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Materials 

 Dibromotoluene 1a, bromochlorotoluene 1b and 1,5-cyclooctadiene were purchased from TCI. 

2,2'-bipyridyl was purchased from BLD pharmatech Ltd. Bis(1,5-cyclooctadiene)nickel, anhydrous DMF 

and anhydrous toluene were purchased from Kanto. Anhydrous DMF and toluene were further purified by 

a solvent purification system (GlassContour) equipped with columns of activated alumina and supported 

copper catalyst (Q-5).1  

 

Reactions in Flasks 

   

 For the optimisation of macrocyclisation to [n]CMPs with 1, we decided to examine five factors, 

equivalent of Ni(cod)2 (M), dropwise addition time of 1 (T) and final concentration of 1 (C), %content of 

bromochlorotoluene (1b) in 1 (R) and %content of DMF in solvent (S), and each factor was examined with 

3 levels (Fig. S1). To include these five factors with three levels, the L18 (21 × 37) table in Taguchi's 

orthogonal array was referred for the DoE settings.2 The five factors, (M, T, C, R, S), defined a five-

dimensional parameter space, which can be depicted with three-dimensional (M, T, C) diagrams located in 

a two-dimensional (R, S) space (Fig. S1). As shown in Fig. S1, reactions to be performed are evenly 

distributed in the five-dimensional parameter space. We carried out these 18 reactions under the designed 

conditions, and to validate the model obtained by machine learning (see below), two additional reactions 

were carried out at (M, T, C, R, S) = (2, 9, 64, 5, 33) and (2, 11, 50, 8, 29). A typical experimental procedure 

is described for the condition of (M, T, C, R, S) = (2, 9, 64, 5, 33) as an example. A mixture of bis(1,5-

cyclooctadiene)nickel (660 mg, 2.40 mmol), 2,2'-bipyridyl (375 mg, 2.40 mmol) and 1,5-cyclooctadiene 

(0.310 ml, 2.40 mmol) in DMF/toluene (3.1 mL/3.1 mL) was stirred at 80 °C for 30 min. To the mixture 

was added a solution of dibromotoluene 1a (285 mg, 1.14 mmol) and bromochlorotoluene 1b (12.3 mg, 

0.0600 mmol) in DMF/toluene (3.2 mL/9.4 mL) dropwise over 9 min by using a syringe pump (YMC YSP-

101). The mixture was further stirred at 80 °C for 1 h. After the reaction mixture was cooled down to 

ambient temperature, 1 M aq. HCl (30 mL) was added, and the mixture was vigorously stirred overnight. 

The aqueous layer was extracted with CHCl3 (20 mL × 3), and the combined organic layer was washed 

with brine (50 mL), dried over Na2SO4 and concentrated in vacuo. The residue was dissolved in CHCl3 (5 

mL) and passed through a pad of silica gel (20 mL), and additional CHCl3 (50 mL) was passed to obtain a 

crude raw mixture of methylated [n]CMPs as a white powder (154 mg). The crude raw materials of 

methylated [n]CMP congeners were directly used to fabricate the double-layer OLED. The samples were 

also analysed by MALDI-TOF MS (Bruker Daltonics autoflex speed; 0.1 mg specimen + 45 mg 

1a 1b

Ni(cod)2 
2,2'-bipyridyl
COD 

DMF/toluene
80 °C, 1 h

+

[n]CMP

n

MeMe

ClBr

Me

BrBr

M (eq.) = equivalent of Ni(cod)2
T (min) = dropwise addition time of 1
C (mM) = final concentration of 1
R (%) = %content of 1b in 1
S (%) = %content of DMF in solvent
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tetracyanoquinodimethane) under a reflector positive mode with 30% laser power (Figs. S2 and S3) and 1H 

NMR spectroscopy (JEOL JNM-ECA II 600 equipped with an UltraCOOL probe; 600 MHz, CDCl3, 298 

K) using bromoform as an internal standard (Fig. S4).  

