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Materials and general considerations 

Safety. No unexpected or unusually high safety hazards were encountered. 

 

Materials. Fmoc-β-amino acids, including Fmoc-L-β-homoalanine, Fmoc-L-β-homoisoleucine, 

Fmoc-L-β-homoleucine, Fmoc-L-β-homophenylalanine, Fmoc-(1S,2S)-2-aminocyclopentane 

carboxylic acid, Nβ-Fmoc-Nω-Boc-L-β-homolysine, Fmoc-O-tert-butyl-L-β-homoserine, and 

Fmoc-α-amino acids, including Fmoc-glycine, Fmoc-L-alanine, Fmoc-L-isoleucine, Fmoc-L-

leucine, Fmoc-L-phenylalanine, Fmoc-O-tert-butyl-L-serine, Fmoc-L-β-homotryptophan, Fmoc-

L-aspartic acid β-tert-butyl ester, Fmoc-L-glutamic acid γ-tert-butyl ester, Nα-Fmoc-Nε-Boc-L-

lysine were purchased from Chem-Impex International, Inc. (Wood Dale, IL, USA). Fmoc-L-

norleucine was purchased from Thermo Scientific Chemicals. Fmoc-L-norvaline was purchased 

from Santa Cruz Biotechnology. HATU was obtained from Oakwood Chemicals. Tentagel S RAM 

Fmoc was purchased from Advanced ChemTech (Louisville, KY). Menadione, N,N-

Diisopropylethylamine, Mueller Hinton Broth, and dibasic sodium phosphate were obtained from 

Sigma-Aldrich (St. Louis, MO). 3-(N-Morpholino) propanesulfonic acid (MOPS) was obtained 

from Fisher Scientific (Pittsburgh, PA). 2,3-Bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-

tetrazolium-5-carboxanilide (XTT) was purchased from Invitrogen. Gibco brand RPMI 1640 

powder (containing phenol red and L-glutamine and without sodium bicarbonate or HEPES) and 

Dulbecco’s phosphate-buffered saline (DPBS, without calcium or magnesium) were obtained from 

Thermo Fisher Scientific (Waltham, MA). Water (18.2 MΩ) was purified using a Millipore 

filtration system. Cell Titer Glo 2.0 assay kits were obtained from Promega (Madison, WI).  

 

General considerations. C. albicans strain SC5314, E. coli strain 25922, and S. aureus strain 

3359 were purchased from ATCC.  C. glabrata 5376, C. parapsilosis 5986, and C. tropicalis 98-

234 are clinical isolates from invasive candidiasis and were generously donated by Dr. David 

Andes (University of Wisconsin-Madison). For hemolysis experiments, freshly expired human red 

blood cells were obtained from the University of Wisconsin−Madison Hospital blood bank. All 

microbial strains were stored as a 50% glycerol stock at −80 °C and grown in a liquid YPD (for 

fungal cells) or TSB (for bacterial cells) medium. Peptide sequence, activity, SMILES string, and 

RDKit descriptor data are available online; see ‘Data availability’ section. 
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Computational Prediction using Gaussian Process Regression 

 

S1: Conversion of Peptide Sequences to SMILES Strings 

This section details the creation of simplified molecular-input line-entry system (SMILES) strings 

based on peptide sequences in our workflow. Figure S1 shows the building blocks for creating a 

SMILES string for a peptide with β amino acids, which was decomposed into backbone (Figure 

S1a) and side chain (Figure S1b) elements. Additionally, all sequences considered in this study 

contained a protonated N-terminus ([NH3+]) and amidated C-terminus (C(=O)N), as is typical for 

α/β-peptides studied experimentally.1,2 

For backbone SMILES segments (Figure S1a), the zig-zag line in the Sequence column 

corresponds to the attachment of a side chain, which involves a corresponding @ symbol as 

reflected in the SMILES segment which denotes chirality. For protein sequences, @@ refers to L-

amino acids while @ refers to D-amino acids; however, the specification of chirality has no effect 

on calculated 2D RDKit descriptors, so we kept all chiral centers as @ for consistency and ease of 

visualization. As depicted in Figure S1c, the backbone SMILES segments (Figure S1a) were first 

added in the same order as the peptide sequence, and then side chains (Figure S1b) were added in 

reverse order for all non-glycine amino acids. 
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Figure S1. SMILES string creation process involving (a) backbone fragments and (b) side chain fragments. 

(c) Visualization of addition process for backbone and sidechain fragments for a model 5-amino acid 

sequence color coded by residue. The highlighted # in (a) and (b) is a counter for the number of ACPC 

amino acids in the sequence (e.g., a sequence with 3 amino acids would have 1, 2, 3 in place of this #) along 

the SMILES string for both the (a) backbone and (b) side chain fragment. 
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S2: Descriptor Preprocessing 

For each iterative GPR round, we first calculated all 200 molecular descriptors available with the 

RDKit Cheminformatics toolkit for all training peptide sequences with the following methodology: 

1. Each peptide SMILES string (Section S1) was constructed as a molecule interpretable 

by RDKit (‘Mol’ object) with the MolFromSmiles() function. 

2. The full set of 200 descriptor labels was called as rdkit.Chem.Descriptors._descList 

3. The numerical values of these descriptors were calculated for each peptide Mol object 

using the MoleculeDescriptors() module. 

As described in the main text, the first step of descriptor preprocessing was to remove all 

descriptors that had constant numerical values for all sequences in the training set which largely 

involved counts for chemical groups not pertinent to peptides (e.g., ketones, halogens, etc.). Figure 

S2 shows the number of nonconstant descriptors kept for each prediction round (starting with 105 

for Round 1 and ending with 120 for Round 6), highlighting in red new nonconstant descriptors 

introduced with novel amino acids in Rounds 3 and 4. 

 

Figure S2. Number of nonconstant descriptors from the original set of 200 RDKit descriptors for each 

prediction round. Red annotations refer to nonconstant descriptors added due to new peptide sequences that 

were incorporated in the training set after each prediction round. 
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The second step of descriptor preprocessing involved further reduction of this nonconstant 

descriptor space with 10-fold LASSO cross-validation using the LassoCV module available in 

sklearn. The LASSO regression model is based on the linear regression model with an additional 

L1 regularization term with coefficient α in the cost function that forces small descriptor 

coefficients (descriptors unimportant for model predictions) to zero as shown in Equation S1: 

 

𝐶𝑜𝑠𝑡 =  ∑ (𝑦𝑖 − ∑ 𝑥𝑖𝑗𝑊𝑗

𝑀

𝑗=1

)

2

+  𝛼 ∑|𝑊𝑗|

𝑀

𝑗=1

𝑁

𝑖=1

 

 

(S1) 

𝑦𝑖 is the log2 scaled experimentally measured HC10 or MIC value of the ith peptide in the training 

set, xij is the value of the jth descriptor for the ith peptide, Wj is the coefficient of the jth descriptor 

for the regression model, and α is the regularization parameter. Generally, an increase in α leads 

to a decrease in the number of descriptors kept by the LASSO model, and the goal is to find the α 

value that minimizes the Cost function. LASSO cross-validation  (LASSO CV) involves splitting 

up the training data into n folds, training a LASSO model on n – 1 folds, validating the model on 

the remaining fold, and then repeating this process until all n folds are used as the validation set 

(see Figure S5a for visualization of this process for 10-fold CV). This process is conducted for a 

range of α values, selecting the α that minimizes the average root mean squared error (RMSE) of 

the LASSO model across the n folds. 

As described in Section S4, all labels (i.e., experimentally measured Log2(HC10) or Log2(MIC) 

values) were proportionately allocated across 10 folds to ensure equal distributions of label values 

(low to high) per fold. LASSO regression models were trained to predict these labels using 100 

different values of α (Log10 scaled between 10-3 and 1). The model (i.e., value of α) that minimized 

the average RMSE between experimental and predicted values across all ten folds was selected, 

and the corresponding set of descriptors associated with that model was used as the reduced 

descriptor set. Figure S3 shows plots of the RMSE vs. α across the folds for different prediction 

rounds. The minimum of this black line denotes the minimum of the average RMSE which is 

marked with a vertical dashed line and the corresponding number of descriptors that are kept with 

this α value. 

The LASSO CV procedure was applied to the initial 147-sequence training set to select 20 

descriptors for Log2(HC10) and 13 descriptors for Log2(MIC) predictions for prediction Rounds 1 

to 3; the set of descriptors was unchanged for these three rounds. RMSE vs. α plots are shown in 

Figure S3a. For Round 4 onwards, the descriptors were updated each round with the updated 

methodology described in the ‘Iterative GPR Model Training’ Section in the main text to more 

accurately predict Log2(HC10) and Log2(MIC) labels for newly introduced peptide sequences. The 

corresponding RMSE vs. α plots are shown in Figures S3b-d.  

