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Computation details

Constant-potential method. To calculate the free energies of species involved in 

electrochemical reactions, we employed a constant-potential method (CPM) while 

accounting for solvent effects using the implicit solvation model provided by VASPsol. 

To illustrate the ΔG calculation using CPM, we use the Volmer reaction from HER as 

an example, where a proton from the solution adsorbs onto the catalyst surface, coupled 

with electron transfer from the electrode.

In the charge-neutral method (CNM), the Gibbs free energy change (ΔG) for the 

reaction H⁺(sol) + e⁻ → H* is calculated as:

 (1)Δ𝐺𝑐𝑛𝑚 =  𝐺( ∗ 𝐻) ‒ 𝐺( ∗ )– 𝐺(𝐻 + (𝑠𝑜𝑙)) ‒ 𝜇𝑒

where G(H*) and G(*) are the free energies of the catalyst with and without hydrogen 

adsorption, respectively, G(H+(sol)) is the free energy of the proton in solution at given 

pH; and μe is the electron energy, which is defined by the absolute electrode potential.

To make this calculation more computationally feasible, μe is referenced to the 

electron energy in the standard hydrogen electrode (SHE), denoted as μSHE, and the 

Nernst equation is applied. This reformulates the ΔG expression as:

 (2)Δ𝐺𝑐𝑛𝑚 =  𝐺( ∗ 𝐻) ‒ 𝐺( ∗ )– 𝐺(𝐻2)/2 + |𝑒|𝑈

When employing the constant-potential method, which accounts for the varying 

charge states of the catalyst during the reaction, the ΔG calculation is modified as:

 (3)Δ𝐺𝑐𝑝𝑚 =  𝐺𝑠𝑜𝑙( ∗ 𝐻𝑄2) ‒ 𝐺𝑠𝑜𝑙( ∗ 𝑄1)– 𝐺(𝐻2)/2 + |𝑒|𝑈 + (𝑄2 ‒ 𝑄1)𝜇𝑒

where Q1 and Q2 represent the net charges on the catalyst before and after hydrogen 

adsorption, determined by the condition

 (4)𝐸𝐹( ∗ 𝑄1) = 𝐸𝐹( ∗ 𝐻𝑄2) = 𝜇𝑒

where EF is the Fermi energy. The electron energy μe is calculated as:

 (5)𝜇𝑒 = 𝜇𝑆𝐻𝐸 ‒ |𝑒|·𝑈𝑆𝐻𝐸

where USHE is the applied potential versus SHE, benchmarked to be −4.6 eV in 

VASPsol.1  

The relationship between URHE and USHE is given by:



 (6)𝑈𝑅𝐻𝐸 =  (Φ ‒  Φ𝑆𝐻𝐸)/𝑒 +  0.0592 ×  𝑝𝐻

where Φ is the work function, determined by the energy difference between the 

vacuum level and the Fermi level. This relationship enables the calculation of the 

potential U by adding extra electrons. This approach allows us to model the potential-

dependent free energy as a quadratic function G(U), facilitating the analysis of reaction 

energy changes with varying potential.

To represent the constant-potential conditions, extra electrons are systematically 

added or removed to control the surface charge state. In evaluating the reaction barriers, 

the potential is calculated as the average of the potentials at the initial (UIS) and final 

states (UFS):

𝑈𝑟 =  (𝑈𝐼𝑆 + 𝑈𝐹𝑆) / 2  

This ensures the calculated free energy at constant potential accurately reflects the 

reaction environment, as outlined in earlier studies.2, 3

Slow-growth approach. In the thermodynamic integration (TI) method, the reaction 

free energy and kinetic barrier are obtained by applying a holonomic constraint on the 

reaction coordinate (ζ) during MD simulations and integrating over the average 

unbiased force associated with the reaction coordinate,4, 5 The free energy difference 

between two reaction coordinates (ζa and ζb) is given by:

 (7)

Δ𝐴(𝜁𝑎,𝜁𝑏) =  ‒

𝜁𝑏

∫
𝜁𝑎

𝐹(𝜁)𝑑𝜁

Where ΔA(ζa , ζb) is the free energy difference between two reaction coordinates ζa and 

ζb and F(ζ) is the averaged constrained force along the reaction coordinate. 

For the formation of H2 in the second step of the HER (*H + H3O + e- → * + H2 

+ H2O), the CV is defined as:

 (8)𝐶𝑉 =  𝜁(𝑟) = |𝑟𝐴𝑢(𝑠𝑢𝑟𝑓𝑎𝑐𝑒) ‒ 𝑟𝐻𝐴| + |𝑟𝐴𝑢(𝑠𝑡𝑎𝑝𝑙𝑒) ‒ 𝑟𝐻𝐴| ‒ |𝑟𝐻𝐴 ‒ 𝑟𝐻𝐵|

where rHA refers to the coordinate of the H atom adsorbed at the Au bridge site, and rHB 

refers to the coordinate of the H atom on the hydronium ion (H3O+).

