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Machine Learning Force Field (MLFF) Training Details

The liquid-phase LiCl MLFF was trained on-the-fly in VASP with a system comprising 50 

LiCl ion pairs in the isothermal-isobaric ensemble (NpT) at 1 bar with the temperature linearly 

ramped from 900-1400 K over 100 ps. Another 50 ps of on-the-fly training was performed at 1400 

K. The final model ultimately included 1,909 frames, from which 2,299 (Li) and 1,544 (Cl) local 

reference configurations were selected to construct the MLFF. The list of model parameters for 

the liquid MLFF are provided in Table S1. For the liquid phase test set, the mean absolute error 

(MAE) in energies was 0.59 meV/atom, the root-mean-squared error (RMSE) in forces was 0.077 

eV/Å, and the RMSE in stresses was 0.21 kbar (Figure S1(a)-(c)). The Li-Cl pairwise radial 

distribution function predicted by the MLFF is compared against ab initio molecular dynamics 

(AIMD) and experiment in Figure 1 of the main text. While the MLIPs developed herein do not 

consider long-range interactions, previous studies1, 2 have shown that MLIPs with cutoffs  8 Å 

are still able to accurately reproduce several experimental observables of molten salt systems, such 

as density, heat capacity, thermal conductivity, and viscosity. Consistent with this trend, we note 

that the accuracy of the MLFF did not appreciably change when increasing the angular and radial 

cutoff parameters beyond 4.0 and 6.5 Å, respectively. For instance, while testing various 

hyperparameters, the MAE in energy and RMSE in forces and stress from a model with 4.0 and 

6.5 Å cutoffs were 0.63 meV/atom, 0.074 eV/Å, and 0.19 kbar, respectively; while keeping all 

other parameters the same, increasing the cutoffs to 5.5 and 7.5 Å yielded errors of 0.49 eV/Å, 

0.067 eV/Å, and 0.16 kbar, respectively.    
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The solid-phase LiCl MLFF was trained in a similar manner to the liquid-phase model, but 

with 108 LiCl ion pairs (3×3×3 supercell of the conventional cell) and with the temperature linearly 

ramped from 700-900 K over 50 ps. The final model ultimately included 889 frames, from which 

3,021 (Li) and 1,986 (Cl) local reference configurations were selected to construct the MLFF. The 

list of model parameters for the solid MLFF are also provided in Table S1. For the solid phase test 

set, the mean absolute error (MAE) in energies was 1.05 meV/atom, the root-mean-squared error 

(RMSE) in forces was 0.036 eV/Å, and the RMSE in stresses was 0.16 kbar (Figure S1(d)-(f)).
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Figure S1: Test set benchmarking of MLFF predictions against DFT for (a, d) energies, (b, e) 
forces, and (c, f) stresses. (a-c) Liquid phase MLFF and DFT values for 200 uncorrelated 
configurations sampled from AIMD simulations with 150 LiCl at 893, 943, 993, and 1043 K (50 
configurations per temperature). (d-f) Solid phase MLFF and DFT values for 100 uncorrelated 
configurations sampled from an AIMD NPT simulation with 108 LiCl at 1 bar and temperatures 
from 700 to 900 K. 
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Table S1: Model parameters for liquid- and solid-phase LiCl MLFFs. Parameter descriptions 
can be found in ref 3.

Liquid Phase Solid Phase

𝛽(2) 0.5 𝛽(2) 0.1

𝑟(2)𝑐𝑢𝑡 6.5 Å 𝑟(2)𝑐𝑢𝑡 6.5 Å

𝑁 (2)
𝑏𝑎𝑠𝑖𝑠 8 𝑁 (2)

𝑏𝑎𝑠𝑖𝑠 8

𝜎(2) 0.5 Å 𝜎(2) 0.3 Å

𝛽(3) 0.5 𝛽(3) 0.9

𝑟(3)𝑐𝑢𝑡 4.0 Å 𝑟(3)𝑐𝑢𝑡 4.0 Å

𝑁 (3)
𝑏𝑎𝑠𝑖𝑠 6 𝑁 (3)

