Supporting Information for:

Structural Characterization of Surface Immobilized Platinum Hydrides by Sensitivity-Enhanced ¹⁹⁵Pt Solid State NMR Spectroscopy and DFT Calculations

Benjamin A. Atterberry, ^{1, 2†} Erik J. Wimmer,^{3†} Sina Klostermann,³ Wolfgang Frey,³ Johannes Kästner,³ Deven P. Estes,^{3*} and Aaron J. Rossini^{1,2*}

†These authors contributed equally.

¹Iowa State University, Department of Chemistry, Ames, IA, USA, 50011 ²US DOE Ames National Laboratory, Ames, Iowa, USA, 50011 ³University of Stuttgart, Department of Chemistry, Stuttgart, Baden-Württemberg, Germany, 70569

Corresponding Authors:

*Emails: arossini@iastate.edu, deven.estes@itc.uni-stuttgart.de

Figure S2: ${}^{31}P{}^{195}Pt$ *J*-evolution plots of 4 for different ${}^{31}P$ peaks. A and B denote the 95 ppm and 78 ppm peaks, respectively.

Figure S3: Root mean square error plots of the span (Ω) and skew (κ) for the *J*-resolved and *J*-HMQC sideband selective experiments on 1-4.

Figure S4: Experimental powder X-ray diffraction pattern of **3** (black). The pattern calculated from the single crystal X-ray diffraction structure of **3** is also shown (red). The disagreement between the two patterns occurs because the compound has lost the solvated CH_2Cl_2 which was incorporated into the lattice.

Figure S5: ${}^{1}H{}^{195}Pt$ *J*-resolved control and dephasing spectra for $1/SiO_2-Al_2O_3$ acquired at room temperature and 25 kHz MAS.

Figure S6: ³¹P CPMAS NMR control experiment on 1/SiO₂-Al₂O₃ impregnated with TEMPO dissolved in TCE (magenta) and without impregnation (grey). All spectra were recorded at room temperature.

Figure S7: ³¹P CPMAS NMR control experiment on **1/SBA-15** impregnated with TEMPO dissolved in TCE (magenta) and without impregnation (grey).

Figure S8: ³¹P CPMAS ssNMR spectra of **1/SBA-15**, freshly prepared (grey) and >1 year old (magenta).

Figure S9: Peak fits of the DNP-enhanced ¹H-³¹P CPMAS spin echo ssNMR spectra of 1/SiO₂- Al_2O_3 and 1/SBA-15. The fits were conducted in ssNake.

T.

Fable S1: Chemical shifts and relative integrat	ion for the ³¹ P sites of the two surface-supported
com	plexes

complexes				
1/SiO ₂ -Al ₂ O ₃				
Site	³¹ P Chemical	Relative Integration		
	Shift (ppm)	from Analytical Fit		
Hydride (Green)	81.67	57.66%		
Phosphine Oxide	71.23	11.70%		
(Orange)				
Protonated	56.88	30.64%		
Phosphine				
(Purple)				
1/SBA-15				
Site	³¹ P Chemical	Relative Integration		
Site	³¹ P Chemical Shift (ppm)	Relative Integration from Analytical Fit		
Site Hydride (Green)	³¹ P Chemical Shift (ppm) 71.57	Relative Integrationfrom Analytical Fit30.91%		
Site Hydride (Green) C-H Activated	³¹ P Chemical Shift (ppm) 71.57 52.44	Relative Integration from Analytical Fit30.91%32.88%		
Site Hydride (Green) C-H Activated (Red)	³¹ P Chemical Shift (ppm) 71.57 52.44	Relative Integration from Analytical Fit30.91%32.88%		
Site Hydride (Green) C-H Activated (Red) C-H Activated	³¹ P Chemical Shift (ppm) 71.57 52.44 24.66	Relative Integration from Analytical Fit30.91%32.88%22.55%		
Site Hydride (Green) C-H Activated (Red) C-H Activated (Red)	³¹ P Chemical Shift (ppm) 71.57 52.44 24.66	Relative Integration from Analytical Fit30.91%32.88%22.55%		
Site Hydride (Green) C-H Activated (Red) C-H Activated (Red) Oxidized	³¹ P Chemical Shift (ppm) 71.57 52.44 24.66 4.000	Relative Integration from Analytical Fit30.91%32.88%22.55%13.66%		
Site Hydride (Green) C-H Activated (Red) C-H Activated (Red) Oxidized Decomposition	³¹ P Chemical Shift (ppm) 71.57 52.44 24.66 4.000	Relative Integration from Analytical Fit30.91%32.88%22.55%13.66%		

