 MHz, DMSO-d₆) δ 165.5, 143.3, 131.1, 128.5, 124.4, 121.4 (q, *J* = 294.0 Hz), 70.4, 70.4 (m), 58.2, 54.9, 52.3, 46.8, 31.1, 26.5. **HRMS** (EI): m/z calcd for C₂₀H₂₄F₉N₃O₂: 509.1719 M⁺; Found 509.1719.

Alkylation and acylation of the N-H bonds in N-PFtB secondary amines:

Iodide or acyl chloride (1.5 mmol, 5.0 equiv.) was added into the mixture of *N*-perfluoro-*tert*-butyl secondary amine (0.3 mmol, 1.0 equiv.) and NaH (3.0 mmol, 10.0 equiv.; 40% oil dispersion, washed with Et₂O to remove mineral oil) in 1.5 mL dry THF. The reaction was stirred at room temperature for 12 h. Upon completion, the crude mixture was filtered and evaporated under reduced pressure. The crude residue was purified by column chromatography on silica gel.

4-((1,1,1,3,3,3-hexafluoro-2-(trifluoromethyl)propan-2-yl)-(methyl)amino)benzonitrile (40). White solid, M.p.: 31-32 °C, yield 89% (93 mg). Eluent: ethyl acetate/petroleum ether (2:98). ¹H NMR (500 MHz, CDCl₃) δ 7.66 (d, *J* = 8.6 Hz, 2H), 7.42 (d,

J = 8.4 Hz, 2H), 3.04 (s, 3H). ¹⁹F NMR (470 MHz, CDCl₃) δ -65.1 (s, 9F). ¹³C NMR (126 MHz, CDCl₃) δ 151.6, 133.4, 131.3, 121.3 (q, J = 296.0 Hz), 118.0, 111.9, 73.6 (m), 42.9 (m). HRMS (EI): m/z calcd for C₁₂H₇F₉N₂: 350.0460 M⁺; Found 350.0462.

N-(1,1,1,3,3,3-hexafluoro-2-(trifluoromethyl)propan-2-yl)- $\sim_{C} \sim_{CF_3}^{CF_3}$ *N*-methylnaphthalen-2-amine (41). Colorless oil, yield 93% (105 mg). Eluent: petroleum ether. ¹H NMR (500 MHz, CDCl₃) δ 7.86 - 7.81 (m, 4H), 7.53 - 7.49 (m, 2H), 7.42 (d, *J* = 8.7 Hz,

1H), 3.14 (s, 3H). ¹⁹**F** NMR (470 MHz, CDCl₃) δ -65.0 (s, 9F). ¹³**C** NMR (126 MHz, CDCl₃) δ 144.9, 133.7, 132.4, 129.1, 128.9, 128.1, 128.0, 127.5, 126.6, 126.3, 121.7 (q, J = 296.5 Hz), 74.0 (m), 43.2 (m). **HRMS** (EI): m/z calcd for C₁₅H₁₀F₉N: 375.0664 M⁺; Found 375.0665.

2-benzyl-*N*-(1,1,1,3,3,3-hexafluoro-2-(trifluoromethyl)propan-2-yl)-*N*-methylaniline (42). Colorless oil, yield 95% (118 mg). Eluent: petroleum ether. ¹H NMR (500 MHz, CDCl₃) δ 7.58 (t, *J* = 4.5 Hz, 1H), 7.46 (t, *J* = 7.5 Hz, 2H), 7.39 - 7.35 (m, CF₃ 5H), 7.34 - 7.31 (m, 1H), 4.43 (d, *J* = 15.7 Hz, 1H), 4.16 (d, *J* = 15.7 Hz, 1H), 2.96 (s, 3H). ¹⁹F NMR (470 MHz, CDCl₃) δ -

65.4 (s, 9F). ¹³C NMR (126 MHz, CDCl₃) δ 145.8, 141.5, 140.6, 131.2, 129.4, 129.4, 128.6, 128.0, 127.4, 126.2, 121.8 (q, *J* = 296.4 Hz), 74.7 (m), 42.6 (m), 36.9. **HRMS** (EI): m/z calcd for C₁₈H₁₄F₉N: 415.0977 M⁺; Found 415.0973.