For the formation of *CO under alkaline conditions (*COOH → *CO + OH-), the 



CV is defined as:

 (9)𝐶𝑉 =  𝜁(𝑟) = |𝑟𝐶 ‒ 𝑟𝑂|

where rC refers to the coordinate of the C atom on the *COOH, and rO refers to the 

coordinate of the O on the -OH group of *COOH.

Fig. S1 Illustration of individual and collective variable used as reaction coordinates in the“slow-

growth” approach. The specific reactions depicted are: (a) H2 formation and (b) formation of CO* 

and OH-.



Fig. S2 Optimized structures of (a) [Au25(SCH2COOH)18]- and (b) [Au25(SCH2CH3)18]-, with the 

simulation box filled with water to simulate acidic conditions (191 H2O molecules and one H3O⁺ 

ion). 



Fig. S3 Relative distances between representative atoms during the equilibrated AIMD simulations 

at 300 K with the introduction of one extra electron in an acidic environment (pH = 0) for (a) 

[Au25(SCH2COOH)18]- and (b) [Au25(SCH2CH3)18]-.



Fig. S4 Comparison in the number of hydrogen bonds in (a) [Au25(SCH2COOH)18]- and 

[Au25(SCH2CH3)18]-, as well as (b) [Au25(MHA)18]- and [Au25(SC6H13)18]- during equilibrated 

AIMD simulations at 300 K in an acidic environment (pH = 0) after the introduction of two extra 

electrons. (c) The snapshots of the four Au25/water structures after 10ps AIMD simulations. 



Fig. S5 The relationship between the number of extra electrons (n–n0) and the corresponding 

electrode potentials for (a) [Au25(SCH2COOH)17]- and (b) [Au25(SCH2CH3)17]- in the H2 formation 

step of the HER process. Variation in Gibbs free energy as a function of electrode potential for (c) 

[Au25(SCH2COOH)17]- and (d) [Au25(SCH2CH3)17]-.



Fig. S6 The relationship between the number of extra electrons (n–n0) and the corresponding 

electrode potentials for (a) [Au25(SCH2COOH)17]- and (b) [Au25(SCH2CH3)17]- during the CO2RR 

process. Variation in Gibbs free energy as a function of electrode potential for (c) 

[Au25(SCH2COOH)17]- and (d) [Au25(SCH2CH3)17]-.



Fig. S7 Representative structures and energy profiles for the Volmer step in [Au25(SCH2COOH)17]-

 and [Au25(SCH2CH3)17]- under similar potentials (vs RHE). (a, c) Initial state (IS) and final state 

(FS) structures for [Au25(SCH2COOH)17]- and [Au25(SCH2CH3)17]-, respectively. (b, d) 

Corresponding energy barriers sampled via SG-AIMD simulations for [Au25(SCH2COOH)17]- and 

[Au25(SCH2CH3)17]-.



Fig. S8 Representative structures and energy profiles for the Heyrovsky step in 

[Au25(SCH2COOH)17]- and [Au25(SCH2CH3)17]- under similar potentials (vs RHE). (a, c) Initial 

state (IS) and final state (FS) structures for [Au25(SCH2COOH)17]- and [Au25(SCH2CH3)17]-, 

respectively. (b, d) Corresponding energy barriers sampled via SG-AIMD simulations for 

[Au25(SCH2COOH)17]- and [Au25(SCH2CH3)17]-.



Fig. S9 Optimized structures of [Au25(SCH2COOH)17]- and [Au25(SCH2CH3)17]- with key 

intermediates: (a) [Au25(SCH2COOH)17]-, (b) *H on [Au25(SCH2COOH)17]-, (c) *COOH on 

[Au25(SCH2COOH)17]-, (d) [Au25(SCH2CH3)17]-, (e) *H on [Au25(SCH2CH3)17]-, and (f) *COOH on 

[Au25(SCH2CH3)17]-.

Fig. S10 The measured UV-vis absorption spectra of the synthesized (a) [Au25(MPA)18]-, (b) 

[Au25(SC6H13)18]-, and (c) [Au25(MHA)18]- NCs.



Fig. S11 Tafel slopes of the two Au25 catalysts in 1 M KOH solution saturated with CO2.



Fig. S12 Electrocatalytic CO2RR performance in a CO2 flow cell with 1M KOH electrolyte. (a) 

LSV curves of [Au25(MHA)18]- and [Au25(SC6H13)18]- in N2 and CO2 environments. (b) FECO of 

[Au25(MHA)18]- and [Au25(SC6H13)18]- at different potentials. (c) Fractional current density of CO 

at various potentials. (d) Turnover frequency (TOF) of CO at different potentials. 



Fig. S13 Tafel slopes of [Au25(MHA)18]- and [Au25(SC6H13)18]-.
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