Reversible formation of tetraphenylpentalene, a

room temperature stable antiaromatic hydrocarbon

Hugh J. Sanderson,^a Andreas Helbig,^b Gabriele Kociok-Köhn,^c Holger Helten,^{*b} Ulrich

Hintermair*^a

- a) Department of Chemistry and Institute for Sustainability, University of Bath, Claverton Down, Bath BA2 7AY, UK.
- b) Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Am Hubland, 97074 Würzburg, Germany
- c) Physical Structure Characterisation, University of Bath, Claverton Down, Bath BA2 7AY, UK.

*<u>holger.helten@uni-wuerzburg.de</u> *<u>u.hintermair@bath.ac.uk</u>

Supporting Information

Contents

Experimental	2
Spectroscopic Data	4
1,3,4,6-tetraphenylpentalene	4
Reduction with Potassium	6
Computational	6
Electrochemistry	15
Crystallographic Data	18
References	19

Experimental

General Considerations: All reactions were conducted under argon using standard Schlenk techniques or a MBraun Unilab Plus glovebox, unless stated otherwise. All commercially available materials were purchased from Sigma Aldrich, Fisher or Acros.

Solvents: Methanol was dried and distilled over magnesium. Toluene was dried and distilled over sodium. THF, hexane and pentane were dried and distilled over potassium. C₆D₆ was distilled from CaH₂ and stored over 4Å molecular sieves.

Reagents:1,3,4,6-tetraphenyl-1,2-dihydropentalene1andmagnesium1,3,4,6-tetraphenylpentalenide2 were prepared according to literature procedures.

Analysis: NMR spectra were obtained using either a 500 MHz Bruker Avance III or a 400 MHz Bruker AvanceNeo spectrometer. Chemical shifts (δ) are given in ppm and referenced to residual proton chemical shifts from the NMR solvent for ¹H and ¹³C{¹H} spectra. IR spectra were recorded on a Bruker Alpha II FT-IR spectrometer using a diamond ATR module. UV-vis spectroscopy was performed inside a MBraun Unilab Plus glovebox using an Avantes AvaLight-DH-S-BAL light source and an AvaSpec-2048L photospectrometer. Data was collected between 250 nm and 1000 nm with an integration time of 4 ms.

Single crystal X-ray diffraction analysis was carried out using a RIGAKU SuperNova, Dual,Cu a zero EoS2 single crystal diffractometer. Mass spectrometry was carried out at the Chemical Characterisation Facility at the University of Bath using a Bruker MaXis HD ESI-QTOF.

Computational methods: Optimization, NICS Scan³, NICS XY-Scan,⁴ ACID,^{5,6} and TD-DFT calculations were carried out using the Gaussian 09 program package, revision D.01.⁷ Becke's three parameter exchange-correlation hybrid functional B3LYP^{8–12} was used in combination with the 6-311++G(d,p) basis set. The stationary points were characterized as minima by an analytical vibrational frequency calculation^{13,14} which revealed the absence of imaginary frequencies. The NICS Z scan was performed perpendicular to the respective ring, from its center up to 4 Å above the plane, and the NICS Y scan at 1.7 Å above the respective subunits. The ACID calculation was plotted with an isovalue of 0.03. The optimised structure as well as the calculation setup for the NICS Z and the NICS Y scan are attached as .mol-files.

Synthesis of 1,3,4,6-tetraphenylpentalene

A freshly prepared THF solution of iodine (0.1 M, 1.5 mL, 0.15 mmol) was added to a THF solution of **Mg[Ph₄Pn]** (98 mg, 0.15 mmol) at room temperature. An immediate colour change from orange to dark red was observed followed by precipitation of a yellow solid. The reaction was allowed to stir for one hour before it was filtered, and the solution evaporated to dryness and kept under vacuum overnight to yield **1,3,4,6-Ph₄Pn** as a dark red powder (46 mg, 75%)

¹H NMR (500 MHz, THF-h₈) δ: 7.15-7.13 (m, 12H, ArH), 7.07-7.04 (m, 8H, ArH), 5.44 (s, 2H, H_w) ¹³C{¹H} NMR (126 MHz, THF-h₈) δ: 147.9, 145.6, 135.1, 134.9 (C_w), 129.2, 128.5, 127.6 HRMS (APCI) *m/z*: [M+H]⁺ Calculated for C₃₂H₂₃: 407.1794, Found: 407.1767 UV-vis (THF) λ: 312 nm (ε = 95,000 M⁻¹cm⁻¹), 460 nm (ε = 40,000 M⁻¹cm⁻¹) UV-vis (C₆D₆) λ: 275 nm (ε = 90,000 M⁻¹cm⁻¹), 460 nm (ε = 20,000 M⁻¹cm⁻¹)

Figure S1: 500 MHz 1 H NMR spectrum of 1,3,4,6-tetraphenylpentalene in THF-H₈ recorded at room temperature.

