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1. General Procedures

All starting materials were purchased from Aldrich and Alfa Aesar, and used without further 

purification. Compound 1 and 3 were synthesized according to the reported methodsS1, S2. Column 

chromatography was conducted using basic Al2O3 (Sinopharm Chemical Reagents Co. Ltd, 200-300 

mesh) or SiO2 (Qingdao Haiyang Chemical Co., Ltd, 200-300 mesh) and the separated products were 

confirmed by NMR spectra using a Bruker Avance 400-MHz or 500-MHz NMR spectrometers in 

CDCl3, and, CD3CN with a TMS standard. Electro-spray ionization (ESI) mass spectra were recorded 

with a Bruker microOTOF-QII or a Waters Synapt HDMS G2 instrument, using solutions of 0.01 

mg/mL in CHCl3/MeCN (1:3, v/v) for ligands and 0.2 mg/mL in MeCN or MeCN/MeOH (3:1, v/v) 

for complexes.

NMR. Nuclear magnetic resonance spectra data were recorded on a Bruker 500 MHz, a Bruker 500 

MHz and a 400 MHz nuclear magnetic resonance instrument using, CDCl3 and CD3CN as the solvents 

with tetramethylsilane (TMS) as the internal standard at 25 °C.

ESI-MS and TWIM-MS. ESI mass spectrometry and traveling wave ion mobility (TWIM) 

experiments were conducted on a Waters Synapt HDMS G2 instrument with a LockSpray ESI source, 

using the following parameters: ESI capillary voltage, 1.3-3.0 kV; sample cone voltage, 20-25 V; 

extraction cone voltage, 1.1-3 V; desolvation gas flow, 800 L/h (N2); trap collision energy (CE), 4 V; 

transfer CE, 0 V; trap gas flow, 2.0 mL/min (Ar); source temperature, 30 °C; and desolvation 

temperature, 30 °C. All samples were dissolved in CH3CN or CH3CN/CH3OH (1:1, v/v) and then 

infused into the -100, KD Scientific). For TWIM experiments, the helium cell gas flow was held at 

180.0 mL/min and the ion mobility cell gas flow was held at 90.0 mL/min (N2). The TWIM DC 

traveling wave velocity and height were set as 683 m/s and 26.3 V, respectively. Data were collected 

and analyzed by using MassLynx 4.1 and DriftScope 2.4 (Waters).

UV-vis absorption. UV-vis absorption spectra were recorded on a Thermo Fisher Scientific Evolution 

201 spectrophotometer at room temperature (10−6 M in acetonitrile) and were corrected with the 

background spectrum of the solvent.

Single crystal X-ray diffraction. Single-crystal X-ray diffraction data for D2-2 (CCDC: 2359196) w

as collected on a Bruker D8 VENTURE METALJET liquid metal Xray source system (GaKα, λ= 1.3

4138 Å) at low temperatures (100 K), equipped with an Oxford 800 Plus liquid nitrogen vapor coolin

g device. Using Olex2,S4 the structures were solved with the SHELXT S5 structure solution program u

sing Intrinsic Phasing and refined with the SHELXLS6 refinement package using Least Squares mini

misation. The contribution of disordered guest molecules to scattering was removed by the SQUEEZ

ES7 program of PLATON.S8
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Energy calculation method: First-principles calculations are performed by Forcite at Materials 

Studio. Simulation is performed using a universal force field. The containment limits for energy, 

maximum force, and maximum displacement are set to 2*10–5 kcal/mol, 0.001 kcal/mol/Å, e–5 Å, 

respectively. The effects of the counterions were omitted in the modeling. Structures were constructed 

on the basis of the crystal structures. Valence energy (diag. terms) contains the contributions of bond, 

angle, torsion, and inversion. Valence energy (cross terms) contains the contributions of stretch-

stretch, stretch-bend-stretch, stretch-torsion-stretch, separated-stretch-stretch, torsion-stretch, bend-

bend, torsion-bend-bend and bend-torsion-bend. Non-bond energy contains the contributions of van 

der Waals and electrostatic interactions. All of the energies are reported in kcal/mol.[S9-S10]
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2. Synthesis of the Ligands L and metallo-organic cages CdⅡ
8L4.

