1 Initiating Photocatalytic Degradation of Organic Pollutants under

2 Ultra-Low Light Intensity via Oxygen-Centered Organic Radicals

- 3 Yingge He^a, Yuyan Huang^b, Yu-Xin Ye^{c,d*}, Yanchun Deng^a, Xin Yang^{a*}, Gangfeng Ouyang^{b,c,d*}
- 4 aSchool of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of
- 5 Environmental Pollution Control and Remediation Technology, Sun Yat-sen University,
- 6 Guangzhou, China.
- 7 ^bKey Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM,
- 8 School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, China.
- 9 ^cSchool of Chemical Engineering and Technology, IGCME, Sun Yat-sen University, Zhuhai,
- 10 China.
- ¹¹ ^dSouthern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
- 12 *Correspondence to: yeyuxin5@sysu.edu.cn; yangx36@mail.sysu.edu.cn; cesoygf@mail.sysu.e
- 13 <u>du.cn</u>
- 14

15	Table of contents	
16	Supplemental Methods	4
17	Materials	4
18	Synthesis of TPE-AQ-molecule	5
19	Characterization	5
20	Photocatalytic Experiments	6
21	Electrochemical measurements	7
22	EPR Analysis	8
23	Recycling Experiments	.10
24	Determination of H ₂ O ₂ concentration	.10
25	Evaluation of KIE (Kinetic Isotope Effect)	. 11
26	Analytical methods	. 11
27	Supplemental Notes	. 13
28	Supplemental Note 1. Charge carriers separation and transfer performance of	CPs
29		. 13
30	Supplemental Note 2. Attribution of signals in transient absorption spectra	. 13
31	Supplemental Figures	.15
32	Figure S1. PXRD patterns of TPE-AQ and TPE-FN.	.15
33	Figure S2. Scanning electron microscope (SEM) images of CPs.	. 16
34	Figure S3. FT-IR spectra of TPE-AQ, TPE-FN, and monomer.	.17
35	Figure S4. The XPS spectra of TPE-AQ and TPE-FN.	. 18
36	Figure S5. Solid state ¹³ C CP-MAS NMR spectra	. 19
37	Figure S6. Measurements of Brunauer-Emmett-Teller surface areas.	.20
38	Figure S7. Characterization of CBM through Mott Schottky	.21
39	Figure S8. XPS valence band spectrum of CPs.	.22
40	Figure S9. Characterization of sample work function through Kelvin Probe Fo	orce
41	Microscopy (KPFM).	.23
42	Figure S10. Solar irradiance levels under various environmental conditions	. 24
43	Figure S11. The experimental device and light source spectrum.	. 25
44	Figure S12. Reaction condition gradient experiments.	.26

45	Figure S13. The photocatalytic performance of CPs for BPA degradation27
46	Figure S14. The withstand interference ability test
47	Figure S15. Recycle experiments of TPE-AQ29
48	Figure S16. Post-characterization of TPE-AQ after photocatalysis
49	Figure S17. Degradation of different micropollutants in the TPE-AQ system 31
50	Figure S18. EPR spectra of TPE-AQ
51	Figure S19. Photoluminescence spectra of TPE-AQ, TPE-FN, and
52	TPE-AQ-molecule
53	Figure S20. Photocurrent responses and electrochemical impedance spectroscopy
54	analysis
55	Figure S21. Femtosecond transient absorption measurements probed at visible
56	region
57	Figure S22. Δ EPR signal intensity as a function of excitation wavelength36
58	Figure S23. The lifetime of OCORs
59	Figure S24. Femtosecond transient absorption measurements probed at
60	near-infrared region
61	Figure S25. The time-dependent in-situ EPR spectra of TPE-AQ in H ₂ O39
62	Figure S26. Characterization of the electron storage properties of TPE-AQ 40
63	Figure S27. H/D kinetic isotope effect for phenol degradation in TPE-AQ system
64	
65	Figure S28. Photocatalytic degradation pathway of BPA42
66	Figure S29. TOC removal in the TPE-AQ system
67	Figure S30. Effect of atmospheric on the photocatalytic performance of TPE-AQ.
68	
69	Supplemental Tables
70	Table S1. Photocatalytic activity and light intensity between TPE-AQ and other
71	reported photocatalysts for micropollutants degradation
72	Table S2. The HPLC conditions for analysis of different micropollutants
73	Table S3. Atomic coordinates of the TPE-AQ optimized computational model47
74	Table S4. Atomic coordinates of the TPE-FN optimized computational model 49

75	Table S5. Time-dependent density functional theory (TD-DFT) of TPE-AQ and
76	TPE-FN51
77	Table S6. Water quality parameters of the actual water. 52
78	Table S7. Summary of the half-life and redox potential of common transient
79	active species and OCORs53
80	Table S8. Single-point energy of each substance. 54
81	Table S9. Identification of transformation products of BPA in the TPE-AQ system.
82	
83	Table S10. Baseline toxicity data predicted using the ECOSAR program of EPI
84	Suite 4.0
85	Supplemental References 59
86	
87	

88 Supplemental Methods

89 Materials

90 2,6-dibromoanthraquinone (96%) and potassium carbonate (K₂CO₃, 99%) were purchased from 91 Bidepharm (Shanghai, China). [ethene-1,1,2,2-tetrayltetrakis(benzene-4,1-diyl)]tetraboronic acid (>95%) was purchased from Jilin Chinese Academy of Sciences-Yanshen Technology. 92 93 [4-(1,2,2-triphenylethenyl)phenyl]boronic acid (97%) was purchased from Shanghai Tensus 94 Biotech Co., Ltd. Tetrakis(triphenylphosphine)palladium (Pd(PPh₃)₄, 99%) was obtained from 95 Energy Chemical. TCI supplied the 2,7-dibromo-9-fluorenone (>98%). Phenol (99.5%), 96 p-chlorophenol (4-CP, 99.5%), and superoxide dismutase (SOD, 20000 units/mg) were purchased 97 from Macklin Biochemical Co., Ltd (Shanghai, China). 5,5-dimethyl-1-pyrroline N-oxide (DMPO, 98 98%), 2,2,6,6-tetramethyl-4-piperidinol (TEMP, 98%), bisphenol A (BPA, 98%), sulfamethoxazole 99 (SMX, 98%), carbamazepine (CBZ, 99%), aniline (98%), triclosan (TCS, 98%), deferoxamine 100 mesylate salt (DFO), L-histidine (99%) and N, N-dimethylformamide (DMF, 99.8%) were 101 purchased from Sigma-Aldrich. Catalase from bovine liver (3000 units/mg) was purchased from 102 Lounbiotech (Guangzhou, China). Silver nitrate (AgNO₃) and ethylenediaminetetraacetic acid 103 disodium salt (EDTA-2Na) were obtained from the Guangzhou Chemical Reagent Factory. 104 Tert-butyl alcohol (TBA) was supplied by ANPLE Laboratory Technologies (China). Suwannee River Natural Organic Matter (SRNOM, 2S101N) was obtained from the International Humic 105 106 Substances Society (IHSS). The actual water samples (Beijiang River, Xiaogu River, and Sea 107 water) were all filtered with 0.45 µm filter membrane and kept in the dark at 4 °C until use. The 108 basic characteristics of the actual water were collected in Table S4. All materials were used as 109 received without further purification or treatment. Ultrapure water (>18 M Ω ·cm) was used for all

110 the experiments.