Figure S2: 125 MHz ¹³C{¹H} NMR spectrum of **Ph₄Pn** in THF-H₈ recorded at room temperature.

Figure S3: 500 MHz 1 H- 13 C HSQC spectrum of 1,3,4,6-tetraphenylpentalene in THF-H₈ (H_w = blue)

Figure S4: 400 MHz ¹H variable temperature NMR spectra of 1,3,4,6-tetraphenylpentalene in THF-H₈

Reduction with Potassium

Figure S5: 500 MHz ¹H NMR spectra of $K_2[Ph_4Pn]$ (top) formed by reaction of Ph_4Pn (bottom) with potassium in THF at room temperature.

Computational

Figure S6: NICS Z scan through the centre of one of the flanking phenyl rings of Ph_4Pn using DFT calculations at the B3LYP/6-311++g(d,p) level of theory.

Figure S7: Placement of the Bq atoms for the NICS Z scan of the pentalene core of **Ph**₄**Pn**.

Figure S8: Placement of the Bq atoms for the NICS Y scan of the pentalene core of Ph₄Pn.

Figure S9: Placement of the Bq atoms for the NICS Z scan of one phenyl moiety of Ph₄Pn.

Figure S10: Electrostatic potential (ESP) map for Ph_4Pn . Contour colours range from -0.036 (red) to 0.3 (blue) at an isovalue of 0.01.

Figure S11: ACID plot of **Ph₄Pn** visualized with an isovalue of 0.03. Calculated using DFT calculations at the B3LYP/6-311++g(d,p) level of theory.

Figure S12: ACID plot (top; iso-value = 0.015) and NICS Z scans of the respective five-membered cycle in $[Ph_4Pn]_2$ indicated by the positioning of the arrow in the structure; NICS probe BQ shown as • of the cycloaddition product. All calculated using DFT calculations at the B3LYP/6-311++g(d,p) level of theory.

Figure S13: ACID plot of the cycloaddition product $[Ph_4Pn]_2$ visualized with an isovalue of 0.015. Calculated using DFT calculations at the B3LYP/6-311++g(d,p) level of theory.

Figure S14: Placement of the Bq atoms for the NICS Z scan of two five-membered rings in [Ph₄Pn]₂.

Figure S15: Placement of the Bq atoms for the NICS Z scan of the other two five-membered rings in $[Ph_4Pn]_2$.

Figure S16: TD-DFT of singlet Ph_4Pn performed at the B3LYP/6-311++g(d,p) level of theory in the gas phase. Graphic was obtained via the standard Gaussian plot function.

Figure S17: TD-DFT of triplet Ph_4Pn performed at the B3LYP/6-311++g(d,p) level of theory in the gas phase. Graphic was obtained via the standard Gaussian plot function.

Electrochemistry

Cyclic voltammetry was performed inside a MBraun Unilab Plus Glovebox using a three-electrode cell and an Ivium Technologies CompactStat. 0.1 M $[NBu_4][PF_6]$ electrolyte in THF, a graphitic carbon working electrode, platinum wire counter electrode and a Ag/Ag⁺ pseudo reference electrode (0.01 M AgPF₆ in THF) were used at ambient temperature. Potentials were referenced to the normal hydrogen electrode (NHE) by means of the following equation:¹⁵

 $E_{(NHE)} = E_{(Ag/AgNO_3)} + 0.197$

Figure S18: CV of **Ph**₄**Pn** in THF at 1.6 mM recorded at a scan rate of 25 mVs⁻¹ with a step size of 5 mV.

Figure S19: CV of Ph₄Pn recorded at varying scan rates.

Figure S20: Randles-Sevcik plot of Ph₄Pn.

