| 1  | Dynamics and Kinetic Exploration of Oxyger                                                                                  |
|----|-----------------------------------------------------------------------------------------------------------------------------|
| 2  | Reduction Reaction at Fe-N <sub>4</sub> /C-water Interface                                                                  |
| 3  | Accelerated by Machine Learning Force Field                                                                                 |
| 4  | Qinghan Yu <sup>1</sup> , Pai Li <sup>2*</sup> , Xing Ni <sup>1</sup> , Youyong Li <sup>1,3</sup> , Lu Wang <sup>1,4*</sup> |
| 5  | <sup>1</sup> Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University,                                    |
| 6  | Suzhou, 215123, Jiangsu, China                                                                                              |
| 7  | <sup>2</sup> State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of                               |
| 8  | Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai                                               |
| 9  | 200050, China                                                                                                               |
| 10 | <sup>3</sup> Macao Institute of Materials Science and Engineering, Macau University of Science                              |
| 11 | and Technology, Taipa 999078, Macau SAR, China                                                                              |
| 12 | <sup>4</sup> Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow                                       |
| 13 | University, Suzhou, 215123, Jiangsu, China                                                                                  |
| 14 |                                                                                                                             |
| 15 | E-mail: lipai@mail.sim.ac.cn; lwang22@suda.edu.cn                                                                           |
| 16 |                                                                                                                             |

### 17 S1 Computational details

### 18 S1.1 Density Functional Theory Calculations

The Vienna *ab initio* simulation package (VASP)<sup>1</sup> was employed for spin-polarized 19 Density Functional Theory (DFT) calculations using a pseudopotential plane wave 20 approach. We utilized the generalized gradient approximation (GGA) with the Perdew-21 Burke-Ernzerhof (PBE) exchange correlation functional<sup>2</sup> for single-point energy 22 calculations, geometry optimization, and ab initio molecular dynamics (AIMD) to 23 accurately describe electronic interactions. A plane-wave basis set with a cutoff energy 24 of 480 eV and Fermi smearing with a width of 0.1 eV was implemented. Brillouin zone 25 sampling was conducted using the Gamma-center method<sup>3</sup> with a k-spacing of 0.38 Å<sup>-1</sup>. 26 The convergence thresholds were set to  $10^{-5}$  eV for the self-consistent field and  $10^{-4}$ 27 eV/Å for geometry optimization. The D3 scheme of Van der Waals correction<sup>4</sup> was 28 employed in all DFT calculations. AIMD simulations were performed with a timestep 29 of 1 fs. Temperature and pressure were controlled using Nose-Hoover thermostats for 30 the canonical (NVT) ensemble and Langevin thermostats for the isothermal-isobaric 31 (NPT) ensemble. Details of temperature, pressure and simulation duration are provided 32 in Table S1. A previous study has demonstrated that hybrid functional/meta-GGA 33 and PBE (D3) exhibit consistent trends for this system<sup>5</sup>. Thus, the functional employed 34 in this study is adequate for describing the system under investigation. 35

# 36 S1.2 Machine Learning Force Field (MLFF)Training

37 The DeepMD-kit v2.2.1<sup>6, 7</sup> was utilized to train a MLFF. The network architecture

consisted of an embedding network with layers of sizes  $25 \times 50 \times 100$ , and a fitting 38 network of sizes  $240 \times 240 \times 240$ . We adopted a radial cutoff of 6 Å with the se e2 a 39 descriptor. For activate learning iterations, the model was initially trained for  $1 \times 10^5$ 40 steps. Upon achieving convergence, the production model was trained for  $1 \times 10^6$  steps. 41 The learning rate was gradually reduced from  $1.0 \times 10^{-3}$  to  $3.5 \times 10^{-8}$ . The loss 42 function's energy and force prefactors were adjusted from 0.02 to 1 and from 1,000 to 43 1, respectively. We have analyzed the time required for MLFF training and dataset 44 computation, including the initial dataset and 10 rounds of active learning. All training 45 and MD simulations were performed on a single V100 GPU and all DFT calculations 46 were performed on a 24-core CPU node. 10 rounds activate learning required 40 models 47 and 80 MD trajectories, costing 80 hours and 400 hours respectively. All dataset 48 consisted of 6008 single-point energy calculations costing about 900 hours. 49