 

 

Fig. S1 Design of the mixture of methylated [n]CMP. (a) L18(21×37) orthogonal table and locations of the 

designed condition in a five-dimensional parameter space of (M, T, C, R, S). Actual experimental data in 

the five-dimensional space are shown in Fig. S6a. (b) Population of methylated [n]CMP congeners in the 

18 crude raw materials obtained by DoE-guided experiments. Populations were estimated by using the 

signal intensities of the MALDI spectra shown in Fig. S2. 
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Fig. S2 MALDI-TOF MS spectra of the 18 crude raw materials obtained by DoE-guided experiments.  
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Fig. S3 MALDI-TOF MS spectrum of methylated [n]CMPs@(M, T, C, R, S) = (2, 9, 64, 5, 33). Based on 

the signal intensities shown in the spectrum, we estimated the populations of [n]CMP congeners.  

 

 

Fig. S4 NMR yields of [5]-[7]CMP congeners and comparison of the NMR and MS populations of [5]-

[7]CMP congeners in the 18 crude raw materials obtained by DoE-guided experiments. Because of the 

severe overlap of signals, the yields of [8]-[15]CMPs were not determined.3  
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Performances in Devices 

 Glass substrates with indium-tin oxide (ITO; 120 nm) was coated with a thin layer of 

poly(ethylenedioxy)thiophene:polystyrene sulfonate (PEDOT:PSS; 60 nm) by spin-coating of the aqueous 

dispersion. In a glove box, the glass substrate was coated with emission layer (EML) by spin-coating a 

solution of a crude raw mixture of methylated [n]CMPs (0.34 wt%) and 3 (0.06 wt%) in chlorobenzene and 

was baked at 120 °C for 30 min. The thickness of EML was measured as 20 nm by Dektak-XT (Bruker). 

Deposition of 1,3,5-tris(N-phenylbenzimidazol-2-yl)benzene (TPBi; 2) via sublimination as electron 

transport layer (ETL; 60 nm) was followed by vapor deposition of LiF (2 nm) and Al (100 nm) on a 

fabrication instrument (SAL3000, ALS Technology) to furnish four devices (2 ́  2 mm) on a single substrate 
(See Graphical Abstract of ref. 4). The current density-voltage characteristics and electroluminescence were 

measured on IZU-IS001S (System Engineers) and CS-2000 (Konica Minolta). External quantum efficiency 

(EQE), current efficiency (CE) and driving voltage (DV) were recorded at constant current of 2.5 mA•cm–

2. The performances to derive the ML models are shown in Table S1, and those obtained to validate the ML 

model are shown in Table S2. As reference OLEDs, we also fabricated the devices with pure [n]CMP (n = 

5 and 6, respectively), and the performances are also shown in Table S2. 

 

Table S1. Device performances of OLEDs at 2.5 mA•cm–2 for the ML models 
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Table S2. Device performances of OLEDs at 2.5 mA•cm–2 for model validations. Reference data with pure 

[n]CMP are also shown. 

 
 

Machine-Learning Models 

 Based on 18 ´ 4 datasets of condition-EQE relationships shown in Table S1, the ML models to 
correlate the reaction with the EQE values were constructed, and corresponding heatmap models were 

generated. Basic methods were similar to those reported in our previous studies,5 and following modules 

on Python were used: scikit-learn (v. 0.24.2),6 pandas data handling library (v. 1.2.4),7 and matplotlib 

plotting library (v. 3.1.0).8 Three ML methods were examined in this study: support vector regression (SVR), 

partial least squares regression (PLSR) and multilayer perceptron (MLP). Hyperparameter tunings for the 

ML models were performed by using the grid search protocol to minimize the mean squared errors (MSEs) 

during the leave-one-out cross validation (LOOCV) (Code S1-S3).9 Initial settings for the hyperparameter 

tunings of each model as well as the optimised settings for the minimum MSE are shown below. The SVR 

model showed the smallest MSE and was found as the most appropriate ML model. In the five-dimensional 

SVR model, the maximum EQE value was searched (Code S4). A search range for each factor was set as 1 

≤ M < 11, 1 ≤ T < 31, 1 ≤ C < 101, 1 ≤ R < 101 and 1 ≤ S < 101, which were divided in 11, 31, 101, 101 

and 101 grids for the search, respectively. The search found the highest EQE value of 11.3% at (M, T, C, R, 

S) = (2, 9, 64, 5, 33). 

