Supporting Information

Substrate NOBINAc Ligand Affinity for Pd^{II} -Catalyzed Enantioselective C-H Activation over Reactive β -C-H Bond in Ferrocenyl Amines

Devendra Parganiha, Raviraj Ananda Thorat, Ashwini Dilip Dhumale, Yagya Dutt Upadhyay, Raushan Kumar Jha, Sarvanan Raju and Sangit Kumar*

Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh 462 066, India.

E-mail: sangitkumar@iiserb.ac.in

Sr. No.	Contents	Page No.
1	General experimental details	2-3
2	General procedure for the synthesis of starting materials	4-10
3	Reaction optimization	11-16
4	Synthesis of ferrocene fused tetrahydropyridines and HPLC traces	17-98
5	Mechanistic investigation	99-101
6	The details of DFT computation	102-120
7	X-ray single-crystal data of compounds (<i>Rp</i>)-3a and (<i>Sp</i>)-3a	121-156
8	¹ H, ¹³ C, and ¹⁹ F Spectra of isolated ferrocenyl compounds	157-269
9	References	270

General Experimental Details

Strating materials were prepared under an inert atmosphere (N₂, Ar) and Pd-Catalyzed ferrocene fused tetrahydropyridines were prepared under dry air. Primary analyses were carried out using thin-layer chromatography (TLC) with silica-coated plates. Reagents were procured from commercial sources, including Sigma Aldrich, Alfa Aesar, BLD Pharma, and Spectrochem. The Solvents were meticulously dried by following standard procedures. Nuclear Magnetic Resonance (NMR) spectral data were collected using Bruker 400, 500, and 700 MHz spectrometers, with chemical shift values reported in parts per million (ppm) relative to CDCl₃ as an internal standard (7.26 ppm for ¹H, 77.16 ppm for ¹³C). Multiplicity was denoted using the following abbreviations: s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublet), td (triplet of doublet), and m (multiplet). High-resolution mass spectrometric (HRMS) analyses were performed using a quadrupole time-of-flight mass spectrometry (Q-TOF-MS) instrument with an electrospray ionization (ESI) technique. Chiral analysis was carried out using high-performance liquid chromatography (HPLC) equipment from Agilent Technologies, employing CHIRALCELL OZ-3, AD-H, IC-3, and AD-3 chiral HPLC columns. The weighing balance utilized was from Sartorius (model BSA224S-CW). Single crystal Xray data were collected using a Bruker APEX-II CCD diffractometer equipped with a CMOS Photon 100 detector. Crystal structures were refined using the Olex2 and WinGX Program System package with the SHELXL-2019/2 program. Starting material allenes and amines were freshly prepared by following a reported procedure with slight modifications, while ferrocene carboxaldehyde was directly purchased from BLD Pharm India and used without further purification. Aminoacids, S-BINOL, and R-BINOL were directly purchased from commercial sources and further modified using the reported procedure. DFT calculations were performed using the Gaussian 16 package to identify suitable intermediates and transition states along the reaction pathway.

Figure S1. Setup for Dry Air used for Enantioselective CH Activation of Ferrocenyl Amines

Figure S2. Allenes **2a-2k** was used for the enantioselective annulation reaction. Allenes **2a-2k** were synthesized according to the previously reported literature procedure,¹ and **2i** were purchased from a commercially available source.

Figure S3. Alkenes **2aa-2al** are used for the enantioselective alkenylation reaction. Alkenes **2aa-2am** were synthesized according to the previously reported literature procedure,² and **2ah-2ak** were purchased from a commercially available source.

Scheme S1. General procedure for synthesizing N-ferrocenyl sulfonamides 1a-1f

Ferrocenyl methyl amine was synthesized according to the reported literature procedure,³ and used further without any purification for the synthesis of *N*-ferrocenyl sulfonamides **1a-1f**. To a solution of ferrocenyl methyl amine (2.0 mL, 9.3 mmol, 1 equiv) in dichloromethane (31 mL, 0.3 M) under argon atmosphere, triethylamine (1.4 mL, 11.2 mmol, 1.2 equiv) was added at - 10 °C. After that, the solution was stirred for 5 minutes at -10 °C, and trifluoromethanesulfonic anhydride (1.8 mL, 11.2 mmol, 1.2 equiv) was added dropwise to the solution. The reaction was allowed to be stirred for 6 h before being quenched with water. The organic layer was separated, and the aqueous layer was extracted with dichloromethane (25 mL x 3). The combined organic phase was washed with brine and then dried over Na₂SO₄. Evaporation of the solvent on a rotary evaporator under vacuum and column chromatography on silica gel (100-200 mesh) using hexanes: ethyl acetate 80:20 eluent afforded *N*-methyl ferrocenyl 1,1,1-trifluoromethanesulfonamide **1a**.

N-Methylferrocenyl 1,1,1-trifluoromethanesulfonamide 1a. Orange-yellow solid, mp: 67-69 °C. Yield: 1.60 g (52%). ¹H NMR (400 MHz, CDCl₃) δ 5.06 (s, 1H), 4.25 (brs, 4H), 4.22 (s, 5H), 4.19 (s, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 119.7 (d, *J* = 321.2 Hz, C), 82.4 (C),

69.0 (CH), 68.9 (CH), 68.4 (CH), 44.0 (CH₂). ¹⁹F NMR (471 MHz, CDCl₃) δ -75.38. HRLCMS [APCI] *m/z*: [M-H]⁺ Calcd for C₁₂H₁₁F₃FeNO₂S 345.9799; Found 345.9807

N-Methylferrocenyl methanesulfonamide 1b. Yellow solid, mp: 82-84 °C. Yield: 1.96 g (72%). ¹H NMR (400 MHz, CDCl₃) δ 4.48 (s, 1H), 4.32 (brs, 2H), 4.26 (brs, 7H), 4.03 (brs, 2H), 2.89 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 84.3 (C), 69.3 (CH), 69.0, (CH), 68.9, (CH), 42.9 (CH₂), 41.1 (CH₃). HRLCMS [ESI] *m/z*: [M] Calcd for C₁₂H₁₅FeNO₂S 293.0167; Found 293.0149.

N-Methylferrocenyl 4-methylbenzenesulfonamide 1c. Yellow solid, mp: 89-90 °C. Yield: 2.20 g (65%). ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, *J* = 8.0 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 4.56 (brs, 1H), 4.16 (brs, 7H), 4.10 (brs, 2H), 3.83 (d, *J* = 5.2 Hz, 2H), 2.47 (s, 3H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 143.5 (C), 136.9 (C), 129.8 (CH), 127.2 (CH), 84.2 (C), 69.2 (CH), 68.8 (CH), 68.5 (CH), 42.6 (CH₂), 21.6 (CH₃). HRLCMS [ESI] *m/z*: [M] Calcd for C₁₈H₁₉FeNO₂S 369.0481; Found 369.0480.

N-Methylferrocenyl 3,5-difluorobenzenesulfonamide 1d. Orange solid, mp: 97-98 °C. Yield: 2.10 g (59%). ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.38 (m, 2H), 7.02 – 7.08 (m, *J* = 8.5, 2.3 Hz, 1H), 4.70 (s, 1H), 4.18 (s, 5H), 4.16 (s, 2H), 4.10 (s, 2H), 3.94 (d, *J* = 5.6 Hz, 2H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 162.83 (dd, *J* = 254.7 Hz, C), 143.5 (t, *J* = 8.2 Hz, C), 110.6 (dd, *J* = 22.4, Hz, CH), 108.2 (t, *J* = 25.1 Hz, CH), 82.9 (C), 68.8 (CH), 68.6 (CH), 68.2 (CH), 42.9 (CH₂). ¹⁹F NMR (471 MHz, CDCl₃) δ -105.57. HRLCMS [ESI] *m/z*: [M] Calcd for C₁₇H₁₅FeF₂NO₂S 391.0141; Found 391.0138.

N-Methylferrocenyl 2-nitrobenzenesulfonamide 1e. Yellow solid, mp: 102 °C-103°C. Yield: 2.40 g (67%). ¹H NMR (400 MHz, CDCl₃) δ 8.20 – 8.11 (m, 1H), 7.92 – 7.84 (m, 1H), 7.79 – 7.71 (m, 2H), 5.62 (t, *J* = 5.5 Hz, 1H), 4.18 (s, 5H), 4.08 (d, *J* = 2.6 Hz, 4H), 4.04 (d, *J* = 5.8 Hz, 2H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 147.9 (C), 133.9 (C), 133.6 (CH), 132.9 (CH), 131.1 (CH), 125.4 (CH), 83.0 (C), 68.6 (CH), 68.3 (CH), 67.8 (CH), 43.4 (CH₂). HRLCMS [ESI] *m/z*: [M] Calcd for C₁₇H₁₆FeN₂O₄S 400.0175; Found 400.0174.

N-Methylferrocenyl acetamide 1f. Yellow solid, mp: 85 °C-86 °C. Yield: 1.7 g (72%). ¹H NMR (400 MHz, CDCl₃) δ 5.68 (brs, 1H), 4.20 (d, J = 1.6 Hz, 2H), 4.18 (s, 5H), 4.15 (d, J = 4.8 Hz, 4H), 1.99 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 169.4 (C), 84.6 (C), 68.7 (CH), 68.5 (CH), 68.3 (CH), 68.2 (CH), 39.0 (CH₂), 23.2 (CH₃). HRLCMS [ESI] *m/z*: [M] Calcd for C₁₃H₁₅FeNO 257.0503; Found 257.0497.

Figure S4. Ligands L1, L2, and L7 are commercially available and ligands L3-L6 and L8-L12 were synthesized according to the reported literature procedure.⁴

Reaction Optimization

Table S1. Solvent Screening^a

S . No .	Solvent	Yield of 3a ^b	ee of 3a ^c
1	<i>t</i> -amyl alcohol	6%	17%
2	toluene	25%	60%
3	DMSO	18%	41%
4	DMAc	42%	32%
5	Toluene + <i>t</i> -amyl alcohol (5:1)	21%	35%
6	Toluene + DMSO (5:1)	28%	62%
7	Toluene + DMAc (5:1)	53%	40%
8	Toluene + DMAc (15:1)	37%	76%
9	Toluene (1ml) + DMAc (15 equiv)	39%	85%
10	THF	70%	98%

^{*a*} Reaction conditions: **1a** (0.11 mmol, 1 equiv), **2a** (0.22 mmol, 2 equiv), Pd(OAc)₂ (8 mol %), NOBINAc (28 mol %), CsF (0.22 mmol, 2 equiv), CuO (0.11 mmol, 1 equiv) in 1.0 mL solvent under dry air 18h at 75 °C. ^{*b*} Yield of **3a** determined by ¹H NMR with CH₂Br₂ as an internal standard. ^{*c*} enantioselectivity of **3a** was determined by HPLC analysis.

 Table S2. Temperature Optimization ^a

S . No.	Temperature	Yield of 3a ^b	ee of 3a ^c
1	65°C	62%	98%
2	80°C	71%	97%
3	100°C	65%	86%
4	40°C	32%	98%

^{*a*} Reaction conditions: **1a** (0.11 mmol, 1 equiv), **2a** (0.22 mmol, 2 equiv), Pd(OAc)₂ (8 mol %), NOBINAc (28 mol %), CsF (0.22 mmol, 2 equiv), CuO (0.11 mmol, 1 equiv) in 1.0 mL THF under dry air atmosphere 18h at T °C. ^{*b*} Crude yield of **3a** determined by ¹H NMR with CH₂Br₂ as an internal standard. ^{*c*} enantioselectivity of **3a** was determined by HPLC analysis.

F₃C HN	$ \begin{array}{c} $.c) ₂ (8 mol%), NOBINAc (28 m CsF, CuO (1 equiv) IF (1.0 mL), dry air, 75°C, 18 h	F_3C N F_6 Ph F_6 F_6 $Show Show Show Show Show Show Show Show Show $
S. No.	Cation (equiv)	Yield of 3a ^b	ee of 3a ^c
1	0.5 equiv	34%	70%
2	1 equiv	48%	85%
3	1.5 equiv	57%	93%
4	2 equiv	70%	98%

Table S3. Variation in the Stoichiometry of Cs⁺ Cation

^{*a*} Reaction conditions: **1a** (0.11 mmol, 1 equiv), **2a** (0.22 mmol, 2 equiv), Pd(OAc)₂ (8 mol %), NOBINAc (28 mol %), CsF (xx equiv), CuO (0.11 mmol, 1 equiv) in 1.0 mL THF at 75 °C under dry air 18h. ^{*b*} Crude yield of **3a** determined by ¹H NMR with CH₂Br₂ as an internal standard. ^{*c*} enantioselectivity of **3a** was determined by HPLC analysis.

 F_3C Pd(OAc)₂ (8 mol%), NOBINAc (28 mol%) Cation (2 equiv), CuO (1 equiv) Ph THF (1.0 mL), dry air, 75°C, 18 h Ph Ph 2a 3a 1a S. No. **Cation source** Yield of 3a^b ee of 3a c Cs₂CO₃ 1 40% 93% 2 K_2CO_3 87% 35% 3 Na₂CO₃ 23% 55% 4 Li₂CO₃ 12% 10% 5 KOAc 28% 45% 6 CsOAc 30% 52% 7 NaOAc 18% 20% 8 KF 89% 48% 9 CsF70% 98% 0% 10 NEt₃ 5%

 Table S4. Optimization for Source of Cation

^{*a*} Reaction conditions: **1a** (0.11 mmol, 1 equiv), **2a** (0.22 mmol, 2 equiv), $Pd(OAc)_2$ (8 mol %), NOBINAc (28 mol %), Cation source (0.22 mmol, 2 equiv), CuO (0.11 mmol, 1 equiv) in 1.0 mL THF at 75 °C under dry air 18h. ^{*b*} Crude yield of **3a** determined by ¹H NMR with CH₂Br₂ as an internal standard. ^{*c*} Enantioselectivity of **3a** was determined by HPLC analysis.
 Table S5. Oxidant Screening

^{*a*} Reaction conditions: **1a** (0.11 mmol, 1 equiv), **2a** (0.22 mmol, 2 equiv), Pd(OAc)₂ (8 mol %), NOBINAc (28 mol %), CsF (0.22 mmol, 2 equiv), Oxidant (0.11 mmol, 1 equiv) in 1.0 mL THF at 75 °C 18h in dry air. ^{*b*} Crude yield of **3a** determined by ¹H NMR with CH₂Br₂ as an internal standard. ^{*c*} Enantioselectivity of **3a** was determined by HPLC analysis. **Table S6**. Ligand to Pd(II) Ratio Screening

F ₃ C HN	Fe + Ph Ph 1a 2a	Pd(OAc) ₂ (mol %), NOBIN/ CsF (2 equiv), CuO (1 THF (1.0 mL), dry air, 75	F ₃ C A <u>c (mol %)</u> Ph− equiv) °C, 18 h	Ph Fe do
S. No.	Pd(OAc) ₂ (mol %)	NOBINAc (mol %)	Yield 3a (%) ^b	<i>ee</i> 3a (%) ^c
1	5	5	32	85
2	5	10	36	89
3	8	8	45	84
4	8	16	56	90
5	10	20	58	90
6	8	24	64	93
7	8	28	70	98
8	8	32	71	98

^{*a*} Reaction conditions: **1a** (0.11 mmol, 1 equiv), **2a** (0.22 mmol, 2 equiv), CsF (0.22 mmol, 2 equiv), CuO (0.11 mmol, 1 equiv) in 1.0 mL THF at 75 °C 18 h in dry air by varying Pd(OAc)₂ (mol %), and NOBINAc (mol %) loading. ^{*b*} Crude yield of **3a** determined by ¹H NMR with CH₂Br₂ as an internal standard. ^{*c*} Enantioselectivity of **3a** was determined by HPLC analysis.

Scheme S2. General procedure for the Pd-catalyzed annulation of ferrocenyl secondary amines with allenes

In a Schlenk tube, $Pd(OAc)_2$ (2.5 mg, 0.012 mmol, 8 mol%), NOBINAc (14 mg, 0.04 mmol, 28 mol %), CuO (11.5 mg, 0.14 mmol, 1 equiv.), CsF (44 mg, 0.28 mmol, 2 equiv.) and ferrocenyl secondary amine **1a** (50 mg, 0.14 mmol, 1 equiv.) were added in dry THF (1.5 mL) under an inert atmosphere and the resulted orange colored solution was stirred for 10 min. After pre-stirring, allene **2a** (55 µL, 0.29 mmol, 2 equiv.) was added. The tube was sealed with a rubber septum, and a dry air atmosphere was maintained in the flask with a balloon. The reaction was heated at 75 °C, stirred for 18 h, and then cooled to room temperature. The crude reaction mixture was passed through a celite pad, evaporation and column chromatography on silica gel (mesh 230-400) using hexane: ethyl acetate solvent system to afford ferrocene fused tetrahydropyridines (**3a-4a**).

Ferrocene fused tetrahydropyridine 3a was purified on silica gel (mesh 230-400) in (hexanes: ethyl acetate; 95:5), obtained as an orange-red solid, mp: 122-124 °C. Yield: 52 mg (70%). ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.33 (m, 5H), 7.31 (d, *J* = 7.5 Hz, 1H), 7.26 (d, *J* = 7.4 Hz, 2H), 7.21 (d, *J* = 7.4 Hz, 2H), 4.69 (d, *J* = 13.4 Hz, 2H), 4.37 (s, 2H), 4.20 (brs, 6H), 4.06 (s, 1H), 3.27 (s, 1H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 142.5 (C), 141.3 (C), 138.2 (C), 129.2 (CH), 128.9 (CH), 128.7 (CH), 128.5 (CH), 127.5 (CH), 127.4 (CH), 126.9 (C), 120.03 (d, *J* = 323.7 Hz CF₃), 81.5 (C), 70.6 (CH), 68.1 (CH), 66.4 (CH), 65.2 (CH), 48.9 (CH₂), 47.1 (CH₂). ¹⁹F NMR (471 MHz, CDCl₃) δ -75.38. HRLCMS (ESI) *m/z*: [M] Calcd for C₂₇H₂₂F₃FeNO₂S 537.0660; Found 537.0668. The enantioselectivity of product **3a** was determined by chiral HPLC analysis on OZ-3 column (hexane: isopropanol = 95:5, 1 mL/min, λ =254 nm).

Racemic sample of **3a**

Asymmetric sample of (*Rp*)-**3a** obtained using *R*-NOBINAC

Asymmetric sample of (*Sp*)-**3a** obtained using *S*-NOBINAC

Ferrocene fused tetrahydropyridine 3b was purified on silica gel (mesh 230-400) in (hexanes: ethyl acetate; 98:2), obtained as an orange solid, mp: 117-118 °C. Yield: 51 mg (65%). ¹H NMR (400 MHz, CDCl₃) δ 7.21 (d, *J* = 7.5 Hz, 2H), 7.15 (dd, *J* = 12.5, 7.9 Hz, 4H), 7.07 (d, *J* = 7.9 Hz, 2H), 4.75 (d, *J* = 14.7 Hz, 1H), 4.68 (d, *J* = 12.8 Hz, 1H), 4.39 (d, *J* = 11.8 Hz, 1H), 4.31 (s, 1H), 4.16 (s, 6H), 4.03 (t, *J* = 2.4 Hz, 1H), 3.31 (d, *J* = 1.2 Hz, 1H), 2.41 (s, 3H), 2.37 (s, 3H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 139.7 (C), 138.6 (C), 138.3 (C), 137.2 (CH), 137.0 (CH), 129.4 (CH), 129.2 (CH), 129.0 (CH), 128.8 (CH), 126.1 (C), δ 120.0 (q, *J* = 324.0 Hz, CF₃), 81.3 (C), 70.6 (CH), 68.8 (C), 67.9 (CH), 66.5 (CH), 65.0 (CH), 49.1 (CH₂), 47.1 (CH₂), 21.4 (CH₃), 21.2 (CH₃). ¹⁹F NMR (471 MHz, CDCl₃) δ -75.33. HRLCMS (APCI) *m*/*z*: [M+H]⁺ Calcd for C₂₉H₂₇F₃FeNO₂S 566.1063; Found 566.1107. The enantioselectivity of product **3b** was determined by chiral HPLC analysis on OZ-3 column (hexane: isopropanol = 98:2, 1 mL/min, λ=254 nm).

Asymmetric sample of (*Rp*)-3b obtained using *R*-NOBINAc

Asymmetric sample of (*Sp*)-**3b** obtained using *S*-NOBINAC

Ferrocene fused tetrahydropyridine 3c was purified on silica gel (mesh 230-400) in (hexanes: ethyl acetate; 98:2), obtained as an orange solid, mp: 112 °C -113°C. Yield: 56 mg (68%). ¹H NMR (700 MHz, CDCl₃) δ 7.21 (brs, 2H), 7.17 – 7.06 (m, 6H), 4.74 (brs, 1H), 4.64 (brs, 1H), 4.38 (d, *J* = 32.7 Hz, 2H), 4.16 (s, 6H), 4.08 (s, 1H), 3.27 (s, 1H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 162.8 (d, *J* = 25.8 Hz CF), 161.4 (d, *J* = 26.1 Hz CF), 138.2 (C), 137.1 (C), 135.8 (C), 131.0 (d, *J* = 7.2 Hz CH), 130.7 (d, *J* = 7.7 Hz CH), 127.9 (CH), δ 119.9 (d, *J* = 323.4 Hz CF₃), 115.8 (d, *J* = 21.6 Hz CH), 115.7 (d, *J* = 21.7 Hz CH), 81.6 (C), 70.6 (CH), 68.2 (CH), 66.3 (CH), 65.4 (CH), 49.0 (CH₂), 47.0 (CH₂). ¹⁹F NMR (471 MHz, CDCl₃) δ - 75.46, -114.0. HRLCMS (APCI) *m*/*z*: [M] Calcd for C₂₇H₂₀F₅FeNO₂S 573.0479; Found 573.0483. The enantioselectivity of product **3c** was determined by chiral HPLC analysis on the OZ-3 column (hexane: isopropanol = 98:2, 1 mL/min, λ=254 nm).

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	6.794	MM	0.4105	1.17582e4	477.45154	49.7680
2	10.379	VB	0.7380	1.18678e4	248.14557	50.2320

Asymmetric sample (3c)

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	6.977	MM	0.3799	1007.28290	44.18793	4.9889
2	10.741	MM	0.7787	1.91830e4	410.56448	95.0111

Ferrocene fused tetrahydropyridine 3d was purified on silica gel (mesh 230-400) in (hexanes: ethyl acetate; 95:5), obtained as an orange solid, mp:107 °C-108 °C. Yield: 53 mg (62%). ¹H NMR (400 MHz, CDCl₃) δ 7.15 (d, *J* = 8.4 Hz, 2H), 7.09 (d, *J* = 8.5 Hz, 2H), 6.91 (dd, *J* = 14.8, 8.5 Hz, 4H), 4.72 (t, *J* = 20.3 Hz, 2H), 4.47 – 4.35 (m, 1H), 4.31 (s, 1H), 4.15 (s, 5H), 4.09 (d, *J* = 14.0 Hz, 1H), 4.05 – 4.02 (m, 1H), 3.87 (s, 3H), 3.84 (s, 3H), 3.35 (s, 1H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 159.5 (C), 159.4 (C), 145.3 (C), 134.2 (C), 131.2 (CH), 130.7 (C), 128.9 (CH), δ 120.9 (d, *J* = 337.0 Hz, CF₃), 120.4 (C), 113.9 (CH), 113.6 (CH), 80.4 (C), 69.8 (CH), 69.0 (CH), 68.9 (CH), 68.6 (CH), 68.4 (C), 55.4 (CH₃), 55.3 (CH₃), 47.8 (CH₂), 46.4 (CH₂). ¹⁹F NMR (471 MHz, CDCl₃) δ -78.36. HRLCMS (ESI) *m/z*: [M] Calcd for C₂₉H₂₆F₃FeNO₄S 597.0879; Found 597.0895. The enantioselectivity of the product **3d** was determined by chiral HPLC analysis on OZ-3 column (hexane: isopropanol = 96:4, 1 mL/min, λ =254 nm).

Racemic sample **3d**

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	6.240	VB	0.3194	2.39082e4	1027.80359	48.5339	
2	8.492	MM	0.5346	2.53527e4	790.43469	51,4661	

Asymmetric sample (**3d**)

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	6.041	VB	0.3820	2290.65186	83.50723	3.5567	
2	8.212	BB	0.6108	6.21138e4	1636.51929	96.4433	

Ferrocene fused tetrahydropyridine 3e was purified on silica gel (mesh 230-400) in (hexanes: ethyl acetate; 99:1), obtained as a yellow viscous liquid. Yield: 42 mg (59% yield). ¹H NMR (400 MHz, CDCl₃) δ 4.71 (d, J = 14.1 Hz, 2H), 4.43 (s, 1H), 4.32 (s, 1H), 4.26 (s, 1H), 4.15 (s, 5H), 4.06 (s, 1H), 2.57 (s, 1H), 2.10 – 2.16 (m, 4H), 1.63 – 1.38 (m, 8H), 1.08 – 0.98 (m, 6H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 139.4 (C), 121.5 (C), 120.3 (q, J = 324.0 Hz CF₃).80.5 (C), 70.7 (CH), 70.2 (CH), 68.0 (CH), 66.9 (CH), 64.9 (C), 47.5 (CH₂), 46.9 (CH₂), 33.9 (CH₂), 33.4 (CH₂), 31.0 (CH₂), 30.6 (CH₂), 23.3 (CH₂), 23.0 (CH₂), 14.2 (CH₃), 13.9 (CH₃).¹⁹F NMR (471 MHz, CDCl₃) δ -75.1. HRLCMS (ESI) m/z: [M] Calcd for C₂₆H₂₂F₃FeNO₂S 497.1294; Found 497.1260. The enantioselectivity of the product **3e** was determined by chiral HPLC analysis on OZ3 column (hexane: isopropanol = 99:1, 1 mL/min, λ =254 nm).