50 S1.3 MLFF-based molecular dynamic and classical molecular dynamic simulations

Molecular dynamic (MD) simulations utilizing the DP Potential were executed using 51 the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)<sup>8</sup> with 52 DeePMD-kit plugin. The classical MD simulations, using the TIP3P<sup>9</sup> force field, were 53 conducted by LAMMPS for pure water system sampling. Periodic boundary conditions, 54 a time step of 0.5 fs and a temperature of 300 K were employed for all simulations. The 55 Nose-Hoover thermostat was applied for both the NVT and NPT ensembles. The T 56 damp parameter was set to 0.05 for both ensembles, and the P damp parameter was set 57 to 5 for the NPT ensemble. An external pressure of 1 bar was applied to the NPT 58

59 ensemble.

#### 60 S1.4 Metadynamics and free energy calculation

All enhanced sampling simulations in this study were performed with a well-tempered metadynamic approach implemented with Plumed package v2.8<sup>10</sup> which was interfaced with LAMMPS. A path collective variable (CV)<sup>11, 12</sup> was employed to explore the free energy variations along a specified reaction coordinate. In practical research, the path CV was defined as follows:

$$s = \frac{\sum_{i=1}^{N} i e^{-\lambda |X - X_i|^2}}{\sum_{i=1}^{N} e^{-\lambda |X - X_i|^2}}$$
(1)

66

$$z = -\frac{1}{\lambda} l n^{\text{iro}} \left[ \sum_{i=1}^{N} e^{-\lambda |X - X_i|^2} \right]$$
(2)

67

where s represents progress along a predefined pathway through an ordered sequence 68 of atomic configurations, and z quantifies the deviation from the predefined pathway. 69 N is the number of reference structure; X is a measurement value during metadynamics 70 simulations and X<sub>i</sub> are preassigned reference structures. The path CV was discretized 71 using seven reference structures with different coordination numbers (CNs). The 72 parameters and equations for calculating CNs were provided in Table S2, and the details 73 of reference structures were provided in Table S3. The parameter  $\lambda$  was set to 0.25. For 74 metadynamics, the initial height of Gaussian bias potential for s and z was set to 0.05 75 76 eV, and the width for s and z was set to 0.05 Å and 1 Å, respectively. The simulations 77 were conducted at 300 K with a bias factor of 75 and a deposition rate of 25 fs. All parameters about CNs and metadynamics were set based on the previous work<sup>13, 14</sup> with 78 further testing. Upon the convergence of metadynamics, the free energy was calculated 79 based on the Hills file. For two-dimensional free energy profiles, a string method<sup>15, 16</sup> 80 was employed to determine the minimum energy path. The initial configuration of the 81 global free energy surface calculation (Figure 5) includes catalyst, 29 water molecules 82 with one  $O_2$  molecule and 1 H<sub>3</sub>O<sup>+</sup>. The initial configuration of free energy surface 83 calculation of PCET 1&2 (Figure 6) includes the same thing as the global free energy 84 surface calculation. The initial configuration of free energy surface calculation of PCET 85 3&4 (Figure S7) includes catalyst, 30 water molecules, 1 OH adsorbed on Fe site and 86  $1 \text{ H}_3\text{O}^+$ . The MD simulation duration of all free energy surface calculation are 1 ns. 87

### 88 S1.5 MLFF validation and trajectory analysis

A comparison between energies/forces calculated by DFT and those predicted by the 89 MLFF was conducted for all structures in the training set. The same comparison was 90 conducted on structures from a 5 ns MD trajectory with metadynamics, used as a 91 validation set. Various error metrics, including mean absolute error (MAE), root mean 92 square error (RMSE) and the coefficient of determination  $(R^2)^{17}$ , were used to evaluate 93 the performance of the model trained. Radial distribution functions (RDF) were 94 calculated by OVITO<sup>18</sup> python interface based on a 5 ps MD trajectory of a system 95 containing 60 water molecules. The MD simulation duration corresponding to the 96 reactant, product and MetaD (Figure 3a) is 1 ns. The initial configuration of the reactant 97