112

111 Synthesis of TPE-AQ-molecule

Into a three-necked flask, [4-(1,2,2-triphenylethenyl)phenyl]boronic acid (90.30 mg, 0.24 mmol), 113 114 2,6-dibromoanthraquinone (36.60 mg, 0.1 mmol), Pd(PPh₃)₄ (2.68 mg, 0.0023 mmol), K₂CO₃ (20 115 mg, 0.14 mmol), and a mixed solvent of THF/H₂O (15 mL/3 mL, respectively) were added. The system was purged with argon gas for 30 minutes. Then, the mixture was heated to 80 °C and 116 117 stirred overnight. After cooling down to room temperature, water was added, and the mixture was 118 extracted with DCM. The organic phase was collected. Following solvent evaporation, the residue 119 was purified by column chromatography on silica gel (55% yield). ¹H-NMR (400 MHz, Chloroform-d): δ 8.52 ppm (d, J = 1.9 Hz, 2H), 8.37 (d, J = 8.2 Hz, 2H), 8.00 (m, 2H), 7.52 (d, J = 120 121 8.2 Hz, 4H), 7.21-7.11 (m, 34H).

122 Characterization

The sample's morphology was examined using a high-resolution field-emission scanning electron microscope (FE-SEM, Hitachi SU8010, Japan) at a 10 kV accelerating voltage. Transmission electron microscope (TEM) observation was carried out using JEOL JEM-ARM200P. The crystalline phases were characterized by a powder X-ray diffraction instrument (D-MAX 2200 VPC) and the diffractometer was operated at 40 kV and 26 mA and scanned at 10° min⁻¹ from 10° to 80°. X-ray photoelectron spectroscopy (XPS) measurements were recorded by using a Thermo 129 Scientific K-Alpha spectrometer with Al Ka radiation as the excitation source. Fourier transform 130 infrared spectra (FT-IR) was recorded on a PerkinElmer Frontier spectrometer. UV-visible 131 spectroscopy (UV-Vis) was carried out on a Shimadzu UV-3600 spectrometer. ¹H NMR spectra were recorded on Bruker advance III 400 MHz. The solid-state ¹³C NMR spectra were performed 132 133 on Bruker Ascend 600 MHz. Electron paramagnetic resonance (EPR) signals were recorded by 134 Bruker EMXplus. Atomic force microscopy (AFM) measurements were carried out by using the 135 Bruker dimension icon. Photoluminescence (PL) spectra were recorded on an FLS 1000 spectrometer. N2 isotherms and surface area measurements were performed on a JW-BK200C 136 137 instrument.

138 **Photocatalytic Experiments**

139 In this work, photo-degradation of micropollutants under weak visible light irradiation was 140 employed to evaluate the photocatalytic performance of catalysts. 2.5 mg of photocatalysts were 141 added to 50 mL of ultrapure water in a 50 mL beaker. The catalyst was dispersed by vortex for 30 142 minutes and irradiated by a conventional lamp tube under magnetic stirring. The light intensity on the reaction interface was set to 2.0 mW cm⁻² except for the light intensity gradient experiment, 143 144 which was measured with a solar power meter (Tenmars, TM-207). 1.0 mL of suspension solution 145 was taken out during irradiation and filtered by 0.45 µm PTFE hydrophilic filter at predefined 146 time intervals. Then the solution was desorbed in acetonitrile to determine the percentage of 147 adsorption and degradation in the removal of bisphenol A (BPA), the sampling method was the 148 same as mentioned above. Other micropollutants degradation was performed in a similar way as 149 BPA except that they reacted in darkness for 120 minutes before irradiation to achieve 150 adsorption-desorption equilibrium.

151 The radical scavengers quenching experiments were performed using 10 mM silver nitrate (AgNO₃), ethylenediaminetetraacetic acid disodium salt (EDTA-2Na), tert-butyl alcohol (TBA), 152 153 and L-histidine to quench electrons, holes, ·OH, and ¹O₂, respectively. 50 U mL⁻¹ superoxide dismutase (SOD) and catalase were used as quenchers for O₂- and H₂O₂, respectively. The 154 155 quenchers were added before the reaction began and other conditions remained the same. For 156 deferoxamine mesylate salt (DFO), a semiquinone free radical quencher was added after the 157 solution reaction in the dark for 30 minutes to ensure that DFO would not affect the adsorption of BPA. 158

For the control experiment under an oxygen/argon atmosphere, the reaction solutions were bubbled with O_2/Ar for 30 minutes before the reaction began, and oxygen or argon gas was continuously bubbled into the system during the experiment. Other conditions remain the same.

Each group of experiments was repeated twice to ensure the repeatability and accuracy of the experiment. The results were expressed as average values with error bars displaying the standard deviation.

165 Electrochemical measurements

All measurements were carried out using an electrochemical workstation (CHI 660E Instruments
or CHI 760E Instruments). A three-electrode cell system was employed including an Ag/AgCl

- 168 reference electrode, a counter electrode of Pt foil, and a working electrode. A 300 W Xe lamp ($\lambda >$
- 169 400 nm) was used as an illumination source and adjusted the light source distance so that the light
- 170 intensity was $20-30 \text{ mW cm}^{-2}$.

171 For the photocurrent measurement, the FTO glass $(1 \times 1 \text{ cm})$ deposited with materials was used as

172 photoelectrode. The three electrodes were inserted in a quartz cell filled with 0.1 M Na₂SO₄.

173	During the test, the system was purged with N_2 . 0.5 M Na_2SO_4 was used as the electrolyte for the
174	EIS and Mot-Schottky curve. Glassy carbon electrodes and FTO glass (1 \times 1 cm) deposited with
175	materials were used as photoelectrode, respectively. CV measurement was conducted in 0.1 M
176	KCl at a sweep rate of 50 mV s ⁻¹ . Glassy carbon electrodes deposited with materials were used as
177	photoelectrode and the voltage was swept from -1 V to 1.8 V (vs Ag/AgCl).
178	All materials were prepared by adding 2 mg catalyst into the solution containing 180 μ L ethanol
179	and 20 μ L 5% Nafion. The mixture was dispersed by ultrasonication.
180	EPR Analysis
181	In-situ EPR to monitor the reaction between OCORs and BPA
181 182	In-situ EPR to monitor the reaction between OCORs and BPA EPR was used to explore the role of OCORs in the photocatalytic degradation of BPA. A certain
181 182 183	In-situ EPR to monitor the reaction between OCORs and BPA EPR was used to explore the role of OCORs in the photocatalytic degradation of BPA. A certain amount of material solution was drawn up in a capillary tube, transferred to a quartz tube, and
181 182 183 184	In-situ EPR to monitor the reaction between OCORs and BPA EPR was used to explore the role of OCORs in the photocatalytic degradation of BPA. A certain amount of material solution was drawn up in a capillary tube, transferred to a quartz tube, and placed in the sample chamber. The EPR signal was initially recorded in the dark, then the BPA
181 182 183 184 185	In-situ EPR to monitor the reaction between OCORs and BPA EPR was used to explore the role of OCORs in the photocatalytic degradation of BPA. A certain amount of material solution was drawn up in a capillary tube, transferred to a quartz tube, and placed in the sample chamber. The EPR signal was initially recorded in the dark, then the BPA solution was added and the material solution was continuously illuminated. The EPR signals were
181 182 183 184 185 186	In-situ EPR to monitor the reaction between OCORs and BPA EPR was used to explore the role of OCORs in the photocatalytic degradation of BPA. A certain amount of material solution was drawn up in a capillary tube, transferred to a quartz tube, and placed in the sample chamber. The EPR signal was initially recorded in the dark, then the BPA solution was added and the material solution was continuously illuminated. The EPR signals were recorded at regular intervals.
181 182 183 184 185 186 187	In-situ EPR to monitor the reaction between OCORs and BPA EPR was used to explore the role of OCORs in the photocatalytic degradation of BPA. A certain amount of material solution was drawn up in a capillary tube, transferred to a quartz tube, and placed in the sample chamber. The EPR signal was initially recorded in the dark, then the BPA solution was added and the material solution was continuously illuminated. The EPR signals were recorded at regular intervals. The materials solution was prepared by adding 10 mg catalysts into 0.1 mL ultrapure water and