𝑏𝑎𝑠𝑖𝑠 6

𝜎(3) 0.5 Å 𝜎(3) 0.3 Å

𝜁(3) 4 𝜁(3) 4
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Neural Network Interatomic Potential (NNIP) Description and Training Details

Deep-Pot-Smooth Edition (DeepPot-SE) potential4 contained inside DeePMD-kit (DP-kit) 

package (version 2.1.1)5 was used for training of NNIP interatomic potential on VASP data. From 

previous investigations of molten salts,2, 6 DeepPot-SE has been shown to fit a smooth and 

continuously differentiable potential energy surface. To train the NNIP for molten LiCl, the 

training dataset comprised 66,082 LiCl (150 pairs) configurations at relaxed volume at 943 K, in 

addition to ~285,577 configurations with varied densities. Specifically, among varied densities 

configurations, 50,860 configurations were 7.5% expanded, 53,341 at 7.5% compression, 41,072 

at 15% expansion, 36,627 at 15% compression, 41,099 at 25% expansion, and 62,578 

configurations were obtained from 25% compression of volumes relative to the experimental 

densities at 943 K. The inclusion of expanded and compressed configurations from the same 

system was essential to ensure that the NNIP remains stable and is capable of density predictions.2, 

6 During the training, the entire dataset was shuffled and split with 80% and 20% representing the 

training and validation sets, respectively. During training, the DeepPot-SE model maps the local 

environment of each atom within a cut-off (here, 8 Å) to a per-atom energy, such that the sum of 

atomic energies corresponds to the reference DFT energy obtained from VASP. Thereupon, the 

gradients of the predicted energies from NNIP are used to compute the atomic forces and both the 

reference energies and forces are included to evaluate the loss function to be minimized during the 

training of the NNIP. Here, the smooth cutoff and hard cutoff radius of 2 Å and 8 Å is chosen and 

the embedding network and fitting network sizes are chosen to be [25, 50, 100] and [240, 240, 

240], respectively. For the loss function, the tunable pre-factors for energies and forces were 

chosen as 0.002, 1000, 1, 1 for pe
start, pf

start, pe
limit, and pf

limit, respectively. Previously, these 

hyperparameters showed success in accurately predicting the structure and transport properties of 

a molten salt system.6 Seed value of 1 is chosen for assigning random values to weights and biases 

of the neural network when starting the NNIP training. After 800,000 training steps, the MAE in 

energies was 0.27 meV/atom and the RMSE in forces was 0.035 eV/Å (Figure S2(a,b)). For the 

validation set (20% of dataset not used for training), the MAE in energies was 0.26 meV/atom and 

the RMSE in forces was 0.035 eV/Å (Figure S2(c,d)). 
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Figure S2: Comparison of DFT and NNIP predictions in (a, c) energies and (b, d) forces for liquid 
phase structures from the (a, b) training set (80% of initial dataset) and (c, d) validation set (20% 
of initial dataset).
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MLFF Liquid Stability

To assess the stability of our MLFF trained on liquid structures, we performed 2 ns of MD 

in the NVT ensemble at 943 K with 150 LiCl pairs and analyzed the last 1 ns by computing g(r) 

from 1 ps segments of the trajectory, which are compared against g(r) from AIMD in Figure S3(a). 

Following the recommendations of a recent benchmarking study,7 we also computed Wright’s 

factor and the Jensen-Shannon divergence for the 1,000 g(r) samples (respectively shown in 

Figure S3(b) and (c)), which demonstrate the ability of the MLFF to continuously maintain the 

correct liquid structure.