and MetaD includes catalyst, 30 water molecules and one oxygen adsorbed on Fe site. 98 The initial configuration of the product includes catalyst, 31 water molecules in the 99 solution and one water molecule adsorbed on Fe site. The structural features of the 100 training set, generated by the se e2 a descriptor, were visualized using the t-distributed 101 stochastic neighbor embedding (t-SNE) method<sup>19</sup>. For the entire training set and the 102 training set containing only water molecule systems, principal component analysis 103 (PCA) was used for initialization embedding (inside t-SNE). For all Fe-N<sub>4</sub>/C-water 104 systems, the random method was used for initialization embedding. The adsorption 105 106 energy of  $O_2$  and  $H_2O$  was defined as:

$$E_{ads} = E_{all} - E_{catal} - E_{mol} \tag{3}$$

where  $E_{ads}$  represents adsorption energy,  $E_{all}$  is the energy when molecule was adsorbed onto the site,  $E_{catal}$  is the energy of Fe-N<sub>4</sub>/C,  $E_{mol}$  is the energy of a single O<sub>2</sub> or H<sub>2</sub>O molecule in a vacuum. For DFT energy calculations, VASP was employed with the same parameter as in section 2.1. The MLFF energy predictions were performed via the ASE<sup>20</sup> interface of DeepMD-kit, and structural optimization was performed using the BFGS algorithm with a force threshold value of 10<sup>-4</sup> eV/Å. For hydrogen bond lifetime, water density, and water configuration space calculations, MDAnalysis<sup>21</sup> was employed on a 1ns MD trajectory within an NPT ensemble.

116

### 117 S2 Supporting Tables

118 Table S1. Training set composition.

| Category | chemical | Notes | Numbers | Stage |
|----------|----------|-------|---------|-------|
|----------|----------|-------|---------|-------|

|                      | symbol                                                                                                                             |                                                                                                                                      |     |                      |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------|
|                      |                                                                                                                                    | A cluster composed of two water molecules;<br>MLFF-MD at 300 K, 1 bar, 500 ps, NPT, with<br>Metadynamic.                             | 27  |                      |
|                      | H <sub>4</sub> O <sub>2</sub>                                                                                                      | 2 water molecules selected from 80 water<br>molecules, $\rho=1$ g/cm <sup>3</sup> ; MLFF-MD at 300 K, 1<br>ns; NVT.                  | 30  | activate<br>learning |
|                      | H <sub>12</sub> O <sub>6</sub>                                                                                                     | 6 water molecules selected from 80 water<br>molecules, $\rho=1$ g/cm <sup>3</sup> ; MLFF-MD at 300 K, 1<br>ns; NVT.                  | 45  |                      |
|                      | H <sub>16</sub> O <sub>8</sub><br>$H_{16}O_8$ 8 water molecules, $\rho=0.1$ g/cm <sup>3</sup> ; classical MD at 300 K, 10 ns; NVT. |                                                                                                                                      |     | initial              |
| Water                | H <sub>24</sub> O <sub>12</sub>                                                                                                    | 12 water molecules, $\rho$ =0.15 g/cm <sup>3</sup> ; classical MD at 300 K, 10 ns; NVT.                                              | 45  |                      |
|                      | H <sub>32</sub> O <sub>16</sub>                                                                                                    | 16 water molecules with ice phase as initial<br>structure; AIMD accelerated by one-the-fly<br>MLFF at 0 K-1000 K, 5 ps, NVT.         | 368 |                      |
|                      | H <sub>36</sub> O <sub>18</sub>                                                                                                    | 18 water molecules, ρ=0.24 g/cm <sup>3</sup> ; classical MD<br>at 300 K, 10 ns; NVT.                                                 | 45  | •                    |
|                      | H <sub>64</sub> O <sub>32</sub>                                                                                                    | 32 water molecules with ice phase as initial<br>structure; AIMD accelerated by one-the-fly<br>MLFF at 100 K-600 K, 1 bar, 2 ps, NPT. | 204 | initial              |
|                      | H <sub>128</sub> O <sub>64</sub>                                                                                                   | 64 water molecules, ρ=0.84 g/cm <sup>3</sup> ; classical MD<br>at 300 K, 10 ns; NVT.                                                 | 45  | -                    |
| Water-O <sub>2</sub> | H <sub>76</sub> O <sub>40</sub>                                                                                                    | 38 water and one O <sub>2</sub> molecules; AIMD<br>accelerated by one-the-fly MLFF at 100 K-600<br>K, 1 bar, 5 ps, NPT.              | 572 |                      |
| Graphene             | C <sub>32</sub>                                                                                                                    | 4*4 graphene; AIMD accelerated by one-the-fly<br>MLFF at 100 K-600 K, 20 ps, NVT.                                                    | 79  | -                    |

