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Section S1.  Theoretical Method 

Section S1.1.  Static state simulation 

An ensemble of N molecules are indexed by i=1, 2, …, N with vibrational ground and excited states |0⟩ 

and |1⟩ separated by transition energies of ωmol,i and connected by raising and lowering operators σi
†
 and 

σi .  The transition energies are inhomogeneously distributed around ω0 following a Gaussian distribution 

P(ωmol,i)=1/(σ√2π)exp(-(ωmol,i-ω0)
2

/(2σ2)) , where the average and variance are ω0  and σ2  , 

respectively.  The light field is quantized by the photonic creation and annihilation operators a†
 and a with 

the energy ωcav, and the light-matter interaction is g.   

We restrict our simulation to the single excitation space, under the rotating wave approximation, in 

Equation (1), the Hamiltonian of the Tavis-Cummings model writes: 

   Eq. (1) 

By diagonalizing this Hamiltonian, N+1 eigenvalues and their corresponding eigenvectors can be 

solved.  As shown in Equation (2), eigenvectors can be represented by a linear combination of the cavity 

mode (|φph⟩) and bare molecular transitions (|φmol,i⟩)), and |c|2 are usually called Hopfield coefficients.   

    Eq. (2) 

The spectrum of the light-matter coupled system can be calculated using |cph|
2
, and the delocalized 

contribution from bare molecular transitions can be quantified using a normalized inverse participation ratio 

(nIPR) as defined in equation (3): 

     Eq. (3) 

The ci
'(m)

 is a modified linear combination coefficient representing contribution from the ith molecular 

transition to the mth hybridized state, where the eigenvector is renormalized to 1 after excluding its photonic 

entry (cph).  Furthermore, the nIPR is normalized by the molecular ensemble size of N, such that its value 

ranges between 1/N (approaching 0 for large N) and 1, denoting completely localized and delocalized 

wavefunctions, respectively.  Results presented in the main text are simulated employing N= 3000, and 100 

repetitive simulations have been run independently and averaged to ensure sufficient sampling.  For other 

ensemble sizes used in our static state simulations, a repeat number of 300000/N was chosen unless 

otherwise stated.    
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Section S1.2.  Dynamic simulation 

First, we initialize a wavefunction on the photonic mode, mimicking broadband excitation of polariton 

spectrum, and propagate it overtime using the time-dependent Schrödinger equation.  The projection of the 

time-dependent wavefunction onto each bare molecular mode (ci(t)=⟨φmol,i|φ(t)⟩) is renormalized to unity 

and used to calculate the nIPR according to Eq. (4): 

    Eq. (4) 

Similar to the nIPR(m) defined in Eq. (3), the nIPR describing the system ranges between 0 and 1, 

representing localization and delocalization, respectively.  

Next, we write the Lindblad master equation of this system in Eq. (5) for the population relaxation and 

decoherence simulation: 

   Eq. (5) 

Here, ρ  is the density matrix of the system, H  is the Hamiltonian, and Lk  are Lindblad operators 

representing some decoherence or relaxation processes that occur at rates of γk .  Specifically, the Lk 

describing a pure-dephasing process for the kth molecule has the corresponding diagonal element of –1, 

while the remaining diagonal elements are 1 and off-diagonal elements are 0.  The Lk  describing a 

vibrational relaxation process from the kth molecular excited state to the ground state has the corresponding 

off-diagonal element of 1, while the remaining elements are 0.  We also initialize a wavefunction in the 

coherent state of |φ(0)⟩= 
1

√N
∑ |g1,g2,…,ei,…, gN⟩N

i  to simulate the outside-cavity scenario for comparison.  

The inside and outside cavity comparison will be presented in Section S4 and Figure S7–9.   
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Section S1.3.  Simulation of the filter effect 

The analytical expression of the polariton spectrum (A(ω)) is derived in Ref. 1 and given in Eq. (6): 

   Eq. (6a) 

     Eq. (6b) 

      Eq. (6c) 

where ωR is the collective coupling strength (approximated as g√N), P(ω) is the normalized molecular 

absorption spectrum of a Gaussian lineshape, P(ω)=1/(σ√2π)exp(-(ω-ω0)2/(2σ2)), where ω0 is the 

center of molecular transition frequencies and ωc is the cavity frequency (under resonant conditions, 

we set ω0 = ωc = 0 cm-1), and the erfi function is the imaginary error function. 

