Supplementary Information (SI) for Chemical Science. This journal is © The Royal Society of Chemistry 2025

Organic Photoredox-Catalyzed Unimolecular PCET of Benzylic Alcohols

Tomotoki Matsuo,¹ Masaki Sano,² Yuto Sumida,^{3*} and Hirohisa Ohmiya^{1*}

¹ Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
² Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
³ Chemical Bioscience Team, Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research, Institute of Science Tokyo, Tokyo, Japan.
*E-mail: Yuto Sumida : sumida.yuto@tmd.ac.jp Hirohisa Ohmiya: ohmiya@scl.kyoto-u.ac.jp

Table of Contents

■ Supplementary Methods ■

1.	Instrumentation and Chemicals	
2.	Synthesis of Photocatalysts PC4, PC6, PC12	S3
3.	Characterization Data for Photocatalysts	S4
4.	Characterization Data for Substrates	S7
5.	Optimization for β -Scission (HAT)	S18
6.	Procedure for β -Scission (HAT)	S20
7.	Characterization Data for Products of β -Scission (HAT)	S20
8.	Optimization for Giese Addition	S25
9.	Procedure for Giese Addition	S26
10.	Characterization Data for Products of Giese Addition	S26
11.	Minisci-type Reaction	S32
12.	Procedure for Additive Effect	S33
13.	UV/Vis Spectra of Photocatalysts	S34
14.	Fluorescence Spectra of Photocatalysts	S39
15.	Cyclic Voltammetry (CV) of Photocatalysts	S44
16.	Summary of Redox Properties of Organophotocatalysts	S48
17.	X-ray Diffraction Analysis for PC6	S49
18.	Procedure for Radical Trap Experiment	S50
19.	Stern–Volmer Experiment	S50
20.	EDA Complex	S51
21.	Computational Studies	852
Sup	plementary References ■	S77
NM	R Spectra ■	S78

■ Supplementary Methods ■

1. Instrumentation and Chemicals

NMR spectra were recorded on a Bruker AVANCE NEO 400N spectrometer, operating at 400 MHz for ¹H NMR, 100.6 MHz for ¹³C NMR, 376.5 MHz for ¹⁹F NMR. Chloroform- d_1 (CDCl₃) containing 0.03% tetramethylsilane (TMS) (>99.8%D, Cambridge Isotope Laboratories, Inc., Cat. No. DLM-7) were used as solvents for NMR measurements at ambient temperature. Chemical shifts (δ) for ¹H NMR are given in parts per million (ppm) relative to TMS (δ 0.00 ppm in CDCl₃). Chemical shifts (δ) for ¹³C NMR are given in ppm relative to CDCl₃ (δ 77.0 ppm). Chemical shifts were reported in δ ppm. The abbreviations s, d, t, q, quin, and m signify singlet, doublet, triplet, quartet, quintet and multiplet, respectively.

Mass spectra were obtained with a Bruker timsTOF mass spectrometer (ESI).

TLC analyses were performed on commercial glass plates of Merck Silica gel $60F_{254}$. Silica gel (Wakosil[®] 60, 64~210 µm) was used for column chromatography.

Biotage Selekt[®], **Biotage Isolera One[®]** and **LaboACE LC-5060** (for Gel Permeation Chromatography) and were used for purification.

IR spectra were measured with an ATR Accessory (QATR-S) for the Shimadzu IRSpirit FT-IR Spectrometer.

Melting points were measured on a Stanford Research Systems MPA100.

UV-Vis absorption spectra were recorded on a Shimadzu UV-1900.

Fluorescence spectra were recorded on a Shimadzu RF-6000.

Cyclic voltammetry measurements were recorded with a Hokuto Denko HZ-7000 potentiostat. **Single-crystal X-ray diffraction data** were collected on a Bruker Single Crystal CCD X-ray Diffractometer (SMART APEX II).

Reaction set-up and materials: Kessil PR-160 390 nm (max 52W) was used as a light source. TEKNOS MG9 was used as a fan.

All reactions were carried out under nitrogen atmosphere. Materials were obtained from commercial suppliers or prepared according to standard procedures unless otherwise noted. Before reactions, ethyl acrylate was passed through a short pad of Aluminium oxide 60. **PC1**, **PC3** and **PC10** were purchased from Tokyo Chemical Industry Co., stored under nitrogen, and used as received. **PC2** and **PC7** were purchased from BLD Pharmatech Ltd., stored under nitrogen, and used as received. **PC8** and **PC11** were purchased from Merk Sigma–Aldrich Japan Inc., stored under nitrogen, and used as received. **PC5** was prepared by the reported procedure.¹ TRIP thiol was prepared by the reported procedure.² 1-Dodecanthiol and Benzenethiol were purchased from Tokyo Chemical Industry Co., stored under nitrogen, and used as received. Industry Co., stored under nitrogen, and used as received. Triisopropylsilanethiol was purchased from Merk Sigma–Aldrich Japan Inc., stored under nitrogen, and used as received. Triisopropylsilanethiol was purchased from Merk Sigma–Aldrich Japan Inc., stored under nitrogen, and used as received. Dichloromethane (super dehydrated), acetonitrile (super dehydrated), tetrahydrofuran (super dehydrated, stabilizer free), diethyl ether (super dehydrated) and methanol (super special grade) were purchased from Fujifilm Wako Pure Chemical Co., stored under nitrogen, and used as received.

2. Synthesis of Photocatalysts PC4, PC6, PC12

Figure S1. Synthesis of Photocatalysts

Synthesis of PC4 as a representative (Figure S1) To a solution of aryl iodide (626 μ L, 5.0 mmol) in dry THF (33.3 mL), *i*PrMgCl·LiCl (1.3 M in THF) (3.85 mL, 5 mmol) was added dropwise at – 78 °C. The reaction mixture was stirred for 2 h at –78 °C under a nitrogen atmosphere. In a separate round-bottom flask, THF (6.8 mL) and aldehyde (578 μ L, 5.0 mmol) were added, the temperature was cooled to –78 °C, and the prepared Grignard solution was added dropwise. The reaction mixture was stirred for over night at room temperature under a nitrogen atmosphere. The mixture was quenched with NH₄Cl aq. and extracted with Et₂O three times. The organic layer was dried over sodium sulfate and filtered. The crude material was concentrated under reduced pressure. After volatiles were removed, flash column chromatography on silica gel (Biotage Selekt, 100:0–84:16, hexane/EtOAc) gave S1_{PC12} (1.46 g, 4.27 mmol, 85%) as a white solid.

To a solution of $S1_{PC4}$ and $S1_{PC12}$ (1.46 g, 4.27 mmol) in AcOH (13.8 mL), HI (57 wt% in water) (1.36 mL, 2.42 mmol) was added. The reaction mixture was stirred for 3 h at reflux under a nitrogen atmosphere. The mixture was quenched with Na₂SO₃ aq. and extracted with AcOEt three times. The organic layer was washed with KOH, dried over sodium sulfate, and filtered. The crude material was concentrated under reduced pressure. After volatiles were removed, flash column chromatography on silica gel (Biotage Selekt, hexane only) gave $S2_{PC4}$ and $S2_{PC12}$ (1.23 g, 3.79 mmol, 89%) as a red oil.

To a solution of **S2**_{PC4} (2.19 g, 6.7 mmol) in dry Et₂O (27 mL), *n*BuLi (1.56 M in hexane) (10.3 mL, 16.1 mmol) was added dropwise at 0 °C. The reaction mixture was stirred for 2 h at 0 °C under a nitrogen atmosphere, and then cooled to -78 °C. In a separate round-bottom flask, Ph₂SiCl₂ (1.66 mL, 8.0 mmol) was added, the temperature was cooled to -78 °C, and the aryl lithium solution was added dropwise. The reaction mixture was stirred for 2 h at room temperature under a nitrogen atmosphere. The mixture was quenched with NH₄Cl aq. and extracted with Et₂O three times. The organic layer was dried over sodium sulfate and filtered. The crude material was concentrated under reduced pressure. After volatiles were removed, the resulting solid was washed with hexane and water. Slightly impure **S3**_{PC4} (1.58 g, 4.82 mmol, 72%) was obtained and used in the next reaction without further purification.

To a solution of $S3_{PC4}$ (360.5 mg, 1.1 mmol) in AcOH (3.7 mL), CrO₃ (220.0 mg, 2.2 mmol) was added. The reaction mixture was stirred for 15 min at room temperature, then refluxed for 1 h, and finally stirred overnight at room temperature under a nitrogen atmosphere. The mixture was quenched with ice water and extracted with Et₂O three times. The organic layer was dried over sodium sulfate

and filtered. The crude material was concentrated under reduced pressure. The resulting solid was passed through a silica gel short-path column with CH_2Cl_2 to give **PC4** (332.3 mg, 0.92 mmol, 83%) as a white solid.

3. Characterization Data for Photocatalysts

Bis(2-bromophenyl)methanol (S1_{PC4} and S1_{PC12})

¹**H NMR** (400 MHz, CDCl₃) δ 7.59–7.57 (m, 2H), 7.35–7.29 (m, 4H), 7.19 (ddd, *J* = 8.0, 6.4, 2.4 Hz, 2H), 6.42 (d, *J* = 4.0 Hz, 1H), 2.55 (dd, *J* = 4.0, 3.2 Hz, 1H).

¹³C NMR (100.6 MHz, CDCl₃) δ 140.9 (2C), 132.9 (2C), 129.4 (2C), 128.6 (2C), 127.6 (2C), 123.8 (2C), 74.2.

The ¹H and ¹³C NMR spectra data of $S1_{PC4}$ and $S1_{PC12}$ were consistent with the literature.³

Bis(2-bromophenyl)methane (S2_{PC4} and S2_{PC12})

¹**H NMR** (400 MHz, CDCl₃) δ 7.60 (dd, J = 8.0, 1.2 Hz, 2H), 7.22 (ddd J = 7.6, 7.6, 1.2 Hz, 2H), 7.11 (ddd, J = 8.0, 7.6, 1.6 Hz, 2H), 6.99 (dd, J = 7.6, 1.6 Hz, 2H) 4.21 (s, 2H).

¹³C NMR (100.6 MHz, CDCl₃) δ 138.9 (2C), 132.8 (2C), 130.7 (2C), 128.1 (2C), 127.5 (2C), 125.1 (2C), 42.1.

The ¹H and ¹³C NMR spectra data of $S2_{PC4}$ and $S2_{PC12}$ were consistent with the literature.³

5,5-Diphenyldibenzo[*b*,*e*]silin-10(5*H*)-one (PC4)

M.p. 190–195 °C.

IR (neat) 1649, 1581, 1428, 1284, 1232, 1132, 1110, 924, 745, 728 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 8.48–8.46 (m, 2H), 7.72–7.69 (m, 2H), 7.64–7.59 (m, 3H), 7.57–7.54 (m, 5H), 7.45–7.41 (m, 2H), 7.37–7.33 (m, 4H).

¹³C NMR (100.6 MHz, CDCl₃) δ 188.1, 141.9 (2C), 136.0 (4C), 135.6 (2C), 135.0 (2C), 132.8 (2C), 131.9 (2C), 130.5 (2C), 130.2 (2C), 129.7 (2C), 128.2 (4C).

5,5-Dimethyl-5,10-dihydrodibenzo[*b*,*e*]siline (S3_{PC12})

The reaction was carried out in 2.0 mmol scale. The product was purified by flash chromatography on silica gel (Biotage Selekt, hexane only) to afford $S3_{PC12}$ (300.0 mg, 1.34 mmol, 67%) as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.61–7.59 (m, 2H), 7.33–7.31 (m, 4H), 7.29–7.24 (m, 2H), 4.11 (s, 2H), 0.47 (s, 6H).

¹³C NMR (100.6 MHz, CDCl₃) δ 145.9 (2C), 135.7 (2C), 133.0 (2C), 129.0 (2C), 127.9 (2C), 125.6 (2C), 41.5, -3.1 (2C).

The ¹H and ¹³C NMR spectra data of $S3_{PC12}$ were consistent with the literature.⁴

5,5-Dimethyldibenzo[*b*,*e*]silin-10(5*H*)-one (PC12)

The reaction was carried out in 1.0 mmol scale. The product was purified by flash chromatography on silica gel (Biotage Selekt, 98:2–90:10, hexane/CH₂Cl₂) to afford **PC12** (201.2 mg, 0.84 mmol, 84%) as a white solid.

M.p. 77–82 °C.

IR (neat) 1652, 1583, 1564, 1284, 1232, 1133, 925, 842, 812, 733 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 8.44–8.41 (m, 2H), 7.70–7.68 (m, 2H), 7.62–7.56 (m, 4H), 0.50 (s, 6H).

¹³C NMR (100.6 MHz, CDCl₃) δ 188.1, 140.9 (2C), 139.0 (2C), 133.2 (2C), 131.7 (2C), 130.0 (2C), 129.6 (2C), -1.5 (2C).

HRMS-ESI (m/z): [M+H]⁺ calcd for C₁₅H₁₅OSi⁺, 239.0887; found, 239.0887.

(2-Bromo-4-(trifluoromethyl)phenyl)(2-bromo-4-methoxyphenyl)methanol (S1PC6)

The reaction was carried out in 10.0 mmol scale. The product $S1_{PC6}$ was purified by flash chromatography on silica gel (Biotage Selekt, 97:3–87:13, hexane/EtOAc) to afford $S1_{PC6}$ (4.29 g, 9.75 mmol, 97%) as a pale-yellow oil.

IR (neat) 3269, 1602, 1489, 1319, 1231, 1169, 1123, 1079, 1030, 839 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 7.82 (d, *J* = 0.8 Hz, 1H), 7.68 (d, *J* = 8.0 Hz, 1H), 7.62 (dd, *J* = 8.0, 0.8 Hz, 1H), 7.16 (d, *J* = 2.4 Hz, 1H), 6.99 (d, *J* = 8.8 Hz, 1H), 6.81 (dd, *J* = 8.8, 2.4 Hz, 1H), 6.36 (d, *J* = 4.0 Hz, 1H), 3.80 (s, 3H), 2.55 (m, 1H).

¹³C NMR (100.6 MHz, CDCl₃) δ 159.9, 145.3, 132.3, 131.3 (q, J = 33.1 Hz), 129.8 (q, J = 3.8 Hz), 129.2, 128.9, 124.6, 124.3 (q, J = 3.8 Hz), 123.4, 123.1 (q, J = 272.7 Hz), 118.4, 113.6, 73.6, 55.6. ¹⁹F NMR (376.5 MHz, CDCl₃) δ -62.6.

HRMS–ESI (m/z): [M+NH₄]⁺ calcd for C₁₅H₁₅NBr₂F₃O₂⁺, 457.9396; found, 457.9384.

2-Bromo-1-(2-bromo-4-(trifluoromethyl)benzyl)-4-methoxybenzene (S2_{PC6})

The reaction was carried out in 9.67 mmol scale. The product was purified by flash chromatography on silica gel (Biotage Selekt, 100:0–95:5, hexane/EtOAc) to afford $S1_{PC6}$ (3.04 g, 7.17 mmol, 74%) as a colorless oil.

IR (neat) 1604, 1567, 1489, 1393, 1317, 1238, 1169, 1122, 1077, 1036 cm⁻¹.

¹**H** NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 0.8 Hz, 1H), 7.45 (dd, *J* = 8.0, 0.8 Hz, 1H), 7.18 (d, *J* = 2.8 Hz, 1H), 7.02 (d, *J* = 8.0 Hz, 1H), 6.95 (d, *J* = 8.4 Hz, 1H), 6.81 (dd, *J* = 8.4, 2.4 Hz, 1H), 4.17 (s, 2H), 3.80 (s, 3H).

¹³C NMR (100.6 MHz, CDCl₃) δ 159.0, 145.6, 131.3, 130.5, 130.2 (q, J = 32.9 Hz), 129.67, 129.65 (q, J = 3.8 Hz), 125.2, 124.9, 124.6, 124.2 (q, J = 3.8 Hz), 123.2 (q, J = 272.5 Hz), 118.2, 55.5, 41.2. ¹⁹F NMR (376.5 MHz, CDCl3) δ -62.5.

HRMS–ESI (m/z): $[M+H]^+$ calcd for $C_{15}H_{12}Br_2F_3O^+$, 424.9182; found, 424.9197.

3-Methoxy-5,5-diphenyl-7-(trifluoromethyl)-5,10-dihydrodibenzo[b,e]siline (S3PC6)

To a solution of S2_{PC6} (1.11 g, 2.6 mmol) in dry Et₂O (10.4 mL), *n*BuLi (1.51 M in hexane) (4.13 mL, 6.24 mmol) was added dropwise at 0 °C. The reaction mixture was stirred for 2 h at 0 °C under a nitrogen atmosphere, and then cooled to -78 °C. In a separate round-bottom flask, Ph₂SiCl₂ (601.5 μ L, 3.12 mmol) was added, the temperature was cooled to -78 °C, and the aryl lithium solution was added dropwise. The reaction mixture was stirred for 2 h at room temperature under a nitrogen atmosphere. The mixture was quenched with NH₄Cl aq. and extracted with Et₂O three times. The organic layer was dried over sodium sulfate and filtered. The crude material was concentrated under reduced pressure. After volatiles were removed, filtered using Kiriyama funnel through hexane: Et₂O (9:1) and obtain the filtrate. The filtrate was concentrated under reduced pressure. After volatiles were

removed, flash column chromatography on silica gel (Biotage Selekt, 100:0–90:10, hexane/CH₂Cl₂) gave **S3**_{PC6} (801.3 mg, 1.79 mmol, 69%) as a colorless oil.

IR (neat) 1606, 1560, 1484, 1429, 1324, 1252, 1168, 1120, 1080, 1036 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 7.72 (s, 1H), 7.60 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.50–7.43 (m, 7H), 7.39–7.35 (m, 4H), 7.31 (d, *J* = 8.4 Hz, 1H), 7.03 (d, *J* = 2.8 Hz, 1H), 6.92 (dd, *J* = 8.4, 2.8 Hz, 1H), 4.02 (s, 2H), 3.74 (s, 3H).