Figure S10: (Left) SIMPSON calculated ³¹P signal dephasing for ¹H-³¹P{¹⁹⁵Pt} *J*-resolved sideband selective experiments as a function of the ¹⁹⁵Pt saturation radiofrequency (RF) field for complex $1/SiO_2$ -Al₂O₃. A white dashed line indicates the optimal RF. Simulations used a 12.5 kHz spinning frequency and 120 µs saturation pulses. (Right) Graph of the SIMPSON calculated ideal ¹⁹⁵Pt ssNMR spectrum of $1/SiO_2$ -Al₂O₃ (black) along with simulated ¹H-³¹P{¹⁹⁵Pt} *J*-resolved sideband selective experiments that used 10 kHz (blue) and 35 kHz (orange) ¹⁹⁵Pt saturation RF fields.

Figure S11: ³¹P {¹⁹⁵Pt} S_0 , S, and S_0 –S *J*-resolved ssNMR spectra showing the CPMG spikelets that were used to construct the ¹⁹⁵Pt spectra. The co-added spectra are shown above the CPMG spikelets. For **1/SBA-15** the ¹⁹⁵Pt dephasing profile for site 1 was obtained by plotting combined dephasing for spikelets a and b, while site 2 was obtained by plotting the combined dephasing for spikelets c and d.

Figure S12: Root mean square error plots of the isotropic chemical shift (δ_{iso}), span (Ω), and skew (κ) for the *J*-resolved experiments on 1/SiO₂-Al₂O₃ and 1/SBA-15.

1/SBA-15				
Model	¹ H Chemical	³¹ P Chemical	¹ H- ¹⁹⁵ Pt <i>J</i> -	³¹ P- ¹⁹⁵ Pt <i>J</i> -
	Shift (ppm)	Shift (ppm)	coupling (Hz)	coupling (Hz)
Experiment	-26	74	1700	2908
Model I	-	96	-	4811
Model II	-	105	-	5321
Model III	-23	94	1001	3375
Model IV	-26	99	1213	3315
Model V	-28	102	1682	3287
Model VI	-31	104	1851	3297
Model VII	-33	107	2086	3281
Model VIII	-34	98	2505	3036
Model IX	-37	86	3067	2908
		1/SiO ₂ -Al ₂ O ₃		
Model	¹ H Chemical	³¹ P Chemical	¹ H- ¹⁹⁵ Pt <i>J</i> -	³¹ P- ¹⁹⁵ Pt <i>J</i> -
	Shift (ppm)	Shift (ppm)	coupling (Hz)	coupling (Hz)
Experiment	-35	74	2400	2433
Model A	-	90	-	4917
Model B	-	115	-	7560
Model C	-29	81	1294	3595
Model D	-30	84	1477	3571
Model E	-32	85	1882	3434
Model F	-35	84	2247	3271

Table S2: Calculated and experimental chemical shifts for the hydride and phosphine ligands.

For all the following crystal structures, the atoms are color coded in the following scheme: C = dark gray, H = white, Pt = light gray, P = orange, Cl = green, B = pink, and F = yellow.

Figure S13: Thermal-ellipsoid diagram of the asymmetric unit of $Pt-H(P^tBu_3)_2[BF_4] \cdot 2CH_2Cl_2$ **3.** The DCM and BF_{4^-} positions in the crystal structure are disordered for to two different reasons. While BF_{4^-} is tetrahedral, resulting in rotational disorder, and CH_2Cl_2 is a solvent that adds in free spaces, it shows vibrational disorder from the C-Cl vibration.