Table S1 shows the reduced set of descriptors used for Log2(HC10) predictions for each prediction 

round and Table S2 shows the reduced set of descriptors used for log2(MIC) predictions for each 

prediction round. In these tables, the ‘Initial’ column refers to the descriptors used for Rounds 1 

to 3 whereas Rounds 4 to 6 are labeled accordingly. Red numbers are provided in the ‘Initial’ 

column to denote the absolute descriptor weights provided by the LASSO model as a signifier of 

decreasing descriptor importance. These numbers are also cross-referenced in columns for Rounds 

4 to 6 to visualize how reimplementing the LASSO CV procedure for later rounds reorders these 

descriptor importances, where descriptors are also listed in decreasing importance for each round. 
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Figure S3. LASSO 10-fold cross validation curves for (a) Round 1, (b) Round 4, (c) Round 5, and (d) 

Round 6 for both HC10 (left column) and MIC (right column).  Each dotted line represents the calculated 

RMSE for one of the ten folds across 100 different α values for the LASSO model, and the solid bold line 

represents the average of the 10-folds. The dashed vertical line represents the α value that minimizes the 

average RMSE with the corresponding number of descriptors labeled in bold. 

To check if our descriptor selection approach mitigates model overfitting (by minimizing RMSE 

variance across LASSO CV folds for selected α values) as new data are added across prediction 
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rounds, Figure S4 shows the variance of the RMSE vs. α distributions plotted in Figure S3 across 

the 10 CV folds. Although the HC10 RMSE variance for the selected value of α increases somewhat 

per round, the MIC RMSE variance is similar for both Rounds 1 and 6 despite an increase in the 

number of kept descriptors (Table S2). Additionally, for both metrics the RMSE variance is 

relatively steady or increases as α increases compared to the selected value of α (dashed line) per 

round. We would expect that the variance would sharply decrease with fewer descriptors (larger 

value of α) if the model were overfit for the selected value of α; indeed, we see that in all cases 

very low values of α do correspond to a large variance increase, which would be due to overfitting 

with large numbers of descriptors. The plateau of the variance for the selected values of α instead 

indicates that our descriptor selection approach effectively minimizes overfitting per round. 

 

Figure S4: RMSE variance across the 10-folds used for LASSO CV (dotted lines in Figure S3) vs. α for 

(a) Round 1, (b) Round 4, (c) Round 5, and (d) Round 6 for both HC10 (left column) and MIC (right 

column). The dashed vertical line represents the selected α per round (from Figure S3) with the 

corresponding RMSE variance at this α value captioned in bold. 

 



S9 

 

Table S1. RDKit descriptors used for each round of Gaussian process regression model training for 

Log2(HC10) predictions listed in decreasing descriptor importance. Descriptors were chosen based on a 10-

fold LASSO CV approach after removing all constant descriptors (see Figure S3). ‘Initial’ column refers 

to descriptors chosen based on the initial 147 training sequences and utilized for Rounds 1-3 of experimental 

evaluation. The remaining columns (Round 4, Round 5, Round 6) refer to their corresponding prediction 

rounds. Red numbers indicate the rank ordering of descriptors based on coefficient values in relation to the 

‘Initial’ column to visualize how rank orderings change with LASSO cross validation descriptor updates. 

A value of ‘---’ means there is no reference descriptor to compare to in the original 20-descriptor set. 

 

 

 

  



S10 

 

Table S2. RDKit descriptors used for each round of Gaussian process regression model training for 

Log2(MIC) predictions listed in decreasing descriptor importance. Descriptors were chosen based on a 10-

fold LASSO CV approach after removing all constant descriptors (see Figure S3). ‘Initial’ column refers 

to descriptors chosen based on the initial 147 training sequences and utilized for Rounds 1-3 of experimental 

evaluation. The remaining columns (Round 4, Round 5, Round 6) refer to their corresponding prediction 

rounds. Red numbers indicate the rank ordering of descriptors based on coefficient values in relation to the 

‘Initial’ column to visualize how rank orderings change with LASSO cross validation descriptor updates. 

A value of ‘---’ means there is no reference descriptor to compare to in the original 13-descriptor set. 

 

 

 

Tables S1-S2 show that there are many similar ‘high importance’ descriptors kept after LASSO 

CV between the Log2(HC10) and Log2(MIC) prediction workflows, indicating that similar 

physiochemical properties are important for predicting both red blood cell hemolysis and 

antifungal activity. For descriptors with an underscore separating two physiochemical properties 

with a terminal number (e.g., PEOE_VSA6), the atomic contributions of both properties are 

calculated in a molecule, atoms are assigned to bins that indicate ranges of the first property 

(chosen bin for descriptor denoted by terminal number), and then atoms that fall into the bin range 

selected for the first property are summed up to calculate the contributions of the second property. 

For instance, in calculating the PEOE_VSA6 descriptor, the van der Waals (VSA) surface area of 
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all atoms that have a partial charge (PEOE) between -0.10 and -0.05 (range 6) are summed up. 

Definitions of all 200 2D RDKit descriptors considered in this study and corresponding references 

can be found in the RDKit documentation1, but in general, important molecular properties for both 

the Log2(HC10) and Log2(MIC) LASSO CV descriptor selection (Tables S1-S2) workflows 

include: 

1. PEOE: Atomic partial charge calculated with the ‘Partial Equalization of Orbital 

Electronegativities’ method2 

2. VSA: van der Waals surface area 

3. EState: ‘Electrotopological-State’ index that encodes electronic and topological for 

each atom to depict their accessibility to interact with neighboring atoms through 

the calculation of contributing electrons and hydrogen atoms3 

4. Chi: Captures the complexity of molecular connectivity in a molecule (e.g., 

branching, rings, etc.)4 

5. FpDensityMorgan: Captures chemical and connectivity attributes of atoms based 

on the definition of ‘similarity fingerprints’ 5 

6. SMR: molar refractivity 

7. SlogP: octanol-water partition coefficient (logP value) 

8. qed: ‘quantitative estimation of drug-likeness’ 6 

 

Additionally, there was an increase in the number of descriptors required to adequately describe 

the training data for newly introduced amino acids. While the Log2(HC10) prediction workflow 

maintained many of the same descriptors with the 10-highest weights even with the new descriptor 

update procedure implemented for Round 4 onwards, there was a large redistribution and 

introduction of new descriptors for the MIC workflow, indicating that the initial 13-descriptor set 

was not sufficient as the training data increased in size. Additionally, many new descriptors 

introduced in Rounds 3 and 4 (Figure S2) were utilized in Rounds 5 and 6 (e.g., fr_amide, 

NumAromaticHeterocycles), albeit not with large weights (i.e., they were of low importance to 

model predictions). 

 

S3: Gaussian Process Regression Model Selection Criteria 

This section details the GPR model selection procedure for each prediction round (in support of 

the right plot in Figure 2c), which was implemented independently for both Log2(HC10) and 

Log2(MIC) predictions. We utilized the GaussianProcessRegressor() module in sklearn for all 

model training and predictions. For each round of experimental evaluation, the kernel and 

corresponding hyperparameters were optimized through a 10-fold grid search cross validation 

(CV) approach to maximize the coefficient of determination (R2) when comparing predicted and 

experimentally measured Log2(HC10) and Log2(MIC) values across 10 proportionately allocated 

folds (see Section S4). The 4 kernels considered with corresponding hyperparameters are shown 

in Table S3: 
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Table S3. Overview of GPR kernels and hyperparameters considered for grid search cross validation. For 

the Radial Basis Function, Rational, Quadratic, and Exponentiated Sine Squared kernels, d(xi,xj) refers to 

the Euclidean distance between two feature vectors in the training set xi and xj. For the Dot Product kernel, 

xi ∙ xj denotes the dot product between two feature vectors in the training set. 

 

 

We considered 5 values (0.01, 0.1, 1, 10, 100) for all hyperparameters (length scale, alpha, 

periodicity, inhomogeneity) during the grid search process. An additional hyperparameter κ, which 

is the value added to the kernel diagonal to prevent numerical issues during fitting, varied among 

the values [1×10-20, 1×10-15, 1×10-10, 1×10-5, 0.01, 0.1, 1.0, 5.0, 10.0]. Therefore, a total of 540 

combinations of kernels and hyperparameters were considered per round of model training, and 

the model with the highest average R2 across the 10 folds was chosen for test sequence predictions. 