| Catalyst           | C <sub>26</sub> N <sub>4</sub> Fe                                      | Fe single atom catalyst with 4 N coordination;<br>AIMD accelerated by one-the-fly MLFF at 100<br>K-600 K, 5 ps, NVT.                                                                                     | 101 |                      |
|--------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------|
| Graphene-<br>water | C <sub>32</sub> H <sub>64</sub> O <sub>32</sub>                        | A 4*4 graphene with 32 water molecules; AIMD accelerated by one-the-fly MLFF at 100 K-600 K, 2 ps, NVT.                                                                                                  | 234 |                      |
|                    | C <sub>26</sub> N <sub>4</sub> FeO <sub>16</sub> H <sub>32</sub>       | Catalyst adsorbed with OH, 14 water molecules,<br>1 H <sub>3</sub> O <sup>+</sup> ; AIMD accelerated by one-the-fly MLFF<br>at 100 K-600 K, 5 ps, NVT.                                                   | 412 |                      |
|                    | C <sub>26</sub> N <sub>4</sub> FeO <sub>32</sub> H <sub>6</sub>        | Catalyst, 29 water molecules with one $O_2$<br>molecule, 1 H <sub>3</sub> O <sup>+</sup> ; AIMD accelerated by one-<br>the-fly MLFF at 100 K and 250K, 1 bar, 5 ps,<br>NPT.                              | 299 |                      |
|                    |                                                                        | Catalyst adsorbed with $O_2$ , 29 water molecules, 1 $H_3O^+$ ; MLFF-MD at 300 K, 1 bar, 28 ns, NPT, with Metadynamic.                                                                                   | 730 | activate<br>learning |
| Catalyst-<br>water | t-<br>C <sub>26</sub> N <sub>4</sub> FeO <sub>32</sub> H <sub>62</sub> | Catalyst adsorbed with OOH, 29 water<br>molecules with one $O_2$ molecule, 1 H <sub>3</sub> O <sup>+</sup> ; AIMD<br>accelerated by one-the-fly MLFF at 100 K-600<br>K and 250K, 1 bar, 5 ps, NPT.       | 144 |                      |
|                    |                                                                        | Catalyst, 32 water molecules; AIMD at 300K, 1<br>bar, 0.5 ps, NPT.                                                                                                                                       | 450 |                      |
|                    | C <sub>26</sub> N <sub>4</sub> FeO <sub>32</sub> H <sub>64</sub>       | Catalyst, 32 water molecules; AIMD accelerated<br>by one-the-fly MLFF at 300 K, 1 bar, 2 ps, NPT.<br>Catalyst, 32 water molecules; AIMD accelerated<br>by one-the-fly MLFF at 100 K-600 K, 5 ps,<br>NVT. | 40  | initial              |
|                    |                                                                        | Catalyst adsorbed with OH, 30 water molecules,<br>1 H <sub>3</sub> O <sup>+</sup> ; AIMD at 300 K, 1 bar, 10 fs, NPT.                                                                                    | 14  |                      |

|       | Catalyst adsorbed with OH, 30 water molecules,                         |      |                      |  |
|-------|------------------------------------------------------------------------|------|----------------------|--|
|       | 1 H <sub>3</sub> O <sup>+</sup> ; AIMD accelerated by one-the-fly MLFF | 279  |                      |  |
|       | at 100 K-600 K, 5 ps, NVT.                                             |      |                      |  |
|       | Catalyst adsorbed with OH, 30 water molecules,                         |      |                      |  |
|       | 1 $H_3O^+$ ; MLFF-MD at 300 K, 1 bar, 20 ns, NPT,                      | 1753 |                      |  |
|       | with Metadynamic.                                                      |      | activate<br>learning |  |
|       | Catalyst, 32 water molecules; MLFF-MD at 300                           | 47   | 8                    |  |
|       | K, 1 bar, 3 ns, NPT, with Metadynamic.                                 | 4/   |                      |  |
| Total |                                                                        | 6008 |                      |  |

119 Note: AIMD accelerated by one-the-fly MLFF is a new function of VASP v6.3.0 using

Bayesian linear regression<sup>22</sup>. Activate learning means activate learning dataset, initial means
initial dataset.