Parameter	$Pt-H(PtBu_3)_2[BF_4] \cdot 2CH_2Cl_2(3)$
Chemical Formula	$C_{26}H_{59}BC_{14}F_4P_2Pt$
Crystal size /mm ³	0.242 x 0.198 x 0.124
Crystal system, Space group	Monoclinic, Cc
Volume /Å ³	3712.06(18)
a /Å	11.1587(3)
b /Å	19.7667(5)
c /Å	16.9439(5)
α /°	90
β /°	96.6660(10)
γ /°	90
Z	4
Formula weight /Da	857.37
μ / mm^{-1}	4.190
F(000)	1728
Temperature /K	150(2)
Total reflections	31125
Unique reflections	9210 $[R_{int} = 0.0259]$
Final R indices $(I > 2\sigma(I))$	R1 = 0.0239, WR2 = 0.0512
Largest diff. peak / hole	1.089 / -0.839
GOF	1.033

 Table S3: X-ray diffraction parameters of 3.

Figure S14: Thermal-ellipsoid diagram of the asymmetric unit of Pt-H(P^tBu₃)₂(CH₃CN)[BF₄] 4.

Parameter	Pt-H(PtBu ₃) ₂ (CH ₃ CN) [BF ₄] (4)
Chemical Formula	$C_{26}H_{58}BF_4NP_2Pt$
Crystal size /mm ³	0.073 x 0.062 x 0.043
Crystal system, Space group	Monoclinic, P2(1)/n
Volume /Å ³	3095.2(14)
a /Å	8.585(2)
b /Å	12.110(3)
c /Å	29.773(6)
α /°	90
β /°	96.461(9)
γ /°	90
Z	4
Formula weight /Da	728.57
μ / mm^{-1}	4.677
F(000)	1480
Temperature /K	150(2)
Total reflections	28228
Unique reflections	7714 $[R_{int} = 0.1200]$
Final R indices $(I > 2\sigma(I))$	R1 = 0.0863, wR2 = 0.1705
Largest diff. peak / hole	5.440 / -3.319
GOF	1.046

Table	S4 :	X-rav	diffraction	parameters	of 4
Table	DT •	7 Iuy	unnaction	parameters	01 4

Figure S15: Thermal-ellipsoid diagram of the asymmetric unit of Pt-H(P^tBu₃)₂(H₂O)[BF₄] 5.

Table S5:	X-ray	diffraction	parameters	of 5 .
-----------	-------	-------------	------------	---------------

Parameter	$Pt-H(P^{t}Bu_{3})_{2}(H_{2}O)[BF_{4}]$ (5)
Chemical Formula	$C_{24}H_{57}BF_4OP_2Pt$
Crystal size /mm ³	0.143 x 0.099 x 0.074
Crystal system, Space group	Monoclinic, P2(1)/c
Volume /Å ³	3032.62(16)
a /Å	11.5231(4)
b /Å	16.5896(4)
c /Å	16.5713(5)
α /°	90
β /°	106.800(2)
γ /°	90
Z	4
Formula weight /Da	705.53
μ /mm ⁻¹	4.772
F(000)	1432
Temperature /K	150(2)
Total reflections	28688
Unique reflections	7528 $[R_{int} = 0.0787]$
Final R indices $(I > 2\sigma(I))$	R1 = 0.0412, wR2 = 0.0523
Largest diff. peak / hole	1.218 / -1.158
GOF	1.014

Figure S16: IR-spectrum of SiO₂-Al₂O₃-500 dehydroxylated at 500°C (bottom, black) and Pt-H@SiO₂-Al₂O₃-500 (top, purple).

Figure S17: IR-spectrum of SBA-15-500 dehydroxylated at 500°C (bottom, black) and Pt-H@Silica-500 (top, purple).

Figure S18: SIMPSON calculated ³¹P signal dephasing or efficiency for ¹H-³¹P {¹⁹⁵Pt} and ¹H {¹⁹⁵Pt} *J*-resolved and *J*-HMQC sideband selective experiments, respectively, as a function of the ¹⁹⁵Pt saturation radiofrequency (RF) field. Heat maps are labeled **1** through **4**, corresponding to molecular complexes **1** through **4**. Simulations for **1** used a 25 kHz spinning frequency and 80 µs saturation pulses, **2** used a 25 kHz spinning frequency and 120 µs saturation pulses, **3** used a 50 kHz spinning frequency and 60 µs saturation pulses, and **4** used a 25 kHz spinning frequency and 80 µs saturation pulses. A white dashed line indicates the optimal RF field for all heat maps.

Complex	J-resolved (kHz)	J-HMQC (kHz)
1	6	3
2	3	2
3	7	3
4	4	2

Table S6: Optimal ¹⁹⁵Pt saturation RF fields for the molecular precursors