Table S4 shows the combination of κ and kernel with associated hyperparameters that was chosen 

for each prediction round. 
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Table S4. Gaussian kernel and hyperparameter set selected per round for (a) Log2(HC10) and (b) Log2(MIC) 

predictions. κ refers to the value added to the kernel diagonal during fitting to prevent numerical issues. 

Selected kernels listed with corresponding hyperparameters in parenthesis, which are defined in Table S3. 

The ‘R2’ column denotes the 10-fold cross validation accuracy of the GPR model with the associated kernel 

and hyperparameters per round and is identical to the R2 values tabulated in Table S6 and plotted in Figure 

4a. 
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S4: HC10 and MIC Label Preprocessing 

For both 10-fold cross-validation (CV) steps in the GPR workflow discussed in the main text - 

descriptor reduction with LASSO CV (see Section S2), and GPR model and hyperparameter 

selection with Gridsearch CV (see Section S3) - we implemented a ‘proportionate allocation’ 

procedure on labels (i.e., Log2(HC10) and Log2(MIC) values) in each round. The goal of 

proportionate allocation is to ensure equal distributions of label numerical values (i.e., low to high) 

in each fold used during 10-fold cross validation for all model training steps in the workflow. 

Proportionate allocation of both HC10 and MIC labels was implemented with an in-house python 

function that performed the following steps, which were also shown schematically in Figure S5: 

1. The target label (either HC10 or MIC) is appended as an additional column to a pandas 

DataFrame of all RDKit descriptors. 

2. This DataFrame is sorted from low to high values of the label column using the 

sort_values() method in pandas (sorted_df). Figure S5c shows the increasing label 

magnitude for this sorted DataFrame. 

3. The first ‘n’ rows of this sorted DataFrame (sorted_df) divisible by 10 (e.g., for initial 147 

training this would be the first 140 labels) are distributed to a new empty DataFrame 

(new_df) to proportionately allocate them across 10 folds. For instance, for 140 sequences, 

rows 1-10 in sorted_df (first 10 entries in Figure S5c) become rows 1, 15, 29, … , 113, 

127 in new_df; rows 11-20 in sorted_df become rows 2, 16, 30, …, 114, 128 in new_df, 

etc. 

4. The remaining ‘m’ rows with the highest label values not included in step 3 (e.g., last 7 

rows of sorted_df for initial 147 training) are added to the first m folds. Figure S5d 

demonstrates the final proportionately allocated 10 folds of HC10 labels of the initial 147 

training peptides. 

 

Overall, we found this proportionate allocation approach leads to consistently higher prediction 

accuracies on test folds during cross-validation (Figure S14), particularly given the introduction 

of a large number of sequences with large values of HC10 and MIC during the 6 prediction rounds 

(Figure S11-S12).  

Additionally, given the serially diluted nature of experimental assays to measure both HC10 labels 

for human red blood cells and MIC labels for Candida albicans1,2, where concentrations of peptide 

in µg/mL are doubled between measurements, we log2 scaled all HC10 and MIC labels before any 

regression steps (e.g., LASSO CV, GPR). Figure S6 shows the distributions of both HC10 and 

MIC labels both before (Figure S6a) and after (Figure S6b) implementing this log2 scaling, which 

was critical in preventing large outliers in peptide concentration for model training. 
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Figure S5. Demonstrating the proportionate allocation procedure for all cross-validation (CV) steps in the 

GPR workflow. (a) General schematic for 10-fold cross validation where training data (yellow) were used 

to fit a regression model that was then utilized to predict labels for a held-out test set (red). This procedure 

was repeated over 10 folds (i.e., unique splits of the data), where training metrics (e.g., R2, RMSE, etc.) 

were then calculated as an average across the 10 folds. (b-d) Steps involved in the implementation of the 

proportionate allocation procedure: (b) initial label values of all training peptides (blue = low value and red 

= high value), (c) sorting all labels in increasing order, (d) proportionately allocating sorted labels across 

the 10 folds for cross validation as demonstrated in (a). 
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Figure S6. HC10 and MIC label distributions for the initial 147-peptide training set based on total peptide 

counts both (a) before and (b) after Log2 scaling. 

 

S5: Test Design Space Generation and Truncation 

This section details the generation and reduction of the test sequence design space considered for 

each prediction round, starting from an initial set of 168,000 test sequences templated on either 

the ααβ backbone for prediction rounds 1 to 4 (Figure 3c) or ααβαααβ backbone for rounds 5 to 6 

(Figure 3d). As described in the ‘Iterative GPR Workflow Implementation’ Section in the main 

text, each 168,000-test sequence space introduced a large number of low and high descriptor values 

compared to values of descriptors computed for the training set (here, we refer only to values of 

descriptors from the reduced set obtained after the LASSO CV procedure detailed in Section S2). 

Therefore, to prevent potential prediction errors due to large extrapolation of descriptors values 

compared to values for the training set, we reduced the 168,000-sequence design spaces to include 

only test sequences for which each descriptor value fell within the minimum and maximum bounds 

of the values for that same descriptor in the training set (noting that the training set is updated 

before each prediction round with experimental values from the preceding round). 
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Figure S7 summarizes the range of test sequence descriptor values for the 168,000-test sequence 

space generated from the ααβ template for the 10 highest-weight descriptors kept after LASSO 

CV for prediction Round 1. Figure S8 shows similar information for the 168,000-test sequence 

space generated from the ααβαααβ template for the 10 highest-weight descriptors kept after 

LASSO CV for prediction Round 5. Values are normalized such that the minimum and maximum 

values of each descriptor computed from the training set are equal to -1 and 1, respectively. For 

both backbone templates, there are descriptors with values over 6x higher than values in the 

training set (e.g., EState_VSA5 (Figures S7b, S8b, S8c) and SMR_VSA6 (Figures S7b, S8b)), 

highlighting the importance of reducing the set of test sequences to avoid significant extrapolation. 

 

 

Figure S7. Ranges of descriptor values computed for the initial 147 training sequences (green) vs. the 

168,000 test sequences generated using the ααβ template (tan). (a) Highest-SI ααβ template sequence shown 

with red amino acids where substitutions were made. Ranges of descriptor values for the 10 highest-weight 

descriptors (based on absolute value of coefficient) kept after LASSO cross validation (see Initial column 

in Tables S1-S2) are shown for both (b) log2(HC10) and (c) log2(MIC). Descriptor values are normalized 

such that such that the minimum and maximum values of each descriptor computed from the training set 

are equal to -1 and 1, respectively. 
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Figure S8. Ranges of descriptor values computed for the 162 training sequences after prediction Round 4 

(green) vs. the 168,000 test sequences generated using the ααβαααβ template (tan). (a) Highest-SI ααβαααβ 

template sequence shown with red amino acids where substitutions were made. Ranges of descriptor values 

for the 10 highest-weight descriptors (based on absolute value of coefficient) kept after LASSO cross 

validation (see Round 5 column in Tables S1-S2) shown for both (b) log2(HC10) and (c) log2(MIC). 

Descriptor values are normalized such that such that the minimum and maximum values of each descriptor 

computed from the training set are equal to -1 and 1, respectively. 

 

The number of test sequences of the full 168,000-sequence design space for which all values of 

the reduced set of descriptors were within the training descriptor bounds (i.e., all descriptor values 

were within the green bars in Figures S7-S8) are tabulated in Table S5 for both the Log2(HC10) 

and Log2(MIC) prediction workflows; the intersection of these sequences is in the ‘Total’ column 

and represent the number of sequences that could be potentially selected for experimental synthesis 

during the GPR workflow. As discussed in the ‘Iterative GPR Model Training’ Section in the 

main text, Rounds 1-3 all had the same 14,137-test sequence space since the descriptors for 

log2(HC10) and log2(MIC) predictions remained constant across these rounds (‘Initial’ column in 

Tables S1-S2). 
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Table S5: Number of test sequences per round (out of 168,000) for which all values of the reduced set of 

descriptors were within the training descriptor bounds. Columns labeled “Log2(HC10)”, “Log2(MIC)”, 

“Total” indicate all test sequences within these bounds for the Log2(HC10) descriptors (Table S1), 

Log2(MIC) descriptors (Table S2), and the intersection of these sequences, respectively. 

