Breakage of dense structure of coal precursor increases plateau capacity of hard carbon for sodium storage

Wen-Yu Qian,^{a,b} Xin-Yang Zhou,^a Xin-Yao Liu,^b Meng-Yuan Su,^b Kai-Yang Zhang,^a Xing-Long Wu^{*a,b}

^a MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin 130024, China, Email: xinglong@nenu.edu.cn (X.-L. Wu).

^b Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China

Fig. S2 High-resolution O 1s spectra of BHC and BHC-Zn.

Fig. S3 High-resolution C 1s spectra of BHC and BHC-Zn.

Fig. S4 SEM of (a, b, c)BHC and (d, e, f)BHC-Zn-41.

Fig. S5 HRTEM of (a)BHC, (b)BHC-Zn-11, (c)BHC-Zn-41 and (d)BHC-Zn-81.

Fig. S6 The charge discharge curves of sample BHC-Zn-41 at different current densities.

Fig. S7 equivalent circuit fitting diagram

Fig. S8 the CV curves of (a)BHC, (b)BHC-Zn-11, (c)BHC-Zn-41 and (d)BHC-Zn-81 at 0.1 mV s⁻¹

Fig. S9 CV curve of BHC-Zn-41 at the scan rate of $0.5 \text{mV} \text{ s}^{-1}$. Shaded region exhibits the capacitive contribution.

Sample	Capacity (mAh g ⁻¹)	Current Density	Reference
Coal-based hard carbon with NH3 treatment	220	0.1 A g ⁻¹	[1]
Porous flaky HC derived from coal	303.6	50 mA g ⁻¹	[2]
Coal based hard carbon with fast carbonization	292	0.1 C	[3]
Bituminous coal derived carbon	287.1	20 mA g ⁻¹	[4]
Coal derived hard carbon	306.3	30 mA g ⁻¹	[5]
BHC-Zn-41	325.3	30 mA g ⁻¹	This work

Table S1 A literature comparison with capacity for coal derived carbon

Table S2 Equivalent circuit fitting results of BHC and BHC-Zn.

Samples	$\mathbf{R}_{\Omega}(+)$	R _{ct} (+)
BHC-Zn-11	4.09	108.31
BHC-Zn-41	4.23	12.07
BHC-Zn-81	3.82	118.12
ВНС	6.87	44.25

Reference

[1] R. Li, B. Yang, A. Hu, B. Zhou, M. Liu, L. Yang, Z. Yan, Y. Fan, Y. Pan, J. Chen, T. Lia, K. Li, J. Liu, and J. Long, *Carbon*, **2023**, 215, 118489.

[2] X.-Y. Wang, K.-Y. Zhang, M.-Y. Su, H.-H. Liu, Z.-Y. Gu, D. Dai, B. Li, J.-W. Wang, X.-Y. He, and X.-L. Wu, *Carbon*, **2024**, 229, 119526.

[3] H. Wang, F. Sun, Y. Wang, D. Wu, J. Gao, J. Wang, and J. Gao, *Carbon*, 2024, 229, 119528.

[4] G. Liu, J. Yuan, H. Li, Z. Li, C. Hu, X. Qiao, M. Wang, B. Yuan, P. Zhang, and Z. Wu, *ACS Appl. Mater. Interfaces*, **2024**, 16, 46226–46236.

[5] M.-Y. Su, K.-Y. Zhang, Edison H. Ang, X.-L. Zhang, Y.-N. Liu, J.-L. Yang, Z.-Y. Gu, F. A. Butt, and X.-L. Wu, *Rare Met.*, **2024**, 43(6):2585–2596.