The dot product of the molecular absorption spectrum and the numerically normalized polariton 

spectrum is integrated along the frequency axis within the full-width-of-half-maximum (fwhm) of polariton 

bands (UP and LP). Specifically, the collective coupling is chosen as 50 cm-1, thus the standard deviation 

of the Gaussian distribution changes according to the value of σ⁄(g√N), which is scanned between 0.04 

and 0.9 with a step size of 0.01. In frequency axis spans from -100 to 100 cm-1, with a frequency step of 

0.01 × σ⁄(g√N)  to guarantee sufficient number of points under the narrow polariton peaks for 

integration. The resultant integrals are plotted as a function of σ⁄(g√N) in Figure 2E in the main text. The 

localized contribution is negligible when σ⁄(g√N) ≤ 0.25 due to minimal spectral overlap, above which 

the localized contribution rapidly increases (logrithmic plot in Figure S2). 
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Section S2.  Figures (mentioned in main manuscript) 

 

Figure S1.  The threshold ratios for nIPR transitioning from delocalization to localization in terms of 

σ/(g√N) as a function of simulation size.  All simulation results are averaged from Nrep trials such that 

Nrep × N = 300000.  Other simulation parameters are ωcav= ωmol,0 = 2000 cm-1, g = 1 cm-1. 
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Figure S2.  The logarithmic-plot of integrated localized molecular contribution by filtering the 

molecular absorption by a polariton spectral window.  A linear-scale plot is shown as Figure 2E in the main 

text.   
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Section S3.  Simulation size dependence, detuning, and dispersion 

Several considerations should be addressed regarding the generalizability of our conclusion. The first 

concern is the robustness of the delocalization threshold ratio towards simulation size, which we explored 

by examining its ensemble size dependence.  Shown in Figure S1, the threshold ratio of σ/(g√N) is ca. 0.3 

when N= 30, which gradually approaches ca. 0.23 when ensemble sizes are larger than 1000.  On average, 

the threshold is estimated to be ca. 0.25.  Based on this, we predict that a similar transition of the 

delocalization nature would occur for a more realistic and larger system (N on the order of 106 and larger), 

when the ratio between the inhomogeneous linewidth and the collective coupling is between 0.2 and 0.3.  

In other words, the delocalization character of polaritons may be reached only when the separation between 

polariton peaks is 3–5 times larger than the linewidths of inhomogeneous broadening of molecular 

transitions.   

The second question is whether the threshold ratio remains valid when the cavity frequency is detuned 

from the molecular modes. We found the threshold ratio depends on the extend of the detuning.  As shown 

in Figure S3 with a representative detuning of 10 cm-1, when the cavity detuning falls within the linewidth 

of the inhomogeneous broadening, the delocalization threshold ratio appears to be unaffected.  In contrast, 

detuning starts to influence the delocalization threshold ratio once its magnitude exceeds the 

inhomogeneous broadening.  Given that ωcav> ωmol,0 , the delocalization property of UP has a greater 

tolerance for disorder, in contrast, the delocalization of LP is lost at an even lower σ/(g√N)  ratio.  This 

can be rationalized by the fact that UP is predominantly composed of photon when highly blue-detuned, 

allowing it to couple to all molecular modes and resulting in a higher level of delocalization in its molecular 

component.  In contrast, LP is nearly matter-like, thus requiring a stronger coupling strength to reinforce 

delocalization.  The detuning dependence suggests a possibility of enhancing the delocalization of one 

branch of the polaritons by tuning the cavity mode towards that specific direction.  However, one should 

be cautious that detuning will eventually lead to decoupling between photon and matter, resulting in the 

disappearance of polaritons and pure excitation of either photon or matter.  
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Figure S3.  The variation of the normalized Inverse Participation Ratio (nIPR) of the upper polariton 

(UP, A) and lower polariton (LP, B) as a function of the inhomogeneous linewidth (σ) and its ratio with the 

collective coupling strength (σ/(g√N)).  The nIPR ranges from 1/N to 1, representing the fully localized 

and delocalized polariton wavefunctions.  The black dashed lines indicate the magnitude of cavity detuning.  

The black solid lines indicate the delocalization threshold ratios under each disorder. Parameters used in 

this simulation include N= 3000, g = 1 cm-1, ωcav = 2010 cm-1, and ωmol,0 = 2000 cm-1, and the results are 

averaged from 100 repeats.   