Wright’s Factor, 𝑅𝜒

𝑅𝜒=
∑(𝑔(𝑟) ‒ 𝑔𝑟𝑒𝑓(𝑟))2

∑(𝑔𝑟𝑒𝑓(𝑟))2
#(𝑆1)

Jensen-Shannon Divergence (JSD)

𝐽𝑆𝐷(𝑔(𝑟)||𝑔𝑟𝑒𝑓(𝑟)) =
1
2[𝐾𝐿(𝑔(𝑟)||𝑔̂(𝑟)) + 𝐾𝐿(𝑔𝑟𝑒𝑓(𝑟)||𝑔̂(𝑟))]#(𝑆2)

𝑔̂(𝑟) =
1
2
[𝑔(𝑟) + 𝑔𝑟𝑒𝑓(𝑟)]
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Figure S3: Demonstrating stability of liquid phase MLFF. (a) Comparison of AIMD-computed 
g(r) against 1,000 samples computed from 1 ps segments (MLFF-MD). (b) Distribution of values 
for Wright’s factor computed on 1,000 sampled g(r) functions. (c) Distribution of values for the 
Jensen-Shannon divergence of the 1,000 sampled g(r) functions with the AIMD-computed g(r).
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Figure S4: Li-Cl distance distributions of transmuted ions for (a, b)  and (c, d)  Δ𝑁= 1 Δ𝑁= 1
thermodynamic pathways. Each distribution in (b) and (d) are constructed from the TI window 
corresponding to  in the color bar.𝜆
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Figure S5: System size scaling of Einstein crystals at each temperature.
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Figure S6: Thermodynamic integration for (a) liquid and (b) solid LiCl phases. Two different 
approaches are shown for the liquid phase in (a), where either a single LiCl pair or all ions are 
transformed into ideal gas particles. Thermodynamic integration for the solid phase in (b) involves 
the transformation from an Einstein crystal ( ) to the real crystal ( ).𝜆= 0 𝜆= 1
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Table S2: Free energy components from Einstein crystal8-11 calculations. All free energies are 
provided in kcal/mol.

T (K) NLiCl 𝐹𝐶𝑂𝑀
𝐸𝐶 /𝑁𝐿𝑖𝐶𝑙

(Δ𝐹𝐶𝑂𝑀
𝐸𝐶 + Δ𝐹𝐶𝑂𝑀

𝑅𝐶 )
𝑁𝐿𝑖𝐶𝑙

Δ𝐹 𝐶𝑂𝑀
𝐸𝐶→𝑅𝐶/𝑁𝐿𝑖𝐶𝑙

𝜇𝐿𝑖𝐶𝑙(𝑠)

108 -6.858 -0.172 -212.72 ± 0.01 -219.75 ± 0.01
256 -6.858 -0.081 -212.794 ± 0.007 -219.732 ± 0.007800
500 -6.858 -0.045 -212.809 ± 0.005 -219.711 ± 0.005
108 -7.901 -0.182 -213.05 ± 0.01 -221.13 ± 0.01
256 -7.901 -0.085 -213.131 ± 0.007 -221.117 ± 0.007850
500 -7.901 -0.047 -213.153 ± 0.005 -221.100 ± 0.005
108 -8.543 -0.187 -213.29 ± 0.01 -222.02 ± 0.01
256 -8.543 -0.088 -213.335 ± 0.008 -221.967 ± 0.008880
500 -8.543 -0.049 -213.360 ± 0.006 -221.952 ± 0.006
108 -8.979 -0.191 -213.41 ± 0.01 -222.58 ± 0.01
256 -8.979 -0.090 -213.782 ± 0.008 -222.545 ± 0.008900
500 -8.979 -0.050 -213.499 ± 0.006 -222.527 ± 0.006
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Table S3: Free energy components of solid lithium chloride crystal from method in ref 12. All free 
energies are provided in kcal/mol.