¹³C NMR (100.6 MHz, CDCl₃) δ 157.8, 151.1, 137.7, 136.1 (4C), 135.0 (q, *J* = 26.2 Hz), 134.2, 133.4, 131.7, 131.3 (q, *J* = 3.6 Hz), 130.2 (2C), 129.1, 128.1 (4C), 127.8, 126.3 (q, *J* = 3.6 Hz), 124.4 (q, *J* = 272.5 Hz), 120.5 (2C), 114.9, 55.3, 40.6.

¹⁹**F NMR** (376.5 MHz, CDCl3) δ –62.1.

HRMS–ESI (m/z): [M+H]⁺ calcd for C₂₇H₂₂F₃OSi⁺, 447.1387; found, 447.1389.

3-Methoxy-5,5-diphenyl-7-(trifluoromethyl)dibenzo[b,e]silin-10(5H)-one (PC6)

The reaction was carried out in 1.79 mmol scale. The product was purified by flash chromatography on silica gel (Biotage Selekt, 97:3–80:20, hexane/CH₂Cl₂) to afford **PC6** (667.5 mg, 1.45 mmol, 81%) as a white solid.

М.р. 167–172°С.

IR (neat) 1647, 1586, 1429, 1327, 1270, 1247, 1133, 1084, 928, 865 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 8.59 (d, *J* = 8.4 Hz, 1H), 8.49 (m, 1H), 7.90 (m, 1H), 7.84 (ddd, *J* = 8.4, 2.0, 0.4 Hz, 1H), 7.56–7.53 (m, 4H), 7.49–7.44 (m, 2H), 7.40–7.36 (m, 4H), 7.15–7.11 (m, 2H), 3.84 (s, 3H).

¹³C NMR (100.6 MHz, CDCl₃) δ 185.7, 162.5, 144.6, 137.8, 136.7, 135.9 (4C), 134.3, 133.0, 132.8 (q, *J* = 32.4 Hz), 131.7, 131.4 (q, *J* = 3.6 Hz), 130.6 (2C), 130.1, 128.4 (4C), 127.2 (q, *J* = 3.6 Hz), 123.8 (q, *J* = 272.4 Hz), 119.8 (2C), 116.2, 55.4.

¹⁹F NMR (376.5 MHz, CDCl3) δ –63.0.

HRMS–ESI (m/z): $[M+H]^+$ calcd for $C_{27}H_{20}F_3O_2Si^+$, 461.1179; found, 461.1171.

4. Characterization Data for Substrates

Figure S2. Synthesis of 1a

Synthesis of 1a as a representative (Figure S2) (Procedure A). Benzyl alcohols were prepared according to the conditions reported in the literature.¹ To a flame-dried 50 mL round-bottom flask equipped with a stir bar was added pivalaldehyde (1.10 mL, 10.0 mmol) and THF (3 mL). The mixture was cooled to 0 °C and a Grignard reagent (0.6 M in THF) (20 mL, 12 mmol) was then added dropwise over 30 min. The reaction mixture was stirred for overnight at room temperature under a nitrogen atmosphere. The reaction was quenched with saturated NH₄Cl (10.0 mL) and extracted with EtOAc three times. The organic layers were combined, dried over Na₂SO₄, and concentrated under reduced pressure. The resultant oil was purified by silica flash chromatography (Biotage Selekt, 97:3–85:15, hexane/EtOAc) to yield benzyl alcohol **1a** as a white solid (1.58 g, 7.06 mmol, 71%).

Synthesis of 1h as a representative (Figure S3) (Procedure B). Benzyl alcohols were prepared according to the conditions reported in the literature.¹ To a 100 mL round-bottom flask was added Na₂CO₃ (508.8 mg, 4.8 mmol), followed by phenol (225.9 mg, 2.4 mmol) and lastly DMF (9.3 mL). The reaction mixture was stirred at room temperature for 10 min before adding 2-bromo-1-(3,4-dimethoxyphenyl)ethan-1-one (518.2 mg, 2 mmol) in a portion-wise fashion over 10 min. The reaction mixture was further stirred for 22 h at room temperature (monitored by TLC until full conversion). Next, NaBH₄ (83.2 mg, 2.2 mmol) dissolved in a 1:1 DMF/H₂O (8 mL) solution was added slowly to the reaction vessel, and subsequently stirred for 4 h. The reaction was carefully quenched with saturated NH₄Cl solution, before extracting the aqueous layer with EtOAc (3x). The organic layer was dried with Na₂SO₄ and concentrated. The crude product was purified by silica flash chromatography (Biotage Selekt, 95:5–75:25, hexane/EtOAc) to yield benzyl alcohol 1h as a white solid (290.5 mg, 1.06 mmol, 53%).

1-(3,4-Dimethoxyphenyl)-2,2-dimethylpropan-1-ol (1a)

¹**H NMR** (400 MHz, CDCl₃) δ 6.88 (s, 1H), 6.83–6.82 (m, 2H), 4.36 (d, J = 2.4 Hz, 1H), 3.88 (s, 3H), 3.88 (s, 3H), 1.80 (d, J = 2.4 Hz, 1H), 0.93 (s, 9H).

¹³C NMR (100.6 MHz, CDCl₃) δ 148.2 (2C), 134.8, 119.9, 110.8, 110.2, 82.2, 55.9 (2C), 35.7, 26.0 (3C).

The ¹H and ¹³C NMR spectra data of **1a** were consistent with the literature.⁵

1-(3,4-Dimethoxyphenyl)-2-phenoxyethan-1-ol (1h)

¹H NMR (400 MHz, CDCl₃) δ 7.32–7.27 (m, 2H), 7.02 (d, *J* = 2.0 Hz, 1H), 7.00–6.96 (m, 2H), 6.95–6.91 (m, 2H), 6.88 (d, *J* = 8.4 Hz, 1H), 5.08 (dt, *J* = 8.8, 2.8 Hz, 1H), 4.09 (dd, *J* = 9.2, 3.2 Hz, 1H), 4.01 (t, *J* = 9.2 Hz, 1H), 3.91 (s, 3H), 3.89 (s, 3H), 2.75 (d, *J* = 2.8 Hz, 1H).
¹³C NMR (100.6 MHz, CDCl₃) δ 158.4, 149.1, 148.9, 132.2, 129.6 (2C), 121.3, 118.6, 114.6 (2C), 111.1, 109.3, 73.3, 72.4, 56.0, 55.9.

The ¹H and ¹³C NMR spectra data of **1h** were consistent with the literature.⁶

1-(3,4-Dimethoxyphenyl)-2-phenylethan-1-ol (1b)

The reaction was carried out with Procedure A in 3.0 mmol scale using Et₂O as solvent instead of THF. The product **1b** was purified by flash chromatography on silica gel (Biotage Selekt, 99:1–85:15, hexane/EtOAc) to afford **1b** (375.2 mg, 1.45 mmol, 48%) as a white solid.

M.p. 50–55 °C.

IR (neat) 3483, 2936, 1594, 1517, 1464, 1454, 1419, 1263, 1234, 1138 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 7.32–7.28 (m, 2H), 7.23 (m, 1H), 7.20–7.18 (m, 2H), 6.89–6.87 (m, 2H), 6.83 (m, 1H), 4.86 (ddd, *J* = 7.2, 6.0, 2.4 Hz, 1H), 3.88 (s, 3H), 3.87 (s, 3H), 3.01 (m, 2H), 1.92 (d, *J* = 2.4 Hz, 1H).

¹³C NMR (100.6 MHz, CDCl₃) δ 148.9, 148.4, 138.0, 136.5, 129.6 (2C), 128.5 (2C), 126.6, 118.1, 110.9, 109.0, 75.2, 55.9, 55.8, 46.1.

HRMS–ESI (m/z): [M+Na]⁺ calcd for C₁₆H₁₈O₃Na⁺, 281.1148; found, 281.1147.

Cyclohexyl(3,4-dimethoxyphenyl)methanol (1c)

The reaction was carried out with Procedure A in 3.0 mmol scale. The product was purified by flash chromatography on silica gel (Biotage Selekt, 95:5–80:20, hexane/EtOAc) to afford **1c** (364.0 mg, 1.45 mmol, 48%) as a white solid.

¹**H NMR** (400 MHz, CDCl₃) δ 6.87 (m, 1H), 6.84–6.80 (m, 2H), 4.30 (d, *J* = 7.2 Hz, 1H), 3.90 (s, 3H), 3.88 (s, 3H), 2.02 (m, 1H), 1.79–1.76 (m, 2H), 1.68–1.57 (m, 3H), 1.36 (m, 1H), 1.30–0.99 (m, 4H), 0.90 (dq, *J* = 12.0, 3.2 Hz, 1H).

¹³C NMR (100.6 MHz, CDCl₃) δ 148.9, 148.3, 136.3, 118.9, 110.6, 109.5, 79.3, 55.89, 55.86, 45.0, 29.3, 29.1, 26.4, 26.1, 26.0.

The ¹H and ¹³C NMR spectra data of **1c** were consistent with the literature.⁷

Ethyl 3-(3,4-dimethoxyphenyl)-3-hydroxy-2,2-dimethylpropanoate (1d)

1d were prepared according to the literature.¹

¹H NMR (400 MHz, CDCl₃) δ 6.88 (s, 1H), 6.85–6.80 (m, 2H), 4.84 (d, *J* = 4.0 Hz, 1H), 4.18 (q, *J* = 7.6 Hz, 2H), 3.88 (s, 6H), 3.15 (m, 1H), 1.27 (td, *J* = 10.8, 0.8 Hz, 3H), 1.15 (s, 3H), 1.11 (s, 3H).
¹³C NMR (100.6 MHz, CDCl₃) δ 177.9, 148.5, 148.3, 132.6, 120.1, 110.8, 110.3, 78.5, 60.9, 55.8 (2C), 47.6, 23.1, 19.2, 14.1.

The ¹H and ¹³C NMR spectra data of **1d** were consistent with the literature.⁵

3-(3,4-Dimethoxyphenyl)-3-hydroxy-2,2-dimethylpropanoic acid (1e)

1e were prepared according to the modified procedure in literature.¹ In a 50 mL round-bottom flask, equipped with a magnetic stirring bar, **1d** (2.22 g, 7.86 mmol) was dissolved in THF. To the solution, H_2O and NaOH (628.0 mg, 15.7 mmol) were added, and the obtained mixture was stirred for 4 h at room temperature. The THF was evaporated under reduced pressure and the aqueous residue was diluted with H_2O , acidified with HCl (conc.) to pH 0 and extracted with EtOAc. The combined organic layers were dried over MgSO₄, filtered, and evaporated under reduced pressure to afford **1e** (1.80 g, 7.08 mmol, 90%).

¹**H NMR** (400 MHz, CDCl₃) δ 6.90–6.82 (m, 3H), 4.88 (s, 1H), 3.88 (m, 6H), 1.18 (s, 3H), 1.17 (s, 3H). The signals for the protons of hydroxy group and carboxy group were not observed.

¹³C NMR (100.6 MHz, CDCl₃) δ 181.4, 148.8, 148.5, 132.0, 120.1, 110.6, 110.5, 78.5, 55.90, 55.88, 47.5, 23.4, 19.1.

The ¹H and ¹³C NMR spectra data of **1e** were consistent with the literature.⁵

1-(3,4-Dimethoxyphenyl)cyclohexan-1-ol (1f)

The reaction was carried out with Procedure A. The product was purified by flash chromatography on silica gel (Biotage Selekt, 97:3–85:15, hexane/EtOAc) to afford **1f** (474.0 mg, 2.01 mmol, 20%) as a white solid.

¹**H NMR** (400 MHz, CDCl₃) δ 7.11(d, *J* = 2.0 Hz, 1H), 7.01 (dd, *J* = 8.4, 2.0 Hz, 1H), 6.84 (d, *J* = 8.4 Hz, 1H), 3.91 (s, 3H), 3.88 (s, 3H), 1.87–1.70 (m, 7H), 1.66–1.61 (m, 2H), 1.54 (s, 1H), 1.29 (m, 1H).

¹³C NMR (100.6 MHz, CDCl₃) δ 148.7, 147.7, 142.3, 116.5, 110.7, 108.4, 72.9, 55.88, 55.86, 38.9 (2C), 25.5, 22.2 (2C).

The ¹H and ¹³C NMR spectra data of **1f** were consistent with the literature.⁸

1-(3,4-Dimethoxyphenyl)-2-methylcyclohexan-1-ol (1g)

The reaction was carried out with Procedure A. The product was purified by flash chromatography on silica gel (Biotage Selekt, 98:2–85:15, hexane/EtOAc) to afford **1g** (1.38 g, 5.51 mmol, 55%, 1:1 of diastereomixture) as a white solid.

M.p. 59–64 °C.

IR (neat) 3525, 2930, 1511, 1408, 1257, 1166, 1142, 1027, 968, 855 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 7.03 (d, J = 2.0 Hz, 1H), 6.95 (d, J = 2.0 Hz, 0.5 × 1H), 6.93 (d, J = 2.0 Hz, 0.5 × 1H), 6.84 (m, 1H), 3.90 (s, 3H), 3.88 (s, 3H), 1.90 (m, 1H), 1.80–1.59 (m, 6H), 1.51–1.38 (m, 2H), 0.65 (s, 0.5 × 3H), 0.63 (s, 0.5 × 3H). The signal for the proton of hydroxy group was not observed.

¹³**C NMR** (100.6 MHz, CDCl₃) δ 148.5, 147.2, 141.3, 116.6, 110.7, 108.4, 75.6, 55.9, 55.8, 41.3, 39.9, 30.5, 26.1, 22.1, 15.6.

HRMS-ESI (m/z): [M+H]⁺ calcd for C₁₅H₂₃O₃⁺, 251.1642; found, 251.1635.

1-(3,4-Dimethoxyphenyl)-2-(phenylthio)ethan-1-ol (1i)

The reaction was carried out with Procedure B. The product was purified by flash chromatography on silica gel (Biotage Selekt, 95:5–75:25, hexane/EtOAc) to afford **1i** (461.0 mg, 1.59 mmol, 79%) as a white solid.

М.р. 70–75 °С.

IR (neat) 3482, 2933, 2834, 1515, 1481, 1464, 1438, 1418, 1260, 1232 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 7.43–7.40 (m, 2H), 7.34–7.29 (m, 2H), 7.24 (m, 1H), 6.92 (d, *J* = 2.0 Hz, 1H), 6.86 (dd, *J* = 8.4, 2.0 Hz, 1H), 6.83 (d, *J* = 8.4 Hz, 1H), 4.69 (dd, *J* = 9.2, 3.6 Hz, 1H), 3.88 (s, 3H), 3.87 (s, 3H), 3.31 (dd, *J* = 13.6, 3.6 Hz, 1H), 3.12 (dd, *J* = 13.6, 9.2 Hz, 1H), 2.82 (s, 1H).

¹³C NMR (100.6 MHz, CDCl₃) δ 149.1, 148.7, 134.9, 134.7, 130.2 (2C), 129.1 (2C), 126.8, 118.2, 111.0, 108.8, 71.5, 55.91, 55.86, 43.9.

HRMS–ESI (m/z): [M+H]⁺ calcd for C₁₆H₁₉O₃S⁺, 291.1049; found, 291.1059.

1-(3,4-Dimethoxyphenyl)-2-(methyl(phenyl)amino)ethan-1-ol (1j)

The reaction was carried out with Procedure B. The product was purified by flash chromatography on silica gel (Biotage Selekt, 95:5–75:25, hexane/EtOAc) to afford **1j** (417.6 mg, 1.45 mmol, 73%) as a white solid.

М.р. 90–95 °С.

IR (neat) 3513, 2934, 1599, 1505, 1263, 1234, 1139, 1207, 750, 694 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 7.29–7.25 (m, 2H), 6.98–6.92 (m, 2H), 6.88–6.84 (m, 3H), 6.78 (m, 1H), 4.95 (ddd, *J* = 8.8, 4.4, 1.6 Hz, 1H), 3.91 (s, 3H), 3.89 (s, 3H), 3.53 (dd, *J* = 14.8, 8.8 Hz, 1H), 3.41 (dd, *J* = 14.8, 4.4 Hz, 1H), 2.94 (s, 3H), 2.47 (d, *J* = 1.6 Hz, 1H).

¹³C NMR (100.6 MHz, CDCl₃) δ 150.0, 149.2, 148.6, 134.6, 129.2 (2C), 118.2, 117.5, 113.3 (2C), 111.1, 108.9, 71.5, 62.0, 55.9 (2C), 39.4.

HRMS–ESI (m/z): [M+H]⁺ calcd for C₁₇H₂₂NO₃⁺, 288.1594; found, 288.1587.

(8*R*,9*S*,13*S*,14*S*)-3-(2-(3,4-Dimethoxyphenyl)-2-hydroxyethoxy)-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6*H*-cyclopenta[*a*]phenanthren-17-ol (1k)

The reaction was carried out with Procedure B in 6.0 mmol scale using K_2CO_3 as base instead of Na₂CO₃. The product was purified by flash chromatography on silica gel (Biotage Selekt, 85:15–65:35, hexane/EtOAc) to afford **1k** (1.37 mg, 3.02 mmol, 50%) as a white solid. **M.p.** 117–122 °C.

IR (neat) 3368, 2932, 2855, 1521, 1507, 1255, 1234, 1138, 1087, 1050 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 7.21 (d, *J* = 8.4 Hz, 1H), 7.01 (d, *J* = 1.8 Hz, 1H), 6.97 (d, *J* = 8.4 Hz, 1H), 6.87 (d, *J* = 8.4 Hz, 1H), 6.73 (dd, *J* = 8.4, 2.8 Hz, 1H), 6.65 (d, *J* = 2.8 Hz, 1H), 5.05 (dd, *J* = 8.8, 3.2 Hz, 1H), 4.06 (m, 1H), 3.96 (m, 1H), 3.91 (s, 3H), 3.89 (s, 3H), 3.73 (t, *J* = 8.4 Hz, 1H), 2.87–2.78 (m, 3H), 2.31 (m, 1H), 2.22–2.07 (m, 2H), 1.95 (m, 1H), 1.87 (m, 1H), 1.70 (m, 1H), 1.54–1.15 (m, 8H), 0.78 (s, 3H).