Asymmetric sample 3e

Ferrocene fused tetrahydropyridine 3f was purified on silica gel (mesh 230-400) in (hexanes: ethyl acetate; 98:2), obtained as an orange solid, mp:103 °C -104°C. Yield: 43 mg (63%, *E*:*Z* 1:10). ¹H NMR (400 MHz, CDCl₃) δ 7.41 (t, *J* = 7.4 Hz, 2H), 7.34 (d, *J* = 7.4 Hz, 1H), 7.19 (d, *J* = 7.1 Hz, 2H), 4.80 (d, *J* = 14.5 Hz, 1H), 4.67 (d, *J* = 1.5 Hz, 1H), 4.45 (d, *J* = 14.4 Hz, 1H), 4.38 (s, 1H), 4.33 (t, *J* = 2.5 Hz, 1H), 4.24 (s, 6H), 3.78 – 3.57 (m, 1H), 2.36 (s, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 143.5 (C), 134.8 (CH), 128.5 (CH), 127.9 (CH), 127.1 (CH), 124.7 (C), δ 121.3 (d, *J* = 337.0 Hz CF₃), 80.8 (C), 70.5 (CH), 68.8 (C), 68.0 (CH), 67.2 (CH), 65.0 (CH), 48.9 (CH₂), 47.0 (CH₂), 23.0 (CH₃). ¹⁹F NMR (471 MHz, CDCl₃) δ - 75.50. HRLCMS (APCI) *m*/*z*: [M] Calcd for C₂₂H₂₀F₃FeNO₂S 476.0589; Found 476.0585. The enantioselectivity of product **3f** was determined by chiral HPLC analysis on OZ-3 column (hexane: isopropanol = 98:2, 1 mL/min, λ =254 nm).

Racemic sample (3f)

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.542	MM	0.2670	2.17929e4	1360.58948	50.2428
2	6.436	MM	0.3360	2.15822e4	1070.59888	49.7572

Asymmetric sample (3f)

Ferrocene fused tetrahydropyridine 3g was purified on silica gel (mesh 230-400) in (hexanes: ethyl acetate; 95:5), obtained as an orange solid, mp:105 °C-106 °C. Yield: 40 mg (55%, *E:Z* 1:1.5). ¹H NMR (400 MHz, CDCl₃) δ 7.05 (t, *J* = 7.5 Hz, 1H), 7.00 (d, *J* = 8.3 Hz, 1H), 6.95 (d, *J* = 6.1 Hz, 2H), 4.74 (s, 1H), 4.37 (s, 2H), 4.31 (s, 2H), 4.28 (s, 5H), 3.89 (s, 3H), 3.59 (s, 1H), 2.26 (s, 3H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 155.7 (C), 132.2 (C), 129.5 (CH), 128.9 (CH), 124.7 (CH), δ 120.3 (d, *J* = 334.0 Hz CF₃), 111.0 (C), 80.7 (C), 70.5 (CH), 68.8 (C), 67.9 (CH), 67.4 (CH), 66.4 (CH), 55.3 (CH₃), 48.8 (CH₂), 46.9 (CH₂), 22.0 (CH₃). ¹⁹F NMR (471 MHz, CDCl₃) δ -75.41. HRLCMS (ESI) *m*/*z*: [M+H]⁺ Calcd for C₂₃H₂₂F₃FeNO₃S 505.0617; Found 505.0617. The enantioselectivity of the product **3g** was determined by chiral HPLC analysis on AD-H column (hexane: isopropanol = 92:8, 1 mL/min, λ =254 nm).

Racemic sample (3g)

Peak	RetTime	Type	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	6.129	MM	0.3599	1.90381e4	881.56976	49.2972	
2	8.140	VB	0.4823	1.95810e4	648,35516	50.7028	

Asymmetric sample (**3g**)

Peak	RetTime	Type	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	6.149	MM	0.3011	2.88180e4	1595.08899	96.8132	
2	7.674	MM	0.6414	948.59967	24.64769	3.1868	

Ferrocene fused tetrahydropyridine 3h was purified on silica gel (mesh 230-400) in (hexanes: ethyl acetate; 98:2), obtained as an orange solid, mp: 110 °C-111 °C. Yield: 47 mg (60%, *E*:*Z* 1:10). ¹H NMR (500 MHz, CDCl₃) δ 7.94 – 7.85 (m, 3H), 7.64 (s, 1H), 7.52 (dd, *J* = 6.7, 2.6 Hz, 2H), 7.36 (dd, *J* = 8.4, 1.5 Hz, 1H), 4.82 (d, *J* = 14.4 Hz, 1H), 4.71 (d, *J* = 1.5 Hz, 1H), 4.55 (d, *J* = 15.7 Hz, 1H), 4.40 (d, *J* = 1.5 Hz, 1H), 4.35 (t, *J* = 2.5 Hz, 1H), 4.27 (s, 5H), 4.23 (d, *J* = 6.7 Hz, 1H), 3.72 (brs, 1H), 2.43 (s, 3H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 140.9 (C), 134.7 (C), 133.3 (C), 132.4 (C), 128.4 (CH), 127.9 (CH), 127.8 (CH), 126.6 (CH), 126.3 (CH), 126.1 (CH), 125.9 (CH), 125.2 (C), 119.9 (d, *J* = 323.5 Hz CF₃), 80.8 (C), 70.5 (CH), 68.8 (CH), 68.1 (CH), 67.3 (CH), 65.0 (C), 49.0 (CH₂), 47.1 (CH₂), 23.1 (CH₃). ¹⁹F NMR (471 MHz, CDCl₃) δ -75.50. HRLCMS (ESI) *m*/*z*: [M] Calcd for C₂₆H₂₂F₃FeNO₂S 548.0565; Found 548.0568. The enantioselectivity of the product **3h** was determined by chiral HPLC analysis on AD-H column (hexane: isopropanol = 98:2, 1 mL/min, λ =254 nm).

Racemic sample (3h)

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	7.107	MM	0.3127	2.26657e4	1208.19507	50.2169
2	11.154	VB	0.4117	2.24699e4	762.66101	49.7831

Asymmetric sample (3h)

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	6.854	VB	0.2800	429.72818	21.60877	1.5896
2	11.426	VBA	0.4493	2.66034e4	827.02936	98.4104

Ferrocene fused tetrahydropyridine 3i was purified on silica gel (mesh 230-400) in (hexanes: ethyl acetate; 99:1), obtained as a yellow viscous liquid. Yield: 38 mg (56%, *E:Z* 1:5). ¹H NMR (400 MHz, CDCl₃) δ 5.39 (d, J = 9.4 Hz, 1H), 4.77 (d, J = 14.3 Hz, 1H), 4.49 (d, J = 0.9 Hz, 1H), 4.37 (s, 1H), 4.33 (brs, 2H), 4.14 (s, 6H), 3.87 (d, J = 14.0 Hz, 1H), 2.71 – 2.55 (m, 1H), 1.88 (t, J = 10.1 Hz, 2H), 1.83 – 1.66 (m, 5H), 1.44 – 1.38 (m, 3H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 133.5 (C), 126.0 (CH), 120.15 (d, J = 323.1 Hz CF₃). 80.6(C), 70.7 (CH), 68.1 (CH), 67.1 (CH), 64.9 (C), 61.4 (CH), 52.7 (CH₂), 47.0 (CH₂), 37.7 (CH), 33.0 (CH₂), 32.6 (CH₂), 26.0 (CH₂), 25.9 (CH₂), 25.8 (CH₂).¹⁹F NMR (471 MHz, CDCl₃) δ -75.52. HRLCMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₂₅F₃FeNO₂S 468.0902; Found 468.0886. The enantioselectivity of product **3i** was determined by chiral HPLC analysis on the AD-H column (hexane: isopropanol = 98:2, 1 mL/min, λ =254 nm).

Racemic sample (3i)

Peak	RetTime	Type	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	4.284	MM	0.3048	8793.30664	480.84598	50.8633	
2	6.416	MM	0.3742	8494.82324	378.32681	49.1367	

Asymmetric sample (3i)

Ferrocene fused tetrahydropyridine 3j was purified on silica gel (mesh 230-400) in (hexanes: ethyl acetate; 99:1), obtained as a yellow orange solid, mp: 89 °C-90 °C. Yield: 34 mg (50%, *E*:*Z* 1:2). ¹H NMR (400 MHz, CDCl₃) δ 7.25 (d, *J* = 3.1 Hz, 2H), 7.16 (d, *J* = 8.0 Hz, 2H), 6.78 (s, 1H), 4.78 (d, *J* = 14.3 Hz, 1H), 4.69 (s, 1H), 4.60 (d, *J* = 14.8 Hz, 1H), 4.42 (s, 1H), 4.33 (brs, 2H), 4.22 (s, 6H), 2.39 (s, 3H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 137.0 (C), 129.4 (CH), 129.0 (CH), 128.5 (CH), 128.4 (C), 122.6 (C), 120.2 (d, *J* = 324.0 Hz CF₃). 80.7 (C), 71.3 (CH), 70.7 (CH), 68.2 (CH), 67.7 (CH), 61.9 (C), 46.6 (CH₂), 46.4 (CH₂), 21.3 (CH₃). ¹⁹F NMR (471 MHz, CDCl₃) δ -75.11, -75.16. HRLCMS (ESI) *m/z*: [M-H]⁺ Calcd for C₂₂H₂₀F₃FeNO₂S 475.0511; Found 475.0509. The enantioselectivity of the product **3j** was determined by chiral HPLC analysis on OZ-3 column (hexane: isopropanol = 98:2, 1 mL/min, λ =254 nm).
Racemic sample (3j)

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	4.433	MM	0.2203	641.86871	48.56398	49.2518
2	5.459	MM	0.2626	661.37146	41.97504	50.7482
Total	s :			1303.24017	90.53902	

reak	Rectifie	Type	MIUCH	AI CO	nergne	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	4.292	MM	0.2787	279.70404	16.72396	4.3071	
2	5.419	MM	0.3019	6214.38916	343.07669	95.6929	

Totals : 6494.09320 359.80065

Ferrocene fused tetrahydropyridine 3k was purified on silica gel (mesh 230-400) in (hexanes: ethyl acetate; 85:15), obtained as an orange red solid, mp: 141 °C-142 °C. Yield: 47 mg (55%). ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, *J* = 7.6 Hz, 2H), 7.27 (s, 2H), 7.20 – 7.09 (m, 4H), 7.03 (d, *J* = 7.4 Hz, 2H), 6.89 (d, *J* = 2.7 Hz, 2H), 4.50 (dd, *J* = 25.1, 14.4 Hz, 2H), 4.25 (s, 1H), 4.08 (s, 5H), 3.93 (d, *J* = 13.4 Hz, 2H), 3.73 (s, 1H), 3.13 (s, 1H), 2.45 (s, 3H), 2.38 (s, 6H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 143.3 (C), 140.0 (C), 139.0 (C), 137.1 (CH), 136.9 (CH), 136.7 (CH), 135.0 (CH), 129.6 (CH), 129.4 (C), 129.2 (C), 129.1 (CH), 129.0 (C), 127.5 (C), 127.1 (C), 82.3 (C), 70.6 (CH), 67.6 (CH), 67.1 (CH), 66.0 (CH), 65.1 (C), 48.6 (CH₂), 46.4 (CH₂), 21.6 (CH₃), 21.3 (CH₃), 21.2 (CH₃). HRLCMS (ESI) *m/z*: [M] Calcd for C₃₅H₃₃FeNO₂S 587.1576; Found 587.1566. The enantioselectivity of the product **3k** was determined by chiral HPLC analysis on AD-3 column (hexane: isopropanol = 75:25, 1 mL/min, λ =254 nm).

Asymmetric sample of (*Sp*)-**3k** obtained using *S*-NOBINAC

Asymmetric sample of (*Rp*)-3k obtained using *R*-NOBINAc

Ferrocene fused tetrahydropyridine 3l was purified on silica gel (mesh 230-400) in (hexanes: ethyl acetate; 80:20), obtained as an orange red solid, mp: 132 °C-132 °C. Yield: 47 mg (58%). ¹H NMR (700 MHz, CDCl₃) δ 7.56 (d, *J* = 8.0 Hz, 2H), 7.41 – 7.29 (m, 6H), 7.28 (s, 2H), 7.16 (d, *J* = 7.6 Hz, 2H), 7.11 – 6.98 (m, 2H), 4.54 (d, *J* = 14.2 Hz, 1H), 4.47 (d, *J* = 14.3 Hz, 1H), 4.27 (s, 1H), 4.10 (s, 5H), 4.03 (d, *J* = 14.2 Hz, 1H), 3.92 (s, 1H), 3.85 (d, *J* = 14.4 Hz, 1H), 3.06 (s, 1H), 2.45 (s, 3H).¹³C{¹H} NMR (176 MHz, CDCl₃) δ 143.3 (C), 142.7 (C), 141.7 (CH), 137.1 (CH), 134.8 (CH), 129.6 (CH), 129.5 (CH), 129.2 (CH), 128.5 (CH), 128.4 (CH), 127.9 (C), 127.5 (C), 127.2 (C), 127.1 (C), 82.5 (C), 78.8 (CH), 70.6 (CH), 67.7 (CH), 66.0 (CH), 65.3 (C), 48.6 (CH₂), 46.3 (CH₂), 21.5 (CH₃). HRLCMS (ESI) *m/z*: [M] Calcd for C₃₃H₂₉FeNO₂S 559.1263; Found 559.1253. The enantioselectivity of the product **3l** was determined by chiral HPLC analysis on AD-3 column (hexane: isopropanol = 85:15, 0.9 mL/min, λ=254 nm).

Racemic sample (31)

Asymmetric sample of (Sp)-3l obtained using S-NOBINAc

Asymmetric sample of (*Rp*)-3l obtained using *R*-NOBINAc

Ferrocene fused tetrahydropyridine 3m was purified on silica gel (mesh 230-400) in (hexanes: ethyl acetate; 90:10), obtained as an orange red solid, mp: 129 °C-130 °C. Yield: 42 mg (53%, *E*:*Z* 1:10). ¹H NMR (700 MHz, CDCl₃) δ 7.96 – 7.85 (m, 3H), 7.63 (s, 1H), 7.57 – 7.51 (m, 2H), 7.48 (d, *J* = 8.2 Hz, 2H), 7.34 (dd, *J* = 8.3, 1.3 Hz, 1H), 7.17 (d, *J* = 8.1 Hz, 2H), 4.60 (d, *J* = 13.9 Hz, 2H), 4.37 (d, *J* = 13.5 Hz, 1H), 4.35 (d, *J* = 1.8 Hz, 1H), 4.25 (t, *J* = 2.5 Hz, 1H), 4.19 (s, 5H), 3.72 (d, *J* = 13.6 Hz, 1H), 3.23 (d, *J* = 13.5 Hz, 1H), 2.38 (s, 3H), 2.36 (s, 3H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 143.3 (C), 141.4 (C), 134.0 (CH), 133.3 (CH), 133.0 (CH), 132.3 (CH), 126.2 (C), 125.8 (C), 82.0 (C), 79.2 (CH), 70.5 (CH), 67.8 (CH), 66.9 (CH), 65.3 (C), 48.7 (CH₂), 46.4 (CH₂), 22.9 (CH₃), 21.5(CH₃). HRLCMS (ESI) *m*/*z*: [M] Calcd for C₃₂H₂₉FeNO₂S 547.1263; Found 547.1232. The enantioselectivity of the product **3m** was determined by chiral HPLC analysis on the AD-H column (hexane: isopropanol = 90:10, 0.9 mL/min, λ=254 nm).

Asymmetric sample (3m)

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
					[]	[
1	18.043	MM	0.5727	7720.93701	224.69550	4.2091
2	19.793	MM	1.1893	1.75713e5	2462.41479	95.7909

Ferrocene fused tetrahydropyridine 3n was purified on silica gel (mesh 230-400) in (hexanes: ethyl acetate; 90:10), obtained as an orange red solid, m.p: 117 °C-118 °C. Yield: 42 mg (56%, *E:Z* 3:2). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 8.2 Hz, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 4.47 (d, *J* = 13.8 Hz, 1H), 4.43 (d, *J* = 13.5 Hz, 1H), 4.31 (s, 1H), 4.23 (s, 1H), 4.14 (d, *J* = 2.4 Hz, 1H), 4.05 (s, 5H), 3.66 (d, *J* = 13.4 Hz, 1H), 3.37 (d, *J* = 13.2 Hz, 1H), 2.44 (s, 3H), 2.14 – 2.08 (4H), 1.52 – 1.40 (m, 8H), 1.1 –0.9 (m, 6H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 143.4 (C), 137.9 (C), 133.9 (C), 129.6 (CH), 127.6 (CH), 122.5 (C), 81.5 (C), 79.3 (C), 70.4 (CH), 67.3 (CH), 66.2 (CH), 64.9 (CH), 47.0 (CH₂), 46.3 (CH₂), 34.0 (CH₂) 33.6 (CH₂), 31.0 (CH₂), 30.6 (CH₂), 23.3 (CH₂), 23.0 (CH₂), 21.5 (CH₃), 14.2 (CH₃), 14.0 (CH₃). HRLCMS (ESI) *m*/*z*: [M] Calcd for C₂₉H₃₇FeNO₂S 519.1889; Found 519.1868. The enantioselectivity of the product **3n** was determined by chiral HPLC analysis on AD-3 column (hexane: isopropanol = 95:5, 1 mL/min, λ =254 nm).

Racemic sample (3n)

Ferrocene fused tetrahydropyridine **3o** was purified on silica gel (mesh 230-400) in (hexanes: ethyl acetate; 95:5), obtained as an orange yellow solid, m.p: 114 °C-115 °C. Yield: 37 mg, (53%, *E:Z* 1:5). ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 8.1 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 5.34 (d, *J* = 9.7 Hz, 1H), 4.49 (d, *J* = 13.5 Hz, 1H), 4.39 (s, 1H), 4.26 (s, 1H), 4.16 (d, *J* = 4.9 Hz, 2H), 4.07 (s, 5H), 3.63 (d, *J* = 13.6 Hz, 1H), 3.34 (d, *J* = 12.9 Hz, 2H), 2.63 – 2.47 (m, 1H), 1.80 – 1.74 (m, 7H), 1.47 – 1.30 (m, 3H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 143.5 (C), 133.6 (C), 132.6 (C), 129.6 (CH), 127.7 (CH), 126.9 (C), 81.7 (C), 70.8 (CH), 68.7 (CH), 67.8 (CH), 66.0 (CH), 65.1 (C), 52.4 (CH₂), 46.5 (CH₂), 37.7 (CH), 33.0 (CH₂), 32.8 (CH₂), 27.0 (CH₂), 26.1 (CH₂), 25.9 (CH₂), 21.5 (CH₃). HRLCMS (ESI) *m/z*: [M] Calcd for C₂₇H₃₁FeNO₂S 489.1420; Found 489.1420. The enantioselectivity of the product **3o** was determined by chiral HPLC analysis on OD-3 column (hexane: isopropanol = 93:7, 1 mL/min, λ =254 nm).

Racemic sample (30)

Asymmetric sample (**30**)

Ferrocene fused tetrahydropyridine **3p** was purified on silica gel (mesh 230-400) in (hexanes: ethyl acetate; 95:5), obtained as an orange yellow solid, m.p: 125 °C-126 °C. Yield: 39 mg (47%, *E*:*Z* 1:10). ¹H NMR (700 MHz, CDCl₃) δ 8.00 (s, 2H), 7.95 (s, 1H), 7.90 (d, J = 7.9 Hz, 2H), 7.86 (d, J = 7.2 Hz, 1H), 7.56 (dd, J = 13.5, 10.2 Hz, 3H), 7.27 (s, 1H), 4.73 (d, J = 14.7 Hz, 1H), 4.52 (s, 1H), 4.33 (d, J = 15.3 Hz, 2H), 4.25 (s, 1H), 4.22 (s, 1H), 4.20 (s, 5H), 3.83 (d, J = 14.6 Hz, 1H), 2.22 (s, 3H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 141.4 (CH), 140.8 (CH), 133.8 (CH), 133.3 (CH), 132.5 (C), 132.4 (C), 132.2 (CH), 128.4 (CH), 127.9 (CF), 127.8 (CF), 127.5 (C), 126.6 (C), 126.5 (C), 126.1 (CH), 125.9 (CH), 125.0 (CH), 123.2 (C), 121.6 (C), 80.9 (C), 78.9 (CH), 70.4 (CH), 68.1 (CH), 66.8 (CH), 65.4 (C), 49.0 (CH₂), 46.8 (CH₂), 22.7 (CH₃). ¹⁹F NMR (376 MHz, CDCl₃) δ -116.90. HRLCMS (ESI) *m/z*: [M] Calcd for C₃₁H₂₅F₂FeNO₂S 569.0923; Found 569.0930. The enantioselectivity of the product **3p** was determined by chiral HPLC analysis on IC-3 column (hexane: isopropanol = 85:15, 1 mL/min, λ=254 nm).

Racemic sample (**3p**)

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	6.339	MM	0.3605	7557.95801	349.42419	49.9387
2	12.760	BB	0.7388	7576.52490	162.85172	50.0613

Asymmetric sample (3p)

Ferrocene fused tetrahydropyridine 3q was purified on silica gel (mesh 230-400) in (hexanes: ethyl acetate; 95:5), obtained as an orange yellow solid, mp: 131 °C-132 °C. Yield: 38 mg (45%). ¹H NMR (700 MHz, CDCl₃) δ 7.51 (d, *J* = 6.9 Hz, 1H), 7.39 (dd, *J* = 9.2, 5.8 Hz, 2H), 7.36 – 7.31 (m, 4H), 7.20 (d, *J* = 3.9 Hz, 2H), 7.17 (d, *J* = 7.1 Hz, 2H), 7.02 – 7.31 (m, 2H), 4.61 (d, *J* = 14.6 Hz, 1H), 4.51 (d, *J* = 14.6 Hz, 1H), 4.29 (d, *J* = 1.1 Hz, 1H), 4.17 (s, 1H), 4.11 (s, 5H), 4.03 (d, *J* = 15.0 Hz, 1H), 3.95 (t, *J* = 2.5 Hz, 1H), 3.10 (d, *J* = 1.4 Hz, 1H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 162.7 (dd, *J* = 254.7, 11.7 Hz CF), 142.5 (C), 141.4 (CH₂), 137.5 (CH₂), 129.3 (CH₂), 129.1 (CH₂), 128.5 (CH₂), 128.3 (CH₂), 128.0 (C), 127.5 (CH₂), 127.3 (C), 127.2 (C), 110.8 (dd, *J* = 22.2, 5.6 Hz C), 108.1 (t, *J* = 25.0 Hz CH), 81.90 (C), 78.76 (CH), 70.65 (CH), 67.94 (CH), 66.19 (CH), 65.29 (C), 48.53 (CH₂), 46.4 (CH₂). ¹⁹F NMR (376 MHz, CDCl₃) δ -105.64. HRLCMS (ESI) *m*/*z*: [M] Calcd for C₃₂H₂₅FeF₂NO₂S 581.0918; Found 581.0933. The enantioselectivity of the product **3q** was determined by chiral HPLC analysis on AD-H column (hexane: isopropanol = 90:10, 1 mL/min, λ =254 nm).