Compound 1 were synthesized according to the reported methodsS1.

Compound 3 were synthesized according to the reported methodsS2.
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Compound 2: Mixing compound 1 (1.3 g, 3.0 mmol) and Bis(pinacolato)diboron (0.9 g, 3.6 mmol) 

into a 100 mL flask, then 1,4-Dioxane (50 mL), and CH3COOK (0.9 g, 9.0 mmol) was added. The 

system was degassed for 10 min, and Pd(dppf)2Cl2 (150 mg, 0.2 mmol) as the catalyst was added. The 

mixture was stirred at 85 °C under nitrogen for 8 h, after cooled to ambient temperature. Concentrated 
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in vacuo followed by adding CH2Cl2 to dissolve the product, filtered, then removed CH2Cl2 under 

vacuum to give the product, as white solid: 1.3 g, 93%. 1H NMR (400 MHz, CDCl3) δ 8.98 (s, 1H, 

tpy-H3'), 8.69 (s, 1H, tpy-H5'), 8.69-8.64 (m, 2H, tpy-H6,6''), 8.62-8.60 (d, 1H, J= 8 Hz, tpy-H3), 8.58-

8.56 (d, 1H, J= 8 Hz, tpy-H3''), 8.18-8.16 (d, 1H, J= 8 Hz, tpy-H4), 7.84-7.81 (m, 3H, tpy-H4'', Ph-Hg), 

7.30-7.27 (m, 1H, tpy-H5''), 6.98-6.96 (d, 2H, J= 8 Hz, Ph-Hh), 3.82 (s, 3H, Ha), 1.33 (s, 12H, Hb). 13C 

NMR (126 MHz, CDCl3) δ 160.54, 158.29, 156.37, 155.90, 155.83, 155.05, 149.73, 149.08, 143.13, 

136.86, 130.76, 128.55, 123.75, 121.42, 120.44, 118.77, 118.53, 114.35, 84.23, 55.37, 24.91. ESI-MS 

(465.4 calcd. For C28H28BN3O3): m/z 466.231 [M + H+]+ (calcd m/z: 466.231).
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Compound 4: 1,5-dibromo-2,4-diiobenzene (3.0 g, 6.2 mmol) and compound 3 (4.5 g, 12.4 mmol) 

was added to a 500 mL flask, then THF (200 mL) and NaOH (1.5 g, 37.2 mmol) in 30 mL of water 

was added. The system was degassed for 10 min, and Pd(PPh3)4 (346.0 mg, 0.3 mmol) as the catalyst 

was added. The mixture was stirred at 65 °C under nitrogen for 2 d, after cooled to ambient 

temperature, then concentrated in vacuo followed by column chromatography (Al2O3), eluting with 

the mixture of petroleum ethe and CH2Cl2 (v/v, 1:3) to pure the product, as white solid: 3.0 g, 54%. 1H 

NMR (400 MHz, CDCl3) δ 8.76 (s, 4H, tpy-H3',5'), 8.59-8.58 (d, 4H, J= 4 Hz, tpy-H6,6''), 8.47 (s, 4H, 

tpy-H3,3''), 8.05 (s, 1H, Hb), 8.00-7.98 (d, 4H, J= 8 Hz, Ph-Hg), 7.61-7.59 (d, 4H, J= 8 Hz, Ph-Hh), 7.43 

(s, 1H, Ha), 7.19-7.18 (d, 4H, J= 4 Hz, tpy-H5,5''). 13C NMR (101 MHz, CDCl3) δ 156.21, 155.96, 