189 The relationship between OCORs concentration and excitation wavelength and excitation
 190 light intensity

191 The relation between OCORs concentration and excitation wavelength and excitation light 192 intensity was investigated using EPR. A certain amount of material solution was drawn up in a 193 capillary tube, transferred to a quartz tube, and placed in the sample chamber. The EPR signal was 194 recorded at room temperature without additional light source as control, then the EPR signal was

- 195 measured after irradiating the material solution for 60 s at different excitation wavelengths and
- 196 excitation light intensities. The relationship between EPR signal increase and excitation light and
- 197 excitation wavelength was compared.
- 198 The materials solution was prepared by adding 10 mg TPE-AQ into 0.1 mL ultrapure water and
- 199 dispersed by ultrasonication.
- 200 Oxygen-centered organic radicals (OCORs) lifetime
- In-situ EPR was used to record the signals of OCORs and their lifetimes. For the solid EPR test, 202 20 mg of materials were directly weighed into the quartz tube and placed in the sample chamber. 203 The EPR signals were originally recorded in dark conditions. Following that, the signals were 204 monitored under continuous in-situ irradiation with a conventional lamp tube, and the signal 205 changes were recorded at intervals of irradiation. After 30 minutes of irradiation, the changes in 206 OCORs concentration were tracked by monitoring the signal intensity changes after the light 207 source was removed.
- 208 For the test of TPE-AQ lifetime in water, a certain amount of material solution was drawn up in a
- 209 capillary tube, transferred to a quartz tube, and placed in the sample chamber. The test method was
- 210 the same as the solid in-situ EPR, and the TPE-AQ solution was prepared following the same steps
- as described earlier.
- 212 The electron storage characteristic in TPE-AQ

EPR was used to investigate the electron storage characteristic in TPE-AQ. A certain amount of material solution was drawn up in a capillary tube, placed into a quartz tube, and inserted into the sample chamber. The EPR signal was originally recorded in the dark. Then the solution was illuminated for 30 minutes and tested. Following that, the light source was turned off and 0.01 mL

- 217 of phenol solution (0.5 M) was added, the reaction was darkened for 30 minutes and examined.
- 218 The variations in the EPR signal of blank, light for 30 minutes, and reaction in dark with or
- 219 without phenol for 30 minutes were compared.
- 220 The preparation of the catalyst solution followed the same steps as described earlier.
- 221 Detect of transient reactive Species (•OH, O₂·, ¹O₂)
- 222 To examine the reactive species in the photocatalytic process, 5,5-dimethyl-1-pyrroline-N-oxide
- (DMPO) was used as a trapping agent to detect DMPO- \cdot OH and DMPO- O_2 ⁻⁻ adducts in aqueous
- solution and methanol, respectively. 2,2,6,6-tetramethylpiperidine (TEMP) was employed as the
- spin capture reagent to detect the ${}^{1}O_{2}$ in an aqueous solution. A conventional lamp tube was used
- to provide the light source. After irradiation for a certain time, 0.5 mL of the reaction liquid was
- 227 filtered and added into a centrifuge tube containing the trapping agent and mixed, then the
- 228 appropriate amount of the mixture was drawn up in a capillary tube, placed into a quartz tube and
- inserted into the sample chamber, the spectra were recorded.

230 **Recycling Experiments**

- 231 TPE-AQ recycling studies were carried out as follows: Suction filtering was used to separate the
- 232 TPE-AQ from the desorption solution after a photocatalytic cycle. After washing with ethanol, the
- 233 residual catalyst was dried at 80 °C and collected for the next recycling test.

234 Determination of H₂O₂ concentration

- 235 The amount of H₂O₂ was measured using a TMB-H₂O₂-HRP enzymatic assay, and the horseradish
- 236 peroxidase (HRP) could catalyze the reaction between H_2O_2 and TMB:

$$H_2O_2 + TMB \xrightarrow{HRP} H_2O + oxTMB$$

237 The 3,3',5,5'-tetramethylbenzidine (TMB) solution was prepared as follows: 0.015 g TMB was

238	dissolved in 0.3 mL of DMSO, then adding 5 mL of glycerol and 45 mL of ultrapure water
239	containing 0.02 g of ethylenediaminetetraacetic acid and 0.095 g of citric acid. Then the solution
240	was filled to 500 mL with ultrapure water.
241	HRP solution was made by dissolving 0.002 g of peroxidase (from horseradish) in 10 mL of
242	ultrapure water.
243	The calibration curve was determined in the following method: TMB and HRP were added to
244	known concentration of H_2O_2 solution. After 3 minutes, 10 μ L of HCl was added to quench th
245	reaction, and the results were analyzed using UV-visible spectroscopy at 450 nm. The $\mathrm{H_{2}O}$
246	concentration of the samples could be calculated using the linear relationship between signa
247	intensity and H ₂ O ₂ concentration.
248	Evaluation of KIE (Kinetic Isotope Effect)
249	The reaction rate was evaluated by a pseudo-first-order kinetics model:
250	$\ln(C_t/C_0) = -k_{obs}t \tag{1}$
251	Where C_0 was the pollutant concentration after adsorption, and C_t was the concentration at
252	certain time during the photocatalytic degradation process.
253	The KIE equation was as follows:
254	$KIE = k_{obs(H)}/k_{obs(D)} $ (2)
255	Where the $k_{obs(H)}$ and $k_{obs(D)}$ were the kinetic rate constants of phenol and phenol-D6 degradation
256	respectively.