Racemic sample (3q)

Ret Time	Туре	Width	Area	Height	Area
[min]		[min]	[mAU*s]	[mAU]	%
5.768	MM	0.2770	3516. 28027	211.53900	49.2767
7.643	MM	0. 3784	3619. 50415	159. 42012	50. 7233
	Ret Ti me [min] 5. 768 7. 643	Ret Time Type [min] 5. 768 MM 7. 643 MM	Ret Time Type Width [min] [min] 5.768 MM 0.2770 7.643 MM 0.3784	Ret Ti me Type W dth Area [min] [min] [mAU*s] 5.768 MM 0.2770 3516.28027 7.643 MM 0.3784 3619.50415	Ret Time Type Width Area Height [min] [min] [mAU's] [mAU] 5.768 MM 0.2770 3516.28027 211.53900 7.643 MM 0.3784 3619.50415 159.42012

Ferrocene fused tetrahydropyridine 3**r** was purified on silica gel (mesh 230-400) in (hexanes: ethyl acetate; 95:5), obtained as an orange yellow solid, mp: 120 °C-120 °C. Yield: 35 mg (45%). ¹H NMR (400 MHz, CDCl₃) δ 7.32 (d, *J* = 4.3 Hz, 2H), 7.01 (tt, *J* = 8.4, 2.2 Hz, 1H), 4.55 (d, *J* = 13.9 Hz, 1H), 4.44 (d, *J* = 13.7 Hz, 1H), 4.31 (s, 1H), 4.24 (s, 1H), 4.16 (t, *J* = 2.4 Hz, 1H), 4.06 (s, 5H), 3.85 (d, *J* = 13.9 Hz, 1H), 3.64 (d, *J* = 13.7 Hz, 1H), 2.33 – 1.98 (m, 4H), 1.55 – 1.37 (m, 8H), 1.02 (t, *J* = 7.0 Hz, 6H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 162.7 (dd, *J* = 254.6, 11.6 Hz, CF), 140.9 (t, *J* = 8.0 Hz , C), 138.4 (CH), 121.9 (CH), 110.9 (dd, *J* = 22.3, 5.7 Hz, C), 108.1 (t, *J* = 25.1 Hz, C), 80.8 (C), 79.2 (CH), 70.5 (CH), 67.5 (CH), 66.3 (CH), 64.9 (C), 47.2 (CH₂), 46.5 (CH₂), 34.0 (CH₂), 33.7 (CH₂), 31.0 (CH₂), 30.4 (CH₂), 23.3 (CH₂), 23.0 (CH₂),14.2 (CH₃), 14.0 (CH₃). ¹⁹F NMR (376 MHz, CDCl₃) δ -105.86. HRLCMS (ESI) *m/z*: [M] Calcd for C₂₈H₃₃FeF₂NO₂S 541.1544; Found 541.1588. The enantioselectivity of the product **3r** was determined by chiral HPLC analysis on OD-3 column (hexane: isopropanol = 90:10, 1 mL/min, λ =254 nm).

Racemic sample (3r)

Peak	Ret Time	Туре	₩ dt h	Ar ea	Height	Area
#	[mi n]		[mi n]	[mAU*s]	[mAU]	%
1	4. 104	MM	0.2477	1.06109e4	713. 99713	49.9886
2	4.839	MM	0.2870	1.06158e4	616. 41479	50.0114

0.2027 964.79559

Asymmetric sample (3r)

2 4.815 MM

7.4007

79. 30970

с	F	С
С	J	Э

Ferrocene fused tetrahydropyridine 3s was purified on silica gel (mesh 230-400) in (hexanes: ethyl acetate; 90:10), obtained as an orange red solid, mp: 135 °C; $[α]_D^{25}$ = +41 (CHCl₃, c= 0.12). Yield: 43 mg (50%). ¹H NMR (700 MHz, CDCl₃) δ 7.18 (d, *J* = 7.8 Hz, 4H), 7.13 (d, *J* = 6.4 Hz, 2H), 7.01 (d, *J* = 7.6 Hz, 3H), 6.87 (s, 2H), 4.47 (d, *J* = 14.4 Hz, 2H), 4.37 (s, 1H), 4.17 (s, 5H), 4.14 (d, *J* = 14.7 Hz, 2H), 4.01 (s, 1H), 3.26 (s, 1H), 2.40 (s, 3H), 2.38 (s, 3H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 162.7 (dd, *J* = 254.6, 11.5 Hz CF), 141.9 (t, *J* = 8.0 Hz C), 139.5 (C), 138.6 (C), 137.9 (C), 137.2 (C), 136.9 (C), 129.3 (CH), 129.2 (CH), 126.4 (C), 110.9 (dd, *J* = 22.2, 5.6 Hz CH), 108.1 (t, *J* = 25.0 Hz, CH), 82.1 (C), 80.1 (C), 71.2 (CH), 68.4 (CH), 66.4 (CH), 65.5 (CH), 48.6 (CH₂), 46.5 (CH₂), 21.3 (CH₃), 21.2 (CH₃). ¹⁹F NMR (376 MHz, CDCl₃) δ -105.73. HRLCMS (ESI) *m/z*: [M] Calcd for C₃₄H₂₉FeF₂NO₂S 609.1231; Found 609.1234. The enantioselectivity of the product **3s** was determined by chiral HPLC analysis on OD-3 column (hexane: isopropanol = 85:15, 1 mL/min, λ=254 nm). Racemic sample (3s)

0.3325 8163.40039 409.25189 49.4581

0.4361 8342.30566 318.83063 50.5419

Asymmetric sample (3s)

1 4.977 MM

2 6.236 MM

Ferrocene fused tetrahydropyridine 3t was purified on silica gel (mesh 230-400) in (hexanes: ethyl acetate; 85:15), obtained as an orange yellow solid, mp: 113 °C-114 °C. Yield: 25 mg (42%, *E*:*Z* 1:10). ¹H NMR (700 MHz, CDCl₃) δ 7.41 (t, *J* = 7.1 Hz, 2H), 7.34 – 7.30 (m, 1H), 7.21 (d, *J* = 7.0 Hz, 2H), 4.67 (brs, 2H), 4.65 (d, *J* = 14.7 Hz, 1H), 4.31 – 4.27 (m, 2H), 4.19 (s, 5H), 4.09 (d, *J* = 14.5 Hz, 1H), 3.68 (d, *J* = 14.0 Hz, 1H), 2.69 (s, 3H), 2.32 (s, 3H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 143.8 (C), 133.5 (CH), 128.6 (CH), 128.0 (CH), 127.0 (C), 125.6 (C), 81.9 (C), 70.5 (CH), 67.9 (CH), 67.8 (CH), 66.8 (CH), 65.3 (C), 48.4 (CH₂), 46.2 (CH₂), 36.6 (CH₃), 22.9 (CH₃). HRLCMS (ESI) *m*/*z*: [M-H]⁺ Calcd for C₂₂H₂₂FeNO₂S 420.0715; Found 420.0693. The enantioselectivity of the product **3t** was determined by chiral HPLC analysis on OZ-3 column (hexane: isopropanol = 85:15, 1 mL/min, λ =254 nm).

Racemic sample (3t)

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
					[]	
1	46.173	MM	2.6581	4.16249e4	260.99533	48.4350
2	50.645	MM	2.8888	4.43149e4	255.67107	51.5650

Asymmetric sample (**3t**)

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	45.671	MM	2.1561	922.33679	7.12954	8.6895	
2	50.229	MM	3.4045	9692.01660	47.44727	91.3105	

Ferrocene fused tetrahydropyridine 3u was purified on silica gel (mesh 230-400) in (hexanes: ethyl acetate; 85:15), obtained as an orange yellow solid, mp: 109 °C-110 °C. Yield: 23 mg (38%, *E*:*Z* 1:4). ¹H NMR (400 MHz, CDCl₃) δ 5.38 (d, *J* = 9.2 Hz, 1H), 4.60 (d, *J* = 15.3 Hz, 1H), 4.50 (s, 1H), 4.33 (s, 1H), 4.28 (d, *J* = 4.0 Hz, 1H), 4.24 (d, *J* = 9.6 Hz, 1H), 4.11 (s, 5H), 4.08 – 4.03 (m, 1H), 3.93 (d, *J* = 14.2 Hz, 1H), 2.72 (s, 3H), 2.53 (dd, *J* = 19.4, 10.1 Hz, 1H), 1.87 (t, *J* = 12.2 Hz, 2H), 1.23 (d, *J* = 5.8 Hz, 8H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 132.8 (C), 126.7 (C), 81.8 (C), 77.9 (CH), 70.7 (CH), 67.9 (CH), 65.6 (CH), 65.2 (C), 52.2 (CH₂), 46.2 (CH₂), 37.5 (CH), 37.1 (CH₂), 32.9 (CH₂), 32.8 (CH₂), 26.0 (CH₂), 25.9 (CH₂), 25.7 (CH₃). HRLCMS (ESI) *m*/*z*: [M] Calcd for C₂₁H₂₇FeNO₂S 413.1107; Found 413.1096. The enantioselectivity of the product **3u** was determined by chiral HPLC analysis on AD-3 column (hexane: isopropanol = 80:20, 1 mL/min, λ=254 nm).

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.458	VV	0.2002	1.00683e4	698.32629	50.1783
2	7.892	VB	0.2843	9996.71289	489.47974	49.8217

Asymmetric sample (3u)

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.472	MM	0.2332	1.53108e4	1094.21545	93.9088
2	7.905	MM	0.2415	993.09906	68.53255	6.0912

Ferrocene fused tetrahydropyridine 3v was purified on silica gel (mesh 230-400) in (hexanes: ethyl acetate; 85:15), obtained as an orange yellow solid, mp: 112 °C-113 °C. Yield: 22 mg (35%). ¹H NMR (400 MHz, CDCl₃) δ 4.50 (brs, 2H), 4.34 (d, J = 14.1 Hz, 2H), 4.28 (s, 1H), 4.17 (s, 1H), 4.13 (brs, 6H), 2.70 (s, 3H), 2.2 – 1.6 (m, 4H), 1.53 – 1.38 (m, 8H), 1.06 – 0.95 (m, 6H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 138.2 (C), 122.3 (C), 81.4 (C), 70.5 (CH), 68.7 (CH), 67.5 (CH), 66.1 (CH), 65.0 (C), 46.9 (CH₂), 46.3 (CH₂), 36.7 (CH₃), 34.0 (CH₂), 33.8 (CH₂), 31.2 (CH₂), 30.5 (CH₂), 23.3 (CH₂), 23.0 (CH₂), 14.2 (CH₃), 14.0 (CH₃). HRLCMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₃H₃₃FeNO₂SNa 466.1474; Found 466.1462. The enantioselectivity of the product **3v** was determined by chiral HPLC analysis on OZ-3 column (hexane: isopropanol = 85: 15, 1 mL/min, λ =254 nm).

Реак	Retlime	Type	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	6.493	MM	0.3074	1.05516e4	572.00067	49.8391	
2	7.624	VB	0.2949	1.06197e4	505.84946	50.1609	

Asymmetric sample (3v)

Ferrocene fused tetrahydropyridine 3w was purified on silica gel (mesh 230-400) in (hexanes: ethyl acetate; 80:20), obtained as an orange yellow solid, mp: 140 °C-141 °C. Yield: 25 mg (28%). ¹H NMR (400 MHz, CDCl₃) δ 7.74 (dd, J = 7.9, 1.1 Hz, 1H), 7.68 – 7.53 (m, 3H), 7.15 (dd, J = 15.2, 7.7 Hz, 4H), 7.03 (d, J = 8.0 Hz, 2H), 6.96 – 6.87 (m, 2H), 4.70 (d, J = 15.1 Hz, 1H), 4.59 (d, J = 14.7 Hz, 1H), 4.42 (d, J = 15.1 Hz, 1H), 4.32 (d, J = 1.1 Hz, 1H), 4.19 (d, J = 6.2 Hz, 1H), 4.13 (s, 5H), 3.97 (t, J = 2.5 Hz, 1H), 3.21 (dd, J = 2.4, 1.0 Hz, 1H), 2.39 (s, 3H), 2.38 (s, 3H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 148.1 (C), 139.8 (C), 138.9 (C), 137.3 (CH), 137.0 (CH), 136.9 (C), 133.2 (C), 132.9 (CH), 131.6 (CH), 131.1 (CH), 129.4 (CH), 129.3 (CH), 129.2 (CH), 129.0 (CH), 126.9 (C), 124.0 (C), 82.9 (C), 79.4 (C), 70.5 (CH), 67.7 (CH), 66.2 (CH), 65.0 (CH), 48.4 (CH₂), 46.5 (CH₂), 21.3 (CH₃), 21.2 (CH₃). HRLCMS (ESI) *m/z*: [M] Calcd for C₃₄H₃₀FeN₂O₄S 618.1271; Found 618.1245. The enantioselectivity of the product **3w** was determined by chiral HPLC analysis on IC-3 column (hexane: isopropanol = 93:7, 1 mL/min, λ =254 nm).

Racemic sample (3w)

Asymmetric sample (3w)

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
	[]					
1	9.509	MM	0.8835	140.57751	2.65192	2.3365
2	10.867	MM	1.0066	5875.90918	97.29389	97.6635

Ferrocene fused tetrahydropyridine 3x was purified on silica gel (mesh 230-400) in (hexanes: ethyl acetate; 85:15), obtained as an orange yellow solid, mp: 135 °C-135 °C. Yield: 26 mg (31%, *E:Z* 1:3). ¹H NMR (400 MHz, CDCl₃) δ 7.92 – 7.85 (m, 3H), 7.68 (s, 1H), 7.53 (q, *J* = 5.5 Hz, 5H), 7.39 (d, *J* = 8.3 Hz, 1H), 4.84 (d, *J* = 14.8 Hz, 1H), 4.66 (d, *J* = 1.5 Hz, 1H), 4.41 – 4.35 (m, 1H), 4.31 (t, *J* = 2.5 Hz, 1H), 4.28 (s, 5H), 4.21 – 4.18 (m, 1H), 4.12 (s, 1H), 3.44 (dd, *J* = 14.4, 1.3 Hz, 1H), 2.42 (s, 3H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 147.8 (C), 141.4 (C), 133.5 (C), 133.3 (C), 133.2 (CH), 132.3 (CH), 132.2 (CH), 131.4 (CH), 130.8 (CH), 128.0 (CH), 127.9 (CH), 127.7 (CH), 126.7 (CH), 126.2 (CH), 126.0 (CH), 125.9 (CH), 125.7 (CH), 125.6 (CH), 124.0 (CH), 123.6 (C), 82.1 (C), 78.9 (C), 70.6 (CH), 67.9 (CH), 67.0 (CH), 65.1 (CH), 47.9 (CH₂), 46.4 (CH₂), 22.9 (CH₃). HRLCMS (ESI) *m*/*z*: [M] Calcd for C₃₁H₂₆FeN₂O₄S 578.0958; Found 578.0936. The enantioselectivity of the product **3x** was determined by chiral HPLC analysis on AD-H column (hexane: isopropanol = 85:15, 1 mL/min, λ =254 nm). Racemic sample (3x)

Asymmetric sample (3x)

Ferrocene fused tetrahydropyridine 3y was purified on silica gel (mesh 230-400) in (hexanes: ethyl acetate; 90:10), obtained as an orange yellow solid, mp: 122 °C-123 °C. Yield: 27 mg (34%). ¹H NMR (400 MHz, CDCl₃) δ 8.03 – 7.97 (m, 1H), 7.73 – 7.68 (m, 2H), 7.68 – 7.61 (m, 1H), 4.68 (d, *J* = 14.1 Hz, 1H), 4.59 (d, *J* = 14.1 Hz, 1H), 4.37 (s, 1H), 4.29 (s, 1H), 4.19 (s, 1H), 4.11 (s, 5H), 4.02 (d, *J* = 14.1 Hz, 1H), 3.66 (d, *J* = 14.0 Hz, 1H), 2.61 – 2.49 (m, 1H), 2.09 – 2.16 (m, 3H), 1.56 – 1.40 (m, 8H), 1.03 – 0.9 (m, 6H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 148.5 (C), 138.5 (C), 133.5 (CH), 131.9 (C), 131.5 (CH), 130.6 (CH₃), 124.1 (CH), 122.1 (C), 81.3 (C), 79.2 (C), 70.5 (CH), 67.5 (CH), 66.4 (CH), 64.9 (CH), 46.8 (CH₂), 46.4 (CH₂), 34.0 (CH₂), 33.8 (CH₂), 31.0 (CH₂), 30.6 (CH₂), 23.4 (CH₂), 23.1 (CH₂), 14.3 (CH₃), 14.1 (CH₃). HRLCMS (ESI) *m*/*z*: [M] Calcd for C₂₈H₃₄FeN₂O₄S 550.1584; Found 550.1580. The enantioselectivity of the product **3y** was determined by chiral HPLC analysis on AD-H column (hexane: isopropanol = 90:10, 1 mL/min, λ=254 nm).

Asymmetric sample (3y)

Ferrocene fused tetrahydropyridine 3z was purified on silica gel (mesh 230-400) in (hexanes: ethyl acetate; 85:15), obtained as an orange yellow solid, mp: 145 °C-146 °C. Yield: 46 mg (58%). ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 8.2 Hz, 2H), 7.37 (d, *J* = 8.0 Hz, 2H), 7.21 – 7.13 (m, 3H), 7.11 – 7.05 (m, 2H), 6.27 (s, 1H), 4.62 (d, *J* = 15.6 Hz, 1H), 4.24 (s, 1H), 4.08 (t, *J* = 2.4 Hz, 1H), 4.01 (s, 1H), 3.84 (s, 5H), 3.78 (d, *J* = 15.6 Hz, 1H), 2.97 – 2.77 (m, 2H), 2.44 (s, 3H), 2.40 (dd, *J* = 7.6, 3.7 Hz, 1H), 2.28 (dd, *J* = 8.8, 4.5 Hz, 1H), 1.82 – 1.68 (m, 6H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 143.3 (C), 138.7 (C), 138.6 (C), 137.7 (C), 129.6 (CH), 128.4 (CH), 127.5 (CH), 127.2 (CH), 127.1 (CH), 121.8 (C), 80.5 (C), 79.8 (C), 70.6 (CH), 69.9 (CH), 67.5 (CH), 63.2 (CH), 56.4 (CH₂), 41.5 (C), 31.8 (CH₂), 31.3 (CH₂), 28.5 (CH₂), 28.3 (CH₂), 26.7 (CH₂), 21.5 (CH₃). HRLCMS (ESI) *m/z*: [M] Calcd for C₃₂H₃₃FeNO₂S 551.1576; Found 551.1587.

Scheme S3. General procedure for the Pd-catalyzed alkenylation of ferrocenyl secondary amines with olefins

In a Schlenk tube, $Pd(OAc)_2$ (2.5 mg, 0.012 mmol, 8 mol%), NOBINAc (14 mg, 0.04 mmol, 28 mol%), CuO (11.5 mg, 0.14 mmol, 1 equiv.), CsF (44 mg, 0.28 mmol, 2 equiv.) and ferrocenyl secondary amine **1a** (50 mg, 0.14 mmol, 1 equiv.) were added in dry THF (1.5 mL) under an inert atmosphere and the resulted orange colored solution was stirred for 10 min. After pre-stirring, olifin **2aa** (55 μ L, 0.29 mmol, 2 equiv.) was added. The tube was sealed with a rubber septum, and a dry air atmosphere was maintained in the flask with a balloon. The reaction was heated at 75 °C, stirred for 10 h, and then cooled to room temperature. The crude reaction mixture was passed through a celite pad, evaporation, and column chromatography on silica gel (mesh 230-400) using hexane: ethyl acetate (85:15) eluent to afford chiral 1,2 alkenylated ferrocenyl amines (**4a-4n**).

Chiral 1,2 alkenylated ferrocenyl amine 4a was purified on silica gel (mesh 230-400) in (hexanes: ethyl acetate; 85:15), obtained as an orange yellow solid, mp: 104 °C-105 °C. Yield: 32 mg (52%). ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 15.6 Hz, 1H), 6.11 (d, J = 15.6 Hz, 1H), 5.46 (s, 1H), 4.66 (s, 1H), 4.52 (d, J = 17.2 Hz, 2H), 4.38 (t, J = 5.8 Hz, 2H), 4.24 (d, J = 7.1 Hz, 2H), 4.20 (s, 5H), 1.35 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 167.1 (C), 141.9 (CH), δ 119.7 (d, J = 321.2 Hz CF₃), 116. (CH), 83.2 (C), 78.0 (C), 71.9 (CH), 70.6 (CH), 70.4 (CH), 67.2 (CH), 60.5 (CH₂), 42.2 (CH₂), 14.2 (CH₃). HRLCMS (ESI) *m/z:* [M+Na]⁺ Calcd for C₁₇H₁₈F₃FeNO₄SNa 468.0150; Found 468.0144. The enantioselectivity of the product **4a** was determined by chiral HPLC analysis on AD-H column (hexane: isopropanol = 80:20, 1 mL/min, λ =254 nm).

Racemic sample (4a)

Asymmetric sample (4a)

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	6.449	MM	0.3153	1770.28333	93.59005	90.1287
2	7.519	MM	0.2305	193.88928	14.01961	9.8713

Chiral 1,2 alkenylated ferrocenyl amine 4b was purified on silica gel (mesh 230-400) in (hexanes: ethyl acetate; 80:20), obtained as an orange red solid, mp: 112-113 °C. Yield: 40 mg (56%). ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.35 (m, 3H), 7.02 (t, *J* = 8.9 Hz, 1H), 5.96 (d, *J* = 15.3 Hz, 1H), 4.89 (t, *J* = 7.2 Hz, 1H), 4.52 (s, 1H), 4.35 (d, *J* = 6.6 Hz, 2H), 4.14 (s, 7H), 1.55 (s, 9H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 166.4 (C), 162.7 (dd, *J* = 254.6, 11.7 Hz C-F), 143.6 (t, *J* = 8.3 Hz C), 140.7 (CH), 118.3 (CH), 110.6 (dd, *J* = 22.4, 5.7 Hz CH), 108.2 (t, *J* = 25.0 Hz CH), 83.5 (C), 80.5 (C), 78.0 (CH), 71.6 (CH), 70.2 (CH), 69.8 (CH), 66.8 (C), 41.2 (CH₂), 28.2 (CH₃). HRLCMS (ESI-QTOF) *m/z*: [M]⁺ Calcd for C₂₄H₂₅F₂FeNO₄S 517.0817; Found 517.0814. The enantioselectivity of the product **4b** was determined by chiral HPLC analysis on AD-3 column (hexane: isopropanol = 95:5, 1 mL/min, λ =254 nm)

Asymmetric sample (4b)

Chiral 1,2 alkenylated ferrocenyl amine 4c was purified on silica gel (mesh 230-400) in (hexanes: ethyl acetate; 80:20), obtained as an orange red solid, mp: 104-105 °C. Yield: 30 mg (47%). ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 7.6 Hz, 2H), 7.46 (d, *J* = 15.5 Hz, 1H), 7.35 (d, *J* = 7.4 Hz, 2H), 6.03 (d, *J* = 15.3 Hz, 1H), 4.58 (s, 1H), 4.54 (s, 1H), 4.39 (s, 2H), 4.14 (s, 5H), 4.02 (s, 2H), 3.79 (s, 3H), 2.47 (s, 3H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 167.3 (C), 143.7 (C), 142.7 (C), 136.7 (CH), 129.9 (CH), 127.2 (CH), 115.8 (CH), 85.1 (C), 78.6 (C), 72.5 (CH), 71.3 (CH), 71.0 (CH), 67.8 (CH), 51.6 (CH₃), 41.0 (CH₂), 21.6 (CH₃). HRLCMS (ESI-QTOF) *m/z*: [M+H]⁺ Calcd for C₂₂H₂₄FeNO₄S 454.0770; Found 454.0778. The enantioselectivity of the product **4c** was determined by chiral HPLC analysis on AD-H column (hexane: isopropanol = 90:10, 1 mL/min, λ =254 nm)

Asymmetric sample (4c)

Chiral 1,2 alkenylated ferrocenyl amine 4d was purified on silica gel (mesh 230-400) in (hexanes: ethyl acetate; 75:25), obtained as an orange red solid, mp: 120-121 °C. Yield: 41 mg (57%). ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 7.7 Hz, 2H), 7.46 (d, *J* = 15.7 Hz, 1H), 7.35 (d, *J* = 7.4 Hz, 2H), 6.03 (d, *J* = 15.5 Hz, 1H), 4.87 (s, 1H), 4.55 (s, 2H), 4.35 (s, 2H), 4.13 (s, 5H), 4.04 (d, *J* = 5.7 Hz, 2H), 2.47 (s, 3H), 1.99 – 1.90 (m, 2H), 1.85 – 1.76 (m, 2H), 1.52-1.37 (m, , 6H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 166.4 (C), 143.6 (C), 141.9 (C), 136.7 (CH), 129.9 (CH), 127.1 (CH), 116.9 (CH), 84.2 (C), 77.9 (C), 72.7 (CH), 71.3 (CH), 70.2 (CH), 69.9 (CH), 67.0 (CH), 40.9 (CH₂), 31.8 (CH₂), 25.4 (CH₂), 23.9 (CH₂), 21.5 (CH₃). HRLCMS (ESI-QTOF) *m/z*: [M]⁺ Calcd for C₂₇H₃₁FeNO₄S 521.1318; Found 521.1311. The enantioselectivity of the product **4d** was determined by chiral HPLC analysis on AD-3 column (hexane: isopropanol = 75:25, 1 mL/min, λ =254 nm)

Asymmetric sample (4d)