 

Support vector regression (SVR) 

 Initial settings (grid range): 1×1 ≤ C ≤ 1×21, 0.01×1 ≤ ε ≤ 0.01×10, 0.01×1 ≤ γ ≤ 0.01×10 

 Optimal settings: C = 9, ε = 0.02, γ = 0.09 (MSE = 0.0368) 

Partial least squares regression (PLSR) 

 Initial settings (grid range): 1×1 ≤ degree ≤ 1×5, 1×1 ≤ n components ≤ 1×10 

 Optimal settings: degree = 4, n components = 10 (MSE = 0.0396) 

Multilayer perceptron (MLP) 

 Initial settings (grid range): hidden layer size: 10, 50, 100, 500, 1000 

 Optimal settings: hidden layer size = 100 (MSE = 0.2606) 

The credibility of the ML models was also evaluated by a correlation diagram between experimental EQE 

values and ML-derived EQE values with R2 (Fig. S5). 
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Fig. S5 Correlation diagrams between experimental EQE values and ML-derived EQE values. The 

credibility of the correlation was also evaluated by the determination coefficient, R2.  

 

 The condition-EQE relationships were depicted in heatmap representations (Fig. S6). To gain 

overviews of the relationships, three-dimensional (M, T, C) diagrams were located in the two-dimensional 
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diagrams were created. As an example, a code for (R, S) = (50, 50) for the SVR model is shown below 

(Code S5): the ML model was first constructed under the optimal hyperparameter settings, and, in a (M, T, 

C) space, 11 layers of heatmaps composed of 50´50 points were then stacked to afford one (M, T, C) 
diagram. The 9 diagrams in total were created by changing (R, S) settings in the code.  
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Fig. S6 Condition-EQE relationships depicted in the heatmaps in the five-dimension parameter space. (a) 

Experimental data. (b) SVR model. (c) PLSR model. (d) MLP model. The heatmaps at (R, S) = (50, 50) are 

also shown in Fig. 4. 
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In the following codes, the experimental datasets were loaded from an csv file, "mctsr_eqe.csv". 

 

Code S1. Grid search with SVR 
##SVR gridsearch 
import pandas as pd 
from sklearn import svm 
from sklearn.model_selection import GridSearchCV, LeaveOneOut 
from sklearn.preprocessing import StandardScaler 
import matplotlib.pyplot as plt 
from sklearn.metrics import r2_score 
 
# Loading experimental data 
df = pd.read_csv("mctsr_eqe.csv").dropna() 
names = ('m', 'c', 't', 's', 'r') 
X = df.loc[:, names].to_numpy() 
y = df['eqe'].to_numpy() 
 
# Pre-normalize the input X 
scaler = StandardScaler() 
X_scaled = scaler.fit_transform(X) 
 
# Ranges of hyperparameters for optimization 
svm_params = { 
    "C": [1*i for i in range(1, 21)], 
    "gamma": [0.01*i for i in range(1, 11)], 
    "epsilon": [0.01*i for i in range(1, 11)] 
} 
 
# Define and perform grid search with LOOCV. 
grid_search = GridSearchCV(svm.SVR(), svm_params, 
                           cv=LeaveOneOut(), 
                           scoring="neg_mean_squared_error", 
                           n_jobs=-1) 
grid_search.fit(X_scaled, y) 
print(f"Best model params: {grid_search.best_params_}") 
print(f"Best model score: {grid_search.best_score_}") 
 