¹³C NMR (100.6 MHz, CDCl₃) δ 156.2, 149.1, 148.8, 138.2, 133.4, 132.3, 126.4, 118.6, 114.6, 112.2, 111.0, 109.3, 81.9, 73.5, 72.4, 55.93, 55.88, 50.0, 43.9, 43.2, 38.8, 36.7, 30.6, 29.8, 27.2, 26.3, 23.1, 11.0.

HRMS–ESI (m/z): $[M+H]^+$ calcd for $C_{28}H_{37}O_5^+$, 453.2636; found, 453.2633.

1-(3,4-Dimethoxyphenyl)-2-(2-ethoxyphenoxy)propane-1,3-diol (11)

The reaction was carried out with the literature.⁹ white solid. The ratio (3:1) of the diastereomers was determined by ¹H NMR analysis.

М.р. 75–80 °С.

IR (neat) 3485, 2936, 1593, 1515, 1498, 1454, 1252, 1205, 1139, 1119 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 7.16–6.81 (m, 7H), 5.00 (m, 1H), 4.17–4.08 (m, 2H + 0.75 × 1H), 3.95–3.88 (m, 6H), 3.79 (m, 0.25 × 1H), 3.66–3.60 (m, 1H + 0.75 × 1H), 3.46 (m, 0.25 × 1H), 2.80 (m, 1H), 1.60 (m, 1H), 1.53–1.46 (m, 3H).

¹³C NMR (100.6 MHz, CDCl₃) δ 151.2, 150.9, 149.0, 148.4, 147.5, 146.9, 132.2, 132.0, 124.5, 121.9, 121.6, 119.7, 118.3, 113.1, 111.0, 109.8, 109.0, 90.1, 88.1, 73.9, 72.5, 64.4, 60.8, 60.6, 55.9, 14.7 (only observed peaks).

HRMS–ESI (m/z): [M+Na]⁺ calcd for C₁₉H₂₄O₆Na⁺, 371.1465; found, 371.1454.

1-(4-(Hexyloxy)phenyl)-2,2-dimethylpropan-1-ol (1m)

The reaction was carried out with Procedure A in 4.0 mmol scale. The product was purified by flash chromatography on silica gel (Biotage Selekt, 99:1–93:7, hexane/EtOAc) to afford **1m** (588.3 mg, 2.11 mmol, 53%) as a colorless oil.

IR (neat) 3462, 2953, 2932, 2870, 1612, 1511, 1241, 1173, 1005, 832 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 7.21 (d, *J* = 8.8 Hz, 2H), 6.84 (d, *J* = 8.8 Hz, 2H), 4.35 (d, *J* = 2.8 Hz, 1H), 3.95 (t, *J* = 6.8 Hz, 2H), 1.81–1.74 (m, 3H), 1.49–1.42 (m, 2H), 1.36–1.32 (m, 4H), 0.92–0.89 (m, 12H).

¹³C NMR (100.6 MHz, CDCl₃) δ 158.4, 134.2, 128.6 (2C), 113.5 (2C), 82.0, 68.0, 35.7, 31.6, 29.3, 25.9 (3C), 25.7, 22.6, 14.0.

HRMS–ESI (m/z): [M+Na]⁺ calcd for C₁₇H₂₈O₂Na⁺, 287.1982; found, 287.1978.

2,2-Dimethyl-1-(4-phenoxyphenyl)propan-1-ol (1n)

The reaction was carried out with Procedure A in 4.0 mmol scale. The product was purified by flash chromatography on silica gel (Biotage Selekt, 99:1–95:5, hexane/EtOAc) to afford **1n** (716.7 mg, 2.80 mmol, 70%) as a white solid.

M.p. 80–85 °C.

IR (neat) 3421, 2952, 2868, 1589, 1505, 1488, 1363, 1232, 1168, 1046 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 7.36–7.31 (m, 2H), 7.29–7.26 (m, 2H), 7.10 (m, 1H), 7.03–6.99 (m,

2H), 6.98–6.94 (m, 2H), 4.40 (d, *J* = 2.8 Hz, 1H), 1.82 (d, *J* = 2.8 Hz, 1H), 0.93 (s, 9H).

¹³C NMR (100.6 MHz, CDCl₃) δ 157.2, 156.4, 137.0, 129.7 (2C), 128.9 (2C), 123.2, 118.8 (2C), 117.9 (2C), 82.0, 35.7, 25.9 (3C).

HRMS–ESI (m/z): $[M+H]^+$ calcd for $C_{17}H_{21}O_2^+$, 257.1536; found, 257.1527.

1-(6-Methoxynaphthalen-2-yl)-2,2-dimethylpropan-1-ol (10)

The reaction was carried out with Procedure A. The product **10** was purified by flash chromatography on silica gel (Biotage Selekt, 99:1–95:5, hexane/EtOAc) to afford **10** (1.76 g, 7.20 mmol, 72%) as a white solid.

M.p. 109–114 °C.

IR (neat) 3459, 2953, 1633, 1607, 1507, 1482, 1464, 1392, 1363, 1264 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 7.74–7.68 (m, 3H), 7.43 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.16–7.13 (m,

2H), 4.54 (d, *J* = 2.8 Hz, 1H), 3.92 (s, 3H), 1.92 (d, *J* = 2.8 Hz, 1H), 0.97 (s, 9H).

¹³C NMR (100.6 MHz, CDCl₃) δ 157.6, 137.5, 133.9, 129.5, 128.3, 126.5, 126.1, 125.8, 118.1, 105.5, 82.5, 55.3, 35.9, 26.0 (3C).

HRMS–ESI (m/z): $[M+Na]^+$ calcd for $C_{16}H_{20}O_2Na^+$, 267.1356; found, 267.1353.

1-(4-Hexylphenyl)-2,2-dimethylpropan-1-ol (1p)

The reaction was carried out with Procedure A in 3.0 mmol scale. The product was purified by flash chromatography on silica gel (Biotage Selekt, 99:1–95:5, hexane/EtOAc) to afford **1p** (437.1 mg, 1.67 mmol, 56%) as a colorless oil.

IR (neat) 3447, 2955, 2927, 2857, 1458, 1363, 1179, 1049, 1005, 905 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 7.21 (d, *J* = 8.0 Hz, 2H), 7.12 (d, *J* = 8.0 Hz, 2H), 4.37 (d, *J* = 2.8 Hz, 1H), 2.58 (t, *J* = 7.6 Hz, 2H), 1.79 (d, *J* = 2.8 Hz, 1H), 1.64–1.58 (m, 2H), 1.36–1.27 (m, 6H), 0.92 (s, 9H), 0.88 (t, *J* = 6.8 Hz, 3H).

¹³C NMR (100.6 MHz, CDCl₃) δ 142.0, 139.4, 127.6 (2C), 127.5 (2C), 82.3, 35.6, 31.7 (2C), 31.5, 29.0, 25.9 (3C), 22.6, 14.1.

HRMS-ESI (m/z): [M+H]⁺ calcd for C₁₇H₂₉O⁺, 249.2213; found, 249.2218.

2,2-Dimethyl-1-(naphthalen-2-yl)propan-1-ol (1q)

The reaction was carried out with Procedure A in 3.0 mmol scale. The product was purified by flash chromatography on silica gel (Biotage Selekt, 99:1–92:8, hexane/EtOAc) to afford **1q** (514.0 mg, 2.40 mmol, 80%) as a white solid.

M.p. 61–66 °C.

IR (neat) 3444, 2953, 2868, 1479, 1365, 1123, 1051, 1008, 856, 822 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 7.84–7.76 (m, 4H), 7.50–7.44 (m, 3H), 4.58 (d, *J* = 2.8 Hz, 1H), 1.95 (d, *J* = 2.8 Hz, 1H), 0.98 (s, 9H).

¹³C NMR (100.6 MHz, CDCl₃) δ 139.8, 132.83, 132.82, 128.0, 127.6, 127.0, 126.3, 126.0, 125.9, 125.7, 82.5, 36.0, 26.0 (3C).

HRMS–ESI (m/z): [M+H]⁺ calcd for C₁₅H₁₉O⁺, 215.1430; found, 215.1434.

2-(4-(Benzyloxy)phenyl)ethan-1-ol (1r)

1r were prepared according to the literature.¹⁰

¹**H NMR** (400 MHz, CDCl₃) δ 7.45–7.42 (m, 2H), 7.40–7.36 (m, 2H), 7.32 (m, 1H), 7.17–7.13 (m, 2H), 6.95–6.92 (m, 2H), 5.05 (s, 2H), 3.83 (dd, *J* = 12.4, 6.4 Hz, 2H), 2.82 (t, *J* = 6.4 Hz, 2H), 1.36 (t, *J* = 6.0 Hz, 1H).

¹³C NMR (100.6 MHz, CDCl₃) δ 157.5, 137.1, 130.7, 130.0(2C), 128.6(2C), 127.9, 127.4 (2C), 115.0 (2C), 70.0, 63.8, 38.3.

The ¹H and ¹³C NMR spectra data of **1s** were consistent with the literature.¹¹

Ethyl 3-(3,4-dimethoxyphenyl)-2,2-difluoro-3-hydroxypropanoate (1s)

In a 50 mL round-bottom flask, equipped with a magnetic stirring bar, 3,4-dimethoxybenzaldehyde (1.66 g, 10.0 mmol) and ethyl bromodifluoroacetate (1.55 mL, 12.0 mmol) were dissolved in THF (10 mL). ZnEt₂ (1.09 M in Hexane) (18.3 mL, 20.0 mmol) was dropwised at 0 °C, and the obtained mixture was stirred for 40 h at room temperature. Then, acidified with HCl (10%) to pH 7 and extracted with EtOAc. The organic layer was dried with Na₂SO₄ and concentrated. The crude was purified by flash chromatography on silica gel (Biotage Selekt, 85:15–70:30, hexane/EtOAc) to yield benzyl alcohol **1s** as a pale-yellow solid (2.14 g, 7.36 mmol, 74%).

M.p. 55–60 °C.

IR (neat) 3485, 1755, 1517, 1307, 1261, 1235, 1140, 1070, 1023, 761 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 7.00–6.97 (m, 2H), 6.87 (d, J = 8.0 Hz, 1H), 7.32 (m, 1H), 5.12 (dd, J = 15.6, 8.0 Hz, 1H), 4.32 (q, J = 7.2 Hz, 2H), 3.90 (s, 3H), 3.89 (s, 3H), 1.32 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (100.6 MHz, CDCl₃) δ 163.6 (t, J = 31.6 Hz), 149.7, 149.0, 126.7, 120.4, 113.7 (dd, J = 259.4, 253.7 Hz), 110.7, 110.4, 73.6 (dd, J = 27.9, 24.1 Hz), 63.1, 55.89, 55.87, 13.9. ¹⁹**F NMR** (376.5 MHz, CDCl₃) δ –114.1 (d, J = 261.1 Hz), -120.6 (d, J = 261.1 Hz). **HRMS–ESI** (m/z): [M+Na]⁺ calcd for C₁₃H₁₆F₂O₅Na⁺, 313.0849; found, 313.0858.

2,2-Dimethyl-1-phenylpropan-1-ol (1t)

The reaction was carried out with Procedure A in 5.0 mmol scale. The product was purified by flash chromatography on silica gel (Biotage Selekt, 99:1–92:8, hexane/EtOAc) to afford **1t** (711.7 mg, 4.33 mmol, 87%) as a white solid.

M.p. 43–48 °C.

IR (neat) 3439, 2953, 1479, 1452, 1363, 1046, 1005, 899, 734, 702 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 7.32–7.31 (m, 4H), 7.26 (m, 1H), 4.41 (d, *J* = 2.8 Hz, 1H), 1.83 (d, *J* = 2.8 Hz, 1H), 0.93 (s, 9H).

¹³C NMR (100.6 MHz, CDCl₃) δ 142.1, 127.6 (2C), 127.5 (2C), 127.3, 82.4, 35.6, 25.9 (3C).

HRMS-ESI (m/z): $[M+Na]^+$ calcd for $C_{11}H_{16}ONa^+$, 187.1101; found, 187.1093.

In a 50 mL round-bottom flask, equipped with a magnetic stirring bar, 3,4-dimethoxybenzaldehyde (997.1 mg, 6.0 mmol) was dissolved in THF (10 mL). MeLi (3.1 M in diethoxymethane) (1.6 mL, 5.0 mmol) was dropwised at –78 °C, and the obtained mixture was stirred for 1 h at room temperature. Then, acidified with NH₄Cl aq and extracted with EtOAc. The organic layer was dried with Na₂SO₄ and concentrated. The crude product was purified by silica flash chromatography (Biotage Selekt, 95:5–70:30, hexane/EtOAc) to yield benzyl alcohol **1u** as a pale-yellow oil (898.4 mg, 4.93 mmol, 99%).

IR (neat) 3394, 2967, 1366, 1515, 1464, 1418, 1257, 1231, 1138, 1024 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 6.95 (d, *J* = 1.6 Hz, 1H), 6.90 (dd, *J* = 8.4, 1.6 Hz, 1H), 6.84 (d, *J* = 8.4 Hz, 1H), 4.86 (q, *J* = 6.4 Hz, 1H), 3.91 (s, 3H), 3.88 (s, 3H), 1.79 (bs, 1H), 1.50 (d, *J* = 6.4 Hz, 3H).

¹³C NMR (100.6 MHz, CDCl₃) δ 149.0, 148.3, 138.5, 117.5, 110.9, 108.5, 70.2, 55.9, 55.8, 25.1. HRMS–ESI (m/z): [M+Na]⁺ calcd for C₁₀H₁₄O₃Na⁺, 205.0834; found, 205.0835.

5. Optimization for β -Scission (HAT)

^aReaction was carried out with **1a** (0.1 mmol), photocatalyst (5 µmol), and TRIP thiol (0.05 mmol) in CH₂Cl₂ (1 mL) under 390 nm blue LED (Kessil lamp) irradiation at ambient temperature for 2 h. ^{b1}H NMR yield. ^c1 mol% of photocatalyst was used. ^dIsolated yield. ^eThe reaction was carried out with Half intesity of LED light.

MeO OH	PC6 (5 mol %) thiol (0.5 equiv)	MeO		
MeO	CH ₂ Cl ₂ (0.1 M) blue LED (390 nm), 2 h	MeO		
1a		2a		
Entry ^a	thiol	yield (%) ^b		
1	TRIP thiol	93 ^c		
2	n-dodecanthiol	28		
3	C ₆ H ₅ SH	84		
4	(<i>i</i> -Pr)₃SiSH	12		

^{*a*} Reaction was carried out with **1a** (0.1 mmol), **PC6** (5 µmol), and thiol (0.05 mmol) in CH₂Cl₂ (1 mL) under 390 nm blue LED (Kessil lamp) irradiation at ambient temperature for 2 h. ^{*b*} ¹H NMR yield. ^{*c*} Isolated yield.

Table S2. Effect of thiol

OH MeO	PC6 (5 mol %) TRIP thiol (0.5 equiv)	MeO MeO H	
MeO	solvent (0.1 M) blue LED (390 nm), 2 h		
1a		2a	
Entry ^a	solvent	yield (%) ^b	
1	CH ₂ Cl ₂	93 ^c	
2	MeCN	80	
3	THF	65	
4	AcOEt	77	

^a Reaction was carried out with **1a** (0.1 mmol), **PC6** (5 μmol), and TRIP thiol (0.05 mmol) in solvent (1 mL) under 390 nm blue LED (Kessil lamp) irradiation at ambient temperature for 2 h. ^b ¹H NMR yield. ^c Isolated yield.

Table S3. Effect of solvent

6. Procedure for β -Scission (HAT)

The reaction in Table 1, entry 6 is representative.

In a glovebox, a vial equipped with a stirring bar was charged with photoredox catalyst PC6 (2.3 mg, 5 μ mol), benzyl alcohol **1a** (22.4 mg, 0.1 mmol), TRIP thiol (12.6 μ L, 0.05 mmol), and CH₂Cl₂ (1.0 mL). After sealing the vial with a cap and removing it from the glovebox, the reaction was stirred and irradiated with a 390 nm blue LED placed 0.5 cm away, with a cooling fan to keep the temperature below 50 °C (Figure S4). After 2 h, the volatileass were removed under reduced pressure, and purification by flash column chromatography on silica gel (97:3–88:12, hexane/EtOAc) gave **2a** (15.5 mg, 0.09 mmol, 93% isolated yield) as a pale-yellow oil.

Figure S4. Light set up

7. Characterization Data for Products of β -Scission (HAT)

3,4-Dimethoxybenzaldehyde (2a)

The product was purified by flash chromatography on silica gel (95:5–85:15, hexane/EtOAc) to afford **2a** (Table 1 entry 6; 15.5 mg, 0.093 mmol, 93% isolated yield) as a pale-yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 9.86 (s, 1H), 7.47 (dd, J = 8.0, 2.0 Hz, 1H), 7.42 (d, J = 2.0 Hz, 1H), 6.99 (d, J = 8.0 Hz, 1H), 3.98 (s, 3H), 3.95 (s, 3H).

¹³C NMR (100.6 MHz, CDCl₃) δ 190.9, 154.5, 149.6, 130.1, 126.9, 110.4, 108.9, 56.2, 56.0. The ¹H and ¹³C NMR spectra data of **2a** was consistent with the literature.¹²

1-(3,4-Dimethoxyphenyl)hexan-1-one (2f)

The product was purified by flash chromatography on silica gel (98:2–93:7, hexane/EtOAc) to afford **2f** (Figure 3B; 32,6 mg, 0.14 mmol, 69% isolated yield) as a pale-yellow oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.59 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.54 (d, *J* = 2.0 Hz, 1H), 6.89 (d, *J* = 8.4 Hz, 1H), 3.95 (s, 3H), 3.94 (s, 3H), 2.92 (t, *J* = 7.6 Hz, 2H), 1.77–1.70 (m, 2H), 1.39–1.34 (m, 4H), 0.93–0.90 (m, 3H).