257 Analytical methods

258 Micropollutant concentrations were determined using high-performance liquid chromatography

259 (HPLC, UltiMate TM 3000, Thermo Fisher Scientific Inc., USA). Chromatographic separation

260	was performed on a CNW Athena C18-WP column (4.6 \times 150 mm, 5 μm), and the HPLC method
261	for each micropollutant was shown in Table S2. The concentration of the total organic carbon
262	(TOC) in the filtered reaction solution was measured using a TOC analyzer (TOC-L CPH,
263	Shimadzu, Japan). Ultrahigh-performance liquid chromatography coupled with trapped ion
264	mobility time-of-flight mass spectrometer (UltiMate3000-tims TOF) was used for the
265	identification of BPA degradation products, the test method of ion mobility Q-TOF high resolution
266	liquid chromatography mass spectrometry is as follows: Mobile phase A is 0.1% formic acid water,
267	mobile phase B is 0.1% formic acid acetonitrile solution, and the gradient is set as 90% mobile
268	phase A and 10% mobile phase B at 0-1 min, and 5% mobile phase A and 95% mobile phase B at
269	9.5 min and maintained until 12 min. At 12.1 minutes, 90% mobile phase A and 10% mobile phase
270	B were maintained for 15 min with a flow rate of 0.3 mL min ⁻¹ . ESI negative ion and positive ion
271	modes were used for mass spectrum scanning. The ion source temperature was 120 °C, the
272	capillary voltage was 2500 V, the cone hole voltage was 35 V, the desolvation temperature was
273	300 °C, the cone hole gas flow rate was 40 L h ⁻¹ , the desolvation gas flow rate is 700 L
274	h^{-1} (negative ion mode) and 750 L h^{-1} (positive ion mode), the nebuliser gas flow rate is 6.5 bar, the
275	trap collision energy is 4.0 eV, and the scanning mass range is 50-1000 Da.

277 Supplemental Notes

278 Supplemental Note 1. Charge carriers separation and transfer performance of CPs

The overall recombination efficiencies of photo-induced carriers were monitored by steady-state photoluminescence (PL) emission spectroscopy (Figure S19). The PL intensity was negligible in TPE-AQ, while it was still significant in TPE-FN and TPE-AQ-molecule, indicating the highly improved the separation efficiency of photo-induced carriers in TPE-AQ. Temperature-dependent photoluminescence (PL) spectra were recorded to further elucidate the charge recombination and separation kineties of CPs (Figs. 4d, e). Clearly, TPE-AQ and TPE-FN exhibited the thermal quenching phenomenon of PL emission in the temperature range from 125 to 300 K. By fitting the

PL intensities as a function of temperature using the Arrhenius equation (equation S3), the exciton activation energy (E_a) of TPE-AQ and TPE-FN could be deduced as 158 and 200 meV, respectively¹. The lower E_a implied better charge separation in TPE-AQ.

289 $I(T) = I_0/(1 + A \exp(-E_b/k_bT))$ (3)

290 Moreover, photoelectrochemical characterizations provided further significant evidence (Figure 291 S20). The photocurrent experimental results revealed that TPE-AQ displayed a higher 292 photocurrent response, signifying less recombination and faster photo-induced electron migration 293 in TPE-AQ. Similarly, TPE-AQ also manifested a smaller radius of the semi-circular Nyquist plot 294 than TPE-FN in electrochemical impedance spectroscopy (EIS) measurements, suggesting a lower 295 charge transfer resistance in TPE-AQ. All of these results are consistent with the conclusions 296 drawn from PL analyses that less recombination and better charge carriers separation in TPE-AQ, 297 which could have a positive effect on the photocatalytic activity.

298 Supplemental Note 2. Attribution of signals in transient absorption spectra

299	As shown in Figures. S21 and S24, the peaks on about 650 nm could be attributed to polarons for
300	TPE-AQ. Because it decreased significantly in both electron (AgNO ₃) and hole (EDTA-2Na)
301	sacrificial agents. On the other hand, peaks between 850 nm and 1300 nm could be assigned to
302	unfettered holes. Because the signal was not significantly attenuated in the presence of an electron
303	sacrificial agent but obviously decreased in the presence of a hole sacrificial agent.
304	

307 Figure S1. PXRD patterns of TPE-AQ and TPE-FN. The powder X-ray diffraction (PXRD)

308 profiles revealed that TPE-AQ and TPE-FN exhibited the features of amorphous carbon.

- 311 Figure S2. Scanning electron microscope (SEM) images of CPs. SEM images of (a) TPE-AQ
- and (b) TPE-FN. The SEM images indicated the CPs were stratified structures.

Figure S3. FT-IR spectra of TPE-AQ, TPE-FN, and monomer. The peaks at 1671 cm⁻¹ and 1716 cm⁻¹ were attributed to the carbonyl group in TPE-AQ and TPE-FN, respectively. The signal at 1590 cm⁻¹ corresponded to the stretching vibration of C=C bonds in the aromatic skeletons.

320 Figure S4. The XPS spectra of TPE-AQ and TPE-FN. (a) The survey XPS spectra. (b) The

321 high-resolution C 1s XPS spectra.

Figure S5. Solid state ¹³C CP-MAS NMR spectra. Spectra of (a) TPE-AQ, (b) TPE-FN.

Figure S7. Characterization of CBM through Mott Schottky. Mott Schottky plots of (a)
TPT-AQ and (b) TPE-FN. The FTO glasses deposited with materials were used as photoelectrode.
The three electrodes were inserted in a quartz cell filled with 0.5 M Na₂SO₄. The flat-band values
were evaluated as -0.64 and -0.70 eV versus the Ag/AgCl electrode.

Figure S8. XPS valence band spectrum of CPs. The spectrum of (a) TPE-AQ and (b) TPE-FN.
The valence band maximum (VBM) of TPE-AQ and TPE-FN were determined to be 2.48 and
2.77 eV verse Fermi level, respectively.

340 Figure S9. Characterization of sample work function through Kelvin Probe Force

341 Microscopy (KPFM). AM-KPFM images of (a) TPE-AQ and (b) TPE-FN. The work function of

342 TPE-AQ and TPE-FN were measured to be 4.233 and 4.093 eV, respectively.

Figure S10. Solar irradiance levels under various environmental conditions. Variation of light
intensity on the water surface and depth of 19 cm underwater on cloudy (a) and sunny days (b).
The attenuation of light intensity with depth in actual water (c) and ultrapure water (d).

351 photocatalytic degradation of CPs (a) and spectrogram of lamp tube (b).

Figure S12. Reaction condition gradient experiments. Effects of reaction time on photocatalytic degradation of BPA by TPE-AQ. Reaction conditions were: $[BPA] = 2 \mu M$, [photocatalyst] = 0.05g L⁻¹, I₀ = 2.0 mW cm⁻², [reaction time] = 1-5 h.

358 Figure S13. The photocatalytic performance of CPs for BPA degradation. Reaction conditions

```
359 were: [BPA] = 2 \muM, [photocatalyst] = 0.05 g L<sup>-1</sup>, [reaction time] = 3 h, I<sub>0</sub> = 2.0 mW cm<sup>-2</sup>.
```


Figure S14. The withstand interference ability test. Effect of (a-b) water matrix components (coexisting anions and SRNOM) and (c-d) pH on the photocatalytic performance of TPE-AQ. Reaction conditions were: (a-b) [BPA] = 2 μ M, [photocatalyst] = 0.05 g L⁻¹, [anions] = 5 mM, [SRNOM] = 5 mg_C L⁻¹, [reaction time] = 30 min, I₀ = 2.0 mW cm⁻². (c-d) The condition was the same as (a-b), except the pH was adjusted to 4-9 by NaOH and H₂SO₄. TPE-AQ demonstrated exceptional resistance to interference.