122

| CV                                | Definition                                                                                                              | Parameters                                                                                                                                       |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| CN O <sup>2</sup> -H              | $CN \ O^{2} - H = \sum_{i \in H_{w}} \frac{1 - (\frac{r_{O^{2}, i}}{r_{0}})^{m}}{1 - (\frac{r_{O^{2}, i}}{r_{0}})^{n}}$ | $r_{0^2, i:}$ distance between<br>atom O far away from Fe<br>in *O <sub>2</sub> and i- <i>th</i> H atom in<br>water; $r_{0=1.5}$ Å; m=8;<br>n=16 |
| CN O <sup>1</sup> -H              | $CN \ O^{1} - H = \sum_{i \in H_{w}} \frac{1 - (\frac{r_{0}^{1}, i}{r_{0}})^{m}}{1 - (\frac{r_{0}^{1}, i}{r_{0}})^{n}}$ | $r_{0^{1}, i:}$ distance between<br>atom O near Fe in *O <sub>2</sub> and<br>i-th H atom in water;<br>$r_{0=1.5 \text{ Å}; m=8; n=16}$           |
| CN O <sup>1</sup> -O <sup>2</sup> | $CN O^{1} - O^{2} = \frac{1 - (\frac{r_{0}}{r_{0}})^{m}}{1 - (\frac{r_{0}}{r_{0}})^{n}}$                                | $r_{o^1, o^2}$ : distance between<br>O atoms in *O <sub>2</sub> ; $r_{0=1.8}$ Å;<br>m=6; n=12                                                    |
| CN Fe-O <sup>1</sup>              | $CN Fe - O^{1} = \frac{1 - (\frac{r_{Fe, O^{1}}}{r_{0}})^{m}}{1 - (\frac{r_{Fe, O^{1}}}{r_{0}})^{n}}$                   | $r_{Fe, 0^1}$ : distance between<br>Fe atom and O atom near<br>Fe in *O <sub>2</sub> ; $r_{0}$ =2.2 Å; m=6;<br>n=12                              |

| 125 | Table S2   | Parameters      | and ec | inations | for | calculating | coordination  | numhers  |
|-----|------------|-----------------|--------|----------|-----|-------------|---------------|----------|
| 123 | 1 auto 52. | r al allicici s | and cu | iuations | 101 |             | coordination. | numbers. |

128 Table S3. Coordination numbers of different reference structures in ORR path.

| ) | 14010 55. 000        | Junatio         | in numbers |      |                    | siluctures | in OKK pe |                   |
|---|----------------------|-----------------|------------|------|--------------------|------------|-----------|-------------------|
|   | CV                   | *O <sub>2</sub> | *OOH       | *ООН | *OH <sub>2</sub> O | *0         | *OH       | *H <sub>2</sub> O |
|   | CN O <sup>2</sup> -H | 0.0             | 1.0        | 1.3  | 2.0                | 2.0        | 2.0       | 2.0               |
|   | CN O <sup>1</sup> -H | 0.0             | 0.0        | 0.0  | 0.0                | 1.0        | 2.0       | 2.0               |
|   | $CN O^1 - O^2$       | 0.9             | 0.8        | 0.3  | 0.3                | 0.0        | 0.0       | 0.0               |
|   | CN Fe-O <sup>1</sup> | 0.9             | 0.9        | 0.9  | 0.9                | 0.9        | 0.9       | 0.0               |





Figure S1. Dimensions and relative positions of configuration. (a) Top view of the configuration. Fe-N<sub>4</sub>/C catalyst modeled by a layer of graphene with Fe-N<sub>4</sub> embedded in the center. (b) Side view of the configuration. The catalyst is located in the middle of the solution.



138

Figure S2. Configuration of Fe with different coordinates. (a) Fe atom with 4 N
coordinated. (b) Configuration of Fe with 2 N coordinated. This configuration (2 N
coordinated) originated from early active learning and helped MLFF determine the
correct potential energy surface boundary.