# Construct a SVR model with the optimized parameters 
bestestimator = svm.SVR(**grid_search.best_params_) 
bestestimator.fit(X_scaled, y) 
pred = bestestimator.predict(X_scaled) 
 
# Plot predicted values against experimental ones 
fig, ax1 = plt.subplots(1, 1, clear=True, figsize=(5, 4)) 
plt.scatter(y, pred, color='black') 
plt.plot([-1, 20], [-1, 20], ls="--", c=".3") 
ax1.set_ylabel('ML-derived EQE (%)') 
ax1.set_xlabel('Experimental EQE (%)') 
plt.tight_layout() 
plt.show() 
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print(f"r2 {r2_score(y, pred)}") 

 

Code S2. Grid search with PLSR 
##PLSR Gridsearch 
from sklearn.model_selection import GridSearchCV, LeaveOneOut 
from sklearn.pipeline import Pipeline 
from sklearn.preprocessing import StandardScaler, PolynomialFeatures 
from sklearn.cross_decomposition import PLSRegression 
import matplotlib.pyplot as plt 
import pandas as pd 
from sklearn.metrics import r2_score 
 
# Loading experimental data 
df = pd.read_csv("mctsr_eqe.csv").dropna() 
names = ('m', 'c', 't', 's', 'r') 
X = df.loc[:, names].to_numpy() 
y = df['eqe'].to_numpy() 
 
# Pre-normalize the input X 
scaler = StandardScaler() 
X_scaled = scaler.fit_transform(X) 
 
# Ranges of hyperparameters for optimization 
plsr_params = { 
    "poly__degree": [i for i in range(1, 6)], 
    "plsr__n_components": [i for i in range(1,11)], 
} 
 
# Define and perform grid search with LOOCV. 
grid_search = GridSearchCV( 
    Pipeline([ 
        ("poly", PolynomialFeatures()), 
        ("plsr", PLSRegression())]), 
    plsr_params, 
    cv=LeaveOneOut(), 
    scoring="neg_mean_squared_error", 
    n_jobs=-1) 
grid_search.fit(X_scaled, y) 
print(f"Best model params: {grid_search.best_params_}") 
print(f"Best model score: {grid_search.best_score_}") 
 
# Construct a PLSR model with the optimized parameters 
bestestimator = Pipeline([("poly", 
PolynomialFeatures(degree=grid_search.best_params_["poly__degree"])), 
                          ("plsr", 
PLSRegression(n_components=grid_search.best_params_["plsr__n_components"]))]) 
bestestimator.fit(X_scaled, y) 
pred = bestestimator.predict(X_scaled) 
 
# Plot predicted values against experimental ones 
fig, ax1 = plt.subplots(1, 1, clear=True, figsize=(5, 4)) 
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plt.scatter(y, pred, color='black') 
plt.plot([-1, 20], [-1, 20], ls="--", c=".3") 
ax1.set_ylabel('ML-derived EQE (%)') 
ax1.set_xlabel('Experimental EQE (%)') 
plt.tight_layout() 
plt.show() 
print(f"r2 {r2_score(y, pred)}") 

 

Code S3. Grid search with MLP 
##MLP Gridsearch 
import pandas as pd 
from sklearn.preprocessing import StandardScaler 
from sklearn.model_selection import GridSearchCV, LeaveOneOut 
from sklearn.preprocessing import StandardScaler 
import matplotlib.pyplot as plt 
from sklearn.metrics import r2_score 
from sklearn.neural_network import MLPRegressor 
 
# Loading experimental data 
df = pd.read_csv("mctsr_eqe.csv").dropna() 
names = ('m', 'c', 't', 's', 'r') 
X = df.loc[:, names].to_numpy() 
y = df['eqe'].to_numpy() 
 
# Pre-normalize the input X 
scaler = StandardScaler() 
X_scaled = scaler.fit_transform(X) 
 
# Ranges of hyperparameters for optimization 
nn_params = { 
    "hidden_layer_sizes": [(i,) for i in [10, 50, 100, 500, 1000]] 
} 
 