¹³**C NMR** (100.6 MHz, CDCl₃) δ199.3, 153.0, 149.0, 130.4, 122.6, 110.2, 109.9, 56.04, 55.95, 38.1, 31.6, 24.5, 22.5, 14.0.

The ¹H and ¹³C NMR spectra data of **2f** were consistent with the literature.¹³

1-(3,4-Dimethoxyphenyl)heptan-1-one (2g)

The product was purified by flash chromatography on silica gel (98:2–93:7, hexane/EtOAc) to afford **2g** (Figure 3B; 43.1 mg, 0.17 mmol, 86% isolated yield) as a pale yellow oil.

IR (neat) 2930, 1672, 1586, 1514, 1416, 1343, 1260, 1148, 1132,1023 cm⁻¹.

¹**H** NMR (400 MHz, CDCl₃) δ 7.59 (dd, J = 8.4, 2.0 Hz, 1H), 7.54 (d, J = 2.0 Hz, 1H), 6.89 (d, J = 8.4 Hz, 1H), 3.95 (s, 3H), 3.94 (s, 3H), 2.92 (t, J = 7.6 Hz, 2H), 1.73 (tt, J = 7.6, 7.6 Hz, 2H), 1.40–1.29 (m, 6H), 0.89 (t, J = 6.8 Hz, 3H).

¹³C NMR (100.6 MHz, CDCl₃) δ 199.3, 153.1, 149.0, 130.3, 122.6, 110.1, 109.9, 56.0, 55.9, 38.2, 31.7, 29.1, 24.7, 22.5, 14.0.

HRMS-ESI (m/z): [M+H]⁺ calcd for C₁₅H₂₃O₃⁺, 251.1642; found, 251.1634.

(8*R*,9*S*,13*S*,14*S*)-3-Methoxy-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6*H*-cyclopenta[*a*]phenanthren-17-ol (2k)

The product was purified by flash chromatography on silica gel (95:5–85:15, hexane/EtOAc) to afford **2k** (Figure 3B; 28.2 mg, 0.098 mmol, 49% isolated yield) as a white solid.

¹**H NMR** (400 MHz, CDCl₃) δ 7.21 (d, *J* = 8.4 Hz, 1H), 6.71 (dd, *J* = 8.4, 2.8 Hz, 1H), 6.63 (d, *J* = 2.8 Hz, 1H), 3.78 (s, 3H), 3.73 (t, *J* = 8.4 Hz, 1H), 2.88–2.84 (m, 2H), 2.32 (m, 1H), 2.22–2.08 (m, 2H), 1.95 (m, 1H), 1.88 (m, 1H), 1.70 (m, 1H), 1.55–1.16 (m, 8H), 0.78 (s, 3H).

¹³C NMR (100.6 MHz, CDCl₃) δ 157.4, 138.0, 132.6, 126.3, 113.8, 111.4, 81.9, 55.2, 50.0, 43.9, 43.2, 38.8, 36.7, 30.6, 29.8, 27.2, 26.3, 23.1, 11.0.

The ¹H and ¹³C NMR spectra data of **2k** were consistent with the literature.¹⁴

2-(2-Ethoxyphenoxy)ethan-1-ol (2l)

The reaction was carried out using **PC6** (10 mol %). The product **21** was purified by flash chromatography on silica gel (95:5–85:15, hexane/EtOAc) to afford **21** (Figure 3B; 11.9 mg, 0.065 mmol, 33% isolated yield) as a colorless oil.

IR (neat) 3416, 2932, 1593, 1501, 1478, 1452, 1392, 1326, 1250, 1214 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 6.99–6.95 (m, 2H), 6.92–6.87 (m, 2H), 4.14–4.12 (m, 2H), 4.10–4.05 (m, 2H), 3.88 (t, *J* = 4.4 Hz, 2H), 2.93 (brs, 1H), 1.45 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100.6 MHz, CDCl₃) δ 149.6, 148.2, 122.5, 121.1, 116.6, 113.3, 72.3, 64.4, 61.2, 14.8.

HRMS–ESI (m/z): $[M+H]^+$ calcd for $C_{10}H_{15}O_3^+$, 183.1016; found, 183.1010.

4-(Hexyloxy)benzaldehyde (2m)

The product was purified by flash chromatography on silica gel (100:0–97:3, hexane/EtOAc) to afford **2m** (Figure 3B; 37.6 mg, 0.18 mmol, 91% isolated yield) as a pale-yellow oil.

¹**H** NMR (400 MHz, CDCl₃) δ 9.88 (s, 1H), 7.83 (d, *J* = 8.8 Hz, 2H), 6.99 (d, *J* = 8.8 Hz, 2H), 4.04 (t, *J* = 6.8 Hz, 2H), 1.81 (tt, *J* = 6.8, 6.8 Hz, 2H), 1.47 (tt, *J* = 6.8, 6.8 Hz, 2H), 1.37–1.33 (m, 4H), 0.91 (t, *J* = 6.8 Hz, 3H).

¹³C NMR (100.6 MHz, CDCl₃) δ 190.8, 164.3, 132.0 (2C), 129.7, 114.7 (2C), 68.4, 31.5, 29.0, 25.6, 22.6, 14.0.

The ¹H and ¹³C NMR spectra data of **2m** were consistent with the literature.¹⁵

4-Phenoxybenzaldehyde (2n)

The product **2n** was purified by flash chromatography on silica gel (100:0–97:3, hexane/EtOAc) to afford **2n** (Figure 3B; 33.2 mg, 0.17 mmol, 84% isolated yield) as a pale-yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ 9.93 (s, 1H), 7.87–7.83 (m, 2H), 7.44–7.39 (m, 2H), 7.23 (t, *J* = 7.6 Hz, 1H), 7.09 (d, *J* = 7.6 Hz, 2H), 7.06 (d, *J* = 8.8 Hz, 2H).

¹³C NMR (100.6 MHz, CDCl₃) δ 190.8, 163.2, 155.1, 131.9 (2C), 131.2, 130.1 (2C), 124.9, 120.4 (2C), 117.6 (2C).

The ¹H and ¹³C NMR spectra data of **2n** were consistent with the literature.¹⁶

6-Methoxy-2-naphthaldehyde (20)

The reaction was carried out using **PC3** instead of **PC6**. The product was purified by flash chromatography on silica gel (97:3–90:10, hexane/EtOAc) to afford **20** (Figure 3B; 43.6 mg, 0.18 mmol, 93% isolated yield) as a light brown solid.

¹**H NMR** (400 MHz, CDCl₃) δ 10.10 (s, 1H), 8.26 (s, 1H), 7.93 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.90 (d, *J* = 8.8 Hz, 1H), 7.81 (d, *J* = 8.4 Hz, 1H), 7.24 (dd, *J* = 8.8, 2.4 Hz, 1H), 7.19 (d, *J* = 2.4 Hz, 1H), 3.97 (s, 3H).

¹³**C NMR** (100.6 MHz, CDCl₃) δ 192.0, 160.3, 138.3, 134.2, 132.4, 131.1, 128.0, 127.7, 123.7, 120.0, 106.1, 55.5.

The ¹H and ¹³C NMR spectra data of **20** were consistent with the literature.¹⁷

4-Hexylbenzaldehyde (2p)

The reaction was carried out using **PC3** (10 mol %) instead of **PC6**. The product was purified by flash chromatography on silica gel (100:0–93:7, hexane/EtOAc) to afford **2p** (Figure 3B; 18.3 mg, 0.096 mmol, 48% isolated yield) as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 9.97 (s, 1H), 7.80 (d, *J* = 8.0 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 2.68 (t, *J* = 7.6 Hz, 2H), 1.64 (tt, *J* = 7.6, 7.6 Hz, 2H), 1.37–1.28 (m, 6H), 0.88 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100.6 MHz, CDCl₃) δ 192.0, 150.5, 134.4, 129.9 (2C), 129.1 (2C), 36.2, 31.6, 31.0, 28.9, 22.5, 14.0.

The ¹H and ¹³C NMR spectra data of **2p** were consistent with the literature.¹⁸

2-Naphthaldehyde (2q)

The reaction was carried out using **PC3** instead of **PC6**. The product was purified by flash chromatography on silica gel (100:0–96:4, hexane/EtOAc) to afford **2q** (Figure 3B; 25.3 mg, 0.16 mmol, 81% isolated yield) as a light brown solid.

¹**H NMR** (400 MHz, CDCl₃) δ 10.17 (s, 1H), 8.35 (s, 1H), 8.03–7.91 (m, 4H), 7.66 (t, *J* = 7.2 Hz, 1H), 7.60 (t, *J* = 7.2 Hz, 1H).

¹³**C NMR** (100.6 MHz, CDCl₃) δ 192.3, 136.5, 134.5, 134.1, 132.6, 129.5, 129.1 (2C), 128.1, 127.1, 122.8.

The ¹H and ¹³C NMR spectra data of **2q** were consistent with the literature.¹⁶

1-(Benzyloxy)-4-methylbenzene (2r)

The reaction was carried out using **PC3** (10 mol %) instead of **PC6** and 6 h. The product was purified by flash chromatography on silica gel (100:0–95:5, hexane/EtOAc) to afford **2r** (Figure 3B; 14.1 mg, 0.071 mmol, 36% isolated yield) as a pale-yellow solid.

¹**H NMR** (400 MHz, CDCl₃) δ 7.44–7.42 (m, 2H), 7.40–7.36 (m, 2H), 7.31 (m, 1H), 7.08 (d, *J* = 8.4 Hz, 2H), 6.89–6.86 (m, 2H), 5.04 (s, 2H), 2.29 (s, 3H).

¹³C NMR (100.6 MHz, CDCl₃) δ 156.7, 137.2, 130.1 (2C), 129.9 (2C), 128.5, 127.8, 127.4 (2C), 114.7(2C), 70.1, 20.5.

The ¹H and ¹³C NMR spectra data of **2r** were consistent with the literature.¹⁹

8. Optimization for Giese Addition

^a Reaction was carried out with **1g** (0.1 mmol), **3c** (0.2 mmol) and photocatalyst (20 μmol) in MeCN (1 mL) under 390 nm blue LED (Kessil lamp) irradiation at ambient temperature for 2 h. ^{*b*} ¹H NMR yield.

Table S4. Effect of Photocatalyst

^a Reaction was carried out with **1g** (0.1 mmol), **3c** (0.2 mmol) and **PC2** (20 µmol) in solvent (1 mL) under 390 nm blue LED (Kessil lamp) irradiation at ambient temperature for 2 h. ^{*b*} ¹H NMR yield.

Table S5. Effect of Solvent

^a Reaction was carried out with **1g**, **3e** and **PC2** (20 μmol) in solvent (1 mL) under 390 nm blue LED (Kessil lamp) irradiation at ambient temperature for 2 h. ^b ¹H NMR combined yield of **4e** and **4e'**. ^c Isolated yield.

Table S6. Effect of Substrate Ratio

9. Procedure for Giese Addition

The reaction of 4a in Figure 3C is representative.

In a glovebox, a vial equipped with a stirring bar was charged with photoredox catalyst PC2 (8.5 mg, 0.04 mmol), benzyl alcohol **1g** (75.1 mg, 0.3 mmol), alkene **3a** (21.8 μ L, 0.2 mmol), and MeCN/MeOH (9:1) (2.0 mL). After sealing the vial with a cap and removing it from the glovebox, the reaction was stirred and irradiated with a 390 nm blue LED placed 0.5 cm away, with a cooling fan to keep the temperature below 50 °C (Figure S4). After 2 h, the solvent was evaporated from the reaction solution, and purification by flash column chromatography on silica gel (95:5–85:15, hexane/EtOAc), which gave **4a** (23.9 mg, 0.068 mmol, 34% isolated yield) as a colorless oil.

10. Characterization Data for Products of Giese Addition

Ethyl 9-(3,4-dimethoxyphenyl)-4-methyl-9-oxononanoate (4a)

IR (neat) 2932, 1731, 1675, 1586, 1515, 1464, 1416, 1260, 1149, 1023 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.59 (dd, J = 8.4, 2.0 Hz, 1H), 7.54 (d, J = 2.0 Hz, 1H), 6.89 (d, J = 8.4 Hz, 1H), 4.12 (q, J = 7.2 Hz, 2H), 3.95 (s, 3H), 3.94 (s, 3H), 2.92 (t, J = 7.6 Hz, 2H), 2.37–2.22 (m, 2H), 1.75–1.64 (m, 4H), 1.47–1.32 (m, 4H), 1.29–1.17 (m, 4H), 0.88 (d, J = 6.4 Hz, 3H). ¹³C NMR (100.6 MHz, CDCl₃) δ 199.1, 174.1, 153.1, 149.0, 130.3, 122.7, 110.2, 109.9, 60.2, 56.04, 55.96, 38.1, 36.5, 32.3, 32.1, 31.8, 26.7, 24.9, 19.2, 14.2. HRMS–ESI (m/z): [M+H]⁺ calcd for C₂₀H₃₁O₅⁺, 351.2166; found, 351.2151.

1-(3,4-Dimethoxyphenyl)-6-methyl-8-(phenylsulfonyl)octan-1-one (4b)

The product was purified by flash chromatography on silica gel (90:10–60:40, hexane/EtOAc) to afford **4b** (Figure 3C; 31.0 mg, 0.074 mmol, 37% isolated yield) as a pale-yellow oil.

IR (neat) 2933, 1672, 1586, 1514, 1446, 1418, 1306, 1260, 1143, 1086 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 7.93–7.90 (m, 2H), 7.66 (m, 1H), 7.60–7.55 (m, 3H), 7.53 (d, *J* = 2.0 Hz, 1H), 6.89 (d, *J* = 8.4 Hz, 1H), 3.95 (s, 3H), 3.94 (s, 3H), 3.18–3.01 (m, 2H), 2.90 (t, *J* = 7.2 Hz, 2H), 1.79–1.64 (m, 3H), 1.59–1.49 (m, 2H), 1.39–1.24 (m, 3H), 1.18 (m, 1H), 0.85 (d, *J* = 6.4 Hz, 3H).

¹³C NMR (100.6 MHz, CDCl₃) δ 198.9, 153.2, 149.0, 139.2, 133.6, 130.2, 129.2 (2C), 128.0 (2C), 122.6, 110.1, 110.0, 56.03, 55.96, 54.4, 37.9, 36.2, 31.8, 29.1, 26.5, 24.7, 19.1. HRMS–ESI (m/z): [M+H]⁺ calcd for C₂₃H₃₁SO₅⁺, 419.1887; found, 419.1870.

Dimethyl 2-(7-(3,4-dimethoxyphenyl)-7-oxoheptan-2-yl)succinate (4c)

The reaction was carried out using 1g (50.1 mg, 0.2 mmol), 3c (57.7 mg, 0.4 mmol), MeCN (2.0 ml). The product was purified by flash chromatography on silica gel (85:15-70:30, hexane/EtOAc) to afford 4c (Figure 3C; 44.4 mg, 0.11 mmol, 56% isolated yield) as a pale-yellow oil. The ratio (1.2:1) of the diastereomers was determined by ¹H NMR analysis.

IR (neat) 2937, 1731, 1672, 1514, 1436, 1416, 1260, 1151, 1021, 750 cm⁻¹.

¹**H** NMR (400 MHz, CDCl₃) δ 7.58 (dd, J = 8.4, 2.0 Hz, 1H), 7.53 (d, J = 2.0 Hz, 1H), 6.89 (d, J = 8.4 Hz, 1H), 3.95 (s, 3H), 3.94 (s, 3H), 3.692–3.687 (m, 3H), 3.674–3.671 (m, 3H), 2.94–2.85 (m, 3H), 2.75 (m, 1H), 2.35 (td, J = 25.2, 4.0 Hz, 1H), 1.94 (m, 0.55 × 1H), 1.80 (m, 0.45 × 1H), 1.76–1.67 (m, 2H), 1.50–1.17 (m, 4H), 0.91 (d, J = 6.8 Hz, 0.45 × 3H), 0.87 (d, J = 6.8 Hz, 0.55 × 3H).

¹³C NMR (100.6 MHz, CDCl₃) δ 198.92, 198.87, 175.0, 174.5, 173.1, 172.9, 153.1, 149.0, 130.3, 122.6, 110.1, 109.9, 56.05, 55.96, 51.78, 51.76, 51.7, 51.6, 45.9, 45.7, 37.9, 35.0, 34.5, 34.2, 33.8, 33.3, 31.4, 27.0, 26.9, 24.62, 24.59, 16.8, 16.2 (only observed peaks).

HRMS–ESI (m/z): [M+H]⁺ calcd for C₂₁H₃₁O₇⁺, 395.2064; found, 395.2056.

2-(8-(3,4-Dimethoxyphenyl)-3-methyl-8-oxo-1-phenyloctyl)malononitrile (4d)

The product was purified by flash chromatography on silica gel (95:5–70:30, hexane/EtOAc) to afford **4d** (Figure 3C; 41.9 mg, 0.10 mmol, 52% isolated yield) as a pale-yellow oil. The ratio (1:1) of the diastereomers was determined by ¹H NMR analysis.

IR (neat) 2937, 1670, 1514, 1418, 1261, 1149, 1021, 748, 706, 668 cm⁻¹.

¹**H** NMR (400 MHz, CDCl₃) δ 7.59 (dd, J = 8.4, 2.0 Hz, 0.5 × 1H), 7.55–7.48 (m, 0.5 × 3H), 7.42–7.37 (m, 3H), 7.34–7.27 (m, 2H), 6.90 (d, J = 8.4 Hz, 0.5 × 1H), 6.87 (d, J = 8.4 Hz, 0.5 × 1H), 4.22 (dd, J = 6.8, 0.4 Hz, 0.5 × 1H), 4.18 (d, J = 5.2 Hz, 0.5 × 1H), 3.96–3.93 (m, 6H), 3.03 (dd, J = 8.4, 6.8 Hz, 0.5 × 1H), 2.98 (dd, J = 7.2, 2.0 Hz, 1H), 2.91 (dd, J = 10.0, 5.2 Hz, 0.5 × 1H), 2.81 (t, J = 2.8 Hz, 1H), 2.25 (m, 1H), 1.78 (m, 1H), 1.67–1.36 (m, 4H), 1.28 (m, 1H), 1.14 (d, J = 6.8 Hz, 0.5 × 3H).

