Supporting Information for:

The role of cytosine methylation in regulating the topology and liquidliquid phase separation of DNA G-quadruplexes

Mitsuki Tsuruta, Sumit Shil, Shinya Taniguchi, Keiko Kawauchi, Daisuke Miyoshi*

Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.

* Correspondence and requests for materials should be addressed to Daisuke Miyoshi

(email: miyoshi@konan-u.ac.jp).

This file includes Supplementary Table S1 – S3 Supplementary Figures S1 – S16

Chromosome number	Start site	Gene symbol*
chr1	110607470	KCNA2
chr1	150579772	MCL1
chr2	168247289	STK39
chr4	2387058	
chr4	82561547	
chr4	186144723	FAM149A
chr5	177371074	RGS14
chr6	43021678	RRP36
chr6	109483543	ZBTB24
chr7	123748477	AC006333.2
chr9	129569211	
chr9	129666157	
chr9	131394270	PRRC2B
chr9	136327775	GPSM1
chr10	46337044	AGAP14P
chr10	46816336	AGAP13P
chr11	910938	CHID1
chr11	2884860	CDKN1C
chr12	51217720	POU6F1
chr12	54082575	AC023794.5
chr13	106917584	
chr13	113585151	TFDP1
chr16	1153342	CACNA1H
chr16	1614313	CRAMP1
chr16	49492476	ZNF423
chr17	38454151	AC244153.1
chr19	613554	HCN2
chrX	53625858	HUWE1
chrX	154341585	

Table S1 Chromosome number, start sites, and gene symbol of $(GGGGCC)_4$

*Gene symbols are written when (GGGGCC)₄ sites are identified in the promoter region of genes.

Table S2. DNA duplex sequences used in this study

Abbreviation	Sequence (5'-3')*
Duplex-0Me	GGCTGCGGTC / GACCGCAGCC
Duplex-8Me	GG <u>C</u> TG <u>C</u> GGT <u>C</u> / GA <u>CC</u> G <u>C</u> AG <u>CC</u>

*<u>C</u> indicates the position of 5-methylcytosine.

Table S3. DNA sequences used in this study

Abbreviation	Sequence (5'-3')*
P1	TGAGGGTGGGTAGGGTGGGTAA
abasic P1	TGAGGGXGGGXXGGGXGGGTAA
Tetramer G4	TTGGGG

*X indicates the position of abasic site.

Figure S1. Turbidity changes at 350 nm of 5 μ M DNAs [(A) 2Me, (B) 4Me, and (C) 8Me] with various concentrations (0, 1, 3, 5, 10, and 15 μ M) of RGG-peptide in the KCl buffer at 25°C.

Figure S2. Phase diagram for mixtures of 5 μ M DNAs and various RGG-peptide concentrations (0, 1,3, 5, 10, and 15 μ M) in 10 mM K₂HPO₄ (pH 7.0) and 1 mM K₂EDTA with various concentrations (1, 10, 100, and 1000 mM) of KCl at 25 °C. The circle colors indicate the values of turbidity_{350 nm} at 3600 s [below 0.1 (white), 0.1 to 0.4 (yellow), 0.4 to 0.8 (orange), and above 0.8 (red)]

Figure S3. Confocal fluorescence microscopy images for droplets formed by 5 μ M FAMtagged 0Me (A) or 8Me (B) in the presence of 5 μ M RGG-peptide at room temperature. Scale bar = 1 μ m. Negative time indicates droplets before bleaching. (C) FRAP curves for a mixture of 5 μ M DNAs [0Me (black) and 8Me (orange)] with 5 μ M RGG-peptide. (D) The apparent diffusion coefficient (D_{app}) of respective DNAs within droplet evaluated by exponential fitting (N = 3).

Figure S4. DIC images of droplets formed by 5 μ M DNAs (0Me, 2Me, 4Me, and 8Me] with 5 μ M RGG-peptide in the presence of various concentrations (0, 5, 10, and 20 wt%) of 1,6-hexanediol in the KCl buffer at room temperature. Scale bar = 10 μ m

Figure S5. Turbidity_{350 nm} at 1800 s of 3.00 μ M various DNAs (0Me; black, 2Me; red, 4Me; blue, 8Me; orange) with 0.00, 0.25, 0.50, 1.00, and 1.50 μ M Histone H1 in the KCl buffer at 25 °C.