# Define and perform grid search with LOOCV. 
grid_search = GridSearchCV(MLPRegressor(activation="logistic", max_iter=30000), 
    nn_params, 
    cv=LeaveOneOut(), 
    scoring="neg_mean_squared_error", 
    n_jobs=-1) 
grid_search.fit(X_scaled, y) 
print(grid_search.best_params_) 
print(grid_search.best_score_) 
 
# Construct a MLP model with the optimized parameters 
bestestimator = MLPRegressor(activation="logistic", max_iter=30000, 
**grid_search.best_params_) 
bestestimator.fit(X_scaled, y) 
pred = bestestimator.predict(X_scaled) 
 
# Plot predicted values against experimental ones 
fig, ax1 = plt.subplots(1, 1, clear=True, figsize=(5, 4)) 
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plt.scatter(y, pred, color='black') 
plt.plot([-1, 20], [-1, 20], ls="--", c=".3") 
ax1.set_ylabel('ML-derived EQE (%)') 
ax1.set_xlabel(‘Experimental EQE (%)') 
plt.tight_layout() 
plt.show() 
print(r2_score(y, pred)) 

 

Code S4: Search for the highest EQE value in the SVR model 
# Importing libraries 
import numpy as np 
import matplotlib 
import matplotlib.pyplot as plt 
import matplotlib as mpl 
import pandas as pd 
from sklearn.pipeline import Pipeline 
from sklearn.preprocessing import StandardScaler 
from sklearn import svm 
from mpl_toolkits.mplot3d import Axes3D 
 
# Loading experimental data 
df = pd.read_csv("mctsr_eqe.csv") 
df = df.dropna() 
names = ('m', 'c', 't', 's', 'r') 
variables = df.loc[:, names] 
 
# Constructing a SVR model with the optimized hyperparameters 
reg_cmp8 = Pipeline([('scl', StandardScaler()), ('clf', svm.SVR(kernel='rbf', C=9, 
epsilon=0.02, gamma=0.09))]) 
reg_cmp8.fit(variables, df.eqe) 
df['pred_svm_cmp8'] = reg_cmp8.predict(variables) 
print(df['pred_svm_cmp8']) 
 
# Search for max 
x_len, y_len, z_len, s_len, r_len = 11, 101, 31, 101, 101 
xs = np.linspace(1, 11, x_len) # M 
ys = np.linspace(1, 101, y_len) # C 
zs = np.linspace(1, 31, z_len)  # T 
ss = np.linspace(1, 101, s_len) 
rs = np.linspace(1, 101, r_len) 
 
xm,ym,zm,sm,rm = np.meshgrid(xs, ys, zs, ss, rs) 
r = np.c_[xm.flatten(), ym.flatten(), zm.flatten(), sm.flatten(), rm.flatten() ] 
c = reg_cmp8.predict(r) 
 
maxp = 0 
for coord,pred in zip(r,c): 
    if pred > maxp: 
        maxp = pred 
        maxc = coord 
print(maxp, maxc) 
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Code S5. An example of heatmap creation. SVR@(R, S) = (50, 50)  
# Importing libraries 
import numpy as np 
import matplotlib 
import matplotlib.pyplot as plt 
import matplotlib as mpl 
import pandas as pd 
from sklearn.pipeline import Pipeline 
from sklearn.preprocessing import StandardScaler 
from sklearn import svm 
from mpl_toolkits.mplot3d import Axes3D 
 
# Loading experimental data 
df = pd.read_csv("mctsr_eqe.csv") 
df = df.dropna() 
names = ('m', 'c', 't', 's', 'r') 
variables = df.loc[:, names] 
 