Chiral 1,2 alkenylated ferrocenyl amine 4e was purified on silica gel (mesh 230-400) in (hexanes: ethyl acetate;80:20), obtained as an orange yellow solid, mp: 114-115 °C. Yield: 44 mg (60%). ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 7.5 Hz, 2H), 7.53 (d, *J* = 15.4 Hz, 1H), 7.48 – 7.35 (m, 5H), 7.31 (d, *J* = 8.0 Hz, 2H), 6.08 (d, *J* = 15.8 Hz, 1H), 5.24 (s, 2H), 4.62 (t, *J* = 6.4 Hz, 1H), 4.55 (s, 1H), 4.37 (s, 2H), 4.12 (s, 5H), 4.03 (d, *J* = 5.6 Hz, 2H), 2.45 (s, 3H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 166.7 (C), 143.7 (C), 143.0 (CH), 136.7 (CH), 136.1 (CH), 129.9 (CH), 128.6 (CH), 128.3 (CH), 128.2 (CH), 127.1 (CH), 115.8 (CH), 84.3 (C), 77.6 (C), 71.5 (CH), 70.3 (CH), 70.0 (CH), 67.1 (CH), 66.2 (CH₂), 40.9 (CH₂), 21.5 (CH₃). HRLCMS (ESI-QTOF) *m/z*: [M+Na]⁺ Calcd for C₂₈H₂₇FeNO₄SNa 552.0903; Found 552.0886. The enantioselectivity of the product **4e** was determined by chiral HPLC analysis on AD-H column (hexane: isopropanol = 70:30, 1 mL/min, λ =254 nm)

Racemic sample (4e)

Asymmetric sample (4e)

Chiral 1,2 alkenylated ferrocenyl amine 4f was purified on silica gel (mesh 230-400) in (hexanes: ethyl acetate; 85:15), obtained as an orange yellow solid, mp: 111-112 °C. Yield. 25 mg (35%). ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 7.0 Hz, 2H), 7.64 (d, *J* = 15.3 Hz, 1H), 7.41 (dt, *J* = 14.9, 8.1 Hz, 5H), 7.34 (d, *J* = 6.3 Hz, 2H), 6.21 (d, *J* = 15.2 Hz, 1H), 4.66 (s, 1H), 4.58 (s, 2H), 4.22 (s, 5H), 4.12 – 3.99 (m, 2H), 2.41 (s, 3H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 171.2 (C), 165.1 (C), 150.9 (C), 144.8 (C), 136.7 (CH), 129.9 (CH), 129.3 (CH), 127.2 (CH), 125.7 (CH), 121.5 (CH), 115.3 (CH), 84.1 (C), 78.3 (C), 73.6 (CH), 72.5 (CH), 70.8 (CH), 67.8 (CH), 46.5 (CH₂), 21.5 (CH₃). HRLCMS (QTOF-ESI) *m/z*: [M+ Na]⁺ Calcd for C₂₇H₂₅FeNO₄SNa 538.0746 Found 538.0730. The enantioselectivity of the product **4f** was determined by chiral HPLC analysis on AD-H column (hexane: isopropanol = 70:30, 1 mL/min, λ =254 nm)

Chiral 1,2 alkenylated ferrocenyl amine 4g was purified on silica gel (mesh 230-400) in (hexanes: ethyl acetate; 85:15), obtained as an orange yellow solid, mp: 110-111 °C. Yield: 45 mg (57%). ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 7.9 Hz, 2H), 7.51 (d, *J* = 15.6 Hz, 1H), 7.38 (d, *J* = 8.3 Hz, 2H), 7.31 (d, *J* = 8.1 Hz, 2H), 6.94 (d, *J* = 8.0 Hz, 2H), 6.05 (d, J = 15.9 Hz, 1H), 5.16 (s, 2H), 4.64 (t, J = 6.0 Hz, 1H), 4.53 (s, 1H), 4.36 (s, 2H), 4.11 (s, 5H), 4.02 (d, J = 5.9 Hz, 2H), 3.84 (s, 3H), 2.45 (s, 3H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 166.8 (C), 159.6 (C), 143.6 (C), 142.8 (C), 136.7 (C), 130.2 (CH), 129.8 (CH), 127.1 (CH), 126.4 (CH), 115.9 (CH), 114.0 (CH), 84.3 (C), 77.6 (C), 71.4 (CH), 70.2 (CH), 70.0 (CH), 67.0 (CH), 66.0 (CH₂), 55.3 (CH₃), 40.96 (CH₂), 21.58 (CH₃). HRLCMS (ESI-QTOF) *m/z*: [M]⁺ Calcd for C₂₉H₂₉FeNO₅S 559.1116; Found 559.1111. The enantioselectivity of the product **4g** was determined by chiral HPLC analysis on OZ-3 column (hexane: isopropanol = 80:20, 1 mL/min, λ =254 nm)

Asymmetric sample (4g)

Chiral 1,2 alkenylated ferrocenyl amine 4h was purified on silica gel (mesh 230-400) in (hexanes: ethyl acetate; 80:20), obtained as an orange yellow solid, mp: 113-114 °C. Yield: 53 mg (67%). ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 7.7 Hz, 2H), 7.49 (d, J = 15.6 Hz, 1H), 7.31 (t, J = 7.9 Hz, 4H), 7.22 (d, J = 7.5 Hz, 3H), 6.03 (d, J = 15.7 Hz, 1H), 4.97 – 4.80 (m, 1H), 4.54 (s, 1H), 4.36 (s, 2H), 4.20 (d, J = 5.9 Hz, 2H), 4.09 (d, J = 13.0 Hz, 5H), 4.03 (d, J = 5.7 Hz, 2H), 2.70 (brs, 2H), 2.45 (s, 3H), 1.76 (brs, 4H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 167.0 (C), 143.6 (C), 142.6 (C), 142.1 (C), 136.8 (CH), 129.8 (CH), 128.4 (CH), 128.3 (CH), 127.1 (CH), 125.8 (CH), 116.0 (CH), 84.3 (C), 77.6 (C), 71.4 (CH), 70.2 (CH), 69.9 (CH), 66.9 (CH), 64.3 (CH₂), 40.9 (CH₂), 35.5 (CH₂), 28.3 (CH₂), 27.8 (CH₂), 21.6 (CH₃). HRLCMS (ESI-QTOF) *m*/*z*: [M]⁺ Calcd for C₃₁H₃₃FeNO₄S 571.1475; Found 571.1478. The enantioselectivity of the product **4h** was determined by chiral HPLC analysis on AD-H column (hexane: isopropanol = 80:20, 1 mL/min, λ=254 nm)

Racemic sample (4h)

Asymmetric sample (4h)

Chiral 1,2 alkenylated ferrocenyl amine 4i was purified on silica gel (mesh 230-400) in (hexanes: ethyl acetate; 60:40), obtained as an orange yellow solid, mp: 120-121 °C. Yield: 38 mg (58%). ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 7.6 Hz, 2H), 7.47 (d, *J* = 15.0 Hz, 1H), 7.35 (d, *J* = 7.7 Hz, 2H), 6.57 (d, *J* = 15.0 Hz, 1H), 4.88 (t, *J* = 6.4 Hz, 1H), 4.54 (s, 1H), 4.35 – 4.27 (m, 2H), 4.10 (s, 5H), 4.08 (d, *J* = 7.0 Hz, 1H), 3.96 (dd, *J* = 13.9, 5.6 Hz, 1H), 3.14 (s, 3H), 3.05 (s, 3H), 2.47 (s, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 166.7 (C), 143.5 (C), 139.7 (C), 136.8 (CH), 129.8 (CH), 127.1 (CH), 115.6 (CH), 83.3 (C), 79.3 (C), 71.3 (CH), 70.0 (CH), 69.3 (CH), 67.7 (CH), 41.4 (CH₂), 37.4 (CH₃), 35.9 (CH₃), 21.59 (CH₃). HRLCMS (ESI-QTOF) *m/z*: [M]⁺ Calcd for C₂₃H₂₆FeN₂O₃S 466.1008; Found 466.0994. The enantioselectivity of the product **4i** was determined by chiral HPLC analysis on AD-3 column (hexane: isopropanol = 65:35, 1 mL/min, λ =254 nm)

Asymmetric sample (4i)

Chiral 1,2 alkenylated ferrocenyl amine 4j was purified on silica gel mesh (230-400) in (hexanes: ethylacetate; 50:50), obtained as an orange yellow solid, mp: 120-121 °C. Yield: 28 mg (40%). ¹H NMR (500 MHz, CDCl₃) δ 7.74 (d, *J* = 6.1 Hz, 2H), 7.33 (d, *J* = 7.0 Hz, 2H), 6.46 – 6.09 (m, 1H), 5.80 (brs, 1H), 4.91 (s, 1H), 4.76 (d, *J* = 36.9 Hz, 1H), 4.52 (d, *J* = 30.1 Hz, 2H), 4.30 (s, 5H), 4.14 (d, *J* = 7.2 Hz, 1H), 4.02 – 3.95 (brs, 1H), 3.77 (s, 3H), 3.75 (s, 3H), 2.46 (s, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 147.6 (C), 143.53 (CH), 136.98 (C), 129.8 (CH), 127.11 (CH), 109.7 (d, *J* = 194.0 Hz CH), 84.2 (C), 78.2 (C), 71.7 (CH), 70.3 (CH), 69.9 (CH), 67.1 (CH), 60.4 (CH₃), 52.4 (CH₃), 40.9 (CH₂), 21.5 (CH₃). ³¹P NMR (202 MHz, CDCl₃) δ 22.9. HRLCMS (ESI-QTOF) *m*/*z*: [M+H]⁺ Calcd for C₂₂H₂₇FeNO₅PS 504.0692; Found 504.0712. The enantioselectivity of the product **4j** was determined by chiral HPLC analysis on AD-H column (hexane: isopropanol = 80:20, 1 mL/min, λ =254 nm)

Asymmetric sample (4j)

Chiral 1,2 alkenylated ferrocenyl amine 4m was purified on silica gel (mesh 230-400) in (hexanes: ethyl acetate; 80:20), obtained as inseprable mixture with **1d** an orange yellow solid, mp: 110-111 °C. Yield: 47 mg (58%). ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 12.0 Hz, 2H), 7.47 (d, *J* = 15.7 Hz, 1H), 7.34 (d, *J* = 7.9 Hz, 2H), 6.01 (d, *J* = 15.9 Hz, 1H), 4.80 (td, *J* = 10.5, 3.5 Hz, 1H), 4.71 (t, *J* = 5.5 Hz, 1H), 4.54 (s, 1H), 4.35 (s, 2H), 4.12 (s, 5H), 4.03 (d, *J* = 5.8 Hz, 2H), 2.46 (s, 3H), 2.06 (t, *J* = 6.3 Hz, 1H), 2.00 – 1.91 (m, 1H), 1.73 (d, *J* = 11.8 Hz, 2H), 1.60 – 1.42 (m, 2H), 0.95 (d, *J* = 6.7 Hz, 6H), 0.83 (d, *J* = 6.9 Hz, 3H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 166.6 (C), 143.6 (C), 142.3 (C), 136.8 (CH), 129.8 (CH), 127.1 (CH), 116.7 (CH), 84.2 (C), 77.9 (C), 74.11 (CH), 71.30 (CH), 70.25 (CH), 69.88 (CH), 67.13 (CH), 47.15 (CH₂), 41.2 (CH₃), 41.0 (CH), 34.3 (CH), 31.4 (CH₂), 26.4 (CH₂), 23.6 (CH), 22.1 (CH₂), 21.6 (CH₃), 20.8 (CH₃), 16.5 (CH₃). HRLCMS (ESI-QTOF) *m*/*z*: [M]⁺ Calcd for C₃₁H₃₉FeNO₄S 577.1944; Found 577.1946.

Ferrocene fused tetrahydropyridine 4n was purified on silica gel (mesh 230-400) in (hexanes: ethyl acetate; 80:20), obtained as inseprable mixture with **1d** as an orange yellow solid, mp: 125-126 °C. Yield: 57 mg (48%). ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 7.5 Hz, 2H), 7.68 (d, *J* = 15.0 Hz, 1H), 7.35 (d, *J* = 7.9 Hz, 2H), 6.27 (d, *J* = 15.6 Hz, 1H), 4.65 (s, 1H), 4.51 (s, 1H), 4.44 (s, 2H), 4.16 (s, 5H), 4.05 (d, *J* = 5.2 Hz, 2H), 2.64 (t, *J* = 6.5 Hz, 2H), 2.47 (s, 1H), 2.39 (s, 3H), 2.14 (s, 3H), 2.07 (s, 3H), 2.02 (s, 3H), 1.94 – 1.74 (m, 3H), 1.58 – 1.49 (m, 4H), 1.49 – 1.36 (m, 5H), 1.34 – 1.29 (m, 2H), 1.22 – 1.13 (m, 4H), 1.08 (dd, *J* = 11.0, 5.5 Hz, 3H), 0.93 – 0.83 (m, 14H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 165.4 (C), 149.4 (C), 144.1 (C), 143.7 (C), 143.5 (C), 140.4 (C), 136.8 (C), 136.6 (C), 129.7 (CH), 127.1 (CH), 123.0 (CH), 117.4 (CH), 115.1 (CH), 84.4 (C), 77.4 (C), 75.0 (CH), 71.8 (CH), 70.4 (CH), 70.3 (CH), 67.2 (C), 60.4 (CH₂), 42.5 (CH₂), 24.4 (CH₂), 22.7 (CH₂), 22.6 (CH₂), 21.6 (CH₂), 21.4 (CH₂), 21.0 (CH₂), 22.6 (CH₃), 19.8 (CH₃), 19.7 (CH₃), 19.6 (CH₃), 14.2 (CH₃), 13.0 (CH₃), 12.2 (CH₃), 11.9 (CH₃). HRLCMS (ESI-QTOF) *m*/*z*: [M+Na]⁺ Calcd for C₅₀H₆₉FeNO₅SNa 874.4140; Found 874.4139.

Scheme S4. Removal of protecting group

To a solution of **3a** (0.12 mmol, 1 equiv) in Toluene (2 mL, 0.06 M) under a nitrogen atmosphere, Red Al (1.2 mmol, 10 equiv) was slowly added at 0 °C. After the completion of the addition, the reaction was allowed to be stirred for 16 h before being guenched with NH₄Cl solution. The organic layer was separated, and the aqueous layer was extracted with dichloromethane. The combined organic phase was washed with brine and then dried over Na₂SO₄. Evaporation and column chromatography on basic silica gel (mesh 100-200) with the solvent mixture of hexanes: ethyl acetate (20: 80) afforded 5a. Orange yellow solid, mp: 110 °C-111 °C. Yield: 45mg (70%). ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.30 (m, 7H), 7.28 – 7.23 (m, 1H), 7.19 (d, J = 7.6 Hz, 2H), 4.25 (s, 1H), 4.11 (s, 5H), 4.04 (d, J = 16.4 Hz, 1H), 3.98 (d, J = 6.4 Hz, 1H), 3.74 (d, J = 15.5 Hz, 1H), 3.65 (d, J = 14.9 Hz, 2H), 3.11 (s, 1H), 2.04 (s, 1H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 143.4 (C), 142.0 (C), 135.9 (CH), 130.8 (CH), 129.6 (C), 129.3 (C), 128.6 (CH), 128.2 (CH), 127.0 (CH), 126.8 (CH), 85.2 (C), 79.1 (C), 70.2 (CH), 67.5 (CH), 65.9 (CH), 65.3 (CH), 48.5 (CH₂), 45.3 (CH₂). HRLCMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₆H₂₄FeN 406.1253; Found 406.1237. The enantioselectivity of product **5a** was determined by chiral HPLC analysis on IE-3 column (hexane: isopropanol = 98:2, 1 mL/min, $\lambda = 254$ nm).

Racemic sample (5a)

Asymmetric sample (5a)

2	35.376 MM	3.6289 7.50561e4	344.71545	93.8819

Scheme S5. Oxidation of Amine and Aldehyde Reduction

2-Alkenylated ferrocenyl amine **4b** (0.12 mmol, 1 equiv) and Cs₂CO₃ (0.24 mmol, 2 equiv) were dissolved in DMF (2 mL, 0.06 M) solvent under open air atmosphere. The reaction was stirred at 110°C for 6 h. The organic layer was separated, and the aqueous layer was extracted with ethyl acetate. The combined organic phase was washed with brine and then dried over Na₂SO₄. Evaporation and column chromatography on basic silica gel (mesh 100-200) with the solvent mixture of hexanes: ethyl acetate (20: 80) afforded **6a**. Orange red solid, mp: 109 °C-110 °C. Yield: 24mg (55%). ¹H NMR (400 MHz, CDCl₃) δ 10.20 (s, 1H), 7.92 (d, *J* = 15.8 Hz, 1H), 6.19 (d, *J* = 15.8 Hz, 1H), 4.99 (dd, *J* = 7.7, 6.4 Hz, 2H), 4.79 (t, *J* = 2.6 Hz, 1H), 4.31 (s, 5H), 1.56 (s, 9H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 192.7(C), 166.1(C), 140.5(CH), 120.3(CH), 81.4(C), 80.5(C), 78.2(C), 73.8(CH), 72.9(CH), 71.7(CH), 71.3(CH), 28.2(CH₃). HRLCMS (ESI) *m*/*z*: [M+Na]⁺ Calcd for C₁₈H₂₀FeO₃Na 363.0654; Found 363.0641. Enantioselectivity of the product **6a** was determined by chiral HPLC analysis on AD-3 (hexane: isopropanol = 98:2, 1 mL/min, λ =254 nm).

Racemic sample (6a)

Asymmetric sample (6a)

Further compound **6a** was reduced with NaBH₄ in MeOH solvent for 24 h to isolated compound **7a** before being quenched with 1M NaOH solution. The organic layer was separated, and the aqueous layer was extracted with ethyl acetate. The combined organic phase was washed with brine and then dried over Na₂SO₄. Evaporation and column chromatography on basic silica gel (mesh 100-200) with the solvent mixture of hexanes: ethyl acetate (30: 70) afforded an orange yellow solid **7a**, mp: 119 °C-120 °C. Yield: 32mg (95%). ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, *J* = 12.7 Hz, 1H), 6.08 (d, *J* = 15.4 Hz, 1H), 4.60 (d, *J* = 4.0 Hz, 2H), 4.50 (brs, 2H), 4.42 (s, 1H), 4.18 (s, 5H), 2.05 (brs, 1H), 1.55 (s, 9H). ¹³C{¹H} NMR (176 MHz, CDCl₃) δ 166.6 (C), 141.9 (CH), 118.1 (CH), 88.0 (C), 80.2 (C), 78.4 (C), 71.6 (CH), 70.0 (CH), 69.7 (CH), 67.6 (CH), 59.1 (CH₂), 28.2 (CH₃). HRLCMS (ESI-QTOF) *m/z*: [M+Na]⁺ Calcd for C₁₈H₂₂FeO₃Na 365.0811; Found 365.0825. Enantioselectivity of the product **7a** was determined by chiral HPLC analysis on OZ-3 (hexane: isopropanol = 70:30, 1 mL/min, λ =254 nm).

Racemic sample (7a)

0

#

10

[min]

1.8342

5

[min]

1 15.722 MM

2 37.049 MM

Peak RetTime Type Width

15

Area

721.63727

[mAU*s]

0.6497 1360.60925

20

25

Height

[mAU]

34.90311

6.55738

30

Area

%

65.3433

34.6567

35

40

min

Scheme S6. Asymmetric thia-Michael reaction using post-derivatized ferrocene fused tetrahydropyridine 5a.⁵

Mechanistic Investigation

Control Experiment 1: Removal of cation from the catalytic cycle

In a Schlenk tube, $Pd(OAc)_2$ (2.5 mg, 0.012 mmol, 8 mol%), NOBINAc (14 mg, 0.04 mmol, 28 mol%), CuO (12 mg, 0.14 mmol, 1 equiv.), CsF (44 mg, 0.29 mmol, 2 equiv.), and *N*-Methylferrocenyl 1,1,1-trifluoromethanesulfonamide **1a** (50 mg, 0.14 mmol, 1 equiv.) were dissolved in dry THF (1.5 mL) under inert atmosphere and was stirred for 10 min. After prestirring, 10 equiv of H₂O or 2.5 equiv of 18 crown ether and allene **2a** (55 µL, 0.29 mmol, 2 equiv.) was added to it. The tube was sealed with a rubber septum, maintaining a dry air atmosphere in the flask with a balloon. The reaction was heated at 75° C, stirred for 18 h, and then cooled to room temperature. The crude reaction mixture was passed through a celite pad, then evaporation and column chromatography on silica gel (mesh 230-400) in (hexane: ethyl acetate; 95:5) afforded **3a**.

Control Experiment 2: Stoichiometric ¹⁹F NMR experiment with different cation sources. In NMR tube $Pd(OAc)_2$ (6.7 mg, 0.03 mmol, 1 equiv.), NOBINAc (9.8 mg, 0.03 mmol, 1 equiv.), M_2CO_3 (0.045 mmol, 1.5 equiv.), and *N*-Methylferrocenyl 1,1,1-trifluoromethanesulfonamide **1a** (10 mg, 0.03 mmol, 1 equiv.) was added in (0.8 mL) CDCl₃. Further heated for 60 min, then submitted for ¹⁹F NMR. A new peak at -76.07 ppm corresponding to CF₃ of **1a** emerges and increases to a maximum with the increase of the size of the cations (Li, Na, and Cs), which could be attributed to initial C-H activated species.

Control Experiment 3: Ligand acceleration experiment.

In a Schlenk tube, $Pd(OAc)_2$ (2.5 mg, 0.012 mmol, 8 mol%), NOBINAc (14 mg, 0.04 mmol, 28 mol%), CuO (11.5 mg, 0.14 mmol, 1 equiv.), CsF (44 mg, 0.29 mmol, 2 equiv.), and *N*-Methylferrocenyl 1,1,1-trifluoromethanesulfonamide **1a** (50 mg, 0.14 mmol, 1 equiv.) were mixed in dry THF (1.5 mL) and without ligand stirred for 10 min under dry air atmosphere. After pre-stirring of 10 min, allene **2a** (55 μ L, 0.29 mmol, 2 equiv.) was added to it. The tube was sealed with a rubber septum, maintaining the dry air atmosphere in the flask with a balloon, and further reaction mixture was heated at 75 °C. Next, after a regular interval of 15 min, a 250 μ L reaction aliquot was pumped out, and then the crude reaction mixture was passed through a celite pad. After the evaporation of the solvent, the crude sample was submitted for ¹⁹F NMR.

S. NO>	Time (Mins)	Fractional Conversion (19F- NMR) with NOBINAc Ligand	Fractional Conversion (19F- NMR) without NOBINAc ligand
1	15	0.1304	0.0651
2	30	0.1667	0.0825
3	45	0.1935	0.0991
4	60	0.2000	0.0991
5	90	0.2424	0.115

Ligand Acceleration experiment

Computational Studies

Computational studies were performed with the Gaussian 09 Revision A.02 program suite with the DFT method of Becke's three-parameter hybrid Hartree-Fock procedure with the Lee Yang-Parr correlation function (B3LYP). The geometry optimization and energy calculations of the reactants, intermediates, and transition state were fully optimized by the DFT/B3LYP method with LANL2DZ basis set in the solution phase using CPCM (conductor-like Polarizable Continuum Model) model in tetrahydrofuran (THF) solvent. Energy obtained from computation is listed in Hartree and converted to kcal/mol. The difference between the favorable and unfavorable transition states is 10.45 kcal/mol.

Favorable TS I

Unfavorable TS II

Energy Data

Structure	Electronic and Thermal Correction to G _{solv}	ΔG_{solv}
TS I	-2300.642230	0.00 kcal/mol
TS II	-2300.625582	+10.45 kcal/mol

Relative energies were calculated at the level of B3LYP/LANL2DZ/CPCM(THF) at 298K

Intermediate IIIA (having Z-configuration) Intermediate IIIB (having E-configuration)

Figure S6. Optimized structure of Intermediate III having Z- and E-configurations

Energy Data

Structure Electronic and Thermal Correction to G _{solv}		ΔG_{solv}
Intermediate IIIA	-1847.021831	0.00 kcal/mol
Intermediate IIIB	-1847.016332	+3.45 kcal/mol

Relative energies were calculated at the level of B3LYP/LANL2DZ/CPCM(THF) at 298K

Energy Data

Structure	Electronic and Thermal Correction to G _{solv}	ΔG_{solv}
Z-3f	-1487.952045	0.00 kcal/mol
<i>E</i> -3f	-1487.949645	+1.51 kcal/mol
D 1 / .		