methyl 4-((1,1,1,3,3,3-hexafluoro-2-(trifluoromethyl)propan-2-yl)(methyl)amino)benzoate (43). Colorless oil, yield 61% (70 mg). Eluent: ethyl acetate/petroleum ether (1:99). ¹H NMR (500 MHz, CDCl₃) δ 8.02 (d, *J* = 8.6 Hz,

2H), 7.38 (d, J = 8.4 Hz, 2H), 3.92 (s, 3H), 3.05 (s, 3H). ¹⁹F NMR (470 MHz, CDCl₃) δ -65.1 (s, 9F). ¹³C NMR (126 MHz, CDCl₃) δ 166.4, 151.7, 130.7, 130.2, 129.5, 121.5 (q, J = 295.8 Hz), 73.7 (m), 52.1, 42.9 (m). HRMS (EI): m/z calcd for C₁₃H₁₀F₉NO₂: 383.0562 M⁺; Found 383.0566.

4-chloro-*N*-(1,1,1,3,3,3-hexafluoro-2-(trifluoromethyl)propan-2-yl)-*N*-methylaniline (44). Colorless oil, yield 90% (97 mg). Eluent: petroleum ether. ¹H NMR (500 MHz, CDCl₃) δ 7.37 (d, *J* = 8.8 Hz, 2H), 7.30 (d, *J* = 8.6 Hz, 2H), 3.08 (s, 3H).

¹⁹**F NMR** (470 MHz, CDCl₃) δ -65.4 (s, 9F). ¹³**C NMR** (126 MHz, CDCl₃) δ 146.0, 133.6, 131.6, 129.5, 121.5 (q, J = 296.4 Hz), 73.7 (m), 43.1 (m). **HRMS** (EI): m/z calcd for C₁₁H₇ClF₉N: 359.0118 M⁺; Found 359.0121.

4-bromo-*N***-(1,1,1,3,3,3-hexafluoro-2-(trifluoromethyl)prop**an-2-yl)-*N*-methylaniline (45). Colorless oil, yield 85% (103 mg). Eluent: petroleum ether. ¹H NMR (500 MHz, CDCl₃) δ 7.47 (d, *J* = 8.7 Hz, 2H), 7.19 (d, *J* = 8.4 Hz, 2H), 3.03 (s, 3H).

¹⁹**F NMR** (470 MHz, CDCl₃) δ -65.4 (s, 9F). ¹³**C NMR** (126 MHz, CDCl₃) δ 146.6, 132.5, 131.9, 121.6, 121.5 (q, J = 294.6 Hz), 73.6 (m), 43.1 (m). **HRMS** (EI): m/z calcd for C₁₁H₇BrF₉N: 402.9613 M⁺; Found 402.9614.

tert-butyl (*tert*-butoxycarbonyl)(4-((1,1,1,3,3,3-hexafluoro-2-(trifluoromethyl)propan-2-yl)(methyl)amino)phenyl)carbamate (46). White solid, M.p.: 99-100 °C, yield 66% (107 mg). Eluent: ethyl acetate/petroleum ether (2:98). ¹H

NMR (500 MHz, CDCl₃) δ 7.28 (d, J = 8.4 Hz, 2H), 7.08 (d, J = 8.7 Hz, 2H), 3.03 (s, 3H), 1.38 (s, 18H). ¹⁹**F NMR** (470 MHz, CDCl₃) δ -65.1 (s, 9F). ¹³**C NMR** (126 MHz, CDCl₃) δ 151.4, 146.4, 138.9, 130.4, 128.7, 121.5 (q, J = 294.4 Hz), 82.8, 73.9 (m), 43.0(m), 27.8. **HRMS** (EI): m/z calcd for C₂₁H₂₅F₉N₂O₄: 540.1665 M⁺; Found 540.1669.