# Constructing a SVR model with the optimized hyperparameters 
reg_cmp8 = Pipeline([('scl', StandardScaler()), ('clf', svm.SVR(kernel='rbf', C=9, 
epsilon=0.02, gamma=0.09))]) 
reg_cmp8.fit(variables, df.eqe) 
df['pred_svm_cmp8'] = reg_cmp8.predict(variables) 
print(df['pred_svm_cmp8']) 
 
# Drawing heatmaps 
fig = plt.figure(figsize = (10,10)) 
ax = fig.add_subplot(111, projection = "3d", proj_type="ortho") 
ax.set_box_aspect((1,1,1.5)) 
 
x_len, y_len = 50, 50 
xs = np.linspace(0, 11, x_len) # M 
ys = np.linspace(0, 30, y_len) # T 
z_values = np.array([1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100])  
 
norm = matplotlib.colors.Normalize(vmin = 0, vmax = 12) 
cmap = matplotlib.cm.get_cmap("jet") 
 
for z in z_values: 
    xm, ym = np.meshgrid(xs, ys) 
    zm = z * np.ones_like(xm) 
    sm = 50 * np.ones_like(xm) # Fixing S at a certain value 
    rm = 50 * np.ones_like(xm) # Fixing R at a certain value 
 
    r = np.c_[xm.flatten(), zm.flatten(), ym.flatten(), sm.flatten(), rm.flatten()] 
    r = pd.DataFrame(r, columns = ['m','c','t','s','r']) 
    c = reg_cmp8.predict(r).reshape(x_len, y_len) 
    clr = cmap(norm(c)) 
    surf = ax.plot_surface(xm, ym, zm, rstride=1, cstride=1, linewidth=0.2, 
facecolors = clr, shade = False) 
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ax.set_xlabel("M (eq.)") 
ax.set_ylabel("T (min)") 
ax.set_zlabel("C (mM)") 
ax.set_xlim(-1,12) 
ax.set_ylim(-0.1,31) 
ax.view_init(elev = 7, azim =30) 
plt.show() 

 

Screen-Printed Devices 

 A crude raw material from (M, T, C, R, S) = (2, 9, 64, 5, 33) for the screen-printing processes was 

prepared by performing the reaction in a larger scale as follows. A mixture of bis(1,5-cyclooctadiene)nickel 

(1.16 g, 4.21 mmol), 2,2'-bipyridyl (658 mg, 4.21 mmol) and 1,5-cyclooctadiene (0.540 ml, 4.21 mmol) in 

DMF/toluene (5.2 mL/5.2 mL) was stirred at 80 °C for 30 min. To the mixture was added a solution of 1a 

(500 mg, 2.00 mmol) and 1b (21.6 mg, 0.105 mmol) in DMF/toluene (5.2 mL/15.6 mL) dropwise over 9 

min by using a syringe pump (YMC YSP-101). The mixture was further stirred at 80 °C for 1 h. After the 

reaction mixture was cooled down to ambient temperature, 1 M aq. HCl (40 mL) was added, and the mixture 

was vigorously stirred overnight. The aqueous layer was extracted with CHCl3 (30 mL × 3), and the 

combined organic layer was washed with brine (70 mL), dried over Na2SO4 and concentrated in vacuo. The 

residue was dissolved in CHCl3 (10 mL) and passed through a pad of silica gel (20 mL), and additional 

CHCl3 (50 mL) was passed to obtain a crude raw mixture of methylated [n]CMPs as a white powder (264 

mg). The raw material was dissolved in chlorobenzene at 0.34 wt%, and 3 was also added at 0.06 wt% to 

furnish the EML solution. In a glove box, the EML solution was drop-casted by pipette on a glass substrate 

that was precoated by PEDOT:PSS (60 nm)/ITO (120 nm) and covered with a metal mask bearing an image. 

The substrate was baked at 120 °C for 30 min to include the emitter at 14 wt% in the emission layer. After 

removing the metal mask, 2 was deposited (60 nm), which was followed by LiF (2 nm) and Al (100 nm) to 

complete the screen-printed devices (Fig. 5). 
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