Relative energies were calculated at the level of B3LYP/LANL2DZ/CPCM(THF) at 298K

Molecular Orbital Picture:

Figure S8. Pictorial view of HOMO (left) and LUMO (right) of favorable TS I

Figure S9. Pictorial view of HOMO (left) and LUMO (right) of unfavorable TS II

Figure S10. Pictorial view of HOMO (left) and LUMO (right) of intermediate IIIA

Figure S11. Pictorial view of HOMO (left) and LUMO (right) of intermediate IIIB

Figure S12. Pictorial view of HOMO (left) and LUMO (right) of Z-3f

Figure S13. Pictorial view of HOMO (left) and LUMO (right) of E-3f

Co-ordinates of Optimized Structures

Favourable TS I

Electronic + Thermal Free Energies: -2300.642230

Correction to Gibb's free energy: 0.442038

Zero-point correction: 0.524528

Imaginary vibration frequency: 1 (associated imaginary frequency *i*1194.80 cm⁻¹)

Symbol	Coordinates (Å)		 A)
	Х	Y	Ζ
Fe	-4.265047	2.028064	-0.686603
С	-5.079536	3.932474	-1.188275
С	-4.083269	0.716786	-2.376747
С	-4.045281	4.077343	-0.195105
С	-6.112616	3.084834	-0.641393
С	-4.440711	3.321308	0.974158
С	-5.721769	2.715947	0.698221
Н	-5.070950	4.363153	-2.180155
Н	-4.644861	0.817096	-3.296013
Н	-3.112254	4.607561	-0.312518

Η	-7.017910	2.781889	-1.148952
Η	-3.872687	3.223380	1.888660
Η	-6.282309	2.080567	1.370129
S	-1.946794	-2.866145	0.364482
0	-0.548318	-3.648235	0.687695
0	-2.554965	-3.137380	-1.134845
С	-4.502381	-0.028314	-1.213017
Η	-5.410791	-0.608412	-1.121309
С	-3.498452	0.137025	-0.204466
С	-3.277906	-3.875807	1.551552
С	-3.297133	-0.572934	1.098476
Η	-4.097648	-1.283273	1.330144
Η	-3.226270	0.125825	1.941137
F	-4.572052	-3.781340	1.049750
F	-3.270907	-3.392710	2.853665
F	-2.923225	-5.214130	1.581281
N	-1.909260	-1.216676	1.100749
С	-2.409989	0.966889	-0.731947
Η	-1.763469	2.036446	-0.168241
С	1.932707	-0.020601	1.593877
С	2.862113	0.851869	0.987643
С	1.854731	-0.090099	3.027647
С	3.662534	1.726273	1.803748
С	2.652605	0.709529	3.826764
Η	1.146289	-0.792754	3.459660
С	4.556121	2.703688	1.248038
С	3.563453	1.648072	3.244001
Η	2.585362	0.644556	4.911020
С	5.311770	3.537894	2.064130
Η	4.636524	2.794496	0.168848

С	4.360924	2.511792	4.057377
С	5.222875	3.441129	3.485942
Η	5.977332	4.273244	1.618003
Η	4.275609	2.434208	5.139598
Η	5.823040	4.096385	4.111953
С	2.947686	0.862983	-0.509614
С	4.130278	0.410274	-1.207170
С	1.845622	1.285105	-1.266157
С	5.267196	-0.118672	-0.510214
С	4.183623	0.467057	-2.652096
С	1.900319	1.330151	-2.695305
С	6.394035	-0.553070	-1.196953
Η	5.236365	-0.183037	0.572529
С	5.363954	0.022664	-3.329877
С	3.047003	0.946568	-3.373869
Η	1.020564	1.667409	-3.236843
С	6.449930	-0.476065	-2.621974
Η	7.242724	-0.953992	-0.648508
Η	5.393310	0.076841	-4.416083
Η	3.086742	0.992609	-4.459725
Η	7.340931	-0.812440	-3.145642
N	0.601216	1.619939	-0.633552
С	0.182571	2.870501	-0.458663
Pd	-0.607700	0.103074	0.098977
0	-1.038406	3.096083	-0.005303
С	1.032803	4.082527	-0.771352
Η	0.779504	4.464738	-1.768751
Η	0.808717	4.869805	-0.045751
Н	2.100243	3.852428	-0.748415
0	1.115778	-0.831468	0.846224
Cs	2.052272	-3.235204	-0.870806
------	-----------	-----------	-----------
С	-2.809848	1.315606	-2.094773
Н	-2.251471	1.949158	-2.771904

Unfavorable TS II

Electronic + Thermal Free Energies: -2300.625582 Correction to Gibb's free energy: 0.439285 Zero-point correction: 0.519781 Imaginary vibration frequency: 1 (associated imaginary frequency *i*1154.52 cm⁻¹)

Symbo	l C	Coordinates (Å)			
291100	X	Y	Z		
Fe	-3.547423	-1.747050	0.278059		
С	-2.914930	-2.722843	2.041762		
С	-2.981479	-2.923705	-1.325416		
С	-4.344991	-2.510580	2.064704		
С	-2.278409	-1.432166	1.966789		
С	-4.583748	-1.087082	1.997317		
С	-3.306437	-0.421211	1.932263		
Н	-2.413998	-3.680339	2.065112		
Н	-2.350872	-3.800141	-1.279492		
Н	-5.101761	-3.281830	2.099170		
Н	-1.214339	-1.261013	1.908274		
Н	-5.552554	-0.607796	1.975548		
Н	-3.130960	0.641252	1.864643		
S	-2.404613	2.616511	-0.187767		
0	-1.827037	2.504162	1.337111		
0	-3.820826	3.418932	-0.358613		
Н	-1.484233	-1.777325	-2.464042		
С	-3.700326	-0.723218	-1.619486		

С	-1.026567	3.912381	-1.016331
С	-3.622965	0.769870	-1.771547
Η	-4.499452	1.264640	-1.341718
Η	-3.559257	1.048688	-2.832850
F	-0.690136	3.497600	-2.296984
F	0.123427	4.016143	-0.248716
F	-1.591266	5.181131	-1.111301
N	-2.352266	1.174945	-1.073655
С	-4.857205	-1.534946	-1.380884
Η	-5.877580	-1.183998	-1.313375
С	1.818370	0.896550	-1.100497
С	2.715355	-0.148697	-0.794120
С	2.167079	1.843010	-2.124398
С	3.926669	-0.306183	-1.550982
С	3.349677	1.729418	-2.834241
Η	1.465025	2.644551	-2.323881
С	4.833008	-1.398347	-1.333631
С	4.255434	0.650263	-2.581861
Η	3.597371	2.455518	-3.606282
С	5.995875	-1.528333	-2.083941
Η	4.599975	-2.135522	-0.570802
С	5.462272	0.495502	-3.331987
С	6.322294	-0.570978	-3.092575
Η	6.665395	-2.366307	-1.904487
Η	5.695177	1.227328	-4.103235
Η	7.236725	-0.683371	-3.669407
С	2.359426	-1.112560	0.294397
С	3.075969	-1.145783	1.543284
С	1.271979	-1.972049	0.121021
С	4.157915	-0.245710	1.821438

С	2.681923	-2.082280	2.570010
С	0.893222	-2.911054	1.127475
С	4.806635	-0.265327	3.050014
Н	4.459559	0.463475	1.056969
С	3.378166	-2.087866	3.820264
С	1.589846	-2.972552	2.322992
Н	0.041275	-3.557807	0.937763
С	4.417405	-1.197552	4.061058
Н	5.619471	0.429276	3.246363
Н	3.074400	-2.798884	4.585498
Н	1.299705	-3.683217	3.093172
Н	4.937530	-1.204957	5.015353
Ν	0.427896	-1.826516	-1.024440
С	0.458350	-2.580810	-2.115563
Pd	-0.895393	-0.283434	-0.957651
0	-0.474462	-2.420576	-3.040846
С	1.511729	-3.638503	-2.347054
Н	1.108492	-4.623929	-2.081908
Н	1.774084	-3.655504	-3.408566
Н	2.407683	-3.452337	-1.749408
0	0.630793	1.058168	-0.431717
Cs	0.900670	1.998363	2.552558
С	-4.416096	-2.906601	-1.237767
Н	-5.054815	-3.762103	-1.068716
С	-2.508680	-1.561649	-1.616085

Intermediate IIIA (having Z-configuration) Electronic + Thermal Free Energies: -1847.021831 Correction to Gibb's free energy: 0.415488 Zero-point correction: 0.489278 Imaginary vibration frequency: 0

		~	
Symbol	X	Coordinates Y	(A) Z
 C	-0.631474	2.572058	1.831908
С	-1.877480	3.194105	1.454663
С	-1.577963	4.496181	0.909154
С	-0.145861	4.678076	0.946397
С	0.439552	3.487119	1.514884
Н	-0.524522	1.594325	2.277702
Н	-2.861014	2.759551	1.562849
Н	-2.299051	5.206697	0.528787
Н	0.393504	5.548238	0.598250
Н	1.495058	3.314268	1.672503
С	-0.115458	3.470510	-2.239938
С	-1.503431	3.067806	-2.176742
С	0.701004	2.369270	-1.775209
Н	0.248543	4.435698	-2.564640
С	-1.540811	1.714771	-1.679455
Н	-2.355638	3.674819	-2.450264
С	-0.183114	1.273689	-1.451878
Н	1.779276	2.374470	-1.702262
Fe	-0.631607	3.000188	-0.256345
С	-2.693248	0.783609	-1.457868
Н	-3.447989	1.212727	-0.788428
Н	-3.194970	0.537610	-2.403977

Cs	0.038966	-0.632702	-0.953935
N	-2.066115	-0.467862	-0.883833
S	-3.183927	-1.496671	-0.100958
С	-3.192459	-0.964546	1.883409
F	-3.672628	0.335040	2.032322
F	-1.899009	-1.007951	2.404533
F	-3.991396	-1.815151	2.632520
0	-4.738505	-1.212350	-0.520654
0	-2.675564	-3.039979	-0.007394
С	-0.065802	-3.831248	-1.574188
С	0.402332	-3.409213	0.788049
С	0.301460	-5.158811	-0.898548
Η	0.492699	-3.624875	-2.491322
Η	-1.142100	-3.740577	-1.744915
С	-0.009192	-4.880527	0.595246
Η	-0.275745	-2.856626	1.441361
Η	1.436922	-3.298359	1.130146
Η	1.365335	-5.384392	-1.040236
Η	-0.286869	-5.991838	-1.296123
Η	-1.080999	-4.997045	0.783207
Η	0.542812	-5.546615	1.265692
0	0.330251	-2.797786	-0.574378
С	2.190737	-0.422746	-0.594768
С	2.822727	-0.231388	0.567989
С	2.016326	-0.704415	-1.930675
Η	2.016193	0.078608	-2.686166
Η	2.104289	-1.728045	-2.293103
С	2.056858	-0.075161	1.872409
Η	2.284937	0.884419	2.353287
Η	0.980832	-0.127031	1.697804

Η	2.326828	-0.871333	2.578505
С	4.324044	-0.176088	0.609043
С	4.996447	-0.034385	1.848645
С	5.111847	-0.260485	-0.568798
С	6.401905	0.017168	1.909464
Н	4.432625	0.035843	2.772886
С	6.513336	-0.209880	-0.508051
Н	4.630385	-0.362214	-1.536878
С	7.169337	-0.070951	0.733257
Н	6.893361	0.125781	2.873144
Н	7.093928	-0.276022	-1.424870
Н	8.254517	-0.030543	0.779815

Intermediate IIIB (having *E*-configuration)

Electronic + Thermal Free Energies: -1847.016332 Correction to Gibb's free energy: 0.416874 Zero-point correction: 0.489341 Imaginary vibration frequency: 0

Symbol		 Coordinates	(Å)
2911001	Х	Y	Z
С	-2.911143	-1.799234	1.405372
С	-4.123512	-2.139802	0.700115
С	-4.754013	-0.911212	0.276206
С	-3.930545	0.188089	0.721196
С	-2.793990	-0.360942	1.421409
Н	-2.211773	-2.497465	1.842876
Н	-4.489860	-3.139664	0.511134
Н	-5.674021	-0.830665	-0.286470

Η	-4.128141	1.238196	0.556602
Н	-1.995833	0.207149	1.874457
С	-3.093159	-1.156139	-2.668842
С	-2.398427	-2.341198	-2.216236
С	-2.290808	-0.000134	-2.330017
Н	-4.055770	-1.137071	-3.161300
С	-1.163341	-1.915720	-1.605841
Н	-2.745533	-3.360559	-2.316648
С	-1.083340	-0.474942	-1.693659
Н	-2.550855	1.027744	-2.538584
Fe	-2.825097	-1.069308	-0.586879
С	-0.035486	-2.717735	-1.031528
Н	-0.356954	-3.330123	-0.180616
Н	0.392473	-3.395641	-1.782439
Cs	0.663794	0.324494	-1.191269
Ν	0.998184	-1.689144	-0.630859
S	2.231824	-2.322746	0.372184
С	1.643808	-2.003828	2.320705
F	0.283274	-2.277628	2.455527
F	1.853650	-0.676526	2.690406
F	2.342212	-2.816440	3.200088
0	2.331080	-3.954108	0.325119
0	3.613995	-1.466785	0.306766
С	3.355921	1.678255	0.309827
С	3.771052	0.768436	-1.917209
С	4.873823	1.583102	0.062397
Н	3.025724	1.045858	1.135761
Η	3.010435	2.707894	0.449610
С	5.001472	1.573461	-1.482944
Η	3.403181	1.013189	-2.917143

Η	3.927655	-0.309062	-1.814384
Н	5.262068	0.647327	0.476475
Н	5.410916	2.420604	0.518310
Н	4.959015	2.592816	-1.885193
Н	5.931755	1.104655	-1.819095
0	2.714173	1.176560	-0.945709
С	-0.124563	2.368552	-1.382814
С	-0.686058	3.249386	-0.545732
С	0.358128	1.968079	-2.612307
Н	-0.298836	1.577868	-3.386644
Н	1.361461	2.250865	-2.927387
С	-1.138398	4.578125	-1.165983
Н	-2.233565	4.657508	-1.160896
Н	-0.738422	5.426025	-0.596056
Н	-0.801668	4.661248	-2.202641
С	-0.897441	3.067051	0.919257
С	-0.090717	2.190543	1.686616
С	-1.887368	3.821371	1.597312
С	-0.270290	2.062751	3.073545
Н	0.688722	1.618241	1.197271
С	-2.074227	3.690361	2.985616
Н	-2.522109	4.509031	1.046984
С	-1.265902	2.811770	3.732892
Н	0.366911	1.386364	3.636791
Н	-2.845503	4.274574	3.481252
Н	-1.405007	2.715659	4.806567

Product 3f (having Z-configuration) Electronic + Thermal Free Energies: -1487.952045 Correction to Gibb's free energy: 0.314873 Zero-point correction: 0.374271 Imaginary vibration frequency: 0

Symbol	•••	Coordinate	es (Å)
	X	Y	Z
Fe	2.826668	-0.465017	0.003584
S	-0.683898	2.063371	0.447755
F	-3.267072	2.382216	-0.597049
Ν	-0.512370	1.323578	-1.223650
0	-1.165415	1.076739	1.647810
С	-0.292071	-1.190017	-0.826235
0	0.499178	3.148988	0.703814
F	-1.948013	4.196353	-0.829446
F	-2.831042	3.691283	1.181603
С	-1.141128	-0.034659	-1.360371
Н	-1.288207	-0.118035	-2.447090
Н	-2.128495	-0.009578	-0.898235
С	1.135836	-1.048645	-1.184616
С	-0.851746	-2.216473	-0.115415
С	1.679137	0.216819	-1.648164
С	2.207558	-2.024190	-1.285675
Н	2.145121	-3.071666	-1.038383
С	0.856557	1.465119	-1.810397
Н	1.339065	2.352943	-1.390199
Н	0.676090	1.669399	-2.875641
С	-2.335972	-2.354440	0.055331
С	3.370372	-1.369740	-1.825103

ŀ	ł	4.324601	-1.838355	-2.020550
C	2	3.047557	0.019279	-2.042429
ł	ł	3.709986	0.776977	-2.437353
C	2	4.431463	-0.745285	1.361586
ł	ł	5.324603	-1.316770	1.149466
0	2	-2.907814	-2.471403	1.346900
ł	ł	-2.269592	-2.416107	2.225620
C	2	-4.295368	-2.628829	1.511645
ŀ	ł	-4.714431	-2.700714	2.512280
C	2	-4.587141	-2.591984	-0.904493
ŀ	ł	-5.228527	-2.649816	-1.780502
C	2	4.244064	0.663384	1.105659
H	ł	4.973749	1.331613	0.669234
C	2	2.268561	-0.169737	2.031420
ŀ	ł	1.255266	-0.231376	2.403491
C	2	-2.310492	3.169803	0.015913
C	2	-3.198620	-2.422431	-1.066402
ŀ	ł	-2.778660	-2.369054	-2.068215
C	2	2.908351	1.019843	1.519594
ŀ	ł	2.454396	1.997529	1.443533
C	2	-5.142625	-2.692448	0.385805
ŀ	ł	-6.214462	-2.821647	0.513394
0	2	3.209818	-1.260046	1.933886
ŀ	ł	3.032959	-2.283864	2.233024
0	2	-0.025156	-3.315667	0.534608
ŀ	ł	0.133765	-4.155769	-0.158113
ŀ	ł	0.954669	-2.954925	0.859413
ł	ł	-0.548116	-3.723350	1.405862

Product 3f (having *E*-configuration) Electronic + Thermal Free Energies: -1487.949645 Correction to Gibb's free energy: 0.312754 Zero-point correction: 0.374236 Imaginary vibration frequency: 0

Symbol	Coordinates (Å)				
	Х	Y	Z		
Fe	-1.100818	1.918225	0.226015		
S	3.171273	-0.218879	-0.782756		
F	4.267591	-1.597059	1.428323		
Ν	1.762250	-0.324889	0.230040		
0	2.988244	-1.223731	-2.043267		
С	-0.513295	-1.311820	0.316890		
0	3.542659	1.347281	-0.991413		
F	5.633815	0.017900	0.644304		
F	5.438023	-1.930419	-0.470679		
С	0.998893	-1.596293	0.290910		
Н	1.296476	-2.150368	1.194790		
Н	1.270700	-2.188410	-0.583069		
С	-0.869240	-0.059037	1.025422		
С	-1.385610	-2.232168	-0.188082		
С	0.148112	0.845221	1.535601		
С	-2.879426	-2.059134	-0.170740		
С	-2.150901	0.508460	1.408278		
Н	-3.121913	0.100405	1.184954		
С	1.624077	0.618987	1.364140		
Н	2.147212	1.550750	1.132526		
Н	2.065453	0.182983	2.274530		
С	-1.912191	1.707412	2.168355		

Η	-2.673639	2.343869	2.596663
С	-0.488187	1.921335	2.244646
Н	0.014385	2.739949	2.740369
С	-3.535110	-1.374033	-1.218857
Н	-2.947128	-0.925937	-2.016259
С	-1.998717	3.594415	-0.713892
Н	-2.755729	4.222759	-0.265103
С	-3.660829	-2.653176	0.846883
Н	-3.169787	-3.190804	1.655139
С	-4.939410	-1.266851	-1.239210
Н	-5.428567	-0.734057	-2.051206
С	-0.570371	3.788231	-0.621345
Н	-0.071648	4.587229	-0.089960
С	-5.709499	-1.847246	-0.211118
Н	-6.793348	-1.763177	-0.224674
С	-0.956264	1.867613	-1.891069
Н	-0.794829	0.972432	-2.475796
С	4.769608	-0.992269	0.283069
С	0.074749	2.719766	-1.347342
Н	1.141403	2.574688	-1.453992
С	-5.064760	-2.542921	0.832080
Н	-5.650990	-2.997140	1.627319
С	-2.237016	2.406480	-1.499552
Н	-3.204237	1.989169	-1.742585
С	-0.976056	-3.555539	-0.821152
Н	-1.329873	-3.603210	-1.860974
Н	0.099075	-3.748892	-0.818759
Н	-1.461282	-4.386591	-0.290079

Crystallographic Details

The structures of ferrocene fused tetrahydropyridine (*Sp*)-**3a** (CCDC: 2347472), (*Rp*)-**3a** (CCDC: 2347473), and **3f** (CCDC: 2402043) were confirmed by X-ray structure analysis. We isolated the suitable single crystal by slow evaporation method in the 1:3 ratio solvents of Hexane in Dichloromethane

Identification code	(<i>Sp</i>)- 3a
CCDC Number	2347572
Empirical formula	$C_{27}H_{22}F_3FeNO_2S$
Formula weight	537.36
Temperature/K	140(2)
Crystal system	orthorhombic
Space group	$P2_{1}2_{1}2_{1}$
a/Å	9.5134(15)
b/Å	9.8740(15)
c/Å	24.656(4)

 $\alpha/^{\circ}$

β/°

γ/°

Ζ

Volume/Å³

 $\rho_{calc}g/cm^3$

Table S7. Crystal data and structure refinement for (*Sp*)-**3a**.

90

90

90

4

1.541

2316.1(7)

μ/mm^{-1}	6.509
F(000)	1104.0
Crystal size/mm ³	$0.122\times0.021\times0.015$
Radiation	$CuK\alpha$ ($\lambda = 1.54178$)
2Θ range for data collection/ ^c	9.648 to 127.37
Index ranges	$\text{-}11 \le h \le 11, \text{-}11 \le k \le 11, \text{-}28 \le l \le 28$
Reflections collected	41812
Independent reflections	3728 [$R_{int} = 0.1272$, $R_{sigma} = 0.0602$]
Data/restraints/parameters	3728/20/321
Goodness-of-fit on F ²	1.115
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0940, wR_2 = 0.2625$
Final R indexes [all data]	$R_1 = 0.1008, wR_2 = 0.2680$
Largest diff. peak/hole / e Å ⁻³	1.73/-1.00
Flack parameter	0.12(2)

Table S8. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for (*Sp*)-**3a**. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{IJ} tensor.

Aton	n <i>X</i>	у	z	U(eq)
Fe1	7428(2)	5161.7(18)	6168.1(8)	22.5(6)
S 1	2875(3)	4310(3)	5484.0(14)	27.0(8)
F1	1234(9)	5880(9)	4925(4)	37(2)
F2	823(10)	3734(11)	4817(5)	52(3)
F3	2633(9)	4686(10)	4443(3)	45(2)
01	1939(11)	4552(10)	5924(4)	37(2)
O2A	3450(20)	3009(16)	5361(19)	30(5)
O2B	3530(100)	3080(80)	5560(70)	30(5)
N1	4057(11)	5430(11)	5474(5)	27(2)
C1	6537(13)	5882(12)	5485(6)	22(3)
C2	8026(14)	5697(14)	5400(6)	26(3)
C3	8712(16)	6540(15)	5788(6)	29(3)

Aton	1 <i>X</i>	у	Z	U(eq)
C4	7703(13)	7209(13)	6107(5)	25(3)
C5	6318(14)	6838(13)	5906(5)	20(3)
C6	6365(18)	4247(16)	6772(7)	39(4)
C7	6504(16)	3319(16)	6326(7)	39(3)
C8	7980(16)	3148(15)	6235(7)	37(2)
C9	8709(17)	3942(15)	6634(7)	36(2)
C10	7718(18)	4574(15)	6959(6)	40(3)
C11	5360(13)	5251(15)	5154(6)	28(3)
C12	3795(13)	6819(12)	5644(6)	20(3)
C13	4899(14)	7322(14)	6042(5)	24(3)
C14	4560(13)	8224(13)	6419(6)	22(3)
C15	3099(13)	8854(13)	6445(5)	22(3)
C16	2027(15)	8220(15)	6744(6)	29(3)
C17	671(15)	8815(18)	6770(6)	36(4)
C18	446(14)	10039(18)	6526(6)	35(3)
C19	1482(16)	10710(17)	6229(7)	41(4)
C20	2831(14)	10092(14)	6191(6)	30(3)
C21	5557(13)	8735(13)	6844(5)	21(3)
C22	6005(15)	7818(15)	7250(5)	26(3)
C23	6964(15)	8276(17)	7652(6)	34(4)
C24	7424(15)	9600(14)	7642(6)	31(3)
C25	6973(16)	10507(16)	7253(6)	34(3)
C26	6011(13)	10042(13)	6859(5)	24(3)
C27	1809(14)	4684(15)	4879(6)	30(3)

Table S8. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for (*Sp*)-**3a**. U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{IJ} tensor.