4-(allyl(1,1,1,3,3,3-hexafluoro-2-(trifluoromethyl)propan-2yl)amino)benzonitrile (47). Colorless oil, yield 50% (57 mg). Eluent: ethyl acetate/petroleum ether (2:98). ¹H NMR (500 MHz, CDCl₃) δ 7.63 (d, J = 8.5 Hz, 2H), 7.34 (d, J = 8.3 Hz, 2H), 5.67 - 5.59 (m, 1H), 4.92 (d, J = 10.1 Hz, 1H), 4.74 (d, J =

17.1 Hz, 1H), 3.92 (d, J = 6.8 Hz, 2H). ¹⁹F NMR (470 MHz, CDCl₃) δ -65.0 (s, 9F). ¹³C NMR (126 MHz, CDCl₃) δ 148.0, 133.2, 133.0, 132.8, 121.3 (q, J = 295.5 Hz), 119.3, 118.1, 112.1, 74.1 (m), 57.0 (m). HRMS (EI): m/z calcd for C₁₄H₉F₉N₂: 376.0617 M⁺; Found 376.0619.

methyl 4-(allyl(1,1,1,3,3,3-hexafluoro-2-(trifluoromethyl)propan-2-yl)amino)benzoate (48). Colorless oil, yield 70% (86 mg). Eluent: ethyl acetate/petroleum ether (1:99). ¹H NMR (500 MHz, CDCl₃) δ 7.98 (d, J = 8.7 Hz, 2H), 7.29 (d, J = 8.4 Hz, 2H), 5.68 - 5.60 (m, 1H), 4.86 (d, J =

10.1 Hz, 1H), 4.72 (d, J = 17.6 Hz, 1H), 3.92 (d, J = 6.8 Hz, 2H), 3.89 (s, 3H). ¹⁹F NMR (470 MHz, CDCl₃) δ -65.1 (s, 9F). ¹³C NMR (126 MHz, CDCl₃) δ 166.3, 148.1, 133.4, 132.1, 130.1, 129.7, 121.4 (q, J = 295.7 Hz), 118.6, 74.2 (m), 56.9 (m), 52.06. HRMS (EI): m/z calcd for C₁₅H₁₂F₉NO₂: 409.0719 M⁺; Found 409.0723.

N-(4-cyanophenyl)-*N*-(1,1,1,3,3,3-hexafluoro-2-(trifluoromethyl)propan-2-yl)acrylamide (49). White solid, M.p.: 133-135 °C, yield 51% (60 mg). Eluent: ethyl acetate/petroleum ether (3:97). ¹H NMR (500 MHz, CDCl₃) δ 7.78 (d, *J* = 8.5 Hz, 2H), 7.47 (d, *J* = 8.2 Hz, 2H), 6.40 - 6.33 (m, 1H), 5.57 - 5.50

(m, 2H). ¹⁹F NMR (470 MHz, CDCl₃) δ -61.9 (s, 9F). ¹³C NMR (126 MHz, CDCl₃) δ

166.2, 142.5, 133.5, 132.9, 131.6, 128.0, 120.7 (q, J = 295.3 Hz), 117.2, 114.7, 74.6 (m). **HRMS** (EI): m/z calcd for C₁₄H₇F₉N₂O: 390.0409 M⁺; Found 390.0402.

7. Stability study of compound 1

To a solution of the studied compound (0.035 mmol) in MeCN-d₃ (0.75 mL) was added 0.25 mL of either aqueous HCl or NaOH (respective pH 0 and 14). Cyclohexadiene (1~2 μ L) was added as an internal standard. The reactions were stirred at room temperature. The solution was filtered through magnesium sulphate. The mixtures were analyzed by ¹H NMR.

Supplementary Figure S10. ¹H NMR stacked spectra of stability test of compound 1 in aqueous NaOH.

Supplementary Figure S11. ¹H NMR stacked spectra of stability test of compound 1 in aqueous HCl.

8. ¹⁹F MRI Experiment

Five different concentrations of compound **36** (25, 50, 75, 100, 125 mM in MeCN) were compared with the negative control (H₂O) and the positive control (CF₄, 15mg/mL). The data were recorded on a Bruker 9.4 T BioSpec 94/30 MRI & PET Insert.