370 Figure S15. Recycle experiments of TPE-AQ. Reaction conditions were: [BPA] = 2 μ M,

371 [TPE-AQ] = 0.05 g L⁻¹, [reaction time] = 3 h, $I_0 = 2.0$ mW cm⁻². TPE-AQ exhibited remarkable

372 stability over nine cycles.

Figure S16. Post-characterization of TPE-AQ after photocatalysis. Comparison of TPE-AQ
before and after photoreaction: (a) SEM image, (b) FT-IR spectra, (c) PXRD. The composition
and structure of TPE-AQ remained unchanged after photocatalysis, this further demonstrated the
excellent cyclic stability of TPE-AQ.

Figure S17. Degradation of different micropollutants in the TPE-AQ system. Reaction conditions were: [pollutants] = 2 μ M, [TPE-AQ] = 0.05 g L⁻¹, [reaction time] = 3 h, I₀ = 2.0 mW cm⁻². TPE-AQ showcased remarkable efficacy in degrading a wide range of organic pollutants.

Figure S18. EPR spectra of TPE-AQ. EPR spectra of TPE-AQ in the presence of (a-b) DMPO and (c) TEMP in the O₂ atmosphere. The results showed that superoxide radicals, singlet oxygen, and hydroxyl radicals did not participate in the photocatalytic degradation of BPA, which was consistent with the results of quenching experiment.

391 Figure S19. Photoluminescence spectra of TPE-AQ, TPE-FN, and TPE-AQ-molecule. The PL

392 intensity was negligible in TPE-AQ compared to TPE-FN and TPE-AQ-molecule, indicating the

393 better separation of photo-induced carriers in TPE-AQ.

Figure S20. Photocurrent responses and electrochemical impedance spectroscopy analysis.
Photocurrent responses (a) and Electrochemical impedance spectra (b) of TPE-AQ and TPE-FN.
The Photocurrent responses measurements were performed on an FTO electrode in 0.1 M Na₂SO₄
solution and N₂ atmosphere and the EIS measurements were performed on a Glassy carbon
electrode in 0.5 M Na₂SO₄ solution. The photocurrent responses and EIS all confirmed the better
separation of photo-induced carriers for TPE-AQ than TPE-FN.

403 Figure S21. Femtosecond transient absorption measurements probed at visible region. The

404 transient absorption spectra of TPE-FN with different quenchers. TA details of CPs pumped at 400

 $405 \qquad \text{nm. AgNO}_3 \text{ and EDTA-2Na were all 10 mM.}$

408

409 Figure S22. Δ EPR signal intensity as a function of excitation wavelength. The EPR signal 410 was recorded at room temperature without additional light source as control, then the EPR signal 411 was measured after irradiating the material solution for 60 s at different excitation wavelengths. 412 The relationship between EPR signal (represented by the highest point of EPR signal strength, 413 g=2.0063) increase and excitation wavelength was compared. In the variation of EPR signal 414 intensity with different excitation wavelengths was consistent with TPE-AQ's optical absorption 415 spectrum.

Figure S23. The lifetime of OCORs. The time-dependent in-situ solid EPR spectra of (a) TPE-AQ, (b) TPE-FN, and (c) TPE-AQ-molecule. The light was turned off after the photocatalyst (solid) was illuminated for 30 minutes. The lighting and dark processes were continually monitored.

423 Figure S24. Femtosecond transient absorption measurements probed at near-infrared region.

425 details of CPs pumped at 400 nm. AgNO₃ and EDTA-2Na were all 10 mM.

Figure S25. The time-dependent in-situ EPR spectra of TPE-AQ in H₂O. After 30 minutes of illumination of TPE-AQ, the light was turned off, and the lighting (a) and dark (b) processes were continuously tracked. The EPR signal intensity decreased with time after the lamp was removed, indicating the potential reactivity of OCORs with water.

Figure S26. Characterization of the electron storage properties of TPE-AQ. EPR spectra of light and dark processes of TPE-AQ-H₂O in the absence (a) and presence (b) of phenol. Phenol was added after turning off the light and reacted in dark conditions. After the light source was removed, the presence of phenol accelerated the decay of the EPR signal with time, demonstrating that the light-generated OCORs could be stored and reacted with phenol in a light-independent process. The results showed that TPE-AQ had an electron storage ability.

438

440 Figure S27. H/D kinetic isotope effect for phenol degradation in TPE-AQ system. The

441 temporal concentration changes of phenol as a function of reaction time. Reaction conditions were:

442 [phenol] = [phenol-D6] = 2 μ M, [TPE-AQ] = 0.05 g L⁻¹, I₀ = 2.0 mW cm⁻².

444 Figure S28. Photocatalytic degradation pathway of BPA.

446 Figure S29. TOC removal in the TPE-AQ system. The temporal concentration changes of BPA

447 as a function of reaction time (a) and BPA removal pathway and proportion of each pathway (b-c).

448 Reaction conditions were: [BPA] = 100 μ M, [TPE-AQ] = 0.1 g L⁻¹, [reaction time] = 24 h, I₀ = 2.0

 449 mW cm^{-2} .

451

452 Figure S30. Effect of atmospheric on the photocatalytic performance of TPE-AQ. 453 Photocatalytic degradation of BPA by TPE-AQ with purging O_2 or Ar. Reaction conditions were: 454 $[BPA] = 2 \mu M$, $[TPE-AQ] = 0.05 \text{ g L}^{-1}$, [reaction time] = 30 min, $I_0 = 2.0 \text{ mW cm}^{-2}$. In the absence 455 of oxygen, the degradation of BPA was inhibited by 37%. 456

457 Supplemental Tables

Table S1. Photocatalytic activity and light intensity between TPE-AQ and other reported
photocatalysts for micropollutants degradation.