Atom	1 U11	U22	U33	U23	U13	U12
Fe1	19.1(10)	16.4(9)	32.1(10)	2.5(8)	0.9(8)	0.7(8)
S 1	22.2(16)	20.8(15)	38.0(18)	0.4(13)	0.1(13)	-1.2(12)
F1	31(4)	27(4)	55(5)	-1(4)	-7(4)	10(4)
F2	28(5)	54(6)	73(7)	-10(5)	-7(5)	-13(4)
F3	37(4)	59(6)	40(5)	-10(4)	4(4)	-3(5)
01	38(5)	37(5)	37(5)	4(4)	7(3)	2(4)
O2A	35(6)	14(3)	41(13)	-2(5)	-7(9)	-5(3)
O2B	35(6)	14(3)	41(13)	-2(5)	-7(9)	-5(3)
N1	24(6)	20(6)	38(6)	-5(5)	-2(5)	1(5)
C1	20(6)	11(6)	35(7)	3(5)	1(5)	5(5)
C2	21(6)	26(6)	31(3)	-3(4)	4(4)	-4(5)
C3	29(7)	25(8)	34(8)	0(6)	5(6)	-2(6)
C4	19(6)	31(7)	26(6)	4(5)	-2(6)	-2(5)
C5	20(6)	13(6)	26(7)	-2(5)	-2(5)	-1(5)
C6	44(9)	27(8)	44(9)	3(7)	6(7)	9(7)
C7	32(5)	23(5)	62(8)	15(5)	-1(6)	-6(4)
C8	34(5)	20(3)	58(6)	5(3)	-8(6)	10(5)
C9	33(5)	18(7)	56(6)	12(4)	-7(4)	2(4)
C10	49(8)	31(7)	38(3)	14(4)	-4(4)	8(6)
C11	22(6)	28(7)	33(7)	-1(6)	3(5)	-4(6)
C12	13(6)	8(6)	40(8)	-2(5)	-3(5)	0(5)
C13	21(6)	26(7)	25(7)	2(5)	-1(5)	8(5)
C14	20(6)	13(6)	34(7)	2(5)	2(5)	2(5)
C15	18(6)	21(6)	28(7)	-6(5)	-4(5)	2(5)
C16	26(7)	30(7)	32(7)	1(6)	3(6)	0(6)
C17	17(7)	53(10)	39(8)	-3(7)	2(6)	-9(7)
C18	19(6)	47(9)	41(8)	-11(7)	-1(6)	3(7)
C19	35(8)	35(8)	52(10)	-3(7)	-20(7)	12(7)

Table S9. Anisotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$) for (*Sp*)-**3a**. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	n U ₁₁	U22	U33	U ₂₃	U13	U12
C20	23(6)	26(7)	41(7)	9(6)	-2(6)	3(6)
C21	20(6)	17(6)	28(7)	-2(5)	-3(5)	4(5)
C22	29(7)	25(7)	25(7)	-3(5)	-2(6)	-1(6)
C23	26(7)	54(10)	22(7)	0(6)	-5(6)	16(7)
C24	20(6)	35(8)	39(7)	-3(6)	-10(6)	4(6)
C25	33(7)	36(8)	35(8)	-9(6)	-6(6)	-7(7)
C26	28(6)	13(6)	32(7)	3(6)	-7(5)	-2(5)
C27	26(6)	26(7)	38(8)	-9(6)	-2(6)	-3(6)

Table S9. Anisotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$) for (*Sp*)-**3a**. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Table S10. Bond Lengths for (*Sp*)-3a.

Atom Atom Length/Å			Atom Atom Length/Å			
Fe1	C1	2.014(14)	C3	C4	1.41(2)	
Fe1	C2	2.048(14)	C4	C5	1.455(18)	
Fe1	C3	2.056(15)	C5	C13	1.470(18)	
Fe1	C4	2.044(13)	C6	C7	1.44(2)	
Fe1	C5	2.067(13)	C6	C10	1.41(2)	
Fe1	C6	2.014(17)	C7	C8	1.43(2)	
Fe1	C7	2.058(16)	C8	C9	1.44(2)	
Fe1	C8	2.063(14)	C9	C10	1.39(2)	
Fe1	C9	2.062(15)	C12	C13	1.521(18)	
Fe1	C10	2.054(14)	C13	C14	1.328(19)	
S 1	01	1.424(11)	C14	C15	1.524(17)	
S 1	O2A	1.430(18)	C14	C21	1.500(19)	
S 1	O2B	1.38(7)	C15	C16	1.41(2)	
S 1	N1	1.577(11)	C15	C20	1.397(19)	
S 1	C27	1.842(15)	C16	C17	1.42(2)	
F1	C27	1.307(17)	C17	C18	1.37(2)	
F2	C27	1.335(17)	C18	C19	1.39(2)	

Table S10. Bond Lengths for (Sp)-3a.

Atom Atom Length/Å			Atom Atom Length/Å			
F3	C27	1.331(17)	C19	C20	1.424(19)	
N1	C11	1.481(17)	C21	C22	1.416(19)	
N1	C12	1.455(16)	C21	C26	1.361(18)	
C1	C2	1.444(18)	C22	C23	1.42(2)	
C1	C5	1.418(19)	C23	C24	1.38(2)	
C1	C11	1.520(18)	C24	C25	1.38(2)	
C2	C3	1.43(2)	C25	C26	1.412(19)	

Table S11. Bond Angles for (*Sp*)-3a.

Atom Atom Angle/°			Atom Atom Atom Angle/°				
C1	Fe1	C2	41.6(5)	C11	C1	Fe1	128.0(9)
C1	Fe1	C3	68.6(6)	C1	C2	Fe1	67.9(8)
C1	Fe1	C4	69.1(5)	C3	C2	Fe1	69.9(8)
C1	Fe1	C5	40.6(5)	C3	C2	C1	106.1(13)
C1	Fe1	C7	106.9(6)	C2	C3	Fe1	69.4(8)
C1	Fe1	C8	120.9(6)	C4	C3	Fe1	69.5(8)
C1	Fe1	C9	156.9(6)	C4	C3	C2	109.7(13)
C1	Fe1	C10	161.8(6)	C3	C4	Fe1	70.4(8)
C2	Fe1	C3	40.7(6)	C3	C4	C5	108.0(12)
C2	Fe1	C5	69.3(5)	C5	C4	Fe1	70.1(7)
C2	Fe1	C7	121.5(6)	C1	C5	Fe1	67.7(7)
C2	Fe1	C8	104.6(6)	C1	C5	C4	106.4(11)
C2	Fe1	C9	120.1(6)	C1	C5	C13	121.2(12)
C2	Fe1	C10	156.1(6)	C4	C5	Fe1	68.4(7)
C3	Fe1	C5	68.3(5)	C4	C5	C13	132.2(12)
C3	Fe1	C7	157.8(7)	C13	C5	Fe1	131.1(10)
C3	Fe1	C8	121.5(6)	C7	C6	Fe1	70.9(9)
C3	Fe1	C9	106.8(6)	C10	C6	Fe1	71.3(10)
C4	Fe1	C2	69.0(5)	C10	C6	C7	108.3(15)

Table S11. Bond Angles for (*Sp*)-3a.

Aton	n Aton	n Atom	n Angle/°	Aton	n Aton	1 Aton	n Angle/°
C4	Fe1	C3	40.1(6)	C6	C7	Fe1	67.7(10)
C4	Fe1	C5	41.5(5)	C8	C7	Fe1	69.9(9)
C4	Fe1	C7	160.6(6)	C8	C7	C6	106.6(15)
C4	Fe1	C8	157.9(6)	C7	C8	Fe1	69.5(9)
C4	Fe1	C9	122.9(6)	C7	C8	C9	107.5(15)
C4	Fe1	C10	109.4(6)	C9	C8	Fe1	69.6(8)
C6	Fe1	C1	124.4(6)	C8	C9	Fe1	69.7(8)
C6	Fe1	C2	160.0(6)	C10	C9	Fe1	70.0(9)
C6	Fe1	C3	158.9(7)	C10	C9	C8	108.3(14)
C6	Fe1	C4	124.2(6)	C6	C10	Fe1	68.3(9)
C6	Fe1	C5	109.5(6)	C9	C10	Fe1	70.6(9)
C6	Fe1	C7	41.3(7)	C9	C10	C6	109.2(15)
C6	Fe1	C8	68.7(7)	N1	C11	C1	106.3(11)
C6	Fe1	C9	67.9(6)	N1	C12	C13	112.0(11)
C6	Fe1	C10	40.4(7)	C5	C13	C12	112.4(11)
C7	Fe1	C5	123.3(6)	C14	C13	C5	126.9(13)
C7	Fe1	C8	40.7(6)	C14	C13	C12	120.3(11)
C7	Fe1	C9	68.3(6)	C13	C14	C15	121.7(12)
C8	Fe1	C5	157.9(6)	C13	C14	C21	124.1(12)
C9	Fe1	C5	160.7(6)	C21	C14	C15	114.2(11)
C9	Fe1	C8	40.7(6)	C16	C15	C14	120.1(12)
C10	Fe1	C3	122.7(7)	C20	C15	C14	120.3(12)
C10	Fe1	C5	126.3(6)	C20	C15	C16	119.6(12)
C10	Fe1	C7	68.2(7)	C15	C16	C17	119.9(13)
C10	Fe1	C8	67.5(7)	C18	C17	C16	119.3(14)
C10	Fe1	C9	39.4(7)	C17	C18	C19	122.6(14)
01	S 1	O2A	123.5(14)	C18	C19	C20	118.0(14)
01	S 1	N1	109.9(6)	C15	C20	C19	120.6(13)
01	S 1	C27	103.8(6)	C22	C21	C14	117.9(12)

Table S11. Bond Angles for (*Sp*)-3a.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
O2A	S 1	N1	110.6(9)	C26	C21	C14	122.7(12)
O2A	S 1	C27	103(2)	C26	C21	C22	119.4(12)
O2B	S 1	01	109(7)	C21	C22	C23	118.9(13)
O2B	S 1	N1	108(4)	C24	C23	C22	119.5(13)
O2B	S 1	C27	122(6)	C23	C24	C25	122.0(13)
N1	S 1	C27	103.9(6)	C24	C25	C26	117.9(14)
C11	N1	S 1	121.4(9)	C21	C26	C25	122.3(13)
C12	N1	S 1	122.3(9)	F1	C27	S 1	109.9(10)
C12	N1	C11	114.1(11)	F1	C27	F2	110.6(11)
C2	C1	Fe1	70.4(8)	F1	C27	F3	108.4(12)
C2	C1	C11	126.3(12)	F2	C27	S 1	109.8(11)
C5	C1	Fe1	71.7(8)	F3	C27	S 1	109.3(9)
C5	C1	C2	109.6(12)	F3	C27	F2	108.8(11)
C5	C1	C11	123.9(11)				

Α	B	С	D	Angle/°	Α	B	С	D	Angle/°
Fe1	C1	C2	C3	-59.9(10)	C4	C5	C13	C14	-3(2)
Fe1	C1	C5	C4	57.6(9)	C5	C1	C2	Fe1	61.3(10)
Fe1	C1	C5	C13	-125.6(12)	C5	C1	C2	C3	1.4(17)
Fe1	C1	C11	N1	72.7(14)	C5	C1	C11	N1	-19.8(18)
Fe1	C2	C3	C4	-57.8(10)	C5	C13	C14	C15	167.3(13)
Fe1	C3	C4	C5	-60.3(9)	C5	C13	C14	C21	-11(2)
Fe1	C4	C5	C1	-57.1(9)	C6	C7	C8	Fe1	-58.0(11)
Fe1	C4	C5	C13	126.6(15)	C6	C7	C8	C9	1.5(19)
Fe1	C5	C13	C12	-93.5(14)	C7	C6	C10	Fe1	61.7(11)
Fe1	C5	C13	C14	94.5(17)	C7	C6	C10	C9	2.8(17)
Fe1	C6	C7	C8	59.3(11)	C7	C8	C9	Fe1	-59.3(11)
Fe1	C6	C10	C9	-58.9(10)	C7	C8	C9	C10	0.2(18)

A	B	С	D	Angle/°	Α	B	С	D	Angle/°
Fe1	C7	C8	C9	59.4(11)	C8	C9	C1()Fe1	-59.3(11)
Fe1	C8	C9	C10	59.5(10)	C8	C9	C1()C6	-1.9(17)
Fe1	C9	C10)C6	57.5(10)	C10)C6	C7	Fe1	-61.9(11)
S 1	N1	C11	l C1	-143.4(10)	C10)C6	C7	C8	-2.6(19)
S 1	N1	C12	2C13	3130.7(11)	C11	N1	C12	2C13	65.8(15)
01	S 1	N1	C11	164.5(10)	C11	C1	C2	Fe1	-123.3(14)
01	S 1	N1	C12	2-33.2(13)	C11	C1	C2	C3	176.8(12)
01	S 1	C27	7 F1	52.0(11)	C11	C1	C5	Fe1	123.9(13)
01	S 1	C27	7 F2	-69.8(11)	C11	C1	C5	C4	-178.5(12)
01	S 1	C27	7 F3	170.9(9)	C11	C1	C5	C13	3-2(2)
O2A	S1	N1	C11	25(2)	C12	2N1	C11	C1	52.8(15)
O2A	S1	N1	C12	2-173(2)	C12	2C13	3C14	C15	5-4(2)
O2A	S1	C27	7 F1	-178.3(12)	C12	2C13	3C14	C21	177.3(12)
O2A	S1	C27	7 F2	59.9(13)	C13	8C14	4C15	5C16	588.5(17)
O2A	S1	C27	7 F3	-59.4(13)	C13	8C14	4C15	5 C 20	94.0(16)
O2E	S S 1	N1	C11	46(7)	C13	8C14	4C21	C22	2-68.4(18)
O2E	S S 1	N1	C12	2-152(7)	C13	8C14	4C21	C26	5113.3(16)
O2E	S S 1	C27	7 F1	176(6)	C14	C15	5C16	5C17	179.6(13)
O2E	S S 1	C27	7 F2	54(6)	C14	C15	5 C 2 ()C19	-177.8(13)
O2E	S S 1	C27	7 F3	-65(6)	C14	C21	l C22	2C23	3179.2(12)
N1	S 1	C27	7 F1	-62.9(10)	C14	C21	l C26	5C25	5-178.6(13)
N1	S 1	C27	7 F2	175.2(9)	C15	5C14	4C21	C22	2112.9(13)
N1	S 1	C27	7 F3	56.0(11)	C15	5C14	4C21	C26	5-65.4(17)
N1	C12	2C13	3C5	38.5(15)	C15	5C16	5C17	C18	3-3(2)
N1	C12	2C13	3C14	-149.0(13)	C16	5C15	5 C 2 ()C19	0(2)
C1	C2	C3	Fe1	58.6(10)	C16	5C17	7C18	8C19	3(2)
C1	C2	C3	C4	0.8(16)	C17	C18	3C19	OC20	0-1(2)
C1	C5	C13	3C12	2-7.0(18)	C18	3C19)C20)C15	0(2)
C1	C5	C13	3C14	-179.0(14)	C20)C15	5C16	5C17	2(2)

Table S12. Torsion Angles for (*Sp*)-3a.

A	B	С	D	Angle/°	Α	B	С	D	Angle/°
C2	C1	C5	Fe1	-60.5(10)	C21	C14	C15	C16	-92.8(15)
C2	C1	C5	C4	-2.9(16)	C21	C14	C15	C20	84.7(16)
C2	C1	C5	C13	173.9(12)	C21	C22	C23	C24	1(2)
C2	C1	C11	N1	165.4(13)	C22	C21	C26	C25	3(2)
C2	C3	C4	Fe1	57.7(10)	C22	C23	C24	C25	0(2)
C2	C3	C4	C5	-2.6(15)	C23	C24	C25	C26	0(2)
C3	C4	C5	Fe1	60.5(9)	C24	C25	C26	6C21	-2(2)
C3	C4	C5	C1	3.4(14)	C26	C21	C22	C23	-2(2)
C3	C4	C5	C13	-173.0(15)	C27	S 1	N1	C11	-85.0(11)
C4	C5	C13	3C12	168.9(13)	C27	S 1	N1	C12	77.4(12)

Table S13. Hydrogen Atom Coordinates ($\mathring{A} \times 10^4$) and Isotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$) for (*Sp*)-**3a**.

Atom	x	Y	Z	U(eq)
H2	8460.99	5128.54	5137.72	31
H3	9701.34	6636.04	5824.95	35
H4	7893.08	7798.9	6402.43	30
H6	5506.08	4580.93	6915.99	46
H7	5761.96	2901.29	6130.07	47
H8	8400.49	2607.91	5960.37	45
H9	9700.01	4020.99	6668.16	43
H10	7922.39	5139.04	7261.35	47
H11A	5274.99	5709.31	4797.92	33
H11B	5547.3	4277.3	5090.64	33
H12A	2856.47	6874.24	5815.37	24
H12B	3790.83	7414.13	5320.55	24
H16	2254.14	7393.07	6928.06	35
H17	-71.24	8368.82	6955.38	44
H18	-453.34	10449.72	6559.29	43

Table S13. Hydrogen Atom Coordinates ($\mathring{A} \times 10^4$) and Isotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$) for (*Sp*)-**3a**.

Atom	1 <i>x</i>	Y	z	U(eq)
H19	1294.16	11552.38	6057.72	49
H20	3555.93	10525.26	5990	36
H22	5669.42	6911.76	7253.67	31
H23	7286.51	7673.77	7925.75	41
H24	8069.6	9896.77	7910.98	38
H25	7300.14	11416.56	7251.19	41
H26	5669.5	10661.83	6595.89	29

Lubic Si ii Ci jotal adda and Shactare refinement for (hp) et	Table S14.	Crystal data	and structure	refinement fo	r (<i>Rp</i>)-3a
--	------------	--------------	---------------	---------------	--------------------

Identification code	(<i>Rp</i>)- 3 a
CCDC Number	2347573
Empirical formula	C27H22F3FeNO2S
Formula weight	537.37
Temperature/K	303.0
Crystal system	orthorhombic
Space group	$P2_{1}2_{1}2_{1}$
a/Å	9.5665(14)
b/Å	9.8290(17)
c/Å	25.415(4)
α/°	90.00
β/°	90.00
$\gamma/^{\circ}$	90.00
Volume/Å ³	2389.7(7)
Z	4
$\rho_{calc}g/cm^3$	1.494
μ/mm^{-1}	0.768
F(000)	1104.0
Crystal size/mm ³	$0.02 \times 0.012 \times 0.01$

Radiation	MoKα ($\lambda = 0.71073$)			
20 range for data collection/° 4.44 to 59.16				
Index ranges	$-13 \le h \le 13, -13 \le k \le 13, -35 \le l \le 35$			
Reflections collected	61813			
Independent reflections	6676 [$R_{int} = 0.0621$, $R_{sigma} = 0.0350$]			
Data/restraints/parameters	6676/0/316			
Goodness-of-fit on F ²	1.050			
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0389, wR_2 = 0.0897$			
Final R indexes [all data]	$R_1 = 0.0508, wR_2 = 0.0964$			
Largest diff. peak/hole / e Å-	3 0.25/-0.19			
Flack parameter	0.005(15)			

Table S15. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for (*Rp*)-**3a.** U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	У	Z	U(eq)
Fe1	2496.4(3)	5171.7(3)	6166.82(13)	47.87(9)
S 1	6982.8(6)	4351.0(6)	5500.9(3)	55.59(15)
F1	8651.6(17)	5875.2(19)	4951.2(8)	81.2(5)
N1	5813.4(17)	5489.1(19)	5479.3(8)	50.1(4)
O2	7908(2)	4595(2)	5924.8(8)	76.9(5)
C11	5004(2)	7365(2)	6045.7(8)	40.7(4)
01	6373(2)	3057.1(18)	5403.7(11)	87.1(7)
F2	7271(2)	4666(2)	4488.2(7)	99.2(6)
F3	9044(2)	3749(2)	4869.8(11)	113.7(8)
C12	6094(2)	6893(2)	5652.9(9)	49.2(5)
C1	3593(2)	6860(2)	5925.2(9)	42.7(5)
C15	5362(2)	8237(2)	6426.0(9)	42.9(4)

Table S15. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for (*Rp*)-**3a.** U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	у	z	U(eq)
C5	3363(2)	5917(2)	5498.4(10)	47.3(5)
C22	4388(2)	8699(2)	6846.4(9)	45.8(5)
C2	2235(2)	7226(2)	6117.8(10)	48.4(5)
C13	4512(2)	5320(3)	5177.1(10)	54.0(5)
C16	6803(2)	8846(2)	6451.5(9)	44.3(4)
C3	1217(2)	6557(3)	5817.2(11)	58.1(6)
C4	1897(2)	5740(3)	5432.9(11)	56.7(6)
C23	4016(3)	7823(3)	7246.9(10)	61.9(6)
C8	1255(4)	3938(4)	6615.9(16)	87.4(11)
C27	3851(3)	10008(3)	6847.1(10)	62.2(6)
C17	7832(3)	8283(3)	6753.5(11)	65.1(7)
C18	9154(3)	8882(4)	6779.5(12)	76.7(9)
C24	3106(3)	8265(4)	7641.8(11)	76.0(8)
C20	8422(3)	10614(3)	6203.9(15)	78.4(8)
C9	1939(4)	3181(3)	6238.0(17)	83.8(9)
C25	2567(3)	9556(4)	7630.3(12)	78.2(8)
C6	3583(4)	4195(4)	6737.8(16)	89.1(11)
C14	8051(3)	4676(3)	4915.9(12)	67.2(7)
C21	7107(3)	10031(3)	6176.6(12)	64.7(6)
C10	3393(3)	3333(3)	6306.3(17)	84.4(11)
C19	9435(3)	10045(3)	6510.3(13)	76.3(9)
C26	2939(3)	10428(3)	7238.5(12)	75.6(8)
C7	2266(5)	4581(3)	6927.0(13)	91.9(11)

Table S16. Anisotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$) for (*Rp*)-**3a**. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U 11	U22	U33	U23	U13	U 12
Fe1	39.40(13)	44.41(15)	59.79(18)	2.37(13)	-0.20(15)	-5.85(13)
S 1	48.5(3)	45.1(3)	73.1(4)	-0.5(3)	-0.3(3)	-2.7(2)
F1	70.6(9)	84.7(12)	88.2(12)	-0.3(10)	17.1(9)	-19.2(9)
N1	39.9(8)	49.2(10)	61.1(11)	-14.7(9)	1.3(8)	-2.4(7)
O2	67.9(10)	85.8(13)	77.1(12)	10.7(11)	-16.0(10)	3.7(10)
C11	41.7(9)	35.0(9)	45.4(12)	0.6(8)	3.5(8)	-1.2(8)
01	72.6(12)	41.4(10)	147(2)	-4.5(12)	3.5(14)	-6.0(9)
F2	93.9(12)	137.0(16)	66.6(10)	-29.0(11)	2.6(9)	-5.1(13)
F3	75.9(11)	104.4(16)	161(2)	-34.6(15)	28.3(13)	28.6(11)
C12	46.5(11)	47.1(12)	54.1(13)	-8.2(10)	7.6(9)	-6.8(9)
C1	40.2(10)	37.4(10)	50.5(12)	2.0(9)	-1.6(9)	0.8(8)
C15	43.1(10)	38.3(10)	47.2(11)	2.1(9)	3.1(9)	-3.0(8)
C5	44.0(10)	47.0(12)	50.8(12)	-1.0(10)	-4.1(9)	-0.8(8)
C22	47.9(11)	46.6(12)	42.8(11)	-5.8(9)	1.1(9)	-6.4(9)
C2	41.2(11)	46.2(10)	57.8(13)	0.8(10)	2.9(9)	6.4(8)
C13	46.7(10)	59.0(14)	56.2(13)	-10.7(11)	-4.0(9)	-3.0(10)
C16	45.4(10)	42.9(10)	44.6(11)	-6.8(9)	3.9(9)	-6.5(9)
C3	39.2(10)	65.7(16)	69.3(16)	1.1(13)	-5.8(11)	5.5(10)
C4	46.7(11)	61.3(14)	62.1(15)	-4.1(12)	-13.0(11)	0.2(11)
C23	64.6(14)	64.2(16)	56.8(14)	6.9(12)	3.6(12)	-10.1(12)
C8	73.1(18)	76(2)	113(3)	18(2)	33(2)	-17.6(17)
C27	74.8(15)	51.7(15)	60.2(14)	-6.0(12)	11.8(12)	-1.6(12)
C17	56.0(14)	73.3(17)	65.9(15)	13.3(13)	-1.6(11)	-5.7(12)
C18	48.9(13)	113(3)	68.6(17)	-0.1(18)	-5.1(13)	-2.9(15)
C24	74.3(17)	101(2)	52.5(15)	2.5(16)	12.0(14)	-24.0(18)
C20	69.0(16)	63.1(16)	103(2)	5.5(18)	16.2(17)	-20.3(13)

Table S16. Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for (*Rp*)-**3a**. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U 11	U22	U 33	U23	U 13	U 12
C9	92(2)	49.5(14)	110(3)	0.7(17)	11(2)	-24.5(15)
C25	65.1(15)	98(2)	71.3(17)	-30.2(16)	16.4(15)	-9.7(19)
C6	89(2)	71(2)	108(3)	40(2)	-29(2)	-12.5(17)
C14	51.3(12)	75.8(18)	74.3(17)	-22.6(15)	5.7(13)	4.1(13)
C21	57.8(12)	55.6(14)	80.8(17)	11.5(14)	-1.4(12)	-11.4(10)
C10	76.3(19)	51.6(15)	125(3)	30.5(19)	24(2)	7.6(14)
C19	53.0(13)	90(2)	85.4(19)	-19.6(18)	13.7(13)	-24.7(15)
C26	79.2(17)	70.4(18)	77.3(19)	-19.9(15)	15.6(15)	7.9(15)
C7	140(3)	68.3(19)	67.8(18)	17.0(14)	18(2)	-3(2)

Table S17. Bond Lengths for (*Rp*)-3a.