Round Number Log2(HC10) Log2(MIC) Total 

1 15712 21989 14137 

2 15712 21989 14137 

3 15712 21989 14137 

4 17418 24280 17238 

5 11347 15058 10716 

6 10111 19057 8764 

 

 

S6: Training Set Backbones and Templating Considerations 

To further support the selection of the high SI template peptides to generate the test sequence 

design space (Figure 3c-d), Figure S9 shows the log2(HC10) vs. log2(MIC) distribution for training 

peptides for the αααβ and αβαβααβ backbones that were present in the training data but not used 

as templates. As demonstrated by these plots, these backbones were less practical for templating 

to discover new high SI sequences compared to the ααβ and ααβαααβ backbones. 

For the αααβ backbone (Figure S9a), there were 5 positions to consider (2 α and 3 β) amongst the 

three highest-SI peptides which would result in an initial design space of 202 x 213 or approximately 

3,700,000 test sequences, over 20 times greater the 168,000-test design space considered for each 

backbone template in the main text. Additionally, these highest-SI αααβ sequences (#059, #135, 

#018) had 3.7<SI<7.4, which was a much lower range of SI values than the ααβ backbone template 

(11.6<SI<24.1) without providing any advantage in increasing antifungal activity. 

For the αβαβααβ backbone (Figure S9b), the three potential template sequences (#053, #024, 

#023) similarly had a low SI (4<SI<7.7), and two of these sequences had relatively low antifungal 

activity against C. albicans (log2(MIC) > 5). Additionally, only three positions varied amongst 

these three sequences (1 α and 2 β) resulting in a test design space of only 8820 sequences. 

Therefore, the αβαβααβ backbone was also less promising for discovering new high SI sequences 

with our iterative GPR methodology. 
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Figure S9. Log2(HC10) vs. Log2(MIC) distributions for the (a) αααβ and (b) αβαβααβ backbone in 

the initial 147-training sequence space. Analogous to Figure 3c-d, orange dots represent the three 

highest-SI peptides for each backbone with residue positions that vary amongst these three 

peptides highlighted in the sequence at the top. Remaining sequences are shown as blue dots. SI 

bands with values of 10, 20, and 30 are shown as grey lines. 

 

Figure S10 shows the experimental Log2HC10 vs. Log2MIC distribution of all 147 AMPs used in 

the initial training set in this study (combining information from Figure 3c-d and Figure S9). 

Points are colored coded by each of the 4 backbone types – ααβ = blue, αααβ = orange, ααβαααβ 

= green, αβαβααβ = red. In general, AMPs across the different backbone types follow similar 

Log2HC10 value ranges at each Log2MIC value where large amounts of experimental data are 

available (2 < Log2MIC < 5), suggesting that there is not a direct structure-activity relationship for 

predicting SI based on backbone type alone. Additionally, this plot highlights that there is a 

significant increase in AMP hemolytic potential relative to antimicrobial activity (large decrease 

in SI) as AMPs reach low Log2MIC values (e.g., Log2MIC = 2). Few AMPs display SI > 10 

(ααβαααβ at Log2MIC = 4, ααβ at Log2MIC = 5-6), and this supports the selection of initial high-

SI templates across these 2 backbone types for mid-range Log2MIC experimental values in our 

study to further increase AMP selectivity over iterative GPR rounds (more discussion in the 

‘Properties of Training Sequences and Design Space Generation’ Section in the main text). 
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Figure S10. Log2(HC10) vs. Log2(MIC) distribution of all 147 initial training set peptides used in 

this study colored coded by backbone type – ααβ = blue, αααβ = orange, ααβαααβ = green, 

αβαβααβ = red. Grey lines indicate constant SI values equal to 10, 20, and 30. All points are 

plotted for constant Log2(MIC) values in the range [2,8] and are slightly offset around each 

Log2(MIC) value for visualization purposes. 

 

S7: Model Prediction Metrics and Robustness Checks 

Parity plots for all prediction rounds are shown in Figure S11 for log2(HC10) predictions and 

Figure S12 for log2(MIC) predictions to support the evolution of the GPR model accuracy (R2) in 

Figure 4a in the main text. Matching the visualization in Figures 4b-c, the initial 147 training 

sequences are shown as open blue circles and newly discovered sequences are shown as red 

triangles, and the R2 per round is labelled in the bottom right corner of each plot. These R2 values 

are the same as the black lines in Figure 4a. All points are plotted as the test set prediction from 

10-fold cross validation on proportionately allocated labels, and therefore the blue circle vs. red 

triangle distinction is for visualization only to demonstrate the addition of peptides with high 

log2(HC10) and log2(MIC) values to the training set as iteration proceeds. 

Additionally, the large underprediction of test sequence 2-4 is shown as a circled red triangle in 

the Round 3 plot for both the log2(HC10) and log2(MIC) workflows in Figures S11 and S12 

respectively, which leads to the large increase in Maximum Error in the main text (red lines in 
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Figure 4a). This observation motivated the choice to update the set of descriptors with LASSO 

CV each round starting with Round 4 (as described in Section S2) which leads to better predictions 

for sequences with large log2(HC10) and log2(MIC) values (and therefore lower maximum errors), 

as supported by the reorganization of the most important descriptors kept with the LASSO model 

that better describe new amino acids and motifs (Tables S1-S2). 

 

 

Figure S11. Parity plots for predicted Log2(HC10) values versus experimentally measured (actual) 

Log2(HC10) values for all rounds of model training. Open blue circles denote the initial 147 training 

sequences while red solid triangles denote new sequences discovered during the iterative GPR workflow. 

Points report test set predictions from 10-fold cross-validation (i.e., predictions for when the corresponding 

sequence is in the test set and hence not used for model training). Coefficient of determination (R2) values 

are also listed in each plot which match the solid black line in Figure 4a. Sequence 2-4 is circled in black 

in the parity plot for Round 3. The Round 6 parity plot is the same as Figure 4b in the main text. 
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Figure S12. Parity plots for predicted Log2(MIC) values versus experimentally measured (actual) 

Log2(MIC) values for all rounds of model training. Open blue circles denote the initial 147 training 

sequences while red solid triangles denote new sequences discovered during the iterative GPR workflow. 

Points report test set predictions from 10-fold cross-validation (i.e., predictions for when the corresponding 

sequence is in the test set and hence not used for model training). Coefficient of determination (R2) values 

are also provided in each plot which match the dashed black line in Figure 4a. Sequence 2-4 is circled in 

black in the parity plot for Round 3. Round 6 parity plot is the same as Figure 4c in the main text. 

 

Additionally, the following prediction metrics per round are tabulated in Table S6 for both 

log2(HC10) and log2(MIC) predictions: R2 (also shown as black lines in Figure 4a), root mean 

squared error (RMSE), Pearson’s r, and Maximum Error (also shown as red lines in Figure 4a). 

All metrics were calculated with 10-fold cross validation on proportionately allocated folds. 
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Table S6. Various model metrics across 6 rounds of GPR training for both the HC10 and MIC label 

prediction workflows: R2 (coefficient of determination), RMSE (root mean squared error), Pearson’s r 

(linear correlation coefficient), and Max. Error (maximum residual error). 

  Prediction Round 
 

Metric  1 2 3 4 5 6 

        

R2 
Log2(HC10) 0.851 0.863 0.847 0.866 0.880 0.865 

Log2(MIC) 0.655 0.791 0.697 0.785 0.805 0.743 

        

RMSE 
Log2(HC10) 0.830 0.859 0.956 0.897 0.916 1.014 

Log2(MIC) 0.640 0.556 0.718 0.630 0.658 0.803 

        

Pearson’s r 
Log2(HC10) 0.924 0.931 0.922 0.930 0.938 0.930 

Log2(MIC) 0.813 0.891 0.839 0.886 0.898 0.863 

        

Max. 

Error 

Log2(HC10) 2.698 2.790 5.921 3.016 3.133 4.065 

Log2(MIC) 3.108 2.002 4.165 1.847 1.950 3.608 

        

 

 

Figure S13 visualizes the prediction RMSE per round of newly discovered AMPs across the 6 

prediction rounds (‘Actual’ vs ‘Predicted’ columns in Figure 5a). This figure captures several key 

changes and observations in the iterative workflow, including: 

(1) The decrease in prediction RMSE from Rounds 1-3 using the same descriptor set 

(Table S5), illustrating model improvement. 

(2) The increase in RMSE for Rounds 4 and 5 due to updating the set of descriptors based 

on LASSO CV (in Round 4) and switching from the ααβ to ααβαααβ backbone (in 

Round 5). 