Figure S3. Visualization of the t-distributed stochastic neighbor embedding (t-SNE)
results for various structures. (a) t-SNE results of all catalyst-water configurations,
colored by the coordination number between adsorbed O<sub>2</sub> and H. (b) t-SNE results of
all water, ice and water-O<sub>2</sub> configurations, colored by the average atomic energy.



151 Figure S4. Comparison of free energy at different steps for  $O_2$  adsorption. As the 152 simulation steps is above 500000, the free energy no longer changes significantly.



Figure S5. Comparison of computational speeds between AIMD and MLFF-MD. There
were 124 atoms in the evaluation system, and MD simulation was executed without
metadynamics.





159

Figure S6. Free energy barriers along the reaction pathway. The highest energy barrier is the oxygen adsorption process, which is the rate determining step. There is no barrier no of  $*O + H^+ + e^- \rightarrow *OH$  and  $*OH + H^+ + e^- \rightarrow * + H_2O$  process.



Figure S7. Free energy profile for  $*O + 2H^+ + 2e^- \rightarrow * + H_2O$ . The free energy was calculated by MLFF-MD with Metadynamics. The CN O<sup>1</sup>-H and CN Fe-O<sup>1</sup> were employed as collective variables, where CN O<sup>1</sup>-H meant coordination number between the O atom near Fe in  $*O_2$  (O<sup>2</sup>) and all H atoms, CN Fe-O<sup>1</sup> meant coordination number between the O atom near Fe(O<sup>1</sup>) and Fe atom.





Figure S8. Dimensions and relative positions of 4\*4\*1 extended model. (a) Top view of the configuration. Fe-N<sub>4</sub>/C catalyst modeled by a layer of graphene with Fe-N<sub>4</sub> embedded in the center. (b) Side view of the configuration. The catalyst is located in the middle of the solution. There are 510 water molecules, totally 1984 atoms.



176

Figure S9. Free energy and interface microenvironment for different PCET processes 177 based on extended model. (a) Free energy profile for  $*O + 2H^+ + 2e^- \rightarrow * + H_2O$ . The 178 CN O<sup>1</sup>-H and CN Fe-O<sup>1</sup> were employed as collective variables, where CN O<sup>1</sup>-H meant 179 coordination number between the O atom near Fe in \*O2 (O2) and all H atoms, CN Fe-180  $O^1$  meant coordination number between the O atom near Fe( $O^1$ ) and Fe atom. (b) Radial 181 distribution function between O<sup>2</sup>-H and O<sup>1</sup>-H, where O<sup>2</sup> represents the O atom far away 182 from Fe in \*O<sub>2</sub> and O<sup>1</sup> represents the O atom near Fe. The range of the first peak is 183 marked with a purple band. (c) Probability distribution of the number of hydrogen 184 185 bonds.