	C I''	Adsorption Reaction		Light intensity	Degradation	D.C
Catalyst	Condition	time	time (min)	(mW cm ⁻²)	rate/%	Kei
Fc-TEB-CMP	0.25 g L ⁻¹ Cat, 0.10 mM (MB)	60 min	120	100 (λ>400 nm)	99	2
Cs2AgBiBr6	2.0 g L ⁻¹ Cat, 0.20 mM (RhB)	60 min	120	110 (λ>420 nm) 33 (λ>420 nm)	100 20	3
LZS	0.2 g L ⁻¹ Cat, 0.15 mM (4-CP)	30 min	10	326 (320<λ<780 nm)	100	4
TiO ₂ -10	0.2 g L ⁻¹ Cat, 0.40 mM (Phenol)	20 min	80	100 (300 W xenon lamp)	60	5
AMM	20 g L ⁻¹ Cat, 0.02 mM (tetracycline)	30 min	120	85 (λ>400 nm)	92.6	6
2DZnTenn	0.2 g L ⁻¹ Cat, 0.03 mM (MB)	12 h	/	/	31	7
20211 Tepp	0.2 g L ⁻¹ Cat, 0.03 mM (MB)	/	60	100 (xenon lamp)	46.2	1
WUCN-500	0.2 g L ⁻¹ Cat, 0.28 mM (OA)	30 min	30	350 (320<λ<800 nm)	43	8
ACN0.5	0.5 g L ⁻¹ Cat, 0.01 mM (MB)	60 min	300	38 (λ>400 nm)	100	9
10CBBr-4	0.1 g L ⁻¹ Cat, 0.047 mM (Norfloxacin)	60 min	120	50 (λ>400 nm)	~90	10
COF-TD1	0.3 g L ⁻¹ Cat, 0.02 mM (BPA)	30 min	120	125 (λ>420 nm)	>97%	11
G_THS	0.125 g L ⁻¹ Cat, 0.02 mM (CIP)	60 min	360	135 (AM 1.5G)	82	12
g-C ₃ N ₄	0.5 g L ⁻¹ Cat, 0.09 mM (BPA)	30 min	60	180 (300 W xenon lamp)	~35	13
TPE-AQ	0.05 g L ⁻¹ Cat, 0.002 mM (BPA)	60 1	nin	2.0 (λ>400 nm)	92	This work

	Time (min)	Flow	λ] (nm)	Methanol	Acetonitrile	Water	0.1%	0.1%
micropollutant							Acetic	Phosphoric
	(1111)	(mL/mm)	()	70	70	70	acid water	water
Bisphenol A	71	1.0	226	/	50	/	50	/
(BPA)	/.1	1.0	220	220 /	50	1	50	7
p-chlorophenol	56	1.0	220	/	55	/	45	/
(4-CP)	5.0	1.0	220	1	55	/	43	Ι
Phenol	8	1.0	270	55	/	/	45	/
Triclosan	15 5	1.0	201	/	70	/	20	1
(TCS)	15.5	1.0	201	/	70	1	30	1
Aniline	4.25	1.0	232	/	45	55	/	/
Sulfamethoxazole	2.2	1.0	271	50	/	/	50	/
(SMX)	5.2	1.0	271	50	/	/	50	Ι
carbamazepine	4.0	1.0	286	/	60	/	40	/
(CBZ)	4.0	1.0	280	7	00	7	40	7
	0		238		30	/		70
	5.5				30			70
MCID	6.5	1.0		/	90		/	10
MC-LK	10	1.0		/	90		/	10
	10.5				30			70
	17.5				30			70

Table S2. The HPLC conditions for analysis of different micropollutants.

Atom	X	у	Z
С	-4.138085	0.601535	-0.077462
С	-3.333421	-0.498083	0.000073
С	-5.625508	0.509824	-0.028682
С	-3.861124	-1.888101	-0.123041
С	-1.861881	-0.400676	0.208572
С	-3.593924	1.982223	-0.223783
С	-4.072981	3.026430	0.585675
С	-3.572731	4.321009	0.450637
С	-2.599668	4.600887	-0.512701
С	-2.133022	3.576300	-1.340698
С	-2.625890	2.280165	-1.197659
С	-3.488452	-2.876801	0.803135
С	-3.970110	-4.180444	0.687803
С	-4.816625	-4.525079	-0.369392
С	-5.176181	-3.556111	-1.310080
С	-4.702562	-2.250650	-1.188028
С	-6.412701	1.209533	-0.959172
С	-7.804580	1.136178	-0.915223
С	-8.436901	0.379650	0.075140
С	-7.665842	-0.301209	1.021204
С	-6.274322	-0.236544	0.969496
С	-1.317217	0.415927	1.214172
С	0.056300	0.484117	1.416924
С	0.943222	-0.260093	0.618689
С	0.398261	-1.087273	-0.379241
С	-0.976856	-1.165407	-0.570324
С	2.407213	-0.179505	0.825503
С	2.954184	-0.024271	2.115486
С	4.327686	0.057724	2.306278
С	5.203658	-0.015522	1.217033
С	4.672673	-0.173188	-0.079064
С	3.291579	-0.251406	-0.261433
С	6.668751	0.073247	1.448227
С	7.559990	-0.002870	0.255818

462 Table S3. Atomic coordinates of the TPE-AQ optimized computational model.

С	7.032009	-0.156101	-1.042871
С	5.563083	-0.246210	-1.273019
Ο	5.101530	-0.376331	-2.405173
Ο	7.130470	0.205342	2.581207
Н	-4.835105	2.813699	1.329242
Н	-3.944160	5.112095	1.095482
Н	-2.214164	5.610134	-0.622420
Н	-1.387846	3.787698	-2.102057
Н	-2.262283	1.485501	-1.840783
Н	-2.823913	-2.613891	1.620712
Н	-3.682714	-4.927879	1.421525
Н	-5.187206	-5.541498	-0.463192
Н	-5.822542	-3.818388	-2.142608
Н	-4.984189	-1.498505	-1.917707
Н	-5.924674	1.805884	-1.724171
Н	-8.395784	1.671976	-1.652128
Н	-9.520876	0.327411	0.113905
Н	-8.148793	-0.879625	1.803423
Н	-5.677423	-0.766841	1.704094
Н	-1.982373	1.008908	1.832541
Н	0.445712	1.140696	2.188651
Н	1.054787	-1.696683	-0.992308
Н	-1.375878	-1.825202	-1.334247
Н	2.294863	0.009289	2.976492
Н	4.744217	0.170089	3.301096
Н	2.916615	-0.347244	-1.274058
С	8.945388	0.079289	0.434412
С	9.800492	0.010156	-0.663263
С	9.276516	-0.142359	-1.952071
С	7.898664	-0.224899	-2.139674
Н	9.332344	0.196954	1.440426
Н	10.874080	0.074462	-0.517647
Н	9.943219	-0.196481	-2.806743
Н	7.473592	-0.342989	-3.130186

Atom	x	у	Z
С	-3.794548	-0.552838	0.027218
С	-2.917011	0.492687	0.031637
С	-5.258123	-0.370724	-0.192107
С	-3.359823	1.915855	0.084490
С	-1.441381	0.292828	-0.011876
С	-3.358589	-1.962441	0.245611
С	-3.808091	-2.988047	-0.603494
С	-3.410595	-4.309104	-0.399887
С	-2.573899	-4.633640	0.671449
С	-2.139894	-3.626554	1.537794
С	-2.528844	-2.304664	1.326825
С	-4.307297	2.347056	1.028333
С	-4.699418	3.683496	1.086703
С	-4.151009	4.616736	0.202550
С	-3.198242	4.203797	-0.732535
С	-2.799129	2.868537	-0.783261
С	-6.188595	-1.008156	0.646353
С	-7.559078	-0.850101	0.442976
С	-8.026155	-0.068718	-0.617219
С	-7.111215	0.551734	-1.472408
С	-5.741365	0.401870	-1.261850
С	-0.848478	-0.566301	-0.952226
С	0.530344	-0.738190	-0.998115
С	1.376039	-0.058082	-0.103511
С	0.783763	0.815418	0.825836
С	-0.595113	0.995548	0.862180
С	2.845330	-0.248023	-0.143420
С	3.402699	-1.507831	-0.435360
С	4.786651	-1.721495	-0.484103
С	5.634154	-0.650817	-0.230251
С	5.085958	0.613531	0.065784
С	3.720614	0.829817	0.111692
С	7.110317	-0.542916	-0.203989
С	7.455558	0.790326	0.103554