(3) The expected minimum value of the RMSE observed for Round 6, which results from 

the selection of test sequences with low uncertainty (low predicted standard deviation) 

compared to earlier rounds. 
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Figure S13. Prediction RMSE per prediction round for the iterative GPR workflow for both Log2HC10 

(black) and Log2MIC (red) predictions. RMSE values are calculated based on the difference between 

experimentally measured (‘Act.’) and GPR predicted (‘Pred.’) values in Figure 5a. 

 

As discussed in the ‘Iterative GPR Model Training’ Section in the main text, we conducted a 

set of additional robustness checks on the GPR model to ensure maximum accuracy on new test 

sequence predictions. 

First, we compared the 10-fold CV R2 per round with and without the proportionate allocation 

procedure discussed in Section S4 to validate that this methodology leads to consistently better 

model accuracy compared to a random allocation of training labels based on the order they appear 

in the training set (example for initial 147 training for prediction Round 1 in Figure S5b) as is 

implemented with the KFold() module in sklearn. These results are plotted per round for both the 

proportionately allocated model used in the main text (solid lines) and the random allocation 

robustness check (dashed lines) in Figure S14. For consistency with the methodology in the main 

text, the robustness check also applied the random allocation for descriptor selection for LASSO 

CV (see Section S2). Notably, log2(MIC) predictions were more heavily impacted by the 

differences in these procedures, and model accuracy even decreases to below R2 = 0.4 in Rounds 

5 to 6. 
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Figure S14. Model performance (average R2 across 10-fold CV) comparing effect of proportionate 

allocation (prop. alloc.) of labels per round (see Section S4). log2(HC10) values are black and log2(MIC) 
values are orange. Solid lines are the same as in main text (Figure 4a) where labels are proportionately 

allocated (low to high magnitude) to each of the 10 folds before CV. Dashed lines indicate random 

allocation based on the order in which labels appear in training set. 

 

An additional robustness check was to compare the procedure used in the main text, in which the 

GPR kernel and hyperparameters are updated each round (Section S3), to predictions obtained if 

the kernel and hyperparameters were instead kept consistent across all rounds. For this robustness 

check, models were trained using the Exponentiated Sine Squared(l=0.1, p=100) model with κ=0.1 

for log2(HC10) predictions and Rational Quadratic(l=100, α=0.1) with κ=0.1 for log2(MIC) 

predictions for all 6 rounds since these were the kernel and hyperparameters selected for Round 1. 

Labels are proportionately allocated, and therefore the same descriptors were used for both the 

original methodology and this robustness check. 

Figure S15 shows selecting optimal GPR model parameters each round (solid lines) led to a 

marginal increase or no change in R2 compared to if the kernel and hyperparameters were kept 



S27 

 

constant for Rounds 1 to 3. This result can be attributed to the consistent set of 20 descriptors for 

log2(HC10) and 13 descriptors for log2(MIC) that were used for these rounds (Tables S1-S2) which 

also led to small changes in the GPR model parameters when updated each round (Table S4). 

However, there was a large decrease in R2 if GPR parameters were kept constant for Round 4 

onwards, particularly for log2(MIC) for which the GPR model lost all predictive capability for 

Rounds 5 and 6 (dashed orange curve). We attribute this behavior to the updated set of descriptors 

associated with these rounds. Table S4 shows that the Dot Product kernel better predicted 

log2(HC10) and log2(MIC) labels once the number of descriptors increased. Therefore, Figure S15 

highlights the importance of the GridSearch CV procedure to maximize model accuracy each 

round after the set of descriptors is updated with LASSO CV. 

 

Figure S15. Model performance (average R2 across 10-fold CV with proportionate allocation) comparing 

the effect of updating GPR kernel and hyperparameters for each prediction round. Solid lines are the same 

as in the main text (Figure 4a). Dashed lines indicate model predictions if the GPR kernel and 

hyperparameters are kept constant from Round 1 onwards. 

Finally, we implemented a y-randomization procedure7, 8 to check that GPR predictions were not 

the result of chance. In this approach, we compared distributions in the GPR model RMSE 

(computed as the average 10-fold CV RMSE) over 100 trials in which models were trained using 
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labels for both log2(HC10) and log2(MIC) that were randomly shuffled and proportionately 

allocated. The average RMSE across the 100 randomized trials is plotted as a red bar for each trial 

in Figure S16, and the minimum RMSE for these 100 trials is denoted as a horizontal dashed line 

with a caption. For reference, the average 10-fold RMSE for the model used in the main text is 

shown as green bars, and these values are also provided in the RMSE row in Table S6. These 

results demonstrate that the trained GPR model used for test sequence predictions (green bar) not 

only has a lower RMSE than the average randomized RMSE (red bar) but also the minimum RMSE 

across the 100 randomized trials (horizontal dashed line on red bar), thereby validating the 

robustness and accuracy of our GPR approach. 

 

 

Figure S16. Testing model robustness per prediction round with y-randomization. The actual RMSE for 

each round based on GPR predictions for models trained using correct labels is shown in green. The average 

RMSE computed for 100 trials in which GPR models were trained using labels that were randomly shuffled 

before calculating RMSE in red. Comparisons are made for (a) Log2(HC10) and (b) Log2(MIC) labels. The 

actual RMSE and the minimum RMSE of the 100 trials for Randomized RMSE are labelled in bold for 

each round. 

S8: Test Predictions and Uncertainty Analysis 

To support discussion in the ‘GPR Guides the Discovery of α/β-peptide Sequences with Novel 

Amino Acids and Motifs’ Section in the main text, we utilized the constant 14,137-sequence test 
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design space from Rounds 1 to 3 (‘Total’ column in Table S5) to probe if GPR model predictions 

for an amino acid that is newly introduced in a prediction round improve in future prediction 

rounds (based on decreases in the normalized standard deviation; NSD). Figure S17 shows bar 

and whisker plots of NSDs for all sequences that contain at least 1 instance of newly introduced 

amino acids from Rounds 1 to 3 (Nle, Q, Nva, βY, W) for both the log2(HC10) and log2(MIC) 

prediction workflows. The sequences that introduce new amino acids relative to the initial 147-

training set are labeled in blue to indicate the round in which they are introduced. Rounds 1-3 are 

shown as well as an additional hypothetical 4th round (labeled as ‘4*’) in which descriptors are 

kept the same as rounds 1-3 to maintain the same 14,137-sequence space for direct comparison of 

impacts on the NSD distribution for new amino acids introduced in Round 3 (Nva, βY, W). 

Additionally, the plot shows Round 4 considered in the main text (labeled as ‘4’) in which 

descriptors are updated via LASSO CV (Tables S1-S2). NSD distributions for Round 4 are 

included to analyze the impact of updating descriptors on NSD distributions, although the test 

sequence spaces vary slightly between Rounds 1-3 (14,137) and Round 4 (17,238) as shown in 

Table S5 because of this descriptor update.  

The NSD distributions for newly introduced amino acids in Rounds 1-3 have the following trends 

for  log2(HC10) predictions: 

(1) Nle does not exhibit a strong increase or decrease in the NSD distribution as Nle-

containing sequences are reintroduced across the rounds. This is most likely attributed 

to the large number of sequences in the initial 147-sequence training set containing Ala 

and Abu (Figure 3b), which are chemically similar to Nle. 

(2) Q, βY, and W exhibit a sharp decrease in the mean and median NSD as well as a 

widening of the NSD distribution towards lower NSD values. 

(3) Nva (Figure S17c) followed very similar trends to Nle (Figure S17a) due to 

similarities in chemical structure as discussed in the main text. 

Conversely, for log2(MIC) distributions, a consistent decrease in the NSD distribution generally 

resulted from the updated set of descriptors in Round 4, further supporting the need to use an 

increased number of descriptors (see Table S2) after Round 3 to more accurately describe newly 

introduced amino acids. 
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Figure S17. Normalized standard deviation (NSD) distributions for all test sequences containing at least 1 

of the amino acids newly introduced in Rounds 1-3 (see Figure 5a): (a) Nle, (b) Q, (c) Nva, (d) βY, and (e) 

W. Distributions for log2(HC10) and log2(MIC) predictions are plotted in black and red, respectively. 

Rounds 1-4 are plotted as well as a hypothetical Round 4 (4*) in which the set of descriptors was the same 

as Rounds 1-3 for direct comparison of NSD distributions for the same 14,137 test sequences (see Table 

S5). Mean NSD is plotted as a solid square with horizontal lines indicating the 10th, 25th, 50th, 75th, and 90th 

percentiles. Rounds in which sequences with new amino acids are introduced into the training data are 

labeled in blue (with labels corresponding to the labels in Figure 5a). 
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Figure S18 shows GPR predictions for the entire test sequence design space considered per round 

(from Round 1 in Figure S18a to Round 6 in Figure S18f), with all predicted Log2(HC10) and 

Log2(MIC) values shown as red crosses. Predicted Log2(HC10) and Log2(MIC) values for test 

sequences that were chosen for experimental synthesis are indicated by yellow points (‘Pred’ 

columns in Figure 5a) with corresponding experimentally determined values indicated by green 

points (‘Act’ columns in Figure 5a). For each Log2(HC10) vs. Log2(MIC) plot, the corresponding 

standard deviation ranges for test sequence predictions are shown as blue-green histograms at right. 