¹³C NMR (100.6 MHz, CDCl₃) δ 198.70, 198.66, 153.23, 153.16, 149.1, 149.0, 136.6, 136.1, 130.1, 129.2, 129.1, 128.8, 128.7, 128.4, 128.2, 122.7, 122.6, 112.2, 112.1, 112.0, 111.8, 110.1, 110.03, 109.96, 109.89, 56.06, 56.05, 55.98, 55.96, 52.2, 51.4, 37.63, 37.60, 34.6, 34.1, 33.3, 27.8, 27.4, 26.00, 25.95, 24.5, 24.3, 17.4, 16.3 (only observed peaks).

HRMS–ESI (m/z): $[M+H]^+$ calcd for $C_{25}H_{29}N_2O_3^+$, 405.2173; found, 405.2172.

Methyl 2-acetamido-9-(3,4-dimethoxyphenyl)-4-methyl-9-oxononanoate (4e)

The product was purified by flash chromatography on silica gel (60:40–40:60, hexane/EtOAc) to afford **4e** and **4e'** (Figure 3C; 60.4 mg, 0.15 mmol, 77% isolated yield). **4e** and **4e'** were separated by GPC (CHCl₃). Colorless oil. The ratio (1.8:1) of **4e**:**4e'** and the diastereomer ratio of **4e** (1:1) were determined by ¹H NMR analysis.

IR (neat) 3365, 2936, 1744, 1655, 1586, 1515, 1418, 1737, 1260, 1148 cm⁻¹.

¹**H** NMR (400 MHz, CDCl₃) δ 7.60 (m, 1H), 7.53 (d, *J* = 2.0 Hz, 1H), 6.89 (d, *J* = 8.4 Hz, 1H), 5.96 (d, *J* = 8.4 Hz, 0.6 × 1H), 5.87 (d, *J* = 8.0 Hz, 0.4 × 1H), 4.66 (m, 1H), 3.95–3.94 (m, 6H), 3.734 (s, 0.4 × 3H), 3.730 (s, 0.6 × 3H), 2.95–2.91 (m, 2H), 2.03 (s, 0.6 × 3H), 2.01 (s, 0.4 × 3H), 1.78–1.65 (m, 2H), 1.59–1.13 (m, 7H), 0.96–0.92 (m, 3H).

¹³C NMR (100.6 MHz, CDCl₃) δ 199.10, 199.07, 173.7, 173.6, 170.0, 169.7, 153.2, 153.1, 149.04, 149.01, 130.30, 130.278, 122.68, 122.66, 110.2, 110.1, 110.0, 56.1, 56.0, 52.3, 50.6, 50.5, 40.1, 39.7, 37.94, 38.87, 36.8, 36.0, 29.4, 29.2, 26.5, 26.4, 24.7, 24.4, 23.2, 23.1, 19.7, 19.3 (only observed peaks). HRMS–ESI (m/z): [M+H]⁺ calcd for C₂₁H₃₂NO₆⁺, 394.2224; found, 394.2210.

Methyl 2-acetamido-4-(3,4-dimethoxybenzoyl)nonanoate (4e')

Colorless oil. The diastereomer ratio of **4e'** (1:1) was determined by ¹H NMR analysis. **IR** (neat) 3283, 2932, 1744, 1659, 1584, 1514, 1419, 1375, 1261, 1021 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 7.58–7.52 (m, 2H), 6.93–6.90 (m, 1H), 6.07 (d, J = 7.6 Hz, 0.77 × 1H), 5.69 (d, J = 9.2 Hz, 0.23 ×1H), 4.67 (m, 0.23 × 1H), 4.54 (td, J = 7.6, 6.4 Hz, 0.77 × 1H), 3.96 (s, 3H), 3.94 (s, 3H), 3.72 (s, 0.23 × 3H), 3.62 (s, 0.77 × 3H), 3.50 (m, 1H), 2.50 (m, 0.77 × 1H), 2.35 (m, 0.23 × 1H), 2.06 (m, 0.23 × 1H), 1.94 (s, 0.77 × 3H), 1.83 (m, 0.77 × 1H), 1.69 (m, 1H), 1.62 (s, 0.23 × 3H), 1.45 (m, 1H), 1.22 (m, 6H), 0.85–0.82 (m, 3H).

¹³C NMR (100.6 MHz, CDCl₃) δ 202.5, 201.3, 172.8, 172.5, 170.0, 169.6, 153.3, 149.1, 129.8, 122.9, 122.7, 110.5, 110.3, 110.1, 56.04, 55.96, 52.4, 52.3, 51.6, 51.4, 43.0, 42.3, 34.1, 34.0, 33.6, 31.80, 31.76, 26.7, 23.1, 22.8, 22.4, 14.0 (only observed peaks). **HRMS–ESI** (m/z): $[M+H]^+$ calcd for C₂₁H₃₂NO₆⁺, 394.2224; found, 394.2209.

Methyl 2-acetamido-4,4-dimethylpentanoate (4f)

The product was purified by flash chromatography on silica gel (EtOAc) followed by GPC (CHCl₃) to afford 4f (Figure 3C; 39.4 mg, 0.20 mmol, 98% isolated yield) as a colorless oil. ¹**H** NMR (400 MHz, CDCl₃) δ 5.79 (brs, 1H), 4.65 (td, J = 13.2, 4.0 Hz, 1H), 3.72 (s, 3H), 2.00 (s, 3H), 1.76 (dd, *J* = 14.4, 4.0 Hz, 1H), 1.47 (dd, *J* = 14.4, 8.8 Hz, 1H), 0.96 (s, 9H). ¹³C NMR (100.6 MHz, CDCl₃) δ 174.1, 169.5, 52.3, 49.8, 46.2, 30.7, 29.5 (3C), 23.2. The ¹H and ¹³C NMR spectra data of **4f** were consistent with the literature.²⁰

Methyl 2-acetamido-3-cyclohexylpropanoate (4g)

The product 4g was purified by flash chromatography on silica gel (40:60 hexane/EtOAc) followed by GPC (CHCl₃) to afford 4g (Figure 3C; 37.7 mg, 0.17 mmol, 83% isolated yield) as a colorless oil. **IR** (neat) 2923, 1744, 1652, 1541, 1436, 1373, 1261, 1201, 1153, 1008 cm⁻¹. ¹**H** NMR (400 MHz, CDCl₃) δ 5.91 (brs, 1H), 4.66 (dt, J = 5.2, 8.8 Hz, 1H), 3.73 (s, 3H), 2.03 (s, 3H), 1.79 (m, 1H), 1.71–1.63 (m, 5H), 1.51 (m, 1H), 1.37–1.08 (m, 4H), 1.00–0.85 (m, 2H).

¹³C NMR (100.6 MHz, CDCl₃) (100.6 MHz, CDCl₃) δ 173.8, 169.8, 52.2, 50.1, 40.2, 34.1, 33.4, 32.5, 26.3, 26.1, 25.9, 23.1.

HRMS–ESI (m/z): [M+H]⁺ calcd for C₁₂H₂₂NO₃⁺, 228.1594; found, 228.1585.

Methyl N-acetyl-O-phenylhomoserinate (4h)

The product was purified by flash chromatography on silica gel (70:30–50:50, hexane/EtOAc) to afford **4h** (Figure 3C; 21.7 mg, 0.086 mmol, 47% isolated yield) as a white solid. **M.p.** 105–110 °C.

IR (neat) 3281, 1741, 1652, 1599, 1541, 1497, 1436, 1373, 1240, 1148 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 7.30–7.28 (m, 2H), 6.96 (t, *J* = 7.2 Hz, 1H), 6.85 (dd, *J* = 8.8, 0.8 Hz, 2H), 6.34 (d, *J* = 4.4 Hz, 1H), 4.76 (dt, *J* = 7.2, 4.4 Hz, 1H), 4.08–3.99 (m, 2H), 3.76 (s, 3H), 2.42–2.28 (m, 2H), 2.03 (s, 3H).

¹³C NMR (100.6 MHz, CDCl₃) δ 172.5, 169.9, 158.2, 129.5 (2C), 121.1, 114.4 (2C), 64.0, 52.5, 50.4, 31.2, 23.2.

HRMS–ESI (m/z): [M+H]⁺ calcd for C₁₃H₁₈NO₄⁺, 252.1230; found, 252.1218.

Methyl N-acetyl-S-phenylhomocysteinate (4i)

The product was purified by flash chromatography on silica gel (70:30–50:50, hexane/EtOAc) to afford **4i** (Figure 3C; 18.0 mg, 0.067 mmol, 34% isolated yield) as a white solid.

M.p. 111–116 °C.

IR (neat) 3260, 1745, 1637, 1556, 1481, 1438, 1369, 1301, 1230, 1212 cm⁻¹.

¹**H** NMR (400 MHz, CDCl₃) δ 7.34–7.27 (m, 4H), 7.20 (m, 1H), 6.11 (s, 1H), 4.73 (dt, *J* = 7.6, 5.2 Hz, 1H), 3.74 (s, 3H), 2.99–2.87 (m, 2H), 2.19 (m, 1H), 2.03 (s, 3H), 1.98 (m, 1H).

¹³C NMR (100.6 MHz, CDCl₃) δ 172.4, 169.9, 135.5, 129.6 (2C), 129.0 (2C), 126.4, 52.6, 51.5, 32.1, 29.8, 23.2.

HRMS–ESI (m/z): $[M+H]^+$ calcd for $C_{13}H_{18}NO_3S^+$, 268.1002; found, 268.0991.

Methyl 2-acetamido-9-(3,4-dimethoxyphenyl)-9-oxononanoate (4j)

The product was purified by flash chromatography on silica gel (60:40–40:60, hexane/EtOAc) to afford **4j** and **4j'** (Figure 3C; 30.1 mg, 0.079 mmol, 40% isolated yield). **4j** and **4j'** were separated by GPC (CHCl₃). colorless oil. The ratio (1:1.9) of **4j**:**4j'** was determined by ¹H NMR analysis. **IR** (neat) 2934, 1744, 1656, 1586, 1514, 1464, 1418, 1261, 1204, 1149 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 7.58 (dd, J = 8.4, 2.0 Hz, 1H), 7.53 (d, J = 2.0 Hz, 1H), 6.89 (d, J = 8.4 Hz, 1H), 5.97 (d, J = 8.0 Hz, 1H), 4.61 (dt, J = 8.0, 5.2 Hz, 1H), 3.95 (s, 3H), 3.94 (s, 3H), 3.74 (s, 3H), 2.91 (t, J = 7.2 Hz, 2H), 2.03 (s, 3H), 1.83 (m, 1H), 1.73–1.62 (m, 3H), 1.36–1.26 (m, 6H). ¹³**C NMR** (100.6 MHz, CDCl₃) δ 199.1, 173.2, 169.7, 153.1, 149.0, 130.3, 122.7, 110.1, 109.9, 56.05, 55.97, 52.3, 52.1, 37.9, 32.4, 29.04, 28.98, 24.9, 24.4, 23.2.

HRMS–ESI (m/z): $[M+H]^+$ calcd for $C_{20}H_{30}NO_6^+$, 380.2068; found, 380.2053.

Methyl 2-acetamido-4-(3,4-dimethoxybenzoyl)octanoate (4j')

Colorless oil. The ratio (1.3:1) of the diastereomers was determined by ¹H NMR analysis. **IR** (neat) 2933, 1744, 1655, 1584, 1512, 1438, 1419, 1375, 1261, 1212 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃) δ 7.58–7.53 (m, 2H), 6.91 (dd, J = 8.4, 2.4 Hz, 1H), 6.09 (m, 0.6 × 1H), 5.71 (m, 0.4 × 1H), 4.69 (m, 0.4 × 1H), 4.54 (td, J = 10.8, 7.2 Hz, 0.6 × 1H), 3.96 (s, 3H), 3.94 (s, 3H), 3.72 (s, 0.4 × 3H), 3.62 (s, 0.6 × 3H), 3.49 (m, 1H), 2.50 (m, 0.6 × 1H), 2.35 (m, 0.4 × 1H), 2.06 (m, 0.4 × 1H), 1.94 (s, 0.6 × 3H), 1.84 (m, 0.6 × 1H), 1.68 (m, 1H), 1.62 (s, 0.4 × 3H), 1.48 (m, 1H), 1.25 (brs, 4H), 0.84 (t, J = 6.4 Hz, 3H).

¹³C NMR (100.6 MHz, CDCl₃) δ 202.5, 201.3, 172.8, 172.5, 170.0, 169.6, 153.4, 153.3, 149.12, 149.11, 129.81, 129.80, 122.9, 122.7, 110.5, 110.3, 110.1, 56.05, 56.03, 55.9, 52.4, 52.3, 51.6, 51.4, 42.9, 42.3, 34.1, 34.0, 33.7, 33.4, 29.2, 23.1, 22.8, 22.71, 22.66, 13.82, 13.80 (only observed peaks). HRMS–ESI (m/z): [M+H]⁺ calcd for C₂₀H₃₀NO₆⁺, 380.2068; found, 380.2060.

lamp) irradiation at ambient temperature for 2 h. ^{b 1}H NMR yield. ^c Isolated yield.

Table S7. Optimization of reaction conditions

To a screw-top 4 mL vial with a stirring bar was added lepidine (28.6 mg, 0.2 mmol), MeOH (1.0 mL) and trifluoroacetic acid (34.2 mg, 0.3 mmol). The mixture was stirred for 30 min. Then, the solvent was under reduced pressure. In a glovebox, a vial equipped with a stirring bar was charged with photoredox catalyst **PC** (40 μ mol), benzyl alcohol **1a** (67.3 mg, 0.3 mmol), MnO₂ (34.8 mg, 0.4 mmol), and CH₂Cl₂ (2.0 mL). After removing the vial from the glovebox, the reaction was stirred and irradiated with a 390 nm blue LED placed 0.5 cm away, with a cooling fan to keep the temperature below 50 °C. After stirring for 2 h, the reaction was quenched with saturated K₂CO₃ aq (5 mL) and Na₂S₂O₃ aq (5 mL) and extracted with diethyl ether (5 mL × 3). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (100:0–95:5, hexane/Et₂O) gave **6** (28.5 mg, 0.143 mmol, 72% isolated yield) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* = 8.4 Hz, 1H), 7.94 (d, *J* = 8.4 Hz, 1H), 7.66 (t, *J* = 7.6 Hz, 1H), 7.49 (t, *J* = 7.6 Hz, 1H), 7.35 (s, 1H), 2.69 (s, 3H), 1.46 (s, 9H).

¹³C NMR (100,6 MHz, CDCl₃) δ 168.9, 147.2, 143.6, 129.9, 128.7, 126.5, 125.4, 123.4, 118.9, 37.9, 30.1 (3C), 19.0.

The ¹H and ¹³C NMR spectra data of **6** were consistent with the literature.²¹

12. Procedure for Additive Effect

(Supplementary Fig. 4). In a glovebox, a vial equipped with a stirring bar was charged with photoredox catalyst PC6 (2.3 mg, 0.005 mmol), benzyl alcohol 1a (22.4 mg, 0.1 mmol), TRIP thiol (12.6 μ L, 0.05 mmol), additive A1 (16.6 mg, 0.98 mmol), and CH₂Cl₂ (1.0 mL). After sealing the vial with a cap and removing it from the glovebox, the reaction was stirred and irradiated with a 390 nm blue LED placed 0.5 cm away, with a cooling fan to keep the temperature below 50 °C (Figure S4). After 2 h, the solvent was removed under reduced pressure, the residue was dissolved in CDCl₃ (500 μ L), and 1,1,2,2-tetrachloroethane (17.5 mg, 10.4 μ mol) was added as an internal standard. ¹H NMR (400 MHz) yields of 2a (90%) and A1 (quantitative) were determined by comparing the relative integration values of the singlet peak observed at 9.86 ppm of 2a and the triplet peak observed at 2.57 ppm of A1 to that of 1,1,2,2-tetrachloroethane observed at 5.96 ppm. Results are summarized in Table S7.

Entry	2a (%)	Additive remaining (%)	Note	Entry	2a (%)	Additive remaining (%)	Note
A1	90	>99		A14	51	0	celite short pass with CH2Cl2.
A2	95	>99		A15	89	>99	
A3	91	>99		A16	87	99	
A4	88	98		A17	84	>99	1,2-dibromoethane instead of 1,1,2,2-tetrachloroethane.
A5	88	70		A18	53	77	
A6	96	>99		A19	89	>99	
A7	92	>99		A20	73	91	
A8	83	>99		A21	94	>99	
A9	88	>99		A22	91	>99	
A10	90	>99		A23	67	84	
A11	94	>99		A24	58	90	
A12	94	>99		A25	76	>99	
A13	68	78		A26	96	33	

Table S8. Result on Additive Effect

13. UV/Vis Spectra of Photocatalysts

UV-Vis absorption spectra of organophotocatalysts were measured with 200 μ M acetonitrile solution.

Figure S5. UV-Vis spectrum of PC1.

Figure S6. UV-Vis spectrum of PC2.

Figure S7. UV-Vis spectrum of PC3.

Figure S8. UV-Vis spectrum of PC4.

Figure S9. UV-Vis spectrum of PC5.

Figure S10. UV-Vis spectrum of PC6.

Figure S11. UV-Vis spectrum of PC10.

Figure S12. UV-Vis spectrum of PC11.

Figure S13. UV-Vis spectrum of PC12.

14. Fluorescence Spectra of Photocatalysts

Fluorescence spectra of organophotocatalysts were measured with 200 μ M acetonitrile solution.

Figure S14. Fluorescence spectrum of PC1 was scanned after excitation at 337 nm.