Crystallographic Data

CCDC	2335451		
Identification code	s21uh10	s21uh10	
Empirical formula	$C_{166} H_{123}$		
Formula weight	2117.64		
Temperature	150.00(10) K		
Wavelength	1.54184 Å		
Crystal system	monoclinic		
Space group	C2/c		
Unit cell dimensions	a = 43.6143(9) Å	α = 90°	
	b = 10.5720(2) Å	$\beta = 98.309(2)^{\circ}$	
	c = 25.1335(7) Å	γ = 90°	
Volume	11467.2(5) Å ³		
Z	4	4	
Density (calculated)	1.227 Mg/m ³	1.227 Mg/m ³	
Absorption coefficient	0.523 mm ⁻¹	0.523 mm ⁻¹	
F(000)	4476	4476	
Crystal size	0.279 x 0.110 x 0.020 m	0.279 x 0.110 x 0.020 mm ³	
Theta range for data collection	4.306 to 73.064°	4.306 to 73.064°	
Index ranges	-53<=h<=51, -8<=k<=13	-53<=h<=51, -8<=k<=13, -30<=l<=31	
Reflections collected	49934	49934	
Independent reflections	11373 [R(int) = 0.0570]	11373 [R(int) = 0.0570]	
Completeness to theta = 67.684°	100.0 %	100.0 %	
Absorption correction	Semi-empirical from eq	Semi-empirical from equivalents	
Max. and min. transmission	1.00000 and 0.89168	1.00000 and 0.89168	
Refinement method	Full-matrix least-square	Full-matrix least-squares on F ²	
Data / restraints / parameters	11373 / 36 / 778	11373 / 36 / 778	
Goodness-of-fit on F ²	1.012		
Final R indices [I>2sigma(I)]	R1 = 0.0449, wR2 = 0.09	R1 = 0.0449, wR2 = 0.0994	
R indices (all data)	R1 = 0.0655, wR2 = 0.10	R1 = 0.0655, wR2 = 0.1093	
Extinction coefficient	n/a	n/a	
Largest diff. peak and hole	$0.216 \text{ and } -0.223 \text{ e.}\text{\AA}^{-3}$	0.216 and -0.223 e.Å ⁻³	

References

- Boyt, S. M.; Jenek, N. A.; Sanderson, H. J.; Kociok-Köhn, G.; Hintermair, U. Synthesis of a Tetraphenyl-Substituted Dihydropentalene and Its Alkali Metal Hydropentalenide and Pentalenide Complexes. *Organometallics* 2022, *41* (3), 211–225. https://doi.org/10.1021/acs.organomet.1c00495.
- Sanderson, H. J.; Kociok-Köhn, G.; Hintermair, U. Synthesis, Structure, and Reactivity of Magnesium Pentalenides. *Inorg. Chem.* 2023, 62 (39), 15983–15991. https://doi.org/10.1021/ACS.INORGCHEM.3C02087.
- (3) Stanger, A. Nucleus-Independent Chemical Shifts (NICS): Distance Dependence and Revised Criteria for Aromaticity and Antiaromaticity. *J. Org. Chem.* **2006**, *71* (3), 883–893. https://doi.org/10.1021/J0051746.
- Gershoni-Poranne, R.; Stanger, A. The NICS-XY-Scan: Identification of Local and Global Ring Currents in Multi-Ring Systems. *Chem. - A Eur. J.* 2014, *20* (19), 5673–5688. https://doi.org/10.1002/CHEM.201304307.
- Herges, R.; Geuenich, D. Delocalization of Electrons in Molecules. J. Phys. Chem. A 2001, 105 (13), 3214–3220. https://doi.org/10.1021/JP0034426.
- (6) Geuenich, D.; Hess, K.; Köhler, F.; Herges, R. Anisotropy of the Induced Current Density (ACID), a General Method to Quantify and Visualize Electronic Delocalization. *Chem. Rev.* 2005, *105* (10), 3758–3772. https://doi.org/10.1021/CR0300901.
- (7) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R. Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., J.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16, Revision C.01. Gaussian Inc.: Wallingford CT 2016.
- Dirac, P. A. M. Quantum Mechanics of Many-Electron Systems. Proc. R. Soc. London. Ser. A, Contain. Pap. a Math. Phys. Character 1929, 123 (792), 714–733. https://doi.org/10.1098/RSPA.1929.0094.
- (9) Slater, J. C. A Simplification of the Hartree-Fock Method. *Phys. Rev.* **1951**, *81* (3), 385. https://doi.org/10.1103/PhysRev.81.385.
- (10) Becke, A. D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. *Phys. Rev. A* **1988**, *38* (6), 3098. https://doi.org/10.1103/PhysRevA.38.3098.
- (11) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. *Phys. Rev. B* **1988**, *37* (2), 785. https://doi.org/10.1103/PhysRevB.37.785.
- (12) Becke, A. D. Density-functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. **1993**, 98 (7), 5648–5652. https://doi.org/10.1063/1.464913.

- (13) Deglmann, P.; Furche, F.; Ahlrichs, R. An Efficient Implementation of Second Analytical Derivatives for Density Functional Methods. *Chem. Phys. Lett.* **2002**, *362* (5–6), 511–518. https://doi.org/10.1016/S0009-2614(02)01084-9.
- (14) Deglmann, P.; Furche, F. Efficient Characterization of Stationary Points on Potential Energy Surfaces. *J. Chem. Phys.* **2002**, *117* (21), 9535–9538. https://doi.org/10.1063/1.1523393.
- (15) Kratochvil, B.; Lorah, E.; Garber, C. Silver-Silver Nitrate Couple as Reference Electrode in Acetonitrile. *Anal. Chem.* **1969**, *41* (13), 1793–1796. https://doi.org/10.1021/AC60282A011.