Yellow points above these histograms indicate the standard deviations for the sequences selected 

for experimental synthesis. 

Figure S18 shows that, in general, test sequences with low standard deviations that were selected 

for experimental synthesis led to more accurate model predictions based on proximity to the 

corresponding green point. In general, overall model accuracy increased (leading to a general 

decrease in distance between yellow predictions and green measured values) as the criteria for 

selecting test sequences shifted from probing new amino acids and low certainty (high standard 

deviation) test sequences in early rounds to selecting high certainty (low standard deviation), high 

selectivity (large SI) test sequences in later rounds. 
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Figure S18. GPR predictions for the entire test sequence design space and corresponding standard deviation 

ranges per round from (a) Round 1 to (f) Round 6. Red crosses indicate predictions for test sequences, blue 

circles indicate values for the training set, yellow points indicate predicted values for sequences selected 

for experimental evaluation (‘Pred.’ column in Figure 5a), and green points indicate corresponding 

experimentally determined values for the selected sequences (‘Act.’ column in Figure 5a). SI bands of 10, 

20, 30, 40, and 50 are grey lines. The standard deviation range of all test sequences (red crosses) are plotted 

as blue-green histograms on the right. Standard deviations for test sequences selected for experimental 

evaluation are also labeled in yellow with arrows indicating their locations in the histograms. 
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S9: Descriptor Importance with Shapley Analysis 

To better understand the molecular descriptors that contribute most to model predictions, we 

conducted additional descriptor importance analysis on Round 6 results through the calculation of 

Shapley values. The Shapley value calculated for each peptide descriptor value quantifies its 

relative impact on overall GPR model predictions (either Log2(HC10)) or Log2(MIC)): positive 

Shapley values indicate that the descriptor pushes model predictions to higher values while 

negative Shapley values indicate that the descriptor pushes model prediction to lower values.9 To 

quantify the most impactful descriptors for both Log2(HC10)) or Log2(MIC) predictions, we 

provide beeswarm plots in Figure S19 of the top 10 descriptors in decreasing order of the mean 

absolute Shapley value across all peptides (y-axis) and corresponding Shapley values for all 

peptide descriptor values (x-axis) as points on these plots. By color coding each of these points by 

the relative descriptor values (low descriptor values in blue and high descriptor values in red) we 

can additionally visualize if increases in descriptor values are directly or inversely correlated to 

their Shapley values. For instance, the descriptor that contributes most to Log2(HC10) predictions 

is ‘Chi4n’, and an increase in descriptor value with decreasing Shapley value indicates that peptide 

sequences with large Chi4n will tend to be predicted with low Log2(HC10). 

 

Figure S19: Beeswarm plots visualizing the top 10 most impactful descriptors for round 6 predictions for 

HC10 (left) and MIC (right) experimental labels. Descriptors are ordered by decreasing mean absolute 

Shapley value in each plot. Each point represents a unique peptide in the training set and is color coded by 

relative descriptor value to the full training set (blue = low, red = high). 

 

As shown in these plots, the most impactful descriptors for HC10 and MIC predictions are: 

• Chi4n: This metric quantifies the complexity of higher order connectivities in heavy atom 

molecular graph representations4 of peptide sequences (for example the presence of rings 

or branched sidechains compared to linear segments). 

• PEOE_VSA6/8: These metrics quantify van der Waals surface area (VSA) atomic 

contributions normalized by atomic partial charge (PEOE).2 
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• VSA_EState2: This metric quantifies ‘Electrotopological-State’ (EState) indices3 that 

encode electronic atomic contributions of the peptide normalized by its VSA. 

While these descriptors provide some qualitative insight into what appears important in model 

predictions, they overall lack physical interpretability (reference discussion in Section S2) and 

have no clear relation to either hydrophobicity or helical flexibility. Hydrophobicity is most 

closely related to ‘MolLogP’ (octanol-water partition coefficient) descriptor which is not kept 

during LASSO CV for model predictions for any round (Table S1-S2) and is therefore not 

included in this Shapley analysis. Moreover, we expect the overall hydrophobicity of the entire 

sequence to be a complex function of sequence descriptors that may not be clearly related to a 

single descriptor.10, 11 Helical flexibility is not captured by RDKit since SMILES strings only 

encode the 2D connectivity, branching, etc. of input AMP sequences.1 

 

Experimental evaluation and characterization 

S10: Experimental methods 

Peptide synthesis. Peptides were synthesized via microwave-assisted Fmoc solid-phase peptide 

synthesis on a TentaGel S RAM resin (20-40 μmol scale) as reported previously.12-14 Briefly, 

solutions of Fmoc-α-amino acid or Fmoc-β-amino acid, coupling reagent (HATU), and base 

(DIPEA) in DMF were mixed before coupling. Microwave (CEM Discover) irradiation methods 

were used for coupling of Fmoc amino acids (600 W maximum power, 70 °C, ramp 2 min, hold 8 

min) and deprotection of Fmoc (600 W maximum power, 80 °C, ramp 2 min, hold 4 min). After 

each coupling and deprotection step, the resin was thoroughly washed with DMF and CH2Cl2. If 

sequences did not contain tryptophan or methionine, the peptide was cleaved from the resin by 

TFA containing 2% H2O and 2% triisopropylsilane, while peptides with methionine or tryptophan 

were cleaved using TFA containing 5% H2O, 5% thioanisole, and 2.5% 1,2-ethanethiol for 1 to 2 

h. The crude product was purified by preparative RP-HPLC with a gradient of 25%–73% CH3CN 

in water containing 0.1% TFA. Electrospray ionization (ESI) mass spectrometry (Thermo Q 

Exactive Plus with quadrupole ion trap or Bruker impact II) was used to determine α- and α/β-

peptide masses. The calculated and measured peptide masses from ESI mass spectrometry are 

shown in Table S7 (newly discovered peptides) and Section A1 (previously unreported peptides). 

Full ESI mass spectra for newly discovered peptides are provided in Section A2. The determined 

purity of peptides was over 95% by subsequent analytical RP-HPLC analysis (representative 

curves shown in Figure S20, and full HPLC curves are provided in Sections A1 and A2). 

 

Antifungal minimum inhibitory concentration (MIC) characterization. Antifungal MIC 

assays were conducted as previously described.12, 13 Candida spp. cells were streaked on a yeast 

peptone dextrose (YPD) agar plate from a frozen stock solution and grown overnight at 30 °C. For 

each assay, a colony was collected from the YPD plate and grown overnight in autoclaved test 

tubes at 30 °C with shaking in liquid YPD broth and cells were then washed, resuspended, and 

prepared for subsequent experiments. The antifungal activities of the compounds were determined 

in 96-well plates according to planktonic broth microdilution susceptibility testing assay guidelines 

provided by the Clinical and Laboratory Standards Institute. The assay was modified to include a 

quantitative XTT assessment of cell viability. From DMSO stock solutions of peptides, two-fold 
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serial dilutions (100 μL) of compounds (resulting in a total of 2% DMSO at the highest 

concentration tested) in RPMI (pH adjusted to 7.4 with MOPS) were mixed with 100 μL of fungal 

cell suspension (grown for 24 h at 30 °C and concentration adjusted to 5 × 103 cells/mL) and the 

plates were incubated at 37 °C for 48 h. Wells lacking compound (cell controls) and wells lacking 

both compounds and cells (medium sterility controls) were included in every plate. After 48 h, 100 

μL of XTT solution (0.5 g L−1 in DPBS, pH 7.4, containing 3 μM menadione in acetone) was 

added to all wells, and plates were incubated at 37 °C in the dark for 1.5 hours and absorbance 

measurements at 490 nm were recorded using a plate reader (Tecan Infinite M200 PRO, Tecan 

Life Sciences, Inc). Cell viability was plotted as a function of compound concentration. Percent 

cell viability was calculated by the below equation, where A490, A490
cell control, and A490

background
 are 

the average absorbance values of the supernatant (at 490 nm) from wells containing a specific 

concentration of compound, wells with positive cell control, and medium sterility control wells, 

respectively.  

cell viability (%) =
(A490 − A490

background
)

A490
cell control − A490

background
× 100 

Experiments were performed in a minimum of two technical replicates per concentration and 

repeated in at least three independent experiments. After averaging, the lowest assayed 

concentration of compound that resulted in a decrease in normalized absorbance of at least 90% 

of the mean was taken as the minimum inhibitory concentration (MIC) of that compound. For 

determination of smaller-interval MIC of a selected panel of peptides, the assay was modified to 

test peptides in intervals of 5 μg/mL. Briefly, starting from a DMSO stock, peptides were prepared 

as 0.2 mg/mL in RPMI with <1% total DMSO concentration. Then peptides were further diluted 

in intervals of 10 μg/mL in a 96-well plate with a total volume of 100 uL in each well. Then 100uL 

RPMI solution containing 5 × 103 cells/mL were added in each well to obtain 5 μg/mL intervals. 