Figure S15. Fluorescence spectrum of PC2 was scanned after excitation at 378 nm.

Figure S16. Fluorescence spectrum of PC3 was scanned after excitation at 410 nm.

Figure S17. Fluorescence spectrum of PC4 was scanned after excitation at 372 nm.

Figure S18. Fluorescence spectrum of PC5 was scanned after excitation at 367 nm.

Figure S19. Fluorescence spectrum of PC6 was scanned after excitation at 390 nm.

Figure S20. Fluorescence spectrum of PC10 was scanned after excitation at 394 nm.

Figure S21. Fluorescence spectrum of PC11 was scanned after excitation at 393 nm.

Figure S22. Fluorescence spectrum of PC12 was scanned after excitation at 358 nm.

15. Cyclic Voltammetry (CV) of Photocatalysts

CV measurements were carried out under nitrogen atmosphere in acetonitrile solutions with 0.1 M of tetrabutylammonium perchlorate (Bu₄NClO₄) as a supporting electrolyte. Measurements were made with a glassy carbon electrode (area = 0.07 cm^2), an Ag/AgNO₃ reference electrode, and a Pt wire counter electrode. The concentration of the sample solution was fixed at 10 mM and the sweep rates were set to 100 mV/s. The ferrocenium/ferrocene (Fc⁺/Fc) couple was used for calibration.

Figure S23. Cyclic voltammogram of PC1.

Figure S24. Cyclic voltammogram of PC2.

Figure S25. Cyclic voltammogram of PC3.

Figure S26. Cyclic voltammogram of PC4.

Figure S27. Cyclic voltammogram of PC5.

Figure S28. Cyclic voltammogram of PC6.

Figure S29. Cyclic voltammogram of PC10.

Figure S30. Cyclic voltammogram of PC11. The concentration of the sample solution was 2 mM.

Figure S31. Cyclic voltammogram of PC12.

16.	Summary	of Redox	Properties of	of Organophotocatalysts	

	$E_{1/2} (PC/PC^{*-})$ (V vs Fc ⁺ /Fc) ^a	$E_{1/2} (PC/PC^{-})$ (V vs SCE) ^b	$\lambda_{max,\;em}\left(nm\right)$	$E_{S1, exp} (eV)^c$	$E^{0^*}_{S1, exp} (PC^*/PC^{*-})$ (V vs SCE) ^d
PC1	-2.22	-1.79	337	3.32	1.53
PC2	-2.06	-1.63	378	3.06	1.43
PC3	-1.33	-0.90	410	2.88	1.98
PC4	-1.97	-1.54	372	2.97	1.43
PC5	-1.90	-1.47	367	3.22	1.75
PC6	-1.85	-1.42	390	2.82	1.40
PC10	-1.73	-1.30	394	2.45	1.15
PC11	-2.29	-1.86	393	3.06	1.20
PC12	-2.05	-1.62	358	3.08	1.46

^{*a*} Determined by CV experiments. ^{*b*} $E_{1/2}$ (Fc⁺/Fc) (V vs SCE) = 0.43 V. ^{*c*} Singlet energies were calculated using the maximum wavelength of emission. ^{*d*} Singlet excited state reduction potentials were calculated using the singlet energies and the $E_{1/2}$.

17. X-ray Diffraction Analysis for PC6

Figure S32. ORTEP diagram of **PC6**. Ellipsoids are drawn at 50% probability. A single crystal used for the analysis was obtained by recrystallization from *n*-hexane and tetrahydrofuran.

Table S9. Crystal data and structure refinement for PC6

Bond precision:	C-C = 0.0027 A Wavelet	ngth=0.71073	
Cell:	a=8.589(3)	b=9.902(4)	c=14.679(6)
	alpha=106.882(5)	beta=94.204(3)	gamma=111.756(3)
Temperature:	86 K		
	Calculated	Reported	
Volume	1086.3(7)	1086.2(7)	
Space group	P -1	P -1	
Hall group	-P 1	-P 1	
Moiety formula	C27 H19 F3 O2, Si	?	
Sum formula	C27 H19 F3 O2, Si	C27 H19 F3 O2, Si	
Mr	460.51	460.51	
Dx,g cm-3	1.408	1.408	
Z	2	2	
Mu (mm-1)	0.157	0.157	
F000	476.0	476.0	
F000'	476.43		
h,k,lmax		10,11,17	
Nref		3814	
Tmin,Tmax	0.956,0.981	0.906,0.981	
Tmin'	0.904		

Correction method= # Reported T Limits: Tmin=0.906 Tmax=0.981 Data completeness= Theta(max)= 25.018 R(reflections)= 0.0348(3468) wR2(reflections)= 0.0945(3814) S = 1.036 Npar= 299

18. Procedure for Radical Trap Experiment

In a glovebox, to a vial equipped with a stirring bar was charged with photoredox catalyst **PC6** (21.2 mg, 0.1 mmol), benzyl alcohol **1a** (22.4 mg, 0.1 mmol), TEMPO (15.6 mg, 0.1 mmol) and CH₂Cl₂ (1.0 mL). After sealing the vial with a cap and removing it from the glovebox, the reaction was stirred and irradiated with a 390 nm blue LED placed 0.5 cm away with a cooling fan to keep the temperature below 50 °C (**Figure S4**). After 2 h, the solvent was removed under reduced pressure, the residue was dissolved in CDCl₃ (500 μ L) and added 1,1,2,2-tetrachloroethane (18.2 mg, 10.8 μ mol) as an internal standard. ¹H NMR (400 MHz) yield of **2a** (96%) and yield of **7** (55%) was obtained by comparing the relative value of integration for the singlet peak observed at 9.86 ppm of **2a** and the singlet peak observed at 1.27 ppm of **7** with that of 1,1,2,2-tetrachloroethane observed at 5.96 ppm.

19. Stern–Volmer Experiment

In a typical experiment, the fluoresence intensity was measured using a screw-top quartz cuvette (10 mm light path). The sample was prepared by 120 μ L of 5 mM solution of **PC2** in degassed MeCN with degassed MeCN solution of **1a** or TRIP thiol in each concentration (0, 600, 1400, or 1800 μ M, respectively) and added until the final volume (3.0 mL). The fluoresence intensity was measured excited absorption maximum (lmax, **PC2** = 378 nm) and the intensity value was determined by the corresponding value of emission maximum (Emax, **PC2** = 405 nm).

20. EDA Complex

MeCN solution of **PC6** (10 mM) and alcohol **1a** (0.1 M) (red line), MeCN solution of **PC6** (10 mM), and MeCN solution of alcohol **1a** (0.1 M) (red line) in a screw-top 1.0 cm quartz cuvette in glovebox were prepared and the UV-Vis absorption spectra were measured.

· NMR experiment

The equimolar of substrate **1a** and **PC6** (0.02 M in CDCl₃) were mixed and ¹H NMR measurements were performed. Comparison with the ¹H NMR spectra of **1a** and **PC6**, respectively, showed no change in shift values.

21. Computational Studies

Computational Method. The calculations were performed with Gaussian 16 packages (revision C.01).²² The DFT method was employed using the (U)M06-2X level²³ with the 6-311+G(d,p) for triplet state of **PC6** and TS calculations. The IRC calculations were performed for each transitions state to confirm the transition state connecting the reaction pathway between the starting materials and the products.

HOMO/LUMO of PC6

Figure S33. Kohn–Sham orbitals of PC6 in the triplet states, calculated at the UM062X/6-311++G(dp) level. Orbital energies are shown in parentheses.

Center	Atomic	Atomic	С	oordinates (Ar	ngstroms)
Number	Number	Type	Х	Y	Ζ
	6	0	0 805252	2 12/02/	0.048277
2	6	0	-0.895252	-0.718476	-0.093477
3	6	0	-2.377150	-0.219028	-0.195349
4	6	0	-3.478727	-1.065429	-0.231903
5	6	0	-3.298927	-2.450785	-0.169575
6	6	0	-2.029486	-2.976145	-0.079944
7	6	0	0.411127	-2.719106	0.017935
8	6	0	1.706749	-2.081240	-0.075613
9	6	0	1.851993	-0.670626	-0.123110
10	6	0	2.858975	-2.886233	-0.140823
11	6	0	4.122222	-2.330162	-0.260661
12	6	0	4.262379	-0.941675	-0.322602

Cartesian coordinates of PC6

13	6	0	3.123830	-0.132961	-0.252739
14	8	0	0.437061	-4.043597	0.115197
15	1	0	-2.536031	0.854598	-0.237269
16	1	0	-4.160242	-3.108340	-0.190930
17	1	0	-1.897369	-4.051131	-0.039833
18	1	0	2.764773	-3.965896	-0.107298
19	1	0	4.982633	-2.983671	-0.310115
20	1	0	3.271118	0.941995	-0.303432
21	6	0	0.327729	1.250397	1.770152
22	6	0	1.125321	2.368586	2.050276
23	6	0	-0.452514	0.717054	2.802319
24	6	0	1.145130	2.933393	3.320402
25	6	0	-0.437098	1.280979	4.075127
26	6	0	0.362067	2.388785	4.334776
27	1	0	1.766554	3.798819	3.519279
28	1	0	-1.050494	0.857476	4.861874
29	1	0	-1.083811	-0.145364	2.610386
30	1	0	1.731498	2.811468	1.264716
31	14	0	0.367313	0.452562	0.070686
32	6	0	0.941738	1.558525	-2.498489
33	6	0	0.888423	2.524131	-3.497814
34	6	0	0.257250	3.740709	-3.255968
35	6	0	-0.317306	3.990020	-2.013942
36	6	0	-0.257763	3.023492	-1.014476
37	6	0	0.369966	1.791632	-1.240911
38	1	0	1.437581	0.613165	-2.697800
39	1	0	1.338357	2.328798	-4.464235
40	1	0	0.214280	4.493644	-4.034395
41	1	0	-0.808199	4.937105	-1.822629
42	1	0	-0.699063	3.234733	-0.044784
43	1	0	0.373596	2.829776	5.324780
44	8	0	5.445526	-0.295325	-0.446868
45	6	0	6.622836	-1.075533	-0.505227
46	1	0	7.446082	-0.371217	-0.596497
47	1	0	6.748658	-1.667225	0.406541
48	1	0	6.613170	-1.739352	-1.375070
49	6	0	-4.863475	-0.518656	-0.384281
50	9	0	-5.746011	-1.170364	0.392538
51	9	0	-5.315778	-0.636691	-1.646888
52	9	0	-4.937890	0.781029	-0.067246

· β-scission of alcohol via PCET

The feasibility of the plausible reaction pathway using computational methods to gain mechanistic insights and energy profiles (Fig. 3d). The triplet state (T1) of the silicon-bridged benzophenone had higher energy and formed a stabilized complex with substrate 1a (0 kcal/mol). The formation of alkoxy and ketyl radicals (INT1) via TS1 likely involves either concerted electron/proton transfer (CEPT) or stepwise electron and proton transfer (ET/PT), though DFT calculations couldn't distinguish between them. TS2 represents the transition state for forming the *t*Bu radical via C–C bond cleavage of the alkoxy radical. Despite the relatively high TS2 energy (17.9 kcal/mol), it was reasonable.

Reaction Coordinate

Figure S34. Reaction coordinate for unimolecular PCET and HAT pathway

(U)M06-2X/6-311+G(d,p) (hartree)								
	EE	Thermal	Ence Encuring	Thermal correction				
	EE	Enthalpies	Free Energies	to Gibbs Free Energy				
ground state of PC6	-944.67102	-944.40806	-944.40901	-0.26201				
triplet state of PC6	-944.564	-944.30402	-944.30496	-0.25904				
benzyl alcohol	-618.45887	-618.1628	-618.16374	-0.29513				
INT0	-1563.0433	-1562.4855	-1562.4865	-0.5568				
TS1	-1563.0132	-1562.4631	-1562.4641	-0.54910				

TS2	-1563.0191	-1562.4657	-1562.4666	-0.55250
SiBP radical	-945.24041	-944.96671	-944.96765	-0.27276
Alkoxy radical	-617.78313	-617.50132	-617.50226	-0.28087
INT1	-1563.02354	-1562.46803	-1562.46991	-0.55363
Benzyl radical	-617.80362	-617.52054	-617.52148	-0.28214
INT2	-1563.04403	-1562.48725	-1562.48913	-0.55490
TS3	-1563.0149	-1562.4596	-1562.4605	-0.55440
<i>t</i> Bu radical	-157.74471	-157.62014	-157.62109	-0.12362
anisaldehyde	-460.03085	-459.87752	-459.87847	-0.15238

Cartesian coordinates of ground state of PC6

Center	Atomic	Atomic	Coord	dinates (Angst	roms)
Number	Number	Туре	Х	Y	Ζ
1	6	0	1.327279	-1.000933	0.000077
2	6	0	1.474457	0.395589	-0.000021
3	6	0	2.769191	0.930038	-0.000159
4	6	0	3.890965	0.112263	-0.000235
5	6	0	3.733618	-1.271922	-0.000160
6	6	0	2.462089	-1.821779	-0.000006
7	6	0	0.000000	-1.723380	0.000309
8	6	0	-1.327278	-1.000933	0.000079
9	6	0	-1.474456	0.395588	-0.000015
10	6	0	-2.462088	-1.821779	-0.000005
11	6	0	-3.733618	-1.271923	-0.000156
12	6	0	-3.890964	0.112262	-0.000226
13	6	0	-2.769191	0.930038	-0.000150

14	8	0	-0.000000	-2.936045	0.000229	
15	1	0	2.904588	2.008243	-0.000228	
16	1	0	4.883164	0.548627	-0.000358	
17	1	0	4.602610	-1.919164	-0.000215	
18	1	0	2.321433	-2.895197	0.000074	
19	1	0	-2.321432	-2.895197	0.000072	
20	1	0	-4.602609	-1.919165	-0.000212	
21	1	0	-4.883164	0.548626	-0.000347	
22	1	0	-2.904588	2.008242	-0.000215	
23	14	0	0.000000	1.545989	0.000071	
24	6	0	-0.000006	2.623767	-1.534563	
25	1	0	-0.882899	3.268147	-1.557780	
26	1	0	0.882886	3.268147	-1.557788	
27	1	0	-0.000010	2.012433	-2.439092	
28	6	0	0.000004	2.623564	1.534847	
29	1	0	-0.882893	3.267936	1.558135	
30	1	0	0.000014	2.012135	2.439310	
31	1	0	0.882894	3.267947	1.558123	

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Ζ
1	6	0	1.305662	-1.004631	0.000035
2	6	0	1.470533	0.403164	-0.000040
3	6	0	2.769637	0.914338	-0.000180
4	6	0	3.890370	0.090082	-0.000216
5	6	0	3.717383	-1.294166	-0.000129
6	6	0	2.447297	-1.838845	-0.000011
7	6	0	-0.000002	-1.622679	0.000133
8	6	0	-1.305659	-1.004625	0.000037
9	6	0	-1.470533	0.403166	-0.000028
10	6	0	-2.447296	-1.838846	-0.000017
11	6	0	-3.717378	-1.294172	-0.000131
12	6	0	-3.890368	0.090081	-0.000213
13	6	0	-2.769641	0.914338	-0.000165
14	8	0	-0.000001	-2.951383	0.000257
15	1	0	2.914062	1.991712	-0.000266
16	1	0	4.885379	0.517982	-0.000314
17	1	0	4.580074	-1.950009	-0.000160
18	1	0	2.325536	-2.916250	0.000038
19	1	0	-2.325526	-2.916250	0.000022
20	1	0	-4.580071	-1.950011	-0.000170
21	1	0	-4.885381	0.517971	-0.000309
22	1	0	-2.914063	1.991712	-0.000243
23	14	0	0.000000	1.559564	0.000122
24	6	0	-0.000012	2.645818	-1.530044
25	1	0	-0.883054	3.290433	-1.550031
26	1	0	0.883024	3.290439	-1.550051
27	1	0	-0.000022	2.038587	-2.437254
28	6	0	0.000009	2.645624	1.530407
29	1	0	-0.883030	3.290249	1.550357
30	1	0	0.000022	2.038457	2.437650
31	1	0	0.883039	3.290264	1.550341

Cartesian coordinates of benzyl alcohol

Center	Atomic	Atomic	Coordinates (Angstroms)				
Number	Number	Туре	Х	Y	Ζ		
1	6	0	0.493722	1.232066	-0.812129		
2	6	0	-0.172831	0.025550	-0.574891		
3	6	0	0.570814	-1.051071	-0.104496		
4	6	0	1.939043	-0.939515	0.142188		
5	6	0	2.580826	0.276010	-0.085866		
6	6	0	1.849092	1.364202	-0.568820		
7	1	0	-0.062581	2.082101	-1.194991		
8	1	0	0.074289	-1.998567	0.073497		
9	1	0	2.483078	-1.800126	0.507211		
10	8	0	3.905487	0.496580	0.120565		
11	6	0	4.680908	-0.576147	0.611280		
12	1	0	5.694591	-0.195063	0.711090		
13	1	0	4.319839	-0.910495	1.588940		
14	1	0	4.676513	-1.419464	-0.086443		
15	6	0	-1.662855	-0.096566	-0.822720		
16	1	0	-1.941911	0.654194	-1.577168		
17	6	0	-2.548270	0.175431	0.418223		
18	6	0	-2.279285	1.590552	0.937437		
19	1	0	-1.255723	1.698199	1.303416		
20	1	0	-2.445653	2.338919	0.155706		
21	1	0	-2.959618	1.815242	1.762927		
22	6	0	-2.267935	-0.842373	1.527450		
23	1	0	-2.400229	-1.862237	1.160101		
24	1	0	-1.252532	-0.737973	1.917057		
25	1	0	-2.962955	-0.683278	2.356382		
26	8	0	-1.999978	-1.393817	-1.298513		
_== 2.7	1	0	-1.433742	-1.595016	-2.048298		
28	6	ů 0	-4.015562	0.068062	-0.015646		

29	1	0	-4.673126	0.298050	0.826932	
30	1	0	-4.236550	0.776845	-0.819746	
31	1	0	-4.244265	-0.936324	-0.373384	
32	1	0	2.370501	2.295677	-0.751704	

Cartesian coordinates of INT0

Center	Atomic	Atomic	Coord	dinates (Angst	roms)
Number	Number	Туре	Х	Y	Ζ
	6	0	0.594712	1.967472	0.987897
2	6	0	0.198019	2.524184	-0.254621
3	6	0	1.129361	3.285232	-0.962004
4	6	0	2.412004	3.525091	-0.475120
5	6	0	2.776688	3.011004	0.769355
6	6	0	1.884691	2.245832	1.497079
7	6	0	-0.265976	1.072620	1.724706
8	6	0	-1.564343	0.544602	1.372522
9	6	0	-2.252319	0.964591	0.206446
10	6	0	-2.147706	-0.428744	2.213066
11	6	0	-3.376322	-0.981871	1.901095
12	6	0	-4.051062	-0.589312	0.746089
13	6	0	-3.484454	0.377662	-0.079026
14	8	0	0.255344	0.597039	2.857233
15	1	0	0.846330	3.708326	-1.922363
16	1	0	3.114818	4.114357	-1.051416
17	1	0	3.766446	3.199141	1.168285
18	1	0	2.191987	1.836916	2.453133
19	1	0	-1.624004	-0.753057	3.105752
20	1	0	-3.809651	-1.725881	2.560250
21	1	0	-5.007446	-1.030804	0.491853
22	1	0	-4.020092	0.676126	-0.976197
23	14	0	-1.555307	2.322319	-0.876616
24	6	0	0.356160	-0.914490	-1.288825
25	6	0	1.062720	-1.417426	-0.190713
26	6	0	0.472388	-2.428256	0.559187
27	6	0	-0.786300	-2.936488	0.236048
28	6	0	-1.470464	-2.426621	-0.864217
29	6	0	-0.886865	-1.414801	-1.631360
30	1	0	0.792231	-0.108015	-1.872113
31	1	0	1.001563	-2.828123	1.417466
32	1	0	-1.217950	-3.713039	0.853294

33	8	0	-2.702319	-2.839607	-1.267052	
34	6	0	-3.329673	-3.848746	-0.506980	
35	1	0	-4.295383	-4.025713	-0.976048	
36	1	0	-2.745044	-4.774326	-0.518673	
37	1	0	-3.479519	-3.524815	0.528120	
38	6	0	2.424176	-0.856509	0.168282	
39	1	0	2.446141	0.193953	-0.159231	
40	6	0	3.619719	-1.559864	-0.519694	
41	6	0	3.483620	-1.441224	-2.040011	
42	1	0	2.612758	-1.985891	-2.411530	
43	1	0	3.393453	-0.394129	-2.347999	
44	1	0	4.372633	-1.855958	-2.522535	
45	6	0	3.689583	-3.035655	-0.119428	
46	1	0	3.744353	-3.138179	0.966332	
47	1	0	2.816054	-3.585586	-0.478659	
48	1	0	4.580658	-3.496702	-0.554604	
49	8	0	2.655155	-0.923205	1.568949	
50	1	0	1.868786	-0.606440	2.025704	
51	6	0	4.900249	-0.841560	-0.075039	
52	1	0	5.768550	-1.272573	-0.581070	
53	1	0	4.852027	0.222798	-0.327382	
54	1	0	5.042737	-0.930491	1.002358	
55	6	0	-1.604033	1.926684	-2.711921	
56	1	0	-2.589265	1.552256	-3.003674	
57	1	0	-1.414884	2.832164	-3.295236	
58	1	0	-0.859119	1.180835	-2.991861	
59	6	0	-2.522244	3.906046	-0.585040	
60	1	0	-3.560641	3.790717	-0.908402	
61	1	0	-2.523531	4.167086	0.475358	
62	1	0	-2.083317	4.738264	-1.142182	
63	1	0	-1.446790	-1.026207	-2.473775	

Center	Atomic	Atomic	Coord	dinates (Angst	roms)
Number	Number	Туре	Х	Y	Z
1	6	0	-2.494739	-1.048460	-1.118795
2	6	0	-3.582854	-0.604348	-0.327969
3	6	0	-4.609455	-1.503191	-0.026720
4	6	0	-4.593888	-2.815529	-0.485424
5	6	0	-3.526425	-3.245272	-1.272104
6	6	0	-2.493654	-2.378374	-1.585116
7	6	0	-1.337049	-0.218567	-1.454007
8	6	0	-1.101983	1.113301	-1.010014
9	6	0	-2.003966	1.859851	-0.163000
10	6	0	0.131529	1.750116	-1.410478
11	6	0	0.455890	3.017207	-0.972596
12	6	0	-0.404514	3.712863	-0.122666
13	6	0	-1.622853	3.116733	0.262392
14	8	0	-0.364173	-0.775667	-2.166519
15	1	0	-5.445715	-1.172397	0.584274
16	1	0	-5.401351	-3.493489	-0.235775
17	1	0	-3.500221	-4.264086	-1.641367
18	1	0	-1.664057	-2.713813	-2.192862
19	1	0	0.797290	1.202251	-2.063533
20	1	0	1.389262	3.467650	-1.290909
21	1	0	-0.150253	4.705328	0.228558
22	1	0	-2.286711	3.682148	0.911833
23	14	0	-3.677408	1.151802	0.291701
24	6	0	3.075495	0.917194	0.418655
25	6	0	2.622862	-0.392183	0.203395
26	6	0	3.532933	-1.339932	-0.260284
27	6	0	4.866751	-1.013385	-0.487135
28	6	0	5.301299	0.292144	-0.256945
29	6	0	4.394724	1.258548	0.197984
30	1	0	2.376008	1.675370	0.754728

31	1	0	3.186828	-2.350589	-0.443510	
32	1	0	5.547874	-1.776457	-0.838334	
33	8	0	6.571858	0.720065	-0.444901	
34	6	0	7.521082	-0.212811	-0.921613	
35	1	0	8.459110	0.330274	-1.007483	
36	1	0	7.643292	-1.043433	-0.220039	
37	1	0	7.232513	-0.601299	-1.902789	
38	6	0	1.185366	-0.778710	0.450911	
39	1	0	0.576371	0.139261	0.216787	
40	6	0	0.790324	-1.105674	1.926597	
41	6	0	1.152350	0.062824	2.845057	
42	1	0	2.231455	0.222963	2.895538	
43	1	0	0.676560	0.990683	2.508316	
44	1	0	0.794852	-0.146252	3.856747	
45	6	0	1.520989	-2.376449	2.370761	
46	1	0	1.273513	-3.210013	1.709863	
47	1	0	2.604427	-2.230533	2.362982	
48	1	0	1.221184	-2.640881	3.388519	
49	8	0	0.775805	-1.794937	-0.374984	
50	1	0	0.418427	-1.419706	-1.321902	
51	6	0	-0.724739	-1.323687	1.960786	
52	1	0	-1.044199	-1.570145	2.977287	
53	1	0	-1.249653	-0.413038	1.651664	
54	1	0	-1.028415	-2.130586	1.291622	
55	6	0	-3.970086	1.233430	2.145383	
56	1	0	-3.966859	2.269429	2.495655	
57	1	0	-4.943581	0.805094	2.399691	
58	1	0	-3.203085	0.682844	2.693506	
59	6	0	-5.039024	2.106929	-0.580732	
60	1	0	-5.056949	3.149927	-0.252393	
61	1	0	-4.889779	2.090700	-1.662229	
62	1	0	-6.017382	1.668269	-0.365651	
63	1	0	4.756831	2.266208	0.360691	

Cartesian coordinates of TS2

Center	Atomic	Atomic	Coor	dinates (Angst	troms)
Number	Number	Туре	Х	Y	Z
1	6	0	-2.811116	-0.961996	-1.016910
2	6	0	-3.955063	-0.329075	-0.466257
3	6	0	-5.196895	-0.946015	-0.619698
4	6	0	-5.337445	-2.160343	-1.285759
5	6	0	-4.204204	-2.790307	-1.799105
6	6	0	-2.955989	-2.208186	-1.663353
7	6	0	-1.486093	-0.369650	-0.924025
8	6	0	-1.202538	1.035935	-0.705017
9	6	0	-2.126266	1.907027	-0.069939
10	6	0	0.021148	1.562536	-1.176798
11	6	0	0.325620	2.902568	-1.010680
12	6	0	-0.572860	3.759638	-0.375911
13	6	0	-1.788246	3.251768	0.076960
14	8	0	-0.477887	-1.181326	-1.231894
15	1	0	-6.080410	-0.472167	-0.200728
16	1	0	-6.314254	-2.615918	-1.394403
17	1	0	-4.297746	-3.740716	-2.311912
18	1	0	-2.081217	-2.696292	-2.075642
19	1	0	0.713944	0.916817	-1.703833
20	1	0	1.266874	3.284395	-1.391384
21	1	0	-0.333582	4.808097	-0.246093
22	1	0	-2.489976	3.925553	0.560782
23	14	0	-3.719968	1.192674	0.592893
24	6	0	3.033406	0.710583	0.176510
25	6	0	2.897272	-0.680835	0.043695
26	6	0	4.016951	-1.416434	-0.345566
27	6	0	5.247167	-0.804703	-0.562847
28	6	0	5.365824	0.577370	-0.413165
29	6	0	4.245708	1.332151	-0.049072

30	1	0	2.173961	1.316162	0.432498	
31	1	0	3.921588	-2.486537	-0.475637	
32	1	0	6.095086	-1.411404	-0.850259	
33	8	0	6.511355	1.273130	-0.604945	
34	6	0	7.667095	0.553538	-0.985055	
35	1	0	8.460515	1.290328	-1.084583	
36	1	0	7.943661	-0.179518	-0.221333	
37	1	0	7.517913	0.046087	-1.942772	
38	6	0	1.593314	-1.370331	0.291820	
39	1	0	0.768658	-0.823547	-0.336958	
40	6	0	1.061458	-1.375369	1.763534	
41	6	0	0.784680	0.035923	2.291856	
42	1	0	1.704927	0.602829	2.438878	
43	1	0	0.123276	0.600716	1.626975	
44	1	0	0.291527	-0.041035	3.264660	
45	6	0	2.129357	-2.053056	2.635975	
46	1	0	2.363696	-3.049647	2.255164	
47	1	0	3.048951	-1.463866	2.659250	
48	1	0	1.756785	-2.151062	3.659400	
49	8	0	1.638016	-2.655499	-0.244520	
50	1	0	0.731012	-2.912418	-0.450217	
51	6	0	-0.237383	-2.189434	1.838160	
52	1	0	-0.601255	-2.188281	2.868670	
53	1	0	-1.022286	-1.765588	1.206501	
54	1	0	-0.079595	-3.232230	1.553360	
55	6	0	-3.471042	0.668937	2.380859	
56	1	0	-3.251374	1.532660	3.014366	
57	1	0	-4.360117	0.168778	2.773914	
58	1	0	-2.630064	-0.026649	2.451188	
59	6	0	-5.150304	2.396262	0.456956	
60	1	0	-4.973527	3.283781	1.070268	
61	1	0	-5.297351	2.716712	-0.576330	
62	1	0	-6.078595	1.939372	0.809979	
63	1	0	4.355313	2.405703	0.043590	

Center	Atomic	Atomic	Coordi	nates (Angstro	oms)	
Number	Number	Туре	Х	Y	Z	
1	6	0	-1.299733	-0.979329	0.013549	
2	6	0	-1.468147	0.427229	-0.069606	
3	6	0	-2.758530	0.943234	-0.199111	
4	6	0	-3.879167	0.121138	-0.245345	
5	6	0	-3.710603	-1.259776	-0.148352	
6	6	0	-2.446711	-1.805331	-0.017449	
7	6	0	-0.003752	-1.606776	0.122667	
8	6	0	1.292446	-0.985946	0.001621	
9	6	0	1.463097	0.426571	-0.002009	
10	6	0	2.447986	-1.795716	-0.125157	
11	6	0	3.713232	-1.240949	-0.203898	
12	6	0	3.880175	0.141302	-0.173944	
13	6	0	2.751624	0.951474	-0.086881	
14	8	0	-0.063661	-2.955473	0.289499	
15	1	0	-2.896239	2.019677	-0.261150	
16	1	0	-4.869403	0.548085	-0.349082	
17	1	0	-4.573778	-1.914749	-0.176035	
18	1	0	-2.326040	-2.877385	0.055047	
19	1	0	2.369293	-2.873444	-0.218593	
20	1	0	4.574148	-1.891355	-0.305687	
21	1	0	4.869446	0.577892	-0.234043	
22	1	0	2.883739	2.030447	-0.086753	
23	14	0	-0.007911	1.577835	0.092077	
24	6	0	-0.048626	2.477270	1.740101	
25	1	0	0.836991	3.107075	1.862201	
26	1	0	-0.931286	3.118943	1.810045	
27	1	0	-0.078660	1.765893	2.567936	
28	6	0	0.040354	2.838231	-1.297847	
29	1	0	0.918724	3.483629	-1.211406	
30	1	0	0.073111	2.344141	-2.270719	

31	1	0	-0.843513	3.481389	-1.270514	
32	1	0	0.771648	-3.281890	0.633649	

Cartesian coordinates of alkoxy radical

Center	Atomic	Atomic	Coord	dinates (Angst	roms)
Number	Number	Туре	Х	Y	Ζ
1	6	0	0.473867	1.271995	-0.723247
2	6	0	-0.174116	0.040064	-0.603801
3	6	0	0.576133	-1.068136	-0.234272
4	6	0	1.939099	-0.961789	0.039176
5	6	0	2.565949	0.278667	-0.065655
6	6	0	1.825446	1.397905	-0.454565
7	1	0	-0.089188	2.146587	-1.034843
8	1	0	0.091043	-2.035803	-0.173896
9	1	0	2.493133	-1.846687	0.321627
10	8	0	3.885278	0.495614	0.176407
11	6	0	4.673251	-0.611529	0.559041
12	1	0	5.681184	-0.229285	0.702965
13	1	0	4.312733	-1.048967	1.495370
14	1	0	4.682945	-1.378834	-0.221374
15	6	0	-1.658362	-0.081472	-0.885414
16	1	0	-1.981980	0.724412	-1.565679
17	6	0	-2.581879	0.117985	0.405126
18	6	0	-2.270052	1.483849	1.017014
19	1	0	-1.245281	1.537540	1.388236
20	1	0	-2.421965	2.290328	0.293731
21	1	0	-2.946650	1.656556	1.858667
22	6	0	-2.311628	-0.985221	1.429317
23	1	0	-2.520144	-1.973258	1.013247
24	1	0	-1.275414	-0.962422	1.773285
25	1	0	-2.958086	-0.836124	2.298600

26	8	0	-2.009600	-1.291752	-1.397575	
27	6	0	-4.044392	0.077104	-0.045455	
28	1	0	-4.696103	0.278549	0.808952	
29	1	0	-4.241111	0.837969	-0.805971	
30	1	0	-4.307137	-0.896156	-0.460522	
31	1	0	2.336710	2.348161	-0.546643	

Cartesian coordinates of INT1

Center	Atomic	Atomic	Coordinates (Angstroms)				
Number	Number	Туре	Х	Ŷ	Z		
1	6	0	-0.396275	2.058141	-0.291391		
2	6	0	-0.023438	0.346574	1.397474		
3	6	0	-1.172740	-0.319808	0.999607		
4	6	0	-1.934739	0.209559	-0.057325		
5	6	0	-1.537161	1.404619	-0.700710		
6	1	0	-0.092445	2.978383	-0.780136		
7	1	0	0.574786	-0.058953	2.208280		
8	1	0	-1.466683	-1.237212	1.495237		
9	1	0	-2.152781	1.784378	-1.509941		
10	6	0	-3.515774	-1.566370	0.063798		
11	1	0	-4.421979	-1.832462	-0.478069		
12	1	0	-2.770134	-2.359185	-0.049211		
13	1	0	-3.748527	-1.414657	1.122085		
14	8	0	-3.054713	-0.353042	-0.529724		
15	6	0	1.639546	-0.452973	-1.056370		
16	6	0	3.074486	-1.257219	0.208676		
17	7	0	2.348118	0.607186	-0.508106		
18	1	0	0.821020	-0.289382	-1.745708		
19	1	0	3.703766	-1.965049	0.731763		
20	6	0	0.386764	1.534874	0.762179		
21	1	0	1.226300	2.098439	1.150222		

22	7	0	2.088434	-1.624289	-0.658251	
23	7	0	3.226360	0.070769	0.328877	

Cartesian coordinates of benzyl radical

Center	Atomic Number	Atomic Type	Coordinates (Angstroms)		
Number			Х	Y	Z
1	6	0	0.428322	1.137731	-0.000293
2	6	0	-0.097589	-0.185458	-0.000138
3	6	0	0.866784	-1.228238	0.000008
4	6	0	2.231308	-0.982575	0.000058
5	6	0	2.707277	0.327705	-0.000058
6	6	0	1.784262	1.378782	-0.000246
7	1	0	-0.220516	1.996244	-0.000509
8	1	0	0.525169	-2.253102	0.000111
9	1	0	2.910822	-1.824770	0.000188
10	8	0	4.021504	0.680301	-0.000034
11	6	0	4.973663	-0.360260	0.000269
12	1	0	5.949189	0.120977	0.000309
13	1	0	4.876480	-0.985731	0.893508
14	1	0	4.876716	-0.986044	-0.892775
15	6	0	-1.477747	-0.545473	-0.000205
16	6	0	-2.768990	0.256065	0.000090
17	6	0	-2.595877	1.776800	0.000426
18	1	0	-2.070952	2.124355	0.891485
19	1	0	-2.071509	2.124835	-0.890775
20	1	0	-3.587724	2.235634	0.000840
21	6	0	-3.586746	-0.110662	1.259519
22	1	0	-3.834310	-1.174368	1.313896
23	1	0	-3.030637	0.147577	2.163187
24	1	0	-4.530631	0.440673	1.261508
25	8	0	-1.673163	-1.904977	-0.000395
26	1	0	-2.611272	-2.104036	-0.000319

27	6	0	-3.587053	-0.110143	-1.259276	
28	1	0	-4.530916	0.441235	-1.260833	
29	1	0	-3.031144	0.148413	-2.162977	
30	1	0	-3.834664	-1.173820	-1.313964	
31	1	0	2.163487	2.393694	-0.000380	

Cartesian coordinates of INT2

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Ŷ	Z	
1	8	0	0.063382	-1.504391	-1.196842	
2	6	0	-0.550059	0.491545	-0.141887	
3	7	0	-1.353205	1.570778	0.085744	
4	6	0	-0.555355	2.634535	0.390794	
5	7	0	0.703683	2.320148	0.392649	
6	7	0	0.709335	0.979892	0.063264	
7	6	0	-2.174530	-1.425112	-0.362442	
8	6	0	-2.558252	-2.568982	-1.086095	
9	6	0	-3.788635	-3.149038	-0.817688	
10	6	0	-4.607162	-2.583933	0.163502	
11	6	0	-4.139457	-1.455494	0.834038	
12	1	0	-4.742802	-0.990707	1.611556	
13	1	0	-5.575444	-3.006060	0.409384	
14	1	0	-4.111002	-4.030150	-1.365128	
15	1	0	-1.885661	-2.968606	-1.836597	
16	6	0	-2.762519	1.943762	-0.080235	
17	1	0	-3.172603	1.476665	-0.977154	
18	1	0	-3.326601	1.602441	0.788841	
19	6	0	-0.843726	-0.837704	-0.609837	
20	7	0	-2.955799	-0.886766	0.592943	
21	6	0	1.949212	0.265404	0.104543	

22	6	0	2.904027	0.531021	-0.885421	
23	6	0	2.175482	-0.638749	1.145247	
24	6	0	4.118572	-0.149231	-0.813326	
25	6	0	3.406541	-1.302150	1.171547	
26	6	0	4.386537	-1.070632	0.205773	
27	1	0	4.871352	0.036938	-1.576873	
28	1	0	3.601241	-2.012200	1.972309	
29	6	0	1.131573	-0.906961	2.195436	
30	1	0	0.674307	0.021752	2.551824	
31	1	0	0.328785	-1.538238	1.796905	
32	1	0	1.575260	-1.423787	3.049288	
33	6	0	2.616452	1.503350	-1.997691	
34	1	0	1.663442	1.269743	-2.484052	
35	1	0	2.547980	2.528604	-1.620383	
36	1	0	3.406949	1.465337	-2.750378	
37	6	0	5.712641	-1.785428	0.253495	
38	1	0	5.910295	-2.304427	-0.689755	
39	1	0	6.531664	-1.076463	0.414248	
40	1	0	5.735985	-2.521201	1.061036	
41	6	0	-1.371804	3.870674	0.579126	
42	1	0	-1.558490	4.028407	1.646331	
43	1	0	-0.883334	4.757547	0.175064	
44	6	0	-2.666322	3.482048	-0.175715	
45	1	0	-2.574067	3.775167	-1.224887	
46	1	0	-3.551702	3.962441	0.241972	

Cartesian coordinates of TS3

Center	Atomic	Atomic	Coordinates (Angstroms)				
Number	Number	Туре	Х	Y	Ζ		
1	6	0	12.959357	0.675645	-1.116248		
2	6	0	12.220435	-0.433602	-0.696147		

3	6	0	12.640665	-1.128788	0.432153	
4	6	0	13.761385	-0.723638	1.150920	
5	6	0	14.481752	0.394522	0.726516	
6	6	0	14.078340	1.090664	-0.416886	
7	1	0	12.656190	1.214771	-2.008805	
8	1	0	12.081352	-2.006353	0.737105	
9	1	0	14.065067	-1.285415	2.023819	
10	8	0	15.587252	0.874083	1.350341	
11	6	0	16.042446	0.194226	2.501746	
12	1	0	16.925389	0.731844	2.839320	
13	1	0	15.285461	0.204544	3.292013	
14	1	0	16.312698	-0.840229	2.268710	
15	6	0	11.018300	-0.893775	-1.459999	
16	1	0	10.889602	-0.386981	-2.435628	
17	6	0	9.484099	0.163049	-0.705819	
18	6	0	9.865924	1.609614	-0.871683	
19	1	0	10.720050	1.882567	-0.250914	
20	1	0	10.084487	1.857209	-1.913640	
21	1	0	9.012893	2.227505	-0.561323	
22	6	0	9.384481	-0.302220	0.720816	
23	1	0	9.256842	-1.384568	0.769564	
24	1	0	10.264798	-0.016478	1.299632	
25	1	0	8.509501	0.170447	1.185364	
26	8	0	10.584535	-2.063263	-1.320557	
27	6	0	8.352753	-0.286929	-1.592876	
28	1	0	7.433769	0.225609	-1.281909	
29	1	0	8.536521	-0.031325	-2.639267	
30	1	0	8.197566	-1.362368	-1.516480	
31	1	0	14.664729	1.944077	-0.734019	
32	6	0	-11.142317	-1.107312	0.259967	
33	6	0	-11.505848	0.263077	0.199904	
34	6	0	-12.858243	0.603070	0.260111	
35	6	0	-13.854822	-0.359336	0.380194	
36	6	0	-13.492495	-1.703991	0.453995	
37	6	0	-12.161928	-2.076674	0.399282	
38	6	0	-9.772680	-1.557178	0.178013	
39	6	0	-8.602219	-0.774869	-0.135451	
40	6	0	-8.622488	0.647504	-0.166117	
41	6	0	-7.381173	-1.429066	-0.432404	
42	6	0	-6.226164	-0.715351	-0.699587	
43	6	0	-6.241108	0.677182	-0.696342	
44	6	0	-7.441609	1.334461	-0.442783	
----	----	---	------------	-----------	-----------	--
45	8	0	-9.628180	-2.898205	0.354594	
46	1	0	-13.144826	1.650710	0.216978	
47	1	0	-14.897406	-0.067995	0.422017	
48	1	0	-14.256103	-2.466676	0.554199	
49	1	0	-11.891153	-3.121982	0.455338	
50	1	0	-7.329592	-2.509523	-0.512116	
51	1	0	-5.311356	-1.249552	-0.928360	
52	1	0	-5.338272	1.238019	-0.904290	
53	1	0	-7.454952	2.421211	-0.463799	
54	14	0	-10.203136	1.597964	0.144015	
55	6	0	-10.121494	2.516620	1.779868	
56	1	0	-9.318910	3.259323	1.770374	
57	1	0	-11.061778	3.038285	1.978558	
58	1	0	-9.936232	1.823832	2.603261	
59	6	0	-10.525946	2.826278	-1.238014	
60	1	0	-9.739370	3.584603	-1.280029	
61	1	0	-10.567480	2.322204	-2.205399	
62	1	0	-11.475179	3.346217	-1.082325	
63	1	0	-8.715678	-3.105047	0.572043	

Cartesian coordinates of tBu radical

Center	Atomic	Atomic	Coord	linates (Angst	roms)	
Number	Number	Туре	Х	Y	Z	
1	6	0	-0.000018	0.000014	-0.183509	
2	6	0	1.200223	0.865806	0.019138	
3	1	0	1.058984	1.857184	-0.419091	
4	1	0	1.410367	1.017241	1.090553	
5	1	0	2.096363	0.419133	-0.419306	
6	6	0	0.149709	-1.472298	0.019140	
7	1	0	-0.685659	-2.025018	-0.418416	
8	1	0	1.078416	-1.845812	-0.419974	
9	1	0	0.176894	-1.729893	1.090553	

10	6	0	-1.349937	0.606495	0.019140	
11	1	0	-1.586445	0.711995	1.090577	
12	1	0	-1.410995	1.606217	-0.418609	
13	1	0	-2.137790	-0.011151	-0.419746	

Cartesian coordinates of anisaldehyde

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	-0.803116	1.413869	-0.000259
2	6	0	-1.470549	0.185372	-0.000201
3	6	0	-0.730343	-0.994727	0.000239
4	6	0	0.656474	-0.962080	0.000657
5	6	0	1.313610	0.274049	0.000619
6	6	0	0.577121	1.464122	0.000243
7	1	0	-1.377107	2.335333	-0.000713
8	1	0	-1.260624	-1.940267	0.000384
9	1	0	1.213101	-1.889069	0.001177
10	8	0	2.656648	0.417133	0.000877
11	6	0	3.453910	-0.751736	-0.001182
12	1	0	4.485743	-0.409490	-0.002715
13	1	0	3.270383	-1.354380	0.892978
14	1	0	3.267323	-1.353303	-0.895419
15	6	0	-2.946569	0.145582	-0.000560
16	1	0	1.116516	2.402751	0.000266
17	8	0	-3.604107	-0.864296	0.000149
18	1	0	-3.438892	1.139023	-0.001503

Calculated BDFEs

The BEFE was calculated as follows: BDFE $(A-H) = G^{\circ}(A^{\bullet}) + G^{\circ}(H^{\bullet}) - G^{\circ}(A-H)$

Where:

 $G^{\circ}(A^{\boldsymbol{\cdot}})$ is the Gibbs free energy of the radical $A^{\boldsymbol{\cdot}}$

 $G^{\circ}(H^{\boldsymbol{\cdot}})$ is the Gibbs free energy of the hydrogen radical

G°(A–H) is the Gibbs free energy of the A–H molecule

substrate	X radical	Free Energy of substrate (Hartree)	Free Energy of X radical (Hartree)	Free Energy of H radical (Hartree)	calculated BDFE (kcal/mol)
MeO MeO	MeO MeO	-618.21901	-617.55805	-0.50885	95.5
СІ Малан	CI N N	-916.69869	-916.05973	-0.50885	81.6
S.H	, s ∙	-983.80913	-983.19273	-0.50885	67.5
о-н Стур		-973.95796	-973.29152	-0.50885	98.9
Meo Ph' Ph	MeO Ph Ph Ph	-1779.8772	-1779.2157	-0.50885	95.8

■ Supplementary References ■

- Campbell, M. W.; Yuan, M.; Polites, V. C.; Gutierrez, O.; Molander, G. A. Photochemical C-H Activation Enables Nickel-Catalyzed Olefin Dicarbofunctionalization. J. Am Chem. Soc. 2021, 143, 3901–3910. https://doi.org/10.1021/jacs.0c13077.
- (2) Erchinger, J. E.; Hoogesteger, R.; Laskar, R.; Dutta, S.; Hümpel, C.; Rana, D.; Daniliuc, C. G.; Glorius, F. EnT-Mediated N–S Bond Homolysis of a Bifunctional Reagent Leading to Aliphatic Sulfonyl Fluorides. *J. Am. Chem. Soc.* 2023, 145, 2364–2374. https://doi.org/10.1021/jacs.2c11295.
- (3) Zhao, K.; Wang, H.; Li, T.; Liu, S.; Benassi, E.; Li, X.; Yao, Y.; Wang, X.; Cui, X.; Shi, F. Identification of a Potent Palladium-Aryldiphosphine Catalytic System for High-Performance Carbonylation of Alkenes. *Nat. Commun.* 2024, *15.* https://doi.org/10.1038/s41467-024-46286-9.

- (4) Hertz, V. M.; Ando, N.; Hirai, M.; Bolte, M.; Lerner, H.-W.; Yamaguchi, S.; Wagner, M. Steric Shielding vs Structural Constraint in a Boron-Containing Polycyclic Aromatic Hydrocarbon. *Organomet.* 2016, *36*, 2512–2519. https://doi.org/10.1021/acs.organomet.6b00800.
- (5) Bomon, J.; Van Den Broeck, E.; Bal, M.; Liao, Y.; Sergeyev, S.; Van Speybroeck, V.; Sels, B. F.; Maes, B. U. W. Brønsted Acid Catalyzed Tandem Defunctionalization of Biorenewable Ferulic Acid and Derivates into Bio-Catechol. *Angew. Chem. Int. Ed.* **2020**, *59*, 3063–3068. https://doi.org/10.1002/anie.201913023.
- (6) Liang, J.; Wang, M.; Zhao, Y.; Yan, W.; Si, X.; Yu, G.; Cao, J.; Wei, X. Nano WO3-Catalyzed One-Pot Process for Mild Oxidative Depolymerization of Lignin and Its Model Compounds. *ChemCatChem* 2021, 13, 3836–3845. https://doi.org/10.1002/cctc.202100670.
- (7) Wu, H.; Li, X.; Yang, L.; Chen, W.; Zou, C.; Deng, W.; Wang, Z.; Hu, J.; Li, Y.; Huang, Y. Cathodic Carbonyl Alkylation of Aryl Ketones or Aldehydes with Unactivated Alkyl Halides. *Org. Lett.* **2022**, *24*, 9342–9347. https://doi.org/10.1021/acs.orglett.2c04019.
- (8) Reddel, J. C. T.; Wang, W.; Koukounas, K.; Thomson, R. J. Triflimide-Catalyzed Allylsilane Annulations of Benzylic Alcohols for the Divergent Synthesis of Indanes and Tetralins. *Chem. Sci.* 2017, *8*, 2156–2160. https://doi.org/10.1039/c6sc04762a.
- (9) Suh, S. M.; Jambu, S.; Chin, M. T.; Diao, T. Selective Cleavage of Lignin Model Compounds via a Reverse Biosynthesis Mechanism. Org. Lett. 2023, 25, 4792–4796. https://doi.org/10.1021/acs.orglett.3c01416.
- (10)Liu, C.; Han, J.; Marcelina, O.; Nugrahaningrum, D. A.; Huang, S.; Zou, M.; Wang, G.; Miyagishi, M.; He, Y.; Wu, S.; Kasim, V. Discovery of Salidroside-Derivated Glycoside Analogues as Novel Angiogenesis Agents to Treat Diabetic Hind Limb Ischemia. *J. Med. Chem.* 2021, 65, 135–162. https://doi.org/10.1021/acs.jmedchem.1c00947.
- (11) Antico, E.; Schlichter, P.; Werlé, C.; Leitner, W. Reduction of Carboxylic Acids to Alcohols via Manganese(I) Catalyzed Hydrosilylation. JACS Au 2021, 1, 742–749. https://doi.org/10.1021/jacsau.1c00140.
- (12)Drymona, M.; Kaplanai, E.; Vougioukalakis, G. C. An In-Situ-Formed Copper-Based Perfluorinated Catalytic System for the Aerobic Oxidation of Alcohols. *Eur. J. Org. Chem.* 2024, 27. https://doi.org/10.1002/ejoc.202301179.
- (13)Benischke, A. D.; Anthore-Dalion, L.; Berionni, G.; Knochel, P. Preparation of Functionalized Diaryl- and Diheteroaryllanthanum Reagents by Fast Halogen–Lanthanum Exchange. *Angew. Chem. Int. Ed.* 2017, *56*, 16390–16394. https://doi.org/10.1002/anie.201709553.
- (14) Mandal, A.; Ganguli, K.; Pradhan, M.; Gorai, A.; Kundu, S. Selective Transfer Hydrogenation of C=O and Conjugated C=C Bonds Using An NHC-Based Pincer (CNC)MnI Complex in Methanol**. *ChemSusChem* 2023, *16*. https://doi.org/10.1002/cssc.202300683.
- (15)Pieber, B.; Malik, J. A.; Cavedon, C.; Gisbertz, S.; Savateev, A.; Cruz, D.; Heil, T.; Zhang, G.; Seeberger, P. H. Semi-heterogeneous Dual Nickel/Photocatalysis Using Carbon Nitrides: Esterification of Carboxylic Acids with Aryl Halides. *Angew. Chem. Int. Ed.* 2019, *58*, 9575–9580. https://doi.org/10.1002/anie.201902785.

- (16) Wang, L.; Yu, J.; Duan, Z.; Jin, J.; Zhang, Y. Cobalt-Catalyzed Synthesis of Aryl Ketones and Aldehydes from Redox-Active Esters. Org. Biomol. Chem. 2022, 20, 6554–6557. https://doi.org/10.1039/d2ob01275h.
- (17)Borthakur, I.; Joshi, A.; Kumari, S.; Kundu, S. Metal-Free Visible-Light Induced Oxidative Cleavage of C(Sp³)-C, and C(Sp³)-N Bonds of Nitriles, Alcohols, and Amines. *Chem. Eur. J.* 2024, *30.* https://doi.org/10.1002/chem.202303295.
- (18)Dilauro, G.; Azzollini, C. S.; Vitale, P.; Salomone, A.; Perna, F. M.; Capriati, V. Scalable Negishi Coupling between Organozinc Compounds and (Hetero)Aryl Bromides under Aerobic Conditions When Using Bulk Water or Deep Eutectic Solvents with No Additional Ligands. *Angew. Chem. Int. Ed.* **2021**, *60*, 10632–10636. https://doi.org/10.1002/anie.202101571.
- (19)Davenport, E.; Negru, D. E.; Badman, G.; Lindsay, D. M.; Kerr, W. J. Robust and General Late-Stage Methylation of Aryl Chlorides: Application to Isotopic Labeling of Drug-like Scaffolds. *ACS Catal.* 2023, *13*, 11541–11547. https://doi.org/10.1021/acscatal.3c02761.
- (20)Brandhofer, T.; Mancheño, O. G. Versatile Ru-Photoredox-Catalyzed Functionalization of Dehydro-Amino Acids and Peptides. *ChemCatChem* 2019, *11*, 3797–3801. https://doi.org/10.1002/cctc.201900446.
- (21)Kemmochi, M.; Miyamoto, Y.; Sumida, Y.; Ohmiya, H. Direct Photoexcitation of Borate Enabling Minisci Reaction. Asian J. Org. Chem. 2021, 11. https://doi.org/10.1002/ajoc.202100640.
- (22)Gaussian 16, Revision C.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, Ö.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford, CT, 2016.
- (23)Zhao, Y. & Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. *Theor. Chem. Acc.* 2008, *120*, 215–241