149.54, 149.00, 148.09, 141.33, 140.32, 138.12, 136.89, 133.06, 129.86, 127.15, 124.89, 122.15, 

121.96, 119.04, 21.40. ESI-MS (906.7 calcd. For C52H38Br2N6): m/z 907.161 [M + H+]+ (calcd m/z: 

907.151).
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Compound L: To a solution of 4 (1.5 g, 1.7 mmol) and 2 (2.1 g, 4.4 mmol) in 140 mL THF, NaOH 
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(408 mg, 10.2 mmol) was added. The mixture was degassed for three times and backfilled with Argon, 

then Pd(PPh3)4 (230.0 mg, 0.2 mmol) was added. After refluxing for 2 d, the mixture was cooled to 25 

°C and poured into CH2Cl2 solvent. Collecting organic layers, and then the aqueous layer was extracted 

by CH2Cl2. The combined organic phase was washed with brine and dried with Na2SO4. After 

concentration in vacuo, the residue was purified by flash column chromatography (Al2O3 200-300 

mesh), eluting with CH2Cl2: CH3OH (v/v, 100/0.25) to give L, as a white solid: 1.7 g (73%). 1H NMR 

(600 MHz, CDCl3) δ 8.75-8.74 (d, 2H, J= 6 Hz, A-tpy-H3'), 8.73-8.72 (m, 6H, A-tpy-H5', B-tpy-H3',5'), 

8.70-8.69 (m, 4H, A-tpy-H3, A-tpy-H6), 8.68-8.67 (d, 2H, J= 6 Hz, A-tpy-H3''), 8.64-8.63 (d, 2H, J= 

6 Hz, A-tpy-H6''), 8.55-8.54 (d, 4H, J= 6 Hz, B-tpy-H6,6''), 8.45 (s, 4H, B-tpy-H3,3''), 7.90-7.89 (d, 4H, 

J= 6 Hz, A-Ph-Hj), 7.88-7.87 (d, 4H, J= 6 Hz, B-Ph-Hg), 7.84-7.81 (t, 2H, J= 9 Hz, A-tpy-H4''), 7.79 

(s, 1H, Ha), 7.77-7.76 (d, 2H, J= 6 Hz, A-tpy-H4), 7.75 (s, 1H, Hb), 7.50-7.48 (d, 4H, J= 12 Hz, B-Ph-

Hh), 7.32-7.30 (t, 2H, J= 6 Hz, A-tpy-H5''), 7.16-7.15 (d, 4H, J= 6 Hz, B-tpy-H5,5''), 7.01-6.99 (d, 4H, 

J= 12 Hz, A-Ph-Hj), 3.86 (s, 6H, Hc), 2.50 (s, 12H, Hd). 13C NMR (151 MHz, CDCl3) δ 160.44, 156.39, 

156.21, 156.01, 155.82, 155.43, 154.87, 149.74, 149.63, 149.53, 148.99, 148.03, 140.79, 140.48, 

138.00, 137.41, 136.87, 136.72, 136.26, 130.81, 130.51, 128.57, 127.50, 124.83, 123.71, 122.10, 

121.53, 120.71, 118.96, 118.45, 118.27, 114.27, 21.37. ESI-MS (1423.7 calcd. For C96H70N12O2): m/z 

1425.501 [M + H+]+ (calcd m/z: 1425.501).

Cube-shaped supermolecule C2h-1: Ligand L (30.0 mg, 21.1 μmol), and Cd(NO3)2 (13.1 mg, 42.2 

μmol) was added in a 100 mL flask, then a solvent mixture of CHCl3/MeOH (45 mL, v/v, 3/4) was 

added. The mixture was refluxed for 12 h, after cooled to ambient temperature, excess LiNTf2 in 

MeOH was added to get a white precipitate, which was filtered and washed with H2O and MeOH to 

generate a white solid: 60.1 mg (96%). 1H NMR (400 MHz, CD3CN) δ 9.49 (s, 8H, B-tpy-H3'), 9.32 