Figure S6. Fluorescence spectra of 50 nM FAM-tagged 0Me (A) and FAM-tagged 8Me (B) with various concentration (0, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, and 100 μ M) of RGG-peptide in the KCl buffer at 25 °C.

Figure S7. Turbidity changes at 350 nm for a mixture of 5 μ M DNAs (Duplex-Me0: A, Duplex-Me8: B) and various concentrations of RGG-peptide (0, 1, 3, 5, 10, and 20 μ M) in a buffer containing 100 mM KCl, 1 mM K₂EDTA, and 10 mM K₂HPO₄ (pH 7.0) at 25°C. (C) Turbidity at 1800 s for 5 μ M DNAs (Duplex-Me0: red circle, Duplex-Me8: blue triangle) against various RGG-peptide concentrations (0, 1, 3, 5, 10, and 20 μ M). (D) DIC images for the mixture of 20 μ M Duplex-Me0 and Duplex-Me8 with 20 μ M RGG-peptide in a buffer containing 100 mM KCl, 1 mM K₂EDTA, and 10 mM K₂HPO₄ (pH 7.0) at room temperature. Scale bar = 10 μ m

Figure S8. (A) CD spectra of 0Me in a buffer containing 100 mM KCl, 10 mM K_2 HPO₄ (pH 7.0), 1 mM K_2 EDTA in the presence of 0, 5, 10, and 20 wt% PEG200. (B) . CD spectra of 10 μ M DNAs (0Me; black, 0Me in 20 wt% PEG200, green, 2Me; red, 4Me; blue, 8Me; orange) in a buffer containing 100 mM KCl, 1 mM K_2 EDTA, and 10 mM K_2 HPO₄ (pH 7.0) at 25°C.

Figure S9. 18% native-PAGE of 0Me, 2Me, 4Me, and 8Me with 0 or 20 wt% PEG200 in a buffer containing 100 mM KCl, 10mM K₂HPO₄ (pH 7.0), and 1 mM K₂EDTA. 10 bp ladder was loaded in the leftmost lane. Black and red allow head indicate parallel and antiparallel topologies, respectively. Lane1: 0Me, Lane 2: 0Me with 20 wt% PEG200, Lane 3: 2Me, Lane 4: 4Me, Lane 5: 8Me

Figure S10. Confocal fluorescence/DIC microscopy images for droplets formed by 5 μ M P1, P2, H1, H2, AP1, and AP2 in the presence of 5 μ M FAM-tagged RGG-peptide in the KCl buffer at room temperature. Images were captured 30 min after mixing DNA and RGG-peptide. Scale bar = 10 μ m.

Figure S11. 20% native-PAGE of 40 μM tetramer G4 in the presence of 100 mM K⁺ or Li⁺. 10 bp ladder was loaded in the leftmost lane.

Figure S12. Fluorescence spectra of 40 μM tetramer G4 with 5 μM NMM in the presence of 100 mM KCl (black) or LiCl (red).

Figure S13. Fluorescence spectra of 50 nM FAM-tagged P1 (A), TAMRA-tagged H1 (B), or TAMRA-tagged AP1 (C) with various concentrations (0, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, and 100 μ M) of RGG-peptide in the KCl buffer at 25 °C.

Figure S14. (A) The Plots of relative fluorescence for 50 nM FAM-tagged P1 (green), TAMRA-tagged H1 (orange), or TAMRA-tagged AP1 (purple) as a function of RGG-peptide concentration. All measurements were carried out in KCl buffer at 25 °C. (B) The K_d values of P1, H1, and AP1 with RGG-peptide in the KCl buffer at 25 °C.

Figure S15. CD spectra for 10 μ M various topology forming DNAs [(A) P1, (B) P2, (C) H1, (D) H2, (E) AP1, and (F) AP2] in the presence of various concentrations (0, 5, 10, and 20 wt%) of PEG200 in the KCl buffer at 25 °C.

Figure S16. Turbidity for 5 μ M various DNAs [(A) P1, (B) P2, (C) H1, (D) H2, (E) AP1, and (F) AP2] with 5 μ M RGG-peptide in the presence of various concentrations (0, 5. 10, and 20 wt%) of PEG200 in the KCl buffer at 25 °C.