465 Table S4. Atomic coordinates of the TPE-FN optimized computational model.

С	6.202786	1.585280	0.286431
С	8.106171	-1.486973	-0.421527
С	9.445938	-1.076318	-0.326139
С	9.782561	0.246619	-0.021044
С	8.777486	1.199272	0.198148
0	6.108539	2.773887	0.558334
Н	-4.465676	-2.740438	-1.431324
Н	-3.756244	-5.085859	-1.075779
Н	-2.269025	-5.663125	0.834108
Н	-1.501314	-3.871395	2.381579
Н	-2.189141	-1.523591	1.999096
Н	-4.735467	1.624055	1.714853
Н	-5.429917	3.997908	1.826456
Н	-4.457877	5.657456	0.246900
Н	-2.763482	4.922377	-1.421222
Н	-2.052104	2.553322	-1.505621
Н	-5.829406	-1.622764	1.466256
Н	-8.262597	-1.339160	1.110475
Н	-9.093266	0.049673	-0.780008
Н	-7.464826	1.149299	-2.307618
Н	-5.032593	0.886011	-1.925576
Н	-1.480952	-1.097018	-1.655856
Н	0.959318	-1.385663	-1.756591
Н	1.406974	1.341082	1.542785
Н	-1.028814	1.674849	1.589504
Н	2.738433	-2.348762	-0.607672
Н	5.176727	-2.709616	-0.707284
Н	3.336677	1.823702	0.319459
Н	7.862778	-2.517805	-0.659349
Н	10.236150	-1.802067	-0.493053
Н	10.826830	0.534462	0.045569
Н	9.017629	2.231132	0.435780

Catalyst	D (Å)	Sm	Sr	H (Å)	t (Å)	E (eV)	HDI	EDI
TPE-AQ	8.555	0.10165	0.30385	3.393	5.852	2.466	5.38	8.20
TPE-FN	5.105	0.29071	0.53185	3.969	1.617	2.753	4.55	8.78

468 Table S5. Time-dependent density functional theory (TD-DFT) of TPE-AQ and TPE-FN.

471 Water sources	ъП	TOC TN Dissolved oxygen		Cl	SO 4 ²⁻	NO ₃ -	
	рп	(mg _C /L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Beijiang River	7.49	1.72	2.04	10.82	6.36	18.29	1.81
Xiaogu River	7.60	3.30	3.52	10.40	29.50	22.13	1.34
Sea Water	8.39	2.24	0.61	9.87	19430.76	2178.94	7.52

470 Table S6. Water quality parameters of the actual water.

radical	Potential (V) vs NHE	half-life	Ref	
•ОН	1.80-2.70	10 ⁻¹⁰ s	14, 15	
SO4	2.50-3.10	3.0-4.0×10 ⁻⁵ s	14, 16	
O2	$-0.33 (O_2 + e^- \rightarrow O_2^{\bullet^-})$ 0.91 (O_2^{\bullet^-} + e^- + 2H^+ \rightarrow H_2O_2)	10 ⁻⁶ s	15, 17, 18	
¹ O ₂	$0.81 (^{1}O_{2} + e^{-} \rightarrow O_{2}^{-})$	10^{-6} s (in water) 10^{-2} s (in the air)	15, 17, 19	
oxygen-centered organic radicals (OCORs)	1.50 ª	7 min	This work	

472 Table S7. Summary of the half-life and redox potential of common transient active species

474	a: represented by the half-wave potential.

473

and OCORs.

Substance	Optimized structure	Single-point energy (a.u.)
OCORs		-1689.1633
anthrahydroquinone		-1689.7609
H ₂ O	್ರಿ	-76.3825
BPA	, 395 396 396 396 396 396 396 396 396 396 396	-730.8941
BPA++	, 39,57 , 39,57 , 39,59,59,5 , 39,59,59,5 , 39,59,59,5 , 39,59,59,5 , 39,59,59,59,5 , 39,59,59,59,50,50,50,50,50,50,50,50,50,50,50,50,50,	-730.6780
BPA.	دورو به فی می دونده می می می می می می می می می می	-730.2672
•ОН	~	-75.6999
OH-	.	-75.8819

Table S8. Single-point energy of each substance.

477 The structural formula of OCORs and anthrahydroquinone in the computational478 model:

OCORs

ĢН

anthrahydroquinone

Code	RT (min)	Formula	m/z [M-H] ⁻	m/z [M+H] ⁺	Δ (ppm)	System
D1 5.095	C. H. O.	271.00(2	1	26	Reaction	
PI	PI 5.985	$C_{16}H_{16}O_4$	271.0903	/	-2.0	(water)
P2	5 240	CulturO	242 1015	/	2.5	Desorption
P3	5.240	C15H16O3	243.1013	1	-2.5	(acetonitrile)
D4	2 227	C.H.O	/	125 0814	2.0	Reaction
Γ4	5.257	C91110O	/	155.0014	3.0	(water)
D5	2 166	C ₂ H ₂ O ₂	125 0444	/	-1.5	Reaction
PS 3.4	5.400	C8H8O2	155.0444			(water)
D6	1 2 2 1	CallerOa	/	155 0721	8 /	Desorption
F0	4.324	003	1	155.0721	0.4	(acetonitrile)
	6.915		453.2071	/	1.1	
P7	7.070	$C_{30}H_{30}O_4$	453.2084	/	4.0	
	7.646		453.2079	/	2.9	
P8	8.046	C45H44O6	679.3067	/	1.0	
	6.671		469.2016	/	0.2	Decomption
DO	6.878	C. H. O.	469.2026	/	2.3	
F9	6.929	С30П30О5	469.2028	/	2.8	(acetomune)
	7.080		469.2031	/	3.4	
D 10	7.267	C. H. O.	467.1861	/	0.6	
r IU	8.015	C30H28O5	467.1857	/	-0.2	
P11	8.357	$C_{36}H_{32}O_{6}$	559.2125	/	0.7	

Table S9. Identification of transformation products of BPA in the TPE-AQ system.