(s, 8H, B-tpy-H3), 8.92-8.90 (m, 16H, A-tpy-H3', A-tpy-H3''), 8.68 (s, 8H, A-tpy-H5'), 8.57-8.56 (d, 8H, 

J= 4 Hz, A-tpy-H6''), 8.43-8.36 (m, 24H, A-tpy-H4'', A-tpy-H3, B-tpy-H5'), 8.25-8.22 (m, 24H, B-tpy-

H3'', B-Ph-Hg), 8.10-8.08 (d, 16H, J= 8 Hz, A-Ph-Hj), 7.95-7.93 (d, 8H, J= 12 Hz, A-tpy-H4), 7.86-

7.85 (d, 8H, J= 4 Hz, B-tpy-H6), 7.82-7.81 (d, 8H, J= 4 Hz, B-tpy-H6''), 7.76-7.73 (t, 6H, A-tpy-H5''), 
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7.27-7.25 (d, 8H, J= 8 Hz, B-tpy-H5), 7.23-7.21 (d, 16H, J= 4 Hz, A-Ph-Hk), 7.08-7.06 (d, 16H, J= 8 

Hz, B-Ph-Hh), 7.04-7.03 (d, 8H, J= 4 Hz, B-tpy-H5''), 6.99 (s, 4H, Ha), 6.85 (s, 4H, Hb), 5.93 (s, 8H, 

A-tpy-H6), 5.93 (s, 24H, Hc), 2.45 (s, 24H, He), 2.42 (s, 24H, Hd). ESI-MS (10640.0 calcd. For 

C412H280Cd8F84N64O70S28): m/z 827.413 [M – 10NTf2¯]10+ (calcd m/z: 827.413), 950.667 [M – 

9NTf2¯]9+ (calcd m/z: 950.667), 1104.362 [M – 8NTf2¯]8+ (calcd m/z: 1104.362), 1302.253 [M – 

7NTf2¯]7+ (calcd m/z: 1302.253).

Helical supermolecule D2-2: Weight 2 mg C2h-1 and dissolve it in a nuclear magnetic tube with 

deuterated acetonitrile, heated at 65 ℃, and the first day was measured every 3 hours for nuclear 

magnetic resonance, and the data showed that there was no obvious change. Then the test was carried 

out at an interval of one day, and there was still no change after a week. So, the test was carried out at 

an interval of one week. After that a significant change was observed during the test in the third week, 

and it was changed to a daily test. Finally, all the transformations were detected in the fourth week, 

and there will be no changes in the following days. 1H NMR (500 MHz, CD3CN) δ 9.12 (s, 4H, C-tpy-

H5'), 9.01-8.99 (m, 8H, A-tpy-H5', D-tpy-H5'), 8.97-8.95 (m, 8H, C-tpy-H3', D-tpy-H3'), 8.82 (m, 8H, A-

tpy-H3'', C-tpy-H3''), 8.73 (m, 8H, B-tpy-H3', B-tpy-H5'), 8.71-8.68 (d, 4H, J= 15 Hz, C-tpy-H3), 8.66 

(s, 4H, A-tpy-H3'), 8.56 (m, 8H, B-tpy-H3, B-tpy-H3''), 8.49 (m, 4H, A-tpy-H3), 8.44 (m, 8H, D-tpy-

H3, D-tpy-H3''), 8.29-8.28 (m, 12H, C-tpy-H4, C-Ph-Hj), 8.20 (s, 4H, Ha), 8.17-8.16 (m, 16H, A-tpy-

H6'', C-tpy-H6'', A-Ph-Hj), 8.09-8.08 (d, 8H, J= 5 Hz, B-tpy-H6, B-tpy-H6''), 7.88-7.82 (m, 20H, A-tpy-

H4'', B-Ph-Hg, D-Ph-Hg), 7.77-7.75 (m, 8H, A-tpy-H4, C-tpy-H4''), 7.69 (s, 4H, Hb), 7.54-7.53 (m, 4H, 