Aton	n Aton	n Length/Å	Atom Atom Length					
Fe1	C1	2.057(2)	C15	C22	1.489(3)			
Fe1	C5	2.027(2)	C15	C16	1.504(3)			
Fe1	C2	2.039(2)	C5	C13	1.490(3)			
Fe1	C3	2.035(3)	C5	C4	1.423(3)			
Fe1	C4	2.030(3)	C22	C23	1.380(3)			
Fe1	C8	2.045(3)	C22	C27	1.385(3)			
Fe1	C9	2.036(3)	C2	C3	1.402(3)			
Fe1	C6	2.027(3)	C16	C17	1.366(3)			
Fe1	C10	2.032(3)	C16	C21	1.389(3)			
Fe1	C7	2.029(3)	C3	C4	1.422(4)			
S 1	N1	1.5830(19)	C23	C24	1.397(4)			
S 1	O2	1.415(2)	C8	C9	1.380(5)			
S 1	01	1.4211(19)	C8	C7	1.400(5)			
S 1	C14	1.832(3)	C27	C26	1.386(4)			

Table S17. Bond Lengths for (*Rp*)-3a.

Aton	n Atom	n Length/Å	Atom Atom Length/					
F1	C14	1.314(3)	C17	C18	1.396(4)			
N1	C12	1.473(3)	C18	C19	1.360(5)			
N1	C13	1.473(3)	C24	C25	1.371(5)			
C11	C12	1.516(3)	C20	C21	1.384(4)			
C11	C1	1.471(3)	C20	C19	1.363(5)			
C11	C15	1.336(3)	C9	C10	1.409(5)			
F2	C14	1.318(3)	C25	C26	1.361(5)			
F3	C14	1.321(3)	C6	C10	1.398(5)			
C1	C5	1.444(3)	C6	C7	1.401(5)			
C1	C2	1.434(3)						

Table S18. Bond Angles for (*Rp*)-3a.

Aton	n Aton	n Aton	n Angle/°	Atom Atom Atom Angle/°					
C5	Fe1	C1	41.40(9)	C5	C1	C11	120.91(19)		
C5	Fe1	C2	68.96(9)	C2	C1	Fe1	68.81(12)		
C5	Fe1	C3	68.79(10)	C2	C1	C11	132.5(2)		
C5	Fe1	C4	41.06(9)	C2	C1	C5	106.20(18)		
C5	Fe1	C8	156.81(14)	C11	C15	C22	123.70(19)		
C5	Fe1	C9	121.92(14)	C11	C15	C16	121.41(19)		
C5	Fe1	C10	107.17(12)	C22	C15	C16	114.89(18)		
C5	Fe1	C7	161.02(14)	C1	C5	Fe1	70.42(13)		
C2	Fe1	C1	41.00(8)	C1	C5	C13	123.49(18)		
C2	Fe1	C8	123.38(12)	C13	C5	Fe1	128.22(17)		
C3	Fe1	C1	68.70(9)	C4	C5	Fe1	69.57(16)		
C3	Fe1	C2	40.25(10)	C4	C5	C1	108.5(2)		
C3	Fe1	C8	106.93(13)	C4	C5	C13	127.9(2)		

Table S18. Bond Angles for (*Rp*)-3a.

Aton	tom Atom Atom Angle/°				Atom Atom Atom Angle/°				
C3	Fe1	C9	121.63(13)	C23	C22	C15	120.0(2)		
C4	Fe1	C1	69.39(9)	C23	C22	C27	118.9(2)		
C4	Fe1	C2	68.70(10)	C27	C22	C15	121.1(2)		
C4	Fe1	C3	40.96(10)	C1	C2	Fe1	70.19(12)		
C4	Fe1	C8	120.78(14)	C3	C2	Fe1	69.75(14)		
C4	Fe1	C9	105.78(14)	C3	C2	C1	109.0(2)		
C4	Fe1	C10	121.62(15)	N1	C13	C5	107.07(18)		
C8	Fe1	C1	160.22(13)	C17	C16	C15	121.6(2)		
C9	Fe1	C1	159.28(13)	C17	C16	C21	118.1(2)		
C9	Fe1	C2	157.71(12)	C21	C16	C15	120.3(2)		
C9	Fe1	C8	39.52(14)	C2	C3	Fe1	70.00(13)		
C6	Fe1	C1	109.52(12)	C2	C3	C4	108.8(2)		
C6	Fe1	C5	124.16(13)	C4	C3	Fe1	69.31(15)		
C6	Fe1	C2	125.15(14)	C5	C4	Fe1	69.37(15)		
C6	Fe1	C3	159.70(16)	C3	C4	Fe1	69.73(15)		
C6	Fe1	C4	158.94(16)	C3	C4	C5	107.5(2)		
C6	Fe1	C8	67.51(15)	C22	C23	C24	119.7(3)		
C6	Fe1	C9	67.39(15)	C9	C8	Fe1	69.88(17)		
C6	Fe1	C10	40.30(16)	C9	C8	C7	108.0(3)		
C6	Fe1	C7	40.41(16)	C7	C8	Fe1	69.31(17)		
C10	Fe1	C1	123.67(11)	C22	C27	C26	120.7(3)		
C10	Fe1	C2	160.67(12)	C16	C17	C18	120.6(3)		
C10	Fe1	C3	157.71(15)	C19	C18	C17	120.6(3)		
C10	Fe1	C8	67.68(14)	C25	C24	C23	120.5(3)		
C10	Fe1	C9	40.54(14)	C19	C20	C21	120.3(3)		
C7	Fe1	C1	124.78(13)	C8	C9	Fe1	70.59(18)		

Table S18. Bond Angles for (*Rp*)-3a.

Atom	n Aton	1 Aton	n Angle/°	Aton	n Angle/°		
C7	Fe1	C2	109.16(12)	C8	C9	C10	109.0(4)
C7	Fe1	C3	122.79(14)	C10	C9	Fe1	69.57(17)
C7	Fe1	C4	157.34(15)	C26	C25	C24	120.0(3)
C7	Fe1	C8	40.18(15)	C10	C6	Fe1	70.04(19)
C7	Fe1	C9	67.17(16)	C10	C6	C7	108.4(3)
C7	Fe1	C10	67.99(15)	C7	C6	Fe1	69.89(19)
N1	S 1	C14	104.07(12)	F1	C14	S 1	110.15(19)
02	S 1	N1	110.43(12)	F1	C14	F2	108.0(3)
02	S 1	01	122.75(15)	F1	C14	F3	108.1(2)
O2	S 1	C14	103.84(12)	F2	C14	S 1	110.61(18)
01	S 1	N1	109.64(12)	F2	C14	F3	109.2(2)
01	S 1	C14	104.12(15)	F3	C14	S 1	110.7(2)
C12	N1	S 1	121.51(15)	C20	C21	C16	120.8(3)
C13	N1	S 1	122.40(16)	C9	C10	Fe1	69.89(19)
C13	N1	C12	114.59(19)	C6	C10	Fe1	69.66(19)
C1	C11	C12	112.99(18)	C6	C10	C9	106.8(4)
C15	C11	C12	119.77(18)	C18	C19	C20	119.5(2)
C15	C11	C1	127.03(19)	C25	C26	C27	120.1(3)
N1	C12	C11	111.01(17)	C8	C7	Fe1	70.5(2)
C11	C1	Fe1	132.73(15)	C8	C7	C6	107.8(3)
C5	C1	Fe1	68.19(13)	C6	C7	Fe1	69.70(19)

A	B	С	D	Angle/°	Α	В	С	D	Angle/°
Fe1	C1	C5	C13	-123.5(2)	C3	Fe1	C9	C10	162.1(2)
Fe1	C1	C5	C4	59.36(19)	C3	Fe1	C6	C10	159.3(3)

A	B	С	D	Angle/°	A	B	С	D	Angle/°
Fe1	C1	C2	C3	-59.12(17)	C3	Fe1	C6	C7	39.9(5)
Fe1	C5	C13	N1	-72.0(3)	C3	Fe1	C10	C9	-43.5(5)
Fe1	C5	C4	C3	59.53(19)	C3	Fe1	C10	C6	-161.2(3)
Fe1	C2	C3	C4	-58.62(19)	C3	Fe1	C7	C8	76.9(2)
Fe1	C3	C4	C5	-59.30(19)	C3	Fe1	C7	C6	-164.6(2)
Fe1	C8	C9	C10	59.2(2)	C4	Fe1	C1	C11	-150.2(2)
Fe1	C8	C7	C6	-60.0(2)	C4	Fe1	C1	C5	-37.67(13)
Fe1	C9	C10)C6	60.2(2)	C4	Fe1	C1	C2	80.86(15)
Fe1	C6	C10)C9	-60.3(2)	C4	Fe1	C5	C1	119.5(2)
Fe1	C6	C7	C8	60.5(2)	C4	Fe1	C5	C13	-122.8(3)
S 1	N1	C12	C11	-128.19(18)	C4	Fe1	C2	C1	-82.69(14)
S 1	N1	C13	C5	140.58(18)	C4	Fe1	C2	C3	37.45(15)
N1	S 1	C14	F1	63.5(2)	C4	Fe1	C3	C2	-120.2(2)
N1	S 1	C14	F2	-55.9(2)	C4	Fe1	C8	C9	77.0(2)
N1	S 1	C14	F3	-177.07(19)	C4	Fe1	C8	C7	-163.6(2)
02	S 1	N1	C12	31.3(2)	C4	Fe1	C9	C8	-119.6(2)
02	S 1	N1	C13	-163.5(2)	C4	Fe1	C9	C10	120.5(3)
02	S 1	C14	F1	-52.1(2)	C4	Fe1	C6	C10	-36.2(4)
02	S 1	C14	F2	-171.5(2)	C4	Fe1	C6	C7	-155.7(3)
02	S 1	C14	F3	67.3(2)	C4	Fe1	C10	C9	-76.8(3)
C11	C1	C5	Fe1	127.8(2)	C4	Fe1	C10	C6	165.6(2)
C11	C1	C5	C13	4.2(4)	C4	Fe1	C7	C8	39.0(4)
C11	C1	C5	C4	-172.9(2)	C4	Fe1	C7	C6	157.4(3)
C11	C1	C2	Fe1	-129.2(3)	C4	C5	C13	N1	-164.9(3)
C11	C1	C2	C3	171.7(3)	C23	8 C 2 2	2C27	C26	-0.9(4)
C11	C15	5 C 2 2	C23	73.0(3)	C23	8 C 24	C25	C26	-1.3(5)

A	B	С	D	Angle/°	A	B	С	D	Angle/°
C11	l C15	5C22	2C27	-107.5(3)	C8	Fe1	C1	C11	85.0(4)
C11	l C15	5C16	5C17	-94.6(3)	C8	Fe1	C1	C5	-162.4(4)
C11	l C15	5C16	5C21	87.2(3)	C8	Fe1	C1	C2	-43.9(4)
01	S 1	N1	C12	169.5(2)	C8	Fe1	C5	C1	165.0(3)
01	S 1	N1	C13	-25.2(2)	C8	Fe1	C5	C13	3-77.3(4)
01	S 1	C14	4F1	178.34(19)	C8	Fe1	C5	C4	45.5(4)
01	S 1	C14	4F2	59.0(2)	C8	Fe1	C2	C1	163.67(18)
01	S 1	C14	4F3	-62.2(2)	C8	Fe1	C2	C3	-76.2(2)
C12	2N1	C13	3C5	-53.2(3)	C8	Fe1	C3	C2	122.05(18)
C12	2C11	C1	Fe1	93.0(2)	C8	Fe1	C3	C4	-117.74(18)
C12	2C11	C1	C5	5.1(3)	C8	Fe1	C4	C5	-160.92(18)
C12	2C11	C1	C2	-166.7(2)	C8	Fe1	C4	C3	80.3(2)
C12	2C11	C15	5 C 2 2	-176.5(2)	C8	Fe1	C9	C10)-119.9(4)
C12	2C11	C15	5C16	4.6(3)	C8	Fe1	C6	C10	081.5(2)
C1	Fe1	C5	C13	117.7(2)	C8	Fe1	C6	C7	-37.9(2)
C1	Fe1	C5	C4	-119.5(2)	C8	Fe1	C10)C9	36.6(3)
C1	Fe1	C2	C3	120.1(2)	C8	Fe1	C10)C6	-81.1(2)
C1	Fe1	C3	C2	-37.51(13)	C8	Fe1	C7	C6	118.4(3)
C1	Fe1	C3	C4	82.70(16)	C8	C9	C10)Fe1	-59.8(3)
C1	Fe1	C4	C5	37.96(14)	C8	C9	C10)C6	0.4(4)
C1	Fe1	C4	C3	-80.86(16)	C27	7 C22	2C23	8 C24	0.3(4)
C1	Fe1	C8	C9	-166.5(3)	C17	7C16	5C21	C20	0.7(4)
C1	Fe1	C8	C7	-47.1(5)	C17	7C18	3C19	C20)-1.4(5)
C1	Fe1	C9	C8	167.1(3)	C24	4C25	5 C 2 6	5C27	0.7(5)
C1	Fe1	C9	C10	47.2(5)	C9	Fe1	C1	C11	-70.2(4)
C1	Fe1	C6	C10	-119.4(2)	C9	Fe1	C1	C5	42.4(4)

A	B	С	D	Angle/°	A	B	С	D	Angle/°
C1	Fe1	C6	C7	121.1(2)	C9	Fe1	C1	C2	160.9(3)
C1	Fe1	C10	C9	-161.8(2)	C9	Fe1	C5	C1	-163.68(16)
C1	Fe1	C10	C6	80.5(2)	C9	Fe1	C5	C13	-45.9(2)
C1	Fe1	C7	C8	162.42(18)	C9	Fe1	C5	C4	76.9(2)
C1	Fe1	C7	C6	-79.2(2)	C9	Fe1	C2	C1	-162.2(3)
C1	C11	C12	N1	-37.0(3)	C9	Fe1	C2	C3	-42.1(4)
C1	C11	C15	C22	9.0(4)	C9	Fe1	C3	C2	162.63(17)
C1	C11	C15	C16	-169.9(2)	C9	Fe1	C3	C4	-77.2(2)
C1	C5	C13	N1	18.6(3)	C9	Fe1	C4	C5	-120.80(17)
C1	C5	C4	Fe1	-59.88(18)	C9	Fe1	C4	C3	120.38(17)
C1	C5	C4	C3	-0.4(3)	C9	Fe1	C8	C7	119.4(3)
C1	C2	C3	Fe1	59.39(15)	C9	Fe1	C6	C10	38.6(2)
C1	C2	C3	C4	0.8(3)	C9	Fe1	C6	C7	-80.8(2)
C15	5C11	C12	N1	147.8(2)	C9	Fe1	C10	C6	-117.7(4)
C15	5C11	C1	Fe1	-92.3(3)	C9	Fe1	C7	C8	-37.0(2)
C15	5C11	C1	C5	179.8(2)	C9	Fe1	C7	C6	81.4(2)
C15	5C11	C1	C2	8.1(4)	C9	C8	C7	Fe1	59.4(2)
C15	5C22	2C23	C24	179.7(2)	C9	C8	C7	C6	-0.6(4)
C15	5C22	2C27	C26	179.7(2)	C6	Fe1	C1	C11	7.4(3)
C15	5C16	5C17	C18	-178.7(3)	C6	Fe1	C1	C5	119.92(18)
C15	5C16	5C21	C20	178.9(3)	C6	Fe1	C1	C2	-121.55(19)
C5	Fe1	C1	C11	-112.5(3)	C6	Fe1	C5	C1	-80.84(19)
C5	Fe1	C1	C2	118.52(18)	C6	Fe1	C5	C13	36.9(3)
C5	Fe1	C2	C1	-38.50(13)	C6	Fe1	C5	C4	159.7(2)
C5	Fe1	C2	C3	81.63(16)	C6	Fe1	C2	C1	79.2(2)
C5	Fe1	C3	C2	-82.09(15)	C6	Fe1	C2	C3	-160.66(19)

A	B	С	D	Angle/°	A	B	С	D	Angle/°
C5	Fe1	C3	C4	38.12(15)	C6	Fe1	C3	C2	51.3(4)
C5	Fe1	C4	C3	-118.8(2)	C6	Fe1	C3	C4	171.5(3)
C5	Fe1	C8	C9	44.0(4)	C6	Fe1	C4	C5	-53.0(4)
C5	Fe1	C8	C7	163.3(3)	C6	Fe1	C4	C3	-171.8(3)
C5	Fe1	C9	C8	-161.2(2)	C6	Fe1	C8	C9	-81.3(3)
C5	Fe1	C9	C10	78.9(3)	C6	Fe1	C8	C7	38.1(2)
C5	Fe1	C6	C10	-75.6(2)	C6	Fe1	C9	C8	81.6(3)
C5	Fe1	C6	C7	164.98(19)	C6	Fe1	C9	C10	-38.4(3)
C5	Fe1	C10)C9	-119.4(3)	C6	Fe1	C10	C9	117.7(4)
C5	Fe1	C10)C6	123.0(2)	C6	Fe1	C7	C8	-118.4(3)
C5	Fe1	C7	C8	-159.7(3)	C14	S 1	N1	C12	-79.6(2)
C5	Fe1	C7	C6	-41.2(5)	C14	S 1	N1	C13	85.6(2)
C5	C1	C2	Fe1	58.15(16)	C21	C16	5C17	C18	-0.5(4)
C5	C1	C2	C3	-1.0(3)	C21	C20	C19	C18	1.5(5)
C22	2C15	5C16	5C17	86.4(3)	C10	Fe1	C1	C11	-35.2(3)
C22	2C15	5C16	5C21	-91.7(3)	C10	Fe1	C1	C5	77.3(2)
C22	2C23	8C24	C25	0.8(4)	C10	Fe1	C1	C2	-164.15(19)
C22	2C27	'C26	5C25	0.4(4)	C10	Fe1	C5	C1	-121.80(16)
C2	Fe1	C1	C11	128.9(3)	C10	Fe1	C5	C13	-4.1(2)
C2	Fe1	C1	C5	-118.52(18)	C10	Fe1	C5	C4	118.74(18)
C2	Fe1	C5	C1	38.14(12)	C10	Fe1	C2	C1	43.4(4)
C2	Fe1	C5	C13	155.9(2)	C10	Fe1	C2	C3	163.5(4)
C2	Fe1	C5	C4	-81.32(16)	C10	Fe1	C3	C2	-165.7(3)
C2	Fe1	C3	C4	120.2(2)	C10	Fe1	C3	C4	-45.4(4)
C2	Fe1	C4	C5	82.00(15)	C10	Fe1	C4	C5	-79.68(19)
C2	Fe1	C4	C3	-36.82(14)	C10	Fe1	C4	C3	161.49(16)

A	B	С	D	Angle/°	A	B	С	D	Angle/°
C2	Fe1	C8	C9	160.5(2)	C10)Fe1	C8	C9	-37.5(3)
C2	Fe1	C8	C7	-80.2(2)	C10)Fe1	C8	C7	81.8(2)
C2	Fe1	C9	C8	-47.3(5)	C10)Fe1	C9	C8	119.9(4)
C2	Fe1	C9	C10	-167.3(3)	C10)Fe1	C6	C7	-119.4(3)
C2	Fe1	C6	C10	-162.57(17)	C10)Fe1	C7	C8	-81.0(2)
C2	Fe1	C6	C7	78.0(2)	C10)Fe1	C7	C6	37.4(2)
C2	Fe1	C10)C9	165.4(3)	C10)C6	C7	Fe1	-59.7(2)
C2	Fe1	C10)C6	47.7(5)	C10)C6	C7	C8	0.9(4)
C2	Fe1	C7	C8	119.4(2)	C19	OC20	C21	C16	5-1.2(5)
C2	Fe1	C7	C6	-122.1(2)	C7	Fe1	C1	C11	49.9(3)
C2	C1	C5	Fe1	-58.55(15)	C7	Fe1	C1	C5	162.42(17)
C2	C1	C5	C13	177.9(2)	C7	Fe1	C1	C2	-79.1(2)
C2	C1	C5	C4	0.8(3)	C7	Fe1	C5	C1	-49.7(4)
C2	C3	C4	Fe1	59.05(18)	C7	Fe1	C5	C13	68.0(4)
C2	C3	C4	C5	-0.3(3)	C7	Fe1	C5	C4	-169.2(3)
C13	8N1	C12	2C11	65.5(3)	C7	Fe1	C2	C1	121.38(18)
C13	SC5	C4	Fe1	123.1(3)	C7	Fe1	C2	C3	-118.5(2)
C13	SC5	C4	C3	-177.3(2)	C7	Fe1	C3	C2	81.0(2)
C16	5C15	5C22	2.C23	-108.0(2)	C7	Fe1	C3	C4	-158.81(18)
C16	5C15	5C22	2C27	71.4(3)	C7	Fe1	C4	C5	170.9(3)
C16	5C17	C18	8C19	0.9(5)	C7	Fe1	C4	C3	52.1(4)
C3	Fe1	C1	C11	165.8(2)	C7	Fe1	C8	C9	-119.4(3)
C3	Fe1	C1	C5	-81.67(14)	C7	Fe1	C9	C8	37.6(2)
C3	Fe1	C1	C2	36.85(14)	C7	Fe1	C9	C10	-82.3(3)
C3	Fe1	C5	C1	81.43(14)	C7	Fe1	C6	C10	119.4(3)
C3	Fe1	C5	C13	-160.8(2)	C7	Fe1	C10	C9	80.1(3)
Table S19. Torsion Angles for (*Rp*)-3a.

A	B	С	D	Angle/°	A	B	С	D	Angle/°
C3	Fe1	C5	C4	-38.03(16)	C7	Fe1	C10	C6	-37.5(2)
C3	Fe1	C2	C1	-120.1(2)	C7	C8	C9	Fe1	-59.0(2)
C3	Fe1	C4	C5	118.8(2)	C7	C8	C9	C10	0.2(4)
C3	Fe1	C8	C9	119.5(2)	C7	C6	C10	Fe1	59.6(2)
C3	Fe1	C8	C7	-121.1(2)	C7	C6	C10	C9	-0.8(4)
C3	Fe1	C9	C8	-77.9(3)					

Table S20. Hydrogen Atom Coordinates ($\mathring{A} \times 10^4$) and Isotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$) for (*Rp*)-3a.

Atom	x	У	Z.	U(eq)
H12A	6090	7494	5350	59
H12B	7013	6937	5813	59
H2	2059	7813	6397	58
H13A	4334	4363	5111	65
H13B	4581	5785	4842	65
H3	255	6635	5862	70
H4	1462	5189	5184	68
H23	4369	6941	7254	74
H8	292	4009	6657	105
H27	4105	10612	6582	75
H17	7651	7494	6944	78
H18	9849	8480	6983	92
H24	2865	7678	7914	91
H20	8616	11398	6012	94
H9	1510	2656	5980	101
H25	1947	9837	7890	94
H6	4439	4467	6876	107

Table S20. Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for (*Rp*)-3a.

Atom	x	у	Z.	U(eq)
H21	6419	10438	5972	78
H10	4091	2936	6103	101
H19	10311	10450	6535	92
H26	2581	11308	7233	91
H7	2094	5161	7209	110

Table 21. Crystal data and structure refinement for 3f.