T (K) NLiCl
Perfect 
Crystal

Harmonic 
Approximatio

n

Anharmonic 
Contributions

𝜇𝐿𝑖𝐶𝑙(𝑠)

108 -207.124 -10.947 1.15 ± 0.03 -216.92 ± 0.03
700

256 -207.124 -10.633 0.79 ± 0.02 -216.97 ± 0.02
108 -206.926 -12.679 1.32 ± 0.03 -218.28 ± 0.03

750
256 -206.926 -12.506 1.11 ± 0.02 -218.32 ± 0.02
108 -206.756 -14.444 1.54 ± 0.03 -219.66 ± 0.03

800
256 -206.756 -14.465 1.51 ± 0.01 -219.71 ± 0.01
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Implementations of the Thermodynamic Integration Method in VASP

We note that TI calculations can be performed in VASP using two different 

implementations when using MLFFs. To utilize the coupling parameter, , in Equation (18) in the 𝜆

main text, the ML_LCOUPLE keyword must be enabled, the selected subset of atoms must be 

provided to ML_ICOUPLE, and only then can  be specified via the ML_RCOUPLE keyword. In 𝜆

this way, TI is performed as described in ref 13, where the integrated quantity, , is ∂𝐻(𝜆)/∂𝜆

analytically computed from the derivative of Equation (18) in the main text,

∂𝐻(𝜆)
∂𝜆

= ∑
𝑖 ∉ 𝑀

∂𝑈𝑖(𝜆)

∂𝜆
+ ∑

𝑖 ∈ 𝑀

𝑈𝑖(𝜆) + 𝜆∑
𝑖 ∈ 𝑀

∂𝑈𝑖(𝜆)

∂𝜆
.#(𝑆3)

However, when operating on all atoms in the system, TI can also be performed by simply setting 

the SCALEE keyword to . In this way, MD simulations can be performed using a hybrid 𝜆

Hamiltonian that couples the real system to either an ideal gas (for liquids) or harmonic crystal 

(for solids) via , where  is either  or , as described in ref 𝐻(𝜆) = 𝜆𝐻𝑟𝑒𝑎𝑙+ (1 ‒ 𝜆)𝐻𝑟𝑒𝑓 𝐻𝑟𝑒𝑓 𝐻𝑖𝑑𝑒𝑎𝑙 𝐻ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐

12. Differentiating this Hamiltonian with respect to  instead becomes,𝜆

∂𝐻(𝜆)
∂𝜆

= 𝑈𝑟𝑒𝑎𝑙 ‒ 𝑈𝑟𝑒𝑓.#(𝑆4)

In the case of , to accurately compute chemical potentials, the electronic energy of N isolated 𝐻𝑖𝑑𝑒𝑎𝑙

Li+ and N isolated Cl- ions must be removed from Equation (S4) before integration. Harmonic 

crystal calculations were performed for the 3×3×3 and 4×4×4 supercells by sampling the entire 

Brillouin zone using the MedeA version 3.7.0 software.14 Using MLFF-based calculations, we 

confirmed for several solid- and liquid-phase systems that both approaches yield consistent free 

energy values. This approach is also compatible with DFT-based calculations and was employed 

to compute the DFT-based chemical potentials in Table 2 of the main text. 

Uncertainty Quantification

The uncertainties of all reported chemical potentials and free energies are represented by 

95% confidence intervals (CI) estimated from bootstrapping. The integrand, , for each ⟨∂𝐻(𝜆)/∂𝜆⟩

TI window was resampled 2,000 times via bootstrapping to construct error bars for plots of 

S14



 vs.  (e.g., Figure 2c or Figure 4 in the main text). These 2,000 samples at each  were ⟨∂𝐻(𝜆)/∂𝜆⟩ 𝜆 𝜆

then used to estimate the uncertainty in the resulting free energies. The uncertainty in free energies 

of solid LiCl extrapolated to infinite system sizes were estimated from the variance of the intercept 

of the fitted line. Lastly, the uncertainty in the melting point prediction was estimated by 

propagating the variances in the fitted linear parameters to liquid- and solid-phase free energies in 

Figure 5 of the main text.
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