C-tpy-H6), 7.50-7.48 (m, 8H, D-tpy-H6, D-tpy-H6''), 7.33-7.27 (m, 32H, A-tpy-H5'', C-tpy-H5'', B-Ph-

Hh, C-Ph-Hk, D-Ph-Hh), 7.12-7.11 (m, 8H, D-tpy-H5, D-tpy-H5''), 7.06 (m, 4H, A-Ph-Hk), 6.93-6.92 

(d, 8H, J= 5 Hz, B-tpy-H5, B-tpy-H5''), 5.80 (s, 4H, A-tpy-H6), 3.99 (s, 12H, C-Hc), 3.94 (s, 12H, A-

Hc). ESI-MS (11076.2 calcd. For C416H280Cd8F96N64O72S32): m/z 827.414 [M – 10NTf2¯]10+ (calcd m/z: 

827.414), 950.657 [M – 9NTf2¯]9+ (calcd m/z: 950.657), 1104.361 [M – 8NTf2¯]8+ (calcd m/z: 

1104.361, 1302.249 [M – 7NTf2¯]7+ (calcd m/z: 1302.249).
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3.  NMR and MS spectra data of Compound and supramolecule.

Figure S1: 1H NMR spectrum (400 MHz, 298 K) of 2 in CDCl3.

Figure S2: 13C NMR spectrum (126 MHz, 298 K) of 2 in CDCl3.
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Figure S3: Isotope patterns spectrum of 2.

Figure S4: 1H NMR spectrum (400 MHz, 298 K) of 4 in CDCl3.
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Figure S5: 2D COSY spectrum (400 MHz, 298 K) of 4 in CDCl3.

Figure S6: 2D NOESY spectrum (400 MHz, 298 K) of 4 in CDCl3.
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Figure S7: 13C NMR spectrum (101 MHz, 298 K) of 4 in CDCl3.

Figure S8: Isotope patterns spectrum of 4.
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Figure S9: 1H NMR spectrum (600 MHz, 298 K) of L in CDCl3.
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Figure S10: 2D COSY spectrum (600 MHz, 298 K) of L in CDCl3.
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Figure S11: 2D NOESY spectrum (600 MHz, 298 K) of L in CDCl3.
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Figure S14: 1H NMR spectrum (400 MHz, 298 K) of metallo-cube C2h-1 in CD3CN.

Figure S15: 2D COSY spectrum (400 MHz, 298 K) of metallo-cube C2h-1 in CD3CN.
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Figure S16: 2D NOESY spectrum (400 MHz, 298 K) of metallo-cube C2h-1 in CD3CN.

Figure S17: 2D DOSY spectrum (500 MHz, 298 K) of metallo-cube C2h-1 in CD3CN.
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Figure S18: Isotope patterns spectrum of metallo-cube C2h-1 (NTf2
- as counterion).

Figure S19: 1H NMR spectrum (400 MHz, 298 K) of metallo-cube D2-2 in CD3CN.



S20

Figure S20: 2D COSY spectrum (400 MHz, 298 K) of metallo-cube D2-2 in CD3CN.

Figure S21: 2D NOESY spectrum (400 MHz, 298 K) of metallo-cube D2-2 in CD3CN.
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Figure S22: 2D DOSY spectrum (500 MHz, 298 K) of metallo-cube D2-2 in CD3CN.

Figure S23: (a) ESI-MS spectrum and (b) ESI-TWIM-MS plot of metallo-cube D2-2 (NTf2
- and NO3

- 

as counterion).
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Figure S24: Isotope patterns spectrum of metallo-cube D2-2 (NTf2
- as counterion).
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4. Host-guest complexation 

4.1 neutral guests with no encapsulation

i)

ii)

iii)

iv)

Figure S25: The comparison of 1H NMR spectra (500 MHz, 298 K, CD3CN-d3) of i) coronene (CO

R); ii) COR + (C2h-1 + D2-2); iii) C2h-1 + D2-2; iv) C60 + (C2h-1 + D2-2). C60 and COR cannot be enc

apsulated by C2h-1 + D2-2. 