Concentration (mM)		Values	
25	81.3	82.4	76.4
50	57.4	59.2	58.4
75	36.1	36.5	37.4
100	26.0	26.1	27.2
125	11.3	13.5	11.8

Supplementary Table S1. Experimental data of ¹⁹F MRI.

Supplementary Figure S12. ¹⁹F MR imaging of compound 36.

9. Crystallographic data for compound 11

Compound	11	
Formula	$C_{32}H_{20}F_{18}N_2$	
Formula weight	774.50	
Crystal system	$Pca2_1$	
space group	Orthorhombic	
<i>a</i> (Å)	37.282(2)	
b (Å)	7.7234(5)	
<i>c</i> (Å)	10.7769(6)	
α (°)	90	
$\beta(^{\mathrm{o}})$	90	
$\gamma(^{\rm o})$	90	
Volume(Å ³)	3103.1(3)	
Ζ	4	
<i>T</i> (K)	193.15	
$D_{\text{calcd}} \left(\text{g} \cdot \text{cm}^{-3} \right)$	1.658	
<i>F</i> (000)	1552	
Reflections collected	18441	
Unique reflections	5369	
Goof	1.088	
$R_1^{a}[I > 2\sigma(I)]$	0.0721	
$wR_2^{b}[I \ge 2\sigma(I)]$	0.1499	
CCDC NO.	2256453	

10. References

- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16, Revision A.01; Gaussian, Inc.: Wallingford, CT, 2016.
- (2) Vetere, V.; Adamo, C.; Maldivi, P. Performance of the 'Parameter Free' PBE0 Functional for the Modeling of Molecular Properties of Heavy Metals. *Chem. Phys. Lett.* **2000**, *325* (1-3), 99-105.
- (3) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurateab Initioparametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. *J. Chem. Phys.* **2010**, *132* (15), 154104.
- (4) Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. *Phys Chem Chem Phys.* **2005**, *7* (18), 3297-3305.
- (5) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B. 2009, 113 (18), 6378-6396.
- (6) Wang, L.; Wang, J.; Ye, S.; Jiang, B.; Guo, Z.; Mumtaz, Y.; Yi, W. General Access to *N*–CF₃ Secondary Amines and Their Transformation to *N*–CF₃ Sulfonamides. *Angew. Chem., Int. Ed.* **2022**, *61* (49), e202212115.
- (7) Petrov, V. A. Reaction of Polyfluorinated Imines with Trifluoromethyltrimethylsilane. Direct Synthesis of *N*-(perfluoro-*t*-butyl)amines. *Tetrahedron Lett.* **2000**, *41* (36), 6959-6963.

11. NMR Spectra

70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -250 -2 f1 (ppm)

S51

S52

70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -250 -27(f1 (ppm)

7.5

70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -250 -2 f1 (ppm)

20 210 200 190 180 170 180 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -250 -2 f1 (ppm)

5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 f1 (ppm) 10.5 10.0 9.5 9.0 8.5 6.5 6.0

70 -90 -110 f1 (ppm) -250 -2 50 30 10 -170 -190 -210 -230 -10 -30 -50 -70 -130 150

S63

70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -250 -27(f1 (ppm)

-90 -110 f1 (ppm) -250 -27(70 -210 -230 50 30 -150 -170 -190 10 -10 -30 -50 -70 -130

5.0 f1 (ppm)

4.5

0.7 2.03 [™]

6.5

6.0 5.5

7.5

10.5 10.0 9.5

9.0 8.5 8.0

4. 0

3.5 3.0 2.5 2.0 1.5 1.0

6.33H

0.5 0.0 -0.5

70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -250 -271 f1 (ppm)

70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -250 -2 f1 (ppm)

~ 155.45 137.39 137.34 131.29 121.35 121.34 121.34 112.194 117.58 117

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

S116

S118

70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -250 -2 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -250 -2 f1 (ppm)

70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -250 -27(f1 (ppm)

70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -250 -27(r1 (ppm)

70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -250 -2 11 (ppm)