Cada	F	Onconiem	Duration (h)	Fud D4	Concentration
Code	Formula	Organism	Duration (n)	End Pt	(mg L ⁻¹)
		Fish	96	LC50	6.274
BPA	$C_{15}H_{16}O_2$	Daphnid	48	LC50	4.146
		Green Algae	96	EC50	5.782
		Fish	96	LC50	117.768
P1	$C_{16}H_{16}O_4$	Daphnid	48	LC50	76.264
		Green Algae	96	EC50	97.829
		Fish	96	LC50	18.122
P2		Daphnid	48	LC50	11.456
	CulluO	Green Algae	96	EC50	13.302
	- 015111603	Fish	96	LC50	138.825
P3		Daphnid	48	LC50	80.134
		Green Algae	96	EC50	63.894
		Fish	96	LC50	15.074
P4	C9H10O	Daphnid	48	LC50	9.354
		Green Algae	96	EC50	10.061
		Fish	96	LC50	592.967
P5	$C_8H_8O_2$	Daphnid	48	LC50	312.526
		Green Algae	96	EC50	171.100
		Fish	96	LC50	4.26×10^{4}
P6	$C_8H_{10}O_3$	Daphnid	48	LC50	1.87×10^{4}
		Green Algae	96	EC50	4749.775
		Fish	96	LC50	0.011
P7	C ₃₀ H ₃₀ O ₄	Daphnid	48	LC50	0.010
		Green Algae	96	EC50	0.050
		Fish	96	LC50	1.38×10 ⁻⁵
P8	C45H44O6	Daphnid	48	LC50	1.71×10 ⁻⁵
		Green Algae	96	EC50	3.24×10 ⁻⁴
		Fish	96	LC50	0.030
Р9	C ₃₀ H ₃₀ O ₅	Daphnid	48	LC50	0.026
		Green Algae	96	EC50	0.111

483 Table S10. Baseline toxicity data predicted using the ECOSAR program of EPI Suite 4.0.

		Fish	96	LC50	0.022
P10	$C_{30}H_{28}O_5$	Daphnid	48	LC50	0.019
		Green Algae	96	EC50	0.088
		Fish	96	LC50	0.005
P11	$C_{36}H_{32}O_{6}$	Daphnid	48	LC50	0.005
		Green Algae	96	EC50	0.031

486 Supplemental References

- Z. Lan, M. Wu, Z. Fang, X. Chi, X. Chen, Y. Zhang and X. Wang, A fully coplanar
 donor-acceptor polymeric semiconductor with promoted charge separation kinetics for
 photochemistry, *Angew. Chem. Int. Ed.*, 2021, 60, 16355-16359.
- L. Ma, Y. Liu, Y. Liu, S. Jiang, P. Li, Y. Hao, P. Shao, A. Yin, X. Feng and B. Wang,
 Ferrocene-linkage-facilitated charge separation in conjugated microporous polymers, *Angewandte Chemie International Edition*, 2019, **58**, 4221-4226.
- Z. Zhang, Y. Liang, H. Huang, X. Liu, Q. Li, L. Chen and D. Xu, Stable and highly efficient
 photocatalysis with lead-free double-perovskite of Cs₂AgBiBr₆, *Angewandte Chemie International Edition*, 2019, 58, 7263-7267.
- 496 4. L. Wang, D. W. Bahnemann, L. Bian, G. Dong, J. Zhao and C. Wang, Two-dimensional
 497 layered zinc silicate nanosheets with excellent photocatalytic performance for organic
 498 pollutant degradation and CO₂ conversion, *Angewandte Chemie International Edition*, 2019,
 499 58, 8103-8108.
- 5. L. Pan, M. Ai, C. Huang, L. Yin, X. Liu, R. Zhang, S. Wang, Z. Jiang, X. Zhang, J.-J. Zou
 and W. Mi, Manipulating spin polarization of titanium dioxide for efficient photocatalysis, *Nature Communications*, 2020, 11, 418.
- 503 6. S. Fang, X. Lyu, T. Tong, A. I. Lim, T. Li, J. Bao and Y. H. Hu, Turning dead leaves into an
 504 active multifunctional material as evaporator, photocatalyst, and bioplastic, *Nature*505 *Communications*, 2023, 14, 1203.
- 506 7. Z. Zhu, Y. Liu, C. Song, Y. Hu, G. Feng and B. Tang, Porphyrin-based two-dimensional
 507 layered metal-organic framework with sono-/photocatalytic activity for water
 508 decontamination, ACS Nano, 2022, 16, 1346-1357.
- 509 8. Y. Wang, X. Li, S. Liu, Y. Liu, T. Kong, H. Zhang, X. Duan, C. Chen and S. Wang, Roles of
 510 catalyst structure and gas surface reaction in the generation of hydroxyl radicals for
 511 photocatalytic oxidation, *ACS Catalysis*, 2022, 12, 2770-2780.
- 512 9. X. Bai, R. Zong, C. Li, D. Liu, Y. Liu and Y. Zhu, Enhancement of visible photocatalytic
 513 activity via Ag@C₃N₄ core–shell plasmonic composite, *Applied Catalysis B: Environmental*,
 514 2014, 147, 82-91.

- 515 10. Y. Zhang, Y. Li and Y. Yuan, Carbon quantum dot-decorated BiOBr/Bi₂WO₆ photocatalytic
 516 micromotor for environmental remediation and DFT calculation, *ACS Catalysis*, 2022, 12,
 517 13897-13909.
- Y. Hou, F. Liu, B. Zhang and M. Tong, Thiadiazole-based covalent organic frameworks with
 a donor-acceptor structure: modulating intermolecular charge transfer for efficient
 photocatalytic degradation of typical emerging contaminants, *Environmental Science & Technology*, 2022, 56, 16303-16314.
- L. Liccardo, M. Bordin, P. M. Sheverdyaeva, M. Belli, P. Moras, A. Vomiero and E. Moretti,
 Surface defect engineering in colored TiO₂ hollow spheres toward efficient photocatalysis, *Advanced Functional Materials*, 2023, 33, 2212486.
- 525 13. S. Zhang, H. Lan, Y. Cui, X. An, H. Liu and J. Qu, Insight into the key role of Cr
 526 intermediates in the efficient and simultaneous degradation of organic contaminants and
 527 Cr(VI) reduction via g-C₃N₄-assisted photocatalysis, *Environmental Science & Technology*,
 528 2022, 56, 3552-3563.
- 529 14. Z. Zhao, P. Wang, C. Song, T. Zhang, S. Zhan and Y. Li, Enhanced interfacial electron
 530 transfer by asymmetric Cu-O_V-in sites on In₂O₃ for efficient peroxymonosulfate activation,
 531 *Angewandte Chemie International Edition*, 2023, **62**, e202216403.
- 532 15. C. Zhao, J. Chen, R. Zhong, D. S. Chen, J. Shi and J. Song, Oxidative-species-selective
 533 materials for diagnostic and therapeutic applications, *Angewandte Chemie International*534 *Edition*, 2021, **60**, 9804-9827.
- 535 16. Y. Gao, Z. Chen, Y. Zhu, T. Li and C. Hu, New insights into the generation of singlet oxygen
 536 in the metal-free peroxymonosulfate activation process: important role of electron-deficient
 537 carbon atoms, *Environmental Science & Technology*, 2020, 54, 1232-1241.
- 538 17. Y. Nosaka and A. Y. Nosaka, Generation and detection of reactive oxygen species in
 photocatalysis, *Chemical Reviews*, 2017, **117**, 11302-11336.
- 540 18. Y. Sheng, I. A. Abreu, D. E. Cabelli, M. J. Maroney, A.-F. Miller, M. Teixeira and J. S.
 541 Valentine, Superoxide dismutases and superoxide reductases, *Chemical Reviews*, 2014, 114, 3854-3918.
- 543 19. J. Lee, U. von Gunten and J. H. Kim, Persulfate-based advanced oxidation: critical
 544 assessment of opportunities and roadblocks, *Environmental Science & Technology*, 2020, 54,

545 3064-3081.