The average cell viability curves of all fungal strains for each peptide are shown in Section S12 

and S14. For all experiments, DMSO vehicle controls were added as comparisons to ensure that 

DMSO concentrations used did not affect cell viability. 

 

Hemolysis assay. Hemolysis assays were performed as previously described.12-15 Human red 

blood cells (RBCs) were washed three times with tris-buffered saline (TBS, 10 mM Tris-HCl, 100 

mM NaCl, pH 7.5), and then diluted 50-fold in TBS to obtain 2% RBCs relative to total RBCs in 

whole blood. Two-fold serial dilutions (50 μL) of peptides prepared in TBS were mixed with 50 

μL of a 2% RBC suspension in a 96-well plate and then incubated at 37 °C for 1 h. Melittin served 

as a positive lysis control and TBS was used as a negative lysis control. Plates were then 

centrifuged at 3000 rpm for 5 min, 75 μL of the supernatant was transferred into a fresh plate, and 

absorbance was measured at 405 nm using a plate reader. The percent hemolysis was calculated 

as:  

𝐻𝑒𝑚𝑜𝑙𝑦𝑠𝑖𝑠 (%) = 
𝐴405− 𝐴405

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙

𝐴405
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙

− 𝐴405
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 × 100 

where 𝐴405, 𝐴405 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙, and 𝐴405 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 are the average absorbance values at 405 nm 

of the supernatant of RBCs treated with peptides, RBCs in TBS lacking peptides, and melittin 

treated RBCs, respectively. Experiments were performed in duplicate and repeated on at least three 
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different days. The concentration of peptide at which 10% hemolysis occurred (HC10) was 

calculated for each experiment and arithmetic averages of HC10 values were calculated and 

reported as shown in Section S12. For curve fitting and determination of HC10, a “neutcurve” 

package in Python 3 was used, which was written and distributed by the Bloom Lab at the Fred 

Hutch Cancer Center (https://github.com/jbloomlab/neutcurve).  

 

Antibacterial MIC assays. Bacterial cells were streaked from frozen stocks in a similar fashion 

to fungal cells, but on trypsin-soy agar plates. The antibacterial activities of peptides were 

determined in 96-well plates according to the planktonic broth microdilution susceptibility testing 

assay guidelines provided by the Clinical and Laboratory Standards Institute. The assay was 

modified to include a quantitative XTT assessment of cell viability. From DMSO stock solutions 

of peptides, two-fold serial dilutions (100 μL) of compounds (resulting in a total of 2% DMSO at 

the highest concentration tested) in Mueller-Hinton Broth were mixed with 100 μL of bacterial 

cell suspension (grown for 24 h at 37 °C and concentration adjusted to 1 × 106 cells/mL based on 

solution optical density at 600 nm), and the plates were incubated at 37 °C for 24 h. Wells lacking 

compound (cell controls) and wells lacking both compounds and cells (medium sterility controls) 

were included in every plate. After 24 hours, 100 μL of XTT solution was added in the same 

manner as for antifungal MIC assays described above and the MIC was determined based on 90% 

reduction of normalized absorbance, consistent with the antifungal assays. The average cell 

viability curves for each peptide are shown in Section S14. DMSO vehicle controls were added as 

comparisons to ensure that DMSO concentrations used did not affect cell viability. 

 

Characterization of hydrophobicity of α- and α/β-peptides. The hydrophobicity of α- and α/β-

peptides was measured as described previously.12, 13, 15 Briefly, retention times of peptides in 

analytical RP-HPLC using a C18 column (Waters, XBridge) were recorded by dissolving peptides 

to a concentration of 0.5 to 1 mg/mL in deionized H2O containing 20 – 30% ACN and 0.1% TFA 

and then 50 µL of the peptide solution was injected into the HPLC. Retention time was quantified 

in triplicate with a gradient of 20-80% CH3CN in water containing 0.1% TFA over 5-35 min.   

 

Helicity and helical rigidity of α- and α/β-peptides. Stock solutions (0.2 mg/mL) in deionized 

water were prepared, aliquoted, and then lyophilized to obtain the desired amounts of peptides. 

Peptides were then dissolved in either trifluoroethanol (TFE) or 15% TFE in deionized water to 

yield a final peptide concentration of 0.1 mM. The 15% TFE concentration condition was used as 

a substitute to a fully aqueous solvent to obtain quantifiable differences in helicity with changes in 

sequence due to the inherently low helicity of lead compounds. Circular dichroism (CD) was 

measured in triplicate using a JASCO-1500 Circular Dichroism Spectrophotometer at 25 °C with 

a 1 mm path length cell and 4 second digital integration times. We used the CD minimum at 222 

nm to estimate the α-helicity of α-peptides and the CD minimum at 206 nm to estimate the helicity 

of α/β-peptides at 206 nm. In each case, the intensity of the CD minimum measured in pure 

trifluoroethanol, which increases or saturates oligopeptide hydrophobicity, was used to estimate 

the signature for the maximum helicity achievable by the peptide. Results are shown in Section 

S13. The estimated relative percent helical rigidity was calculated using the following equation: 
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For α-peptides: 

Helical rigidity (%) = 
[𝜃]15% 𝑡𝑟𝑖𝑓𝑙𝑢𝑜𝑟𝑜𝑒𝑡ℎ𝑎𝑛𝑜𝑙

222𝑛𝑚

[𝜃]𝑡𝑟𝑖𝑓𝑙𝑢𝑜𝑟𝑜𝑒𝑡ℎ𝑎𝑛𝑜𝑙
222𝑛𝑚 × 100 

For α/β peptides: 

Helical rigidity (%) = 
[𝜃]15% 𝑡𝑟𝑖𝑓𝑙𝑢𝑜𝑟𝑜𝑒𝑡ℎ𝑎𝑛𝑜𝑙

206𝑛𝑚

[𝜃]𝑡𝑟𝑖𝑓𝑙𝑢𝑜𝑟𝑜𝑒𝑡ℎ𝑎𝑛𝑜𝑙
206𝑛𝑚 × 100 

 

Statistical analysis. Statistical analysis to compare the molar ellipticities of top-SI test peptides 

with averages of those of their corresponding backbone templates were performed using Graphpad 

Prism 10 (version 10.2.3 for Windows, GraphPad Software, San Diego, California, USA). One-

way analysis of variance (ANOVA) followed by post-hoc Tukey’s test was used after normality 

testing of sample data.  Results were considered statistically significant at p < 0.05.  
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S11: Peptide mass and purity information 

 

Table S7 – Mass spectrometry data for all new test set α/β-peptides introduced through iterative 

GPR. Ionized mass spec data was obtained from multiple mass spec equipment (Bruker Impact II 

or Q Exactive Plus Orbitrap) and measured masses at different ionization states were converted to 

full mass values. Mass spectra are provided in Section A2. 
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Figure S20. Representative analytical RP-HPLC profiles used to quantify the purity of α/β-aurein 

analogues. RP-HPLC traces of the highest selectivity α/β-peptides (a) 6-4, (b) 5-4, (c) 6-1, (d) 6-

3, (e) 4-1, and (f) aurein 1.2-NH2 are shown. All peptides reported in the study were > 95% pure. 

Full HPLC curve data included in Section A2.  

  



S42 

 

S12: Experimental evaluation of C. albicans MIC assays and hemolysis  
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Figure S21. MIC curves for C. albicans cells over 6 iterative rounds. Fungal cells (5×103 cells/mL) 

were incubated with compounds for 48 h and susceptibility was assessed using an XTT reduction 

assay to compare the absorbance at 490 nm for compound-treated samples and untreated samples. 