4.2 anionic guests can be encapsulated by host but don’t cause any equilibrium shift between two 

conformers.

i)

ii)

iii)

Figure S26: The comparison of full 1H NMR spectra (500 MHz, 298 K, CD3CN-d3) of i) D-sodium 
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camphor sulfonate; ii) D-sodium camphor sulfonate + (C2h-1 + D2-2); iii) C2h-1+ D2-2. D-sodium camp

hor sulfonate can be encapsulated by C2h-1+ D2-2.

a1 d1a2
b1 b2

c e1e2 d2

f g

i)

ii)

iii)

Figure S27: The comparison of enlarged 1H NMR spectra (500 MHz, 298 K, CD3CN-d3) of i) D-sod

ium camphor sulfonate; ii) D-sodium camphor sulfonate + (C2h-1 + D2-2); iii) C2h-1+ D2-2. D-sodium 

camphor sulfonate can be encapsulated by C2h-1 + D2-2.

B

a
bc

a
b

c
i)

ii)

iii)

Figure S28: The comparison of 1H NMR spectra (500 MHz, 298 K, CD3CN-d3) of i) tetra-n-butylamm
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onium tetraphenylborate; ii) tetra-n-butylammonium tetraphenylborate + (C2h-1 + D2-2); iii) C2h-1+ D2

-2. Tetra-n-butylammonium tetraphenylborate can be encapsulated by C2h-1+ D2-2.

4.3 anionic guest can be encapsulated and causes equilibrium shift between the two conformers.

Figure S29: 1H NMR titration with the continuous addition of sodium perfluorooctanoate into the so

lution of metallo-cage C2h-1 (sodium perfluorooctanoate concentration gradually increasing from bot

tom to top).
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Figure S30: (a) 19F NMR (500 MHz, CD3CN, 298 K) spectra of PFOA; (b) 19F NMR (500 MHz, 

CD3CN, 298 K) spectra of the conformer C2h-1 and PFOA⊂ C2h-1; (c) Partial 19F NMR (500 MHz, 

CD3CN, 298 K) spectra of (b). 
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Figure S31: 19F NMR (500 MHz, CD3CN, 298 K) titration with the continuous addition of sodium 

perfluorooctanoate into the solution of metallo-cage C2h-1 (sodium perfluorooctanoate concentration 

gradually increasing from bottom to top).
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Figure S32: The isotopic patterns of three charge states (8+, 7+, 6+) in the host-guest complex PFOA⊂

C2h-1.
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(a) (b)
PFOA⊂C2h-1

Figure S33: (a) UV-vis absorption of metallacage C2h-1 with PFOA in different molar ratios ([C2h-

1]+[PFOA]=6*10-6 mol/L); (b) Job’s plot of the PFOA⊂C2h-1 in CH3CN, showing a 1:1 stoichiometry.

Figure S34: Binding isotherms (1:1 system) fitted to the chemical shift of proton signals vs. the 

equivalents of PFOA added to determine the binding affinity (top); and the residual plot from the fit 

(bottom).
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5. Single-crystal X-ray diffraction (XRD)

The single crystals were obtained by slowly diffusing the vapor of isopropyl ether into complexes in 

acetonitrile for over one month.

(c)

(a) (b)

11.4 Å

13.5 Å

(d)

Figure S35: (a) The side view, (b) top view and (c) front view of crystal structure of metallo-cage 

D2-2, (d) crystal packing model of metallo-cage D2-2.

Figure S36: The methyl groups of part B (green marked) blocked the pore of C2h-1.
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Table S1. Crystal data and structure refinement for metallo-cube D2-2.