## 188 **Reference:**

- J. Hafner, Ab-initio simulations of materials using VASP: Density-functional theory and beyond, *J. Comput. Chem.*, 2008, 29, 2044-2078.
- J. P. Perdew, K. Burke and M. Ernzerhof, Generalized gradient approximation made simple, *Phys. Rev. Lett.*, 1996, 77, 3865.
- F. Fu, X. Wang, L. Zhang, Y. Yang, J. Chen, B. Xu, C. Ouyang, S. Xu, F. Z. Dai
   and W. E, Unraveling the Atomic-scale Mechanism of Phase Transformations
   and Structural Evolutions during (de) Lithiation in Si Anodes, *Adv. Funct. Mater.*, 2023, 33, 2303936.
- S. Grimme, J. Antony, S. Ehrlich and H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, *J. Chem. Phys.*, 2010, **132**, 154104.
- J.-W. Chen, Z. Zhang, H.-M. Yan, G.-J. Xia, H. Cao and Y.-G. Wang, Pseudoadsorption and long-range redox coupling during oxygen reduction reaction on single atom electrocatalyst, *Nat. Commun.*, 2022, 13, 1734.
- J. Zeng, D. Zhang, D. Lu, P. Mo, Z. Li, Y. Chen, M. Rynik, L. a. Huang, Z. Li
  and S. Shi, DeePMD-kit v2: A software package for deep potential models, *J. Chem. Phys.*, 2023, 159, 054801.
- H. Wang, L. Zhang, J. Han and E. Weinan, DeePMD-kit: A deep learning
  package for many-body potential energy representation and molecular
  dynamics, *Comput. Phys. Commun.*, 2018, 228, 178-184.
- A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M. Brown, P.
   S. Crozier, P. J. In't Veld, A. Kohlmeyer, S. G. Moore and T. D. Nguyen,
   LAMMPS-a flexible simulation tool for particle-based materials modeling at
   the atomic, meso, and continuum scales, *Comput. Phys. Commun.*, 2022, 271,
   108171.
- E. Neria, S. Fischer and M. Karplus, Simulation of activation free energies in
  molecular systems, *J. Chem. Phys.*, 1996, 105, 1902-1921.
- 216 10. G. A. Tribello, M. Bonomi, D. Branduardi, C. Camilloni and G. Bussi,
  217 PLUMED 2: New feathers for an old bird, *Comput. Phys. Commun.*, 2014, 185,
  218 604-613.
- D. Branduardi, F. L. Gervasio and M. Parrinello, From A to B in free energy
  space, J. Chem. Phys., 2007, 126, 054103.
- F. Pietrucci and A. M. Saitta, Formamide reaction network in gas phase and
  solution via a unified theoretical approach: Toward a reconciliation of different
  prebiotic scenarios, *Proc. Natl. Acad. Sci.*, 2015, **112**, 15030-15035.
- X. Yang, A. Bhowmik, T. Vegge and H. A. Hansen, Neural network potentials
  for accelerated metadynamics of oxygen reduction kinetics at Au-water
  interfaces, *Chem. Sci.*, 2023, 14, 3913-3922.
- M. Yang, L. Bonati, D. Polino and M. Parrinello, Using metadynamics to build
  neural network potentials for reactive events: the case of urea decomposition in
  water, *Catal. Today*, 2022, **387**, 143-149.
- 230 15. E. Weinan, W. Ren and E. Vanden-Eijnden, String method for the study of rare

| 231 |     | events, Phys. Rev. B, 2002, 66, 052301.                                         |
|-----|-----|---------------------------------------------------------------------------------|
| 232 | 16. | W. Ren and E. Vanden-Eijnden, Simplified and improved string method for         |
| 233 |     | computing the minimum energy paths in barrier-crossing events, J. Chem.         |
| 234 |     | <i>Phys.</i> , 2007, <b>126</b> , 164103.                                       |
| 235 | 17. | S. Chang, H. Wang, Y. Ji and Y. Li, Influence Factors of CO Adsorption on       |
| 236 |     | C2N-Supported Dual-Atom Catalysts Unveiled by Machine Learning and              |
| 237 |     | Twofold Feature Engineering, Phys. Chem. Chem. Phys., 2024, 9350-9355.          |
| 238 | 18. | A. Stukowski, Visualization and analysis of atomistic simulation data with      |
| 239 |     | OVITO-the Open Visualization Tool, Modell. Simul. Mater. Sci. Eng., 2009,       |
| 240 |     | <b>18</b> , 015012.                                                             |
| 241 | 19. | G. Claeskens, C. Croux and J. Van Kerckhoven, An information criterion for      |
| 242 |     | variable selection in support vector machines, J. Mach. Learn. Res., 2008, 9,   |
| 243 |     | 541-558.                                                                        |
| 244 | 20. | A. H. Larsen, J. J. Mortensen, J. Blomqvist, I. E. Castelli, R. Christensen, M. |
| 245 |     | Dułak, J. Friis, M. N. Groves, B. Hammer and C. Hargus, The atomic simulation   |
| 246 |     | environment-a Python library for working with atoms, J. Phys.: Condens.         |
| 247 |     | <i>Matter</i> , 2017, <b>29</b> , 273002.                                       |
| 248 | 21. | N. Michaud-Agrawal, E. J. Denning, T. B. Woolf and O. Beckstein,                |
| 249 |     | MDAnalysis: a toolkit for the analysis of molecular dynamics simulations, J.    |
| 250 |     | Comput. Chem., 2011, <b>32</b> , 2319-2327.                                     |
| 251 | 22. | R. Jinnouchi, F. Karsai and G. Kresse, On-the-fly machine learning force field  |
| 252 |     | generation: Application to melting points, Phys. Rev. B, 2019, 100, 014105.     |
| 253 |     |                                                                                 |