Data points are the average of at least three independent experiments with two technical duplicates 

each or more and error bars represent the standard deviation. Round 1 involved two independent 

experiments instead.  
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Figure S22. Hemolysis curves of peptides. Peptides were incubated with human RBCs for 1 h, 

and the absorbance of the supernatant was measured at 405 nm and normalized to melittin-treated 

RBCs, corresponding to 100% hemolysis. Data points are the average of at least three independent 

experiments with two technical replicates each or more and error bars represent the standard 

deviation. Round 1 involved two independent experiments instead. HC10 values were determined 

using a Hill function calculation package in Python (Neutcurve, Bloom Lab)16 for each 

experimental curve and the geometric mean was used for the average. 
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S13: Helicity characterization 

 

Figure S23. Circular dichroism spectra of high-SI peptides in comparison to aurein 1.2. CD spectra 

are shown in 15% (red) and 100% trifluoroethanol (black). The molar ellipticity values in each 

solvent system at 206 nm (α/β-peptides) or 222 nm (α-peptides) were quantified in each solvent 

system. Data was collected in triplicate and repeated in three independent experiments.   
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Figure S24. Circular dichroism spectra of training set peptides in 15% (red) and 100% 

trifluoroethanol (black). The molar ellipticity values in each solvent system at 206 nm (α/β-

peptides) or 222 nm (α-peptides) were quantified in each solvent system. Data was collected in 

triplicate and repeated in three independent experiments.  
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Figure S25. Comparison of molar ellipticities of top SI peptides with averages of those of 

corresponding templates. “Averaged” denotes the average of template peptides (ααβ: #241, 239, 

231; ααβαααβ: #133, 131, 29) in (a) 15% TFE and (b) 100% TFE. Error bars represent standard 

deviations of three or more independent experiments, with each done in triplicate. Statistical 

analysis was conducted by one-way ANOVA with Tukey’s multiple comparisons test. Statistical 

significance is represented as asterisks (*; p < 0.05) or ‘not significant’ (‘ns’; p > 0.05).  
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S14: MIC assays against other microbial cells and smaller-interval C. albicans 

MIC 

 

Figure S26. Broad-spectrum MIC curves against (a) C. albicans, (b) C. tropicalis, (c) C. 

parapsilosis, (d) C. glabrata, (e) S. aureus, and (f) E. coli. Fungal cell (5×103 cells/mL) and 

bacterial cell (1×106 cells/mL) solutions were incubated with 1:1 volume of compounds for 48 h 

and 24 h, respectively. Susceptibility was assessed using an XTT reduction assay to compare the 

absorbance at 490 nm according to CLSI MIC guidelines. Data points are the average of at least 

three independent experiments with two technical duplicates each and error bars represent the 

standard deviation.  
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Table S8. Antifungal and antibacterial activity of lead peptides. MIC values are the lowest assayed 

concentration of compound that resulted in a decrease in normalized absorbance of at least 90% 

of the mean. C.a. = C. albicans; C. t. = C. tropicalis; C. p. = C. parapsilosis; C. g. = C. glabrata; 

S. a. = S. aureus; E. c. = E. coli 

 

 

Table S9. Selectivity indices of lead peptides. SI values are calculated as the ratio of hemolysis 

over the antimicrobial activity (HC10 / MIC). The hemolysis values used are reported (as log2HC10) 

in Figure 5a. C.a. = C. albicans; C. t. = C. tropicalis; C. p. = C. parapsilosis; C. g. = C. glabrata; 

S. a. = S. aureus; E. c. = E. coli 

 

 



S49 

 

 

Figure S27. Smaller-interval (a) MIC (sMIC) and SI (sSI) values and (b) cell viability curves for 

C. albicans cells using peptides generated over 6 iterative rounds. Fungal cells (5×103 cells/mL) 

were incubated with compounds for 48 h and susceptibility was assessed using an XTT reduction 

assay to compare the absorbance at 490 nm for compound-treated samples and untreated samples. 

(a) “SI” indicates C. albicans selectivity over hemolysis (MIC/HC10). (b) Data points are the 

average of at least three independent experiments with three technical duplicates each and error 

bars represent the standard deviation.  
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Appendix 

A1. Training set peptide purity and activity data  

 

Figure S28. Analytical RP-HPLC profiles to measure retention time and purity of newly reported 

α/β-aurein 1.2 analogues in the training set.  
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Table S10. Mass spectrometry data for the subset of training set α/β-peptides that was newly 

introduced in this study and not previously characterized. Ionized mass spec data was obtained 

from multiple mass spec equipment (Bruker Impact II or Q Exactive Plus Orbitrap) and measured 

masses at different ionization states were converted to full mass values. 

 

 

 

 

 

Round Idx MW. Calc MW. Found # of ionization 
Total mass 

found 

Training 

#116 524.6681 524.6675 [M+3H]+3 1571.989 

#117 524.6681 524.6681 [M+3H]+3 1571.989 

#117_G1Kp6 822.0352 822.0324 [M+2H]+2 1643.057 

#118 407.7560 407.7560 [M+4H]+4 1628.001 

#118_G1Kp6 850.0414 850.0389 [M+2H]+2 1699.070 

#139 786.4985 786.5024 [M+2H]+2 1571.997 

#139_G1Kp6 822.0352 822.0387 [M+2H]+2 1643.070 

#152 790.5298 790.5280 [M+2H]+2 1580.048 

#153 826.0665 826.0649 [M+2H]+2 1651.122 

#154 818.5359 818.5336 [M+2H]+2 1636.059 

#155 569.7175 569.7167 [M+3H]+3 1707.137 

#163 539.0239 539.0239 [M+3H]+3 1615.056 

#164 548.3676 548.3678 [M+3H]+3 1643.087 

#165 546.3833 546.3837 [M+3H]+3 1637.134 

#166 541.7114 541.7116 [M+3H]+3 1623.119 
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Figure S29. C. albicans MIC curves for the subset of training set α/β-peptides that was newly 

introduced in this study and not previously characterized. Fungal cells (5×103 cells/mL) were 

incubated with compounds for 48 h and susceptibility was assessed using an XTT reduction assay 

to compare the absorbance at 490 nm for compound-treated samples and untreated samples. Data 

points are the average of three independent experiments with three technical replicates each and 

error bars represent the standard deviation. 
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Figure S30. Hemolysis curves for the subset of training set α/β-peptides that was newly introduced 

in this study and not previously characterized. Peptides were incubated with human RBCs for 1 h, 

and the absorbance of the supernatant was measured at 405 nm and normalized to melittin-treated 

RBCs, corresponding to 100% hemolysis. Data points are the average of at least three independent 

experiments with two technical replicates each or more and error bars represent the standard 

deviation. 
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A2. Newly discovered peptide mass spectra and RP-HPLC curves 

 

Figure S31. ESI+ mass spectra and analytical RP-HPLC profiles for each newly discovered 

peptide in round 1. (a) Peptide 1-1, (b) Peptide 1-2, (c) Peptide 1-3.  
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Figure S32. ESI+ mass spectra and analytical RP-HPLC profiles for each newly discovered 

peptide in round 2. The HPLC peak before 5 minutes is the solvent peak. (a) Peptide 2-1, (b) 

Peptide 2-2, (c) Peptide 2-3, (d) Peptide 2-4. 
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Figure S33. ESI+ mass spectra and analytical RP-HPLC profiles for each newly discovered 

peptide in round 3. The HPLC peak before 5 minutes is the solvent peak. (a) Peptide 3-1, (b) 

Peptide 3-2, (c) Peptide 3-3, (d) Peptide 3-4. 
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Figure S34. ESI+ mass spectra and analytical RP-HPLC profiles for each newly discovered 

peptide in round 4. The HPLC peak before 5 minutes is the solvent peak. (a) Peptide 4-1, (b) 

Peptide 4-2, (c) Peptide 4-3, (d) Peptide 4-4. 
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Figure S35. ESI+ mass spectra and analytical RP-HPLC profiles for each newly discovered 

peptide in round 5. The HPLC peak before 5 minutes is the solvent peak. (a) Peptide 5-1, (b) 

Peptide 5-2, (c) Peptide 5-3, (d) Peptide 5-4. 
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Figure S36. ESI+ mass spectra and analytical RP-HPLC profiles for each newly discovered 

peptide in round 6. The HPLC peak before 5 minutes is the solvent peak. (a) Peptide 6-1, (b) 

Peptide 6-2, (c) Peptide 6-3, (d) Peptide 6-4. 

 