Identification code D2-2
Empirical formula C416Cd8F96N64O72S32

Formula weight 11076.20
Temperature/K 101.0
Crystal system orthorhombic
Space group Ccce

a/Å 28.333(3)

b/Å 23.598(2)

c/Å 23.680(2)

α/° 64.993(4)

β/° 72.948(4)

γ/° 86.095(4)

b/Å 43.635(4)
c/Å 40.669(4)
α/° 90
β/° 90
γ/° 90

Volume/Å3 50280(9)
Z 8

ρcalcg/cm3 0.872
μ/mm-1 2.035
F(000) 13512.0

0.0
Radiation GaKα(λ = 1.34139)

2Θ range for data collection/° 3.746 to 68.288
Index ranges -23 ≤ h ≤ 23, -36 ≤ k ≤36, -33 ≤ l ≤ 33

Reflections collected 127722
Independent reflections 7630 [Rint = 0.0839，Rsigma = 0.0416]

Data/restraints/parameters 7630/936/921
Goodness-of-fit on F2 1.791

Final R indexes [I>=2σ (I)] R1 = 0.1328, wR2 = 0.3859
Final R indexes [all data] R1 = 0.1563, wR2 = 0.4148

Largest diff. peak/hole / e Å-3 1.61/-0.53
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6. Volume Calculations 

In order to determine the available void spaces of C2h-1, D2-2, VOIDOO calculations based on 

the simulated energy optimal structure (for C2h-1) and crystal structures (for D2-2) were performed.S3 

A virtual probe with a radius of 1.4 Å (set by default, water-sized) was employed, and the standard 

parameters tabulated below were used.

Maximum number of volume-refinement cycles: 30

Minimum size of secondary grid: 3

Grid for plot files: 0.1

Primary grid spacing: 0.1

Plot grid spacing: 0.1

The cavity volumes were calculated to be 1263 and 867 Å3 for C2h-1, D2-2, respectively.

Figure S37: VOIDOO calculated void space within the crystal structure of C2h-1. The volume is 

calculated to be 1263 Å3.

Figure S38: VOIDOO calculated void space within the crystal structure of D2-2. The volume is 

calculated to be 867 Å3.
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7. Calculation

Molecular level understanding on the kind of interaction of the host with one conformer while the 

other conformer having less interaction with the guest has been checked. As shown in Figure 40, part 

of the fluorine atoms in guest PFOA interacted with hydrogen atoms in conformer D2-2 through 

CH…F hydrogen bonds with about 2.7-3.4 Å distance (about 6 CH…F hydrogen bonds), indicating 

low bond energy. In terms of PFOA⊂C2h-1 host-guest complex, all of the fluorine atoms in guest 

PFOA interacted with hydrogen atoms in conformer C2h-1 through CH…F hydrogen bonds with about 

2.1-3.1 Å distance (about 11 CH…F hydrogen bonds), showing strong bonding energy (Figure 41). 

So, the difference of hydrogen bonds between hosts and guest PFOA is the driving force for 

encapsulation of the guest in conformer C2h-1 rather than conformer D2-2.

-28.2 kcal·mol-1
E

Dh-2C2h-1

Figure S39: The energy-minimized structure of C2h-1, single-crystal structure of D2-2. The energy 

difference between two structures is presented.
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Figure S40: CH…F hydrogen bonds in PFOA⊂D2-2.

Figure S41: CH…F hydrogen bonds in PFOA⊂C2h-1.
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Figure S42: The binding energies of host-guest complex PFOA⊂C2h-1 and PFOA⊂D2-2.



S35

8. The NMR and MS spectra date of Zn8L4

Cd8L4

Zn8L4

Figure S43: The comparison of 1H NMR spectra of metallo-cage Cd8L4 and Zn8L4 (500 MHz, 298 K, 

CD3CN-d3).
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Figure S44: ESI-MS spectra of metallo-cage Zn8L4 with insert isotopic patter of charge state 8+.
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