Identification code	3f
CCDC Number	2402043
Empirical formula	$C_{44}H_{40}F_{6}Fe_{2}N_{2}O_{4}S_{2}$
Formula weight	950.60
Temperature/K	103(2)
Crystal system	triclinic
Space group	P-1
a/Å	9.6500(6)
b/Å	10.5668(6)
c/Å	11.6109(8)
$\alpha/^{\circ}$	89.893(2)
β/°	69.144(2)

$\gamma/^{\circ}$	67.203(2)
Volume/Å ³	1007.15(11)
Z	1
$ ho_{calc}g/cm^3$	1.567
μ/mm^{-1}	0.899
F(000)	488.0
Crystal size/mm ³	$0.051 \times 0.035 \times 0.024$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/ ^c	² 4.962 to 60.078
Index ranges	$-13 \le h \le 13, -14 \le k \le 14, -16 \le l \le 16$
Reflections collected	64227
Independent reflections	5806 [$R_{int} = 0.0466$, $R_{sigma} = 0.0215$]
Data/restraints/parameters	5806/0/351
Goodness-of-fit on F ²	1.028
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0296, wR_2 = 0.0749$
Final R indexes [all data]	$R_1 = 0.0346, wR_2 = 0.0788$
Largest diff. peak/hole / e Å $^{-3}$	8 0.84/-0.40

Table 22. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 3f. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	У	Z	U(eq)
Fe1	8064.7(2)	2551.0(2)	1753.7(2)	17.93(6)
S 1	4684.9(3)	7020.2(3)	1924.0(3)	16.97(7)
F1	5179.8(15)	9279.9(10)	1619.0(12)	43.5(3)
F2	2983.7(14)	9416.7(11)	1448.0(13)	50.6(3)
F3	5306.9(16)	8239.6(12)	-32.8(10)	46.9(3)
01	4086.1(12)	7502.2(11)	3224.7(9)	26.7(2)
O2	3888.8(12)	6418.7(11)	1420.2(11)	26.9(2)

Table 22. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 3f. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	У	z	U(eq)
N1	6570.0(12)	6052.6(10)	1409.3(10)	15.15(18)
C1	9300.8(14)	3800.2(12)	1364.5(11)	15.4(2)
C2	8592.2(14)	3774.1(12)	468.7(11)	15.0(2)
C3	9231.1(15)	2383.2(13)	-135.9(12)	17.8(2)
C4	10340.7(16)	1525.3(13)	381.5(13)	20.8(2)
C5	10378.7(16)	2381.6(13)	1310.4(13)	20.6(2)
C6	6111(2)	3497.4(19)	3398.9(15)	38.2(4)
C7	5589.7(19)	3186.6(17)	2483.7(17)	33.1(3)
C8	6387(2)	1724.7(17)	2083.3(15)	29.5(3)
C9	7397(2)	1130.9(17)	2745.2(16)	32.5(3)
C10	7227(3)	2230(2)	3566.6(15)	38.4(4)
C11	7390.7(15)	5050.2(12)	244.9(11)	16.2(2)
C12	7670.2(15)	6379.7(12)	1852.1(12)	16.5(2)
C13	8839.8(14)	5104.1(12)	2151.5(11)	15.0(2)
C14	9473.8(15)	5259.9(12)	2979.5(11)	16.4(2)
C15	10818.7(18)	4080.9(14)	3206.0(14)	24.3(3)
C16	8927.7(15)	6636.5(12)	3723.7(11)	16.4(2)
C17	10057.3(16)	7196.2(14)	3605.7(13)	21.3(2)
C18	9602.6(18)	8455.3(15)	4316.2(14)	25.5(3)
C19	8010.0(19)	9170.4(14)	5161.6(13)	25.3(3)
C20	6876.7(17)	8624.7(15)	5295.8(13)	24.3(3)
C21	7329.9(16)	7361.8(14)	4585.7(12)	20.2(2)
C22	4523(2)	8587.8(15)	1200.8(16)	30.6(3)

Table 23. Anisotropic Displacement Parameters $(Å^2 \times 10^3)$ for 3f. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U 11	U_{22}	U33	U23	U 13	U 12
Fe1	21.42(10)	16.36(9)	17.77(10)	4.85(6)	-7.41(7)	-9.73(7)
S 1	12.48(13)	15.56(13)	20.52(14)	-0.55(10)	-6.69(11)	-3.13(10)
F1	58.9(7)	23.5(4)	67.4(7)	17.6(5)	-39.9(6)	-22.1(5)
F2	42.8(6)	25.6(5)	78.3(8)	5.4(5)	-40.4(6)	6.5(4)
F3	64.2(7)	40.1(6)	36.2(5)	20.6(5)	-26.2(5)	-15.2(5)
01	20.5(5)	28.3(5)	21.5(5)	-4.5(4)	-2.8(4)	-5.0(4)
O2	16.4(4)	26.4(5)	37.8(6)	-4.6(4)	-12.1(4)	-7.1(4)
N1	12.5(4)	14.9(4)	16.8(4)	-0.3(3)	-6.8(4)	-3.4(3)
C1	14.0(5)	14.1(5)	17.2(5)	2.6(4)	-6.3(4)	-4.7(4)
C2	14.2(5)	14.3(5)	14.7(5)	2.2(4)	-4.3(4)	-5.2(4)
C3	17.5(5)	16.0(5)	17.5(5)	0.2(4)	-5.0(4)	-6.1(4)
C4	21.0(6)	13.7(5)	25.4(6)	1.3(4)	-9.5(5)	-4.3(4)
C5	19.4(6)	15.0(5)	26.8(6)	3.1(4)	-11.9(5)	-3.9(4)
C6	43.2(9)	36.8(8)	25.2(7)	-0.8(6)	6.6(7)	-25.1(7)
C7	22.7(7)	31.7(7)	39.5(8)	11.6(6)	-2.3(6)	-14.5(6)
C8	32.8(7)	32.4(7)	32.1(7)	11.3(6)	-11.6(6)	-23.0(6)
C9	43.2(9)	30.0(7)	32.9(8)	17.6(6)	-15.3(7)	-23.4(7)
C10	55.0(11)	54.0(10)	21.8(7)	16.0(7)	-14.8(7)	-38.1(9)
C11	16.2(5)	15.3(5)	14.9(5)	0.4(4)	-6.8(4)	-3.7(4)
C12	15.3(5)	14.7(5)	22.0(6)	2.9(4)	-10.6(4)	-5.5(4)
C13	13.5(5)	13.7(5)	16.3(5)	2.4(4)	-5.5(4)	-4.5(4)
C14	15.6(5)	16.1(5)	16.5(5)	2.5(4)	-6.3(4)	-5.2(4)
C15	26.9(7)	20.2(6)	25.1(6)	2.6(5)	-16.5(6)	-3.2(5)
C16	17.6(5)	17.5(5)	14.3(5)	2.7(4)	-7.6(4)	-6.2(4)
C17	18.6(6)	24.1(6)	21.1(6)	1.9(5)	-7.2(5)	-9.2(5)
C18	29.5(7)	25.3(6)	27.4(7)	3.2(5)	-12.2(6)	-15.8(6)

Table 23. Anisotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$) for 3f. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U 11	U22	U 33	U23	U 13	U12
C19	32.4(7)	18.8(6)	23.3(6)	-0.3(5)	-10.8(5)	-9.0(5)
C20	22.7(6)	22.7(6)	20.0(6)	-0.3(5)	-5.2(5)	-4.6(5)
C21	18.8(6)	22.8(6)	18.4(5)	2.7(4)	-6.1(5)	-9.2(5)
C22	34.5(8)	19.2(6)	40.8(8)	7.8(6)	-24.5(7)	-4.6(5)

Table 24. Bond Lengths for 3f.

Atom Atom		Length/Å	Atom Atom		Length/Å	
Fe1	C1	2.0502(12)	C1	C13	1.4737(16)	
Fe1	C2	2.0291(12)	C2	C3	1.4235(16)	
Fe1	C3	2.0495(13)	C2	C11	1.4938(16)	
Fe1	C4	2.0511(13)	C3	C4	1.4258(18)	
Fe1	C5	2.0385(13)	C4	C5	1.4286(18)	
Fe1	C6	2.0458(16)	C6	C7	1.414(3)	
Fe1	C7	2.0473(16)	C6	C10	1.422(3)	
Fe1	C8	2.0455(15)	C7	C8	1.422(2)	
Fe1	C9	2.0511(14)	C8	C9	1.411(2)	
Fe1	C10	2.0488(15)	C9	C10	1.425(2)	
S 1	01	1.4239(10)	C12	C13	1.5199(16)	
S 1	O2	1.4269(10)	C13	C14	1.3501(17)	
S 1	N1	1.5807(10)	C14	C15	1.5148(17)	
S 1	C22	1.8334(15)	C14	C16	1.4922(17)	
F1	C22	1.3234(19)	C16	C17	1.3963(18)	
F2	C22	1.3212(18)	C16	C21	1.3982(17)	
F3	C22	1.332(2)	C17	C18	1.3918(19)	
N1	C11	1.4731(15)	C18	C19	1.387(2)	
N1	C12	1.4781(15)	C19	C20	1.386(2)	

Table 24. Bond Lengths for 3f.

Atom Atom		Length/Å	Atom	Atom	Length/Å	
C1	C2	1.4393(16)	C20	C21	1.3953(19)	
C1	C5	1.4417(16)				

Table 25. Bond Angles for 3f.

Atom Atom Angle/°			Atom Atom Atom Angle/°				
C1	Fe1	C4	69.12(5)	C2	C1	C13	121.40(10)
C1	Fe1	C9	151.51(6)	C5	C1	Fe1	68.92(7)
C2	Fe1	C1	41.32(5)	C5	C1	C13	132.17(11)
C2	Fe1	C3	40.85(5)	C13	C1	Fe1	125.28(8)
C2	Fe1	C4	68.52(5)	C1	C2	Fe1	70.13(7)
C2	Fe1	C5	69.10(5)	C1	C2	C11	123.00(10)
C2	Fe1	C6	117.47(6)	C3	C2	Fe1	70.34(7)
C2	Fe1	C7	107.56(6)	C3	C2	C1	109.30(10)
C2	Fe1	C8	128.33(6)	C3	C2	C11	127.69(11)
C2	Fe1	C9	166.43(6)	C11	C2	Fe1	126.19(8)
C2	Fe1	C10	151.26(6)	C2	C3	Fe1	68.81(7)
C3	Fe1	C1	69.44(5)	C2	C3	C4	107.44(11)
C3	Fe1	C4	40.69(5)	C4	C3	Fe1	69.71(8)
C3	Fe1	C9	128.64(6)	C3	C4	Fe1	69.59(7)
C4	Fe1	C9	108.88(6)	C3	C4	C5	108.54(11)
C5	Fe1	C1	41.29(5)	C5	C4	Fe1	69.08(8)
C5	Fe1	C3	69.06(5)	C1	C5	Fe1	69.79(7)
C5	Fe1	C4	40.89(5)	C4	C5	Fe1	70.03(8)
C5	Fe1	C6	127.07(7)	C4	C5	C1	108.31(11)
C5	Fe1	C7	165.07(6)	C7	C6	Fe1	69.85(9)
C5	Fe1	C8	152.48(6)	C7	C6	C10	108.10(15)

Table 25. Bond Angles for 3f.

Atom Atom Angle/°					${\bf AtomAtomAtomAngle}/^{\circ}$			
C5	Fe1	C9	118.30(6)	C10	C6	Fe1	69.79(9)	
C5	Fe1	C10	107.33(7)	C6	C7	Fe1	69.73(10)	
C6	Fe1	C1	106.28(6)	C6	C7	C8	107.76(16)	
C6	Fe1	C3	151.69(7)	C8	C7	Fe1	69.60(9)	
C6	Fe1	C4	165.87(7)	C7	C8	Fe1	69.74(9)	
C6	Fe1	C7	40.42(8)	C9	C8	Fe1	70.06(9)	
C6	Fe1	C9	68.39(7)	C9	C8	C7	108.56(15)	
C6	Fe1	C10	40.65(8)	C8	C9	Fe1	69.63(8)	
C7	Fe1	C1	126.74(6)	C8	C9	C10	107.65(15)	
C7	Fe1	C3	118.59(6)	C10	C9	Fe1	69.57(9)	
C7	Fe1	C4	152.82(7)	C6	C10	Fe1	69.56(9)	
C7	Fe1	C9	68.28(7)	C6	C10	C9	107.93(16)	
C7	Fe1	C10	68.19(8)	C9	C10	Fe1	69.75(9)	
C8	Fe1	C1	165.71(6)	N1	C11	C2	106.47(9)	
C8	Fe1	C3	108.86(6)	N1	C12	C13	112.09(10)	
C8	Fe1	C4	119.46(6)	C1	C13	C12	113.58(10)	
C8	Fe1	C6	68.10(7)	C14	C13	C1	126.41(11)	
C8	Fe1	C7	40.65(7)	C14	C13	C12	119.65(10)	
C8	Fe1	C9	40.31(7)	C13	C14	C15	123.49(11)	
C8	Fe1	C10	68.00(7)	C13	C14	C16	122.07(11)	
C10	Fe1	C1	116.95(6)	C16	C14	C15	114.41(10)	
C10	Fe1	C3	166.60(7)	C17	C16	C14	119.40(11)	
C10	Fe1	C4	128.38(7)	C17	C16	C21	118.44(12)	
C10	Fe1	C9	40.68(7)	C21	C16	C14	122.10(11)	
01	S 1	O2	121.70(7)	C18	C17	C16	120.93(12)	
01	S 1	N1	110.52(6)	C19	C18	C17	120.07(13)	

Table 25. Bond Angles for 3f.

Atom Atom Angle/°					n Aton	n Atom	Angle/°
01	S 1	C22	104.26(7)	C20	C19	C18	119.71(13)
O2	S 1	N1	109.57(6)	C19	C20	C21	120.33(13)
O2	S 1	C22	104.05(7)	C20	C21	C16	120.51(12)
N1	S 1	C22	105.14(7)	F1	C22	S 1	110.53(10)
C11	N1	S 1	121.92(8)	F1	C22	F3	108.39(15)
C11	N1	C12	114.94(9)	F2	C22	S 1	110.87(12)
C12	N1	S 1	120.89(8)	F2	C22	F1	108.62(13)
C2	C1	Fe1	68.56(7)	F2	C22	F3	108.43(13)
C2	C1	C5	106.39(10)	F3	C22	S 1	109.93(10)

Table 26. Hydrogen Bonds for 3f.

D	Н	A	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
C11	H11B	O2	0.913(19)	2.421(18)	2.8828(15)	111.4(13)
C11	H11B	$O2^1$	0.913(19)	2.496(19)	3.2966(16)	146.6(15)
C12	H12A	01	0.916(18)	2.513(18)	2.9685(16)	111.2(13)
¹ 1-X	,1-Y,-Z	Z				

Table 27. Torsion Angles for 3f.

Α	B	С	D	Angle/°	Α	B	С	D	Angle/°	
Fe1	C1	C2	C3	-59.63(8)	C3	C4	C5	Fe1	58.54(9)	
Fe1	C1	C2	C11	120.93(11)	C3	C4	C5	C1	-0.97(15)	
Fe1	C1	C5	C4	59.66(9)	C5	C1	C2	Fe1	58.78(8)	
Fe1	C1	C13	C12	-88.71(12)	C5	C1	C2	C3	-0.85(14)	
Fe1	C1	C13	C14	98.37(14)	C5	C1	C2	C11	179.71(11)
Fe1	C2	C3	C4	-59.23(9)	C5	C1	C13	C12	178.64(13)
Fe1	C2	C11	N1	62.36(13)	C5	C1	C13	C14	5.7(2)	

Table 27. Torsion Angles for 3f.

A	B	С	D	Angle/°	A	B	С	D	Angle/°
Fe1	C3	C4	C5	-58.22(10)	C6	C7	C8	Fe1	-59.52(10)
Fe1	C4	C5	C1	-59.51(9)	C6	C7	C8	C9	-0.01(17)
Fe1	C6	C7	C8	59.44(10)	C7	C6	C10	Fe1	59.57(11)
Fe1	C6	C10	C9	-59.41(11)	C7	C6	C10	C9	0.16(18)
Fe1	C7	C8	C9	59.51(11)	C7	C8	C9	Fe1	-59.32(10)
Fe1	C8	C9	C10	59.42(11)	C7	C8	C9	C10	0.10(17)
Fe1	C9	C10	C6	59.29(11)	C8	C9	C10	Fe1	-59.45(11)
S 1	N1	C11	C2	-140.89(9)	C8	C9	C10	C6	-0.16(18)
S 1	N1	C12	C13	134.89(9)	C10	C6	C7	Fe1	-59.53(11)
01	S 1	N1	C11	159.04(10)	C10	C6	C7	C8	-0.09(17)
01	S 1	N1	C12	-38.89(11)	C11	N1	C12	C13	-61.86(13)
01	S 1	C22	F1	49.65(13)	C11	C2	C3	Fe1	-121.09(12)
01	S 1	C22	F2	-70.86(12)	C11	C2	C3	C4	179.68(12)
01	S 1	C22	F3	169.27(11)	C12	N1	C11	C2	56.05(13)
02	S 1	N1	C11	22.28(12)	C12	C13	C14	C15	-171.24(12)
02	S 1	N1	C12	-175.65(10)	C12	C13	C14	C16	6.87(18)
02	S 1	C22	F1	178.15(11)	C13	C1	C2	Fe1	-119.16(11)
02	S 1	C22	F2	57.64(13)	C13	C1	C2	C3	-178.79(11)
02	S 1	C22	F3	-62.23(12)	C13	C1	C2	C11	1.77(18)
N1	S 1	C22	F1	-66.67(13)	C13	C1	C5	Fe1	119.08(14)
N1	S 1	C22	F2	172.82(11)	C13	C1	C5	C4	178.74(13)
N1	S 1	C22	F3	52.95(12)	C13	C14	C16	C17	-119.96(14)
N1	C12	2C13	C1	31.66(14)	C13	C14	C16	C21	63.14(17)
N1	C12	2C13	C14	-154.89(11)	C14	C16	5C17	C18	-177.84(12)
C1	C2	C3	Fe1	59.50(8)	C14	C16	5C21	C20	177.82(12)
C1	C2	C3	C4	0.27(14)	C15	C14	C16	C17	58.31(16)

Table 27. Torsion Angles for 3f.

A	B	С	D	Angle/°	Α	B	С	D	Angle/°
C1	C2	C11	N1	-26.10(15)	C15	C14	C16	C21	-118.59(14)
C1	C13	C14	C15	1.3(2)	C16	C17	C18	C19	0.3(2)
C1	C13	C14	C16	179.40(11)	C17	C16	C21	C20	0.90(19)
C2	C1	C5	Fe1	-58.55(8)	C17	C18	C19	C20	0.1(2)
C2	C1	C5	C4	1.11(14)	C18	C19	C20	C21	0.0(2)
C2	C1	C13	C12	-4.03(16)	C19	C20	C21	C16	-0.5(2)
C2	C1	C13	C14	-176.96(12)	C21	C16	C17	C18	-0.83(19)
C2	C3	C4	Fe1	58.66(8)	C22	S 1	N1	C11	-89.01(11)
C2	C3	C4	C5	0.44(15)	C22	S 1	N1	C12	73.06(11)
C3	C2	C11	N1	154.57(12)					

Table 28. Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 3f.

Atom	x	у	Z.	U(eq)
H3	8960(20)	2051(18)	-760(17)	22(4)
H4	10920(20)	553(19)	173(16)	21(4)
H5	10980(20)	2020(18)	1841(17)	23(4)
H6	5870(30)	4380(20)	3790(20)	42(6)
H7	4880(30)	3840(20)	2180(20)	46(6)
H8	6260(20)	1230(20)	1447(19)	32(5)
H9	8100(30)	170(20)	2640(20)	37(5)
H10	7850(30)	2080(30)	4040(20)	55(7)
H11A	7911(19)	5443(17)	-449(15)	15(4)
H11B	6630(20)	4865(18)	65(17)	23(4)
H12A	7030(20)	7072(19)	2527(17)	21(4)
H12B	8280(20)	6718(19)	1216(17)	24(4)
H15A	10350(20)	3470(20)	3654(18)	30(5)

Table 28. Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Ų×10³) for 3f.

Atom	x	У	Z	U(eq)
H15B	11780(20)	3530(20)	2429(19)	30(5)
H15C	11240(30)	4470(30)	3720(20)	56(7)
H17	11180(20)	6688(19)	3004(17)	23(4)
H18	10390(20)	8820(20)	4193(18)	30(5)
H19	7700(20)	10020(20)	5621(18)	30(5)
H20	5800(20)	9080(20)	5884(19)	32(5)
H21	6610(20)	6930(20)	4700(18)	31(5)

¹H NMR Spectrum of **1a**

¹³C{¹H} NMR Spectrum of **1a**

¹⁹F NMR spectrum of **1a**

¹H NMR Spectrum of **1b**

¹³C{¹H} NMR Spectrum of **1b**

¹H NMR Spectrum of **1c**

¹³C{¹H} NMR Spectrum of **1c**

¹H NMR Spectrum of **1d**

$^{13}C\{^{1}H\}$ NMR Spectrum of 1d

¹H NMR Spectrum of **1e**

$^{13}C\{^{1}H\}$ NMR Spectrum of 1e

1 H NMR Spectrum of **1f**

 $^{13}C\{^{1}H\}$ NMR Spectrum of 1f

¹H NMR Spectrum of **3a**

 $^{13}C\{^{1}H\}$ NMR Spectrum of **3a**

¹⁹F NMR Spectrum of **3a**

¹H NMR Spectrum of **3b**

¹³C{¹H} NMR Spectrum of **3b**

¹⁹F NMR Spectrum of **3b**

¹H NMR Spectrum of **3c**

S177

$^{13}C\{^{1}H\}$ NMR Spectrum of 3c

¹⁹F NMR Spectrum of **3c**

¹H NMR Spectrum of **3d**
¹³C{¹H} NMR Spectrum of **3d**

¹⁹F NMR Spectrum of **3d**

¹H NMR Spectrum of **3e**

¹³C{¹H} NMR Spectrum of **3e**

S185

¹H NMR Spectrum of 3f

 $^{13}C\{^{1}H\}$ NMR Spectrum of **3f**

¹H NMR Spectrum of **3g**

$^{13}C{^{1}H}$ NMR Spectrum of **3g**

<-75.41 <-75.99

¹H NMR Spectrum of **3h**

¹³C{¹H} NMR Spectrum of **3h**

¹⁹F NMR Spectrum of **3h**

¹H NMR Spectrum of **3i**

¹³C{¹H} NMR Spectrum of **3i**

¹³C{¹H} NMR Spectrum of **3j**

¹⁹F NMR Spectrum of **3j**

<-75.11 75.16

¹H NMR Spectrum of **3k**

¹³C{¹H} NMR Spectrum of 3k

¹H NMR Spectrum of **3**l

$^{13}C{^{1}H}$ NMR Spectrum of **3**l

¹H NMR Spectrum of **3m**

$^{13}C{^{1}H}$ NMR Spectrum of **3m**

¹H NMR Spectrum of **3n**

¹³C{¹H} NMR Spectrum of **3n**

¹H NMR Spectrum of **30**

¹³C{¹H} NMR Spectrum of **30**

¹H NMR Spectrum of **3p**

¹³C{¹H} NMR Spectrum of **3p**

¹⁹F NMR Spectrum of **3p**

¹H NMR Spectrum of **3**q

 $^{13}C\{^{1}H\}$ NMR Spectrum of 3q

¹⁹F NMR Spectrum of **3**q

¹H NMR Spectrum of **3r**

$^{13}C\{^{1}H\}$ NMR Spectrum of 3r

¹⁹F NMR Spectrum of **3r**

¹H NMR Spectrum of **3s**

$^{13}C\{^{1}H\}$ NMR Spectrum of **3s**

¹⁹F NMR Spectrum of **3s**

$^{13}C{^{1}H}$ NMR Spectrum of **3t**

¹H NMR Spectrum of **3u**

¹³C{¹H} NMR Spectrum of **3u**

¹H NMR Spectrum of **3v**

$^{13}C{^{1}H}$ NMR Spectrum of 3v

¹H NMR Spectrum of **3w**

¹³C{¹H} NMR Spectrum of 3w

¹H NMR Spectrum of **3**x

S231

¹H NMR Spectrum of **3y**

$^{13}C\{^{1}H\}$ NMR Spectrum of 3y

¹H NMR Spectrum of **3z**

$^{13}C\{^{1}H\}$ NMR Spectrum of 3z

¹H NMR Spectrum of 4a

¹³C{¹H} NMR Spectrum of 4a

¹⁹F NMR Spectrum of **4a**

¹H NMR Spectrum of **4b**

$^{13}C\{^{1}H\}$ NMR Spectrum of 4b

¹H NMR Spectrum of **4c**

$^{13}\text{C}\{^1\text{H}\}$ NMR Spectrum of 4c

¹H NMR Spectrum of **4d**

$^{13}C\{^{1}H\}$ NMR Spectrum of 4d

¹H NMR Spectrum of 4e

S246

¹H NMR Spectrum of 4f

$^{13}C\{^1H\}$ NMR Spectrum of 4f

¹H NMR Spectrum of **4**g

$^{13}C\{^1H\}$ NMR Spectrum of 4g

¹H NMR Spectrum of **4h**

$^{13}C{^{1}H}$ NMR Spectrum of **4h**

¹H NMR Spectrum of 4i

$^{13}C{^{1}H}$ NMR Spectrum of **4i**

$^{13}C{^{1}H}$ NMR Spectrum of **4**j

³¹P NMR Spectrum of **4j**

¹H NMR Spectrum of **4m**

$^{13}C\{^{1}H\}$ NMR Spectrum of 4m

¹H NMR Spectrum of **4n**

$^{13}C{^{1}H}$ NMR Spectrum of **4n**

¹H NMR Spectrum of **5a**

¹³C{¹H} NMR Spectrum of **5a**

¹H NMR Spectrum of **6a**

¹³C{¹H} NMR Spectrum of **6a**

¹H NMR Spectrum of 7a

$^{13}C\{^{1}H\}$ NMR Spectrum of 7a

Mass spectrum of the reaction with alkyne coupling partner

References

- (1) Z. Zhao, L. Racicot, and G. K. Murphy, Angew. Chem. Int. Ed., 2017, 56, 11620-11623.
- (2) Q. Xiao, Q. He, J. Li, and J. Wang, Org. Lett., 2015, 17, 6090-6093.
- (3) R. A. Arthurs, M. Ismail, C. C. Prior, V. S. Oganesyan, P. N. Horton, S. J. Coles, and C. J. Richards, *Chem. Eur. J.*, 2016, **22**, 4802–4806.
- (4) (a) B. -F. Shi, N. Maugel, Y. H. Zhang, and J. -Q. Yu, *Angew. Chem. Int. Ed.*, 2008, 47, 4882–4886.
 (b) J.-M. Gonzalez, X. Vidal, M.-A. Ortunno, J.-L. Mascarennas, and M. Gulias, *J. Am. Chem. Soc.*, 2022, 144, 21437–21442.
- (5) L. Dai, S. X. Wang, and F. E. Chen, Adv. Synth. Catal. 2010, 352, 2137 2141.