 

The third question deals with dispersion, which is elaborated in the main text, and here we provide 

more simulation results calculated with different σ/(g√N)  ratios (Figure S4).  We observed a positive 

correlation between the photonic weight of polaritons and their delocalization when investigating dispersion 

properties of polariton spectra and nIPRs under various detuning conditions. Four representative energy 

disorders are selected: σ/(g√N)= 0.1 and 0.2 from the region (I), σ/(g√N) = 0.3 from the region (II), and 

σ/(g√N)  = 0.4 from the region (III). In the region (I), polaritons show significant robustness of 

delocalization upon detuning and along the dispersion curve (Figure S4A and B). In contrast, the latter two 

(Figure S4C and D) exhibit weak polariton intensities and minimal nIPR at normal incidence. Larger 

incident angles yield a more photonic UP and result in higher delocalization (bigger nIPR). In addition, red-

detuning (Figure S4, panel 3 of each condition) allows the LP to shift away from the dispersionless dark 

modes towards lower frequencies, recovering its photonic weight and delocalization, whereas the UP 

merges into the dark modes, yielding weaker spectral intensity and localized nIPRs. 
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Figure S4.  Dispersion curves of polariton spectra and delocalization as represented by nIPR calculated 

under various disorder conditions: σ/(g√N) = 0.1 (A, C), 0.2 (B, D), 0.3 (E,G), and 0.4 (F, H), respectively.  

Parameters: ωmol,0  = 2000 cm-1, g = 1 cm-1 and N  = 3000. White dashed lines represent cavity mode 

frequencies, and yellow solid lines represent molecular energy distributions and center frequencies.   
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Section S4.  Population relaxation and pure dephasing 

We found that the excited state lifetime of the coupled system can be lengthened by the lossless cavity 

compared to pure molecules, however, such an effect quickly disappears due to energy disorder, especially 

when σ/(g√N)  exceeds 0.25.  To simulate the relaxation dynamics, we assumed a vibrational excited state 

lifetime of ca. 5.3 ps, equivalent to a Lorentzian linewidth of 2 cm-1 due to lifetime broadening.  An 

additional ground state entry is introduced, which becomes populated upon relaxation of vibrationally 

excited molecules.  Figure S5A illustrates that the replenishment of the ground state is slowed down by the 

cavity via light-matter coupling, leading to a maximum of ca. 50% decrease in the exponential rate constant 

in the absence of energy disorder.  Although it would be difficult to fabricate a perfect cavity in reality, it is 

possible to lengthen the excited vibrational lifetime if a high-quality factor cavity is utilized.  

We also observed a similar trend in the decoherence dynamics. We employed a pure dephasing time of 

ca. 5.3 ps in the simulations, after which the density matrix transforms into a decoupled mixed state, 

alternatively speaking, polaritons decay into dark reservoir modes.  The loss of coherence is evident by the 

reduced purity of the density matrix (Tr(ρ2)).  Similarly, figure S5B shows that the decoherence is slowed 

down inside the cavity, with a maximum of ca. 40% decrease of the rate constant in the absence of energy 

disorder, whereas increasing disorder again attenuates the effect, gradually converging to the outside-cavity 

result.   

 

Figure S5.  (A): Temporal profiles of ground state population calculated with increasing degrees of 

energy disorder (light to dark green) using a molecular vibrational excited state life of ca. 5.3 ps.  (B) The 

purity of the time-dependent density matrixes calculated with increasing degrees of energy disorder (light 

to dark blue) using a pure dephasing time of ca. 5.3 ps.  The black lines indicate the outside cavity results, 

and the red lines highlight the results of σ/(g√N) = 0.25.  Parameters: g = 10 and N = 36.    
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It is also worth noting that we employed a small ensemble size of N= 36 to reduce the computational 

cost of dynamic simulations while using the Lindblad equation, and the convergence has been achieved.  

Shown in Figure S6, when keeping constant values of the Rabi splitting, energy disorder, and vibrational 

relaxation rate (or dephasing rate in Figure S7), different simulation sizes result in identical kinetic traces 

of the ground state population (or purity temporal profile in Figure S7).  In addition, the overall dynamical 

trends remain unchanged when varying Rabi splitting as long as the σ/(g√N)  is constant, although smaller 

Rabi splittings can lead to more pronounced oscillatory patterns.   

 

Figure S6.  Temporal profiles of the ground state population calculated with (A): fixed collective 

coupling strength and disorder ratio, but varying ensemble size.  (B): fixed ensemble size and disorder ratio, 

and varying coupling strength.    
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Figure S7.  The purity of the time-dependent density matrix calculated with (A): fixed collective 

coupling strength and disorder ratio, but varying ensemble size.  (B): fixed ensemble size and disorder ratio, 

and